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Abstract
This paper represents a new variant of colliding bodies optimization (CBO) and the objective is to alleviate the lack of 
population diversity, premature convergence phenomenon, and the imbalance between the diversification and intensification 
of the CBO method. The CBO is a meta-heuristic algorithm based on momentum and energy laws in a one-dimensional 
collision between two bodies. The proposed method is designed by hybridization of the CBO with Morlet wavelet (MW) 
mutation and quadratic interpolation (QI) (MWQI-CBO). The Morlet wavelet mutation is employed to improve the CBO 
so that it can explore the search space more effectively on reaching a better solution. Besides, quadratic interpolation that 
utilized historically best solution is added to CBO to enhance the exploitation phase. Two new parameters are defined to 
have a better balance between the diversification and the intensification inclinations. The proposed algorithm is tested in 24 
mathematical optimization problems including 30 design variables and compared with standard CBO and some state-of-art 
metaheuristics. Besides, the optimal design of five standard discrete and continuous structural design problems with vari-
ous constraints such as strength, stability, displacement, and frequency constraints are studied. It is found that MWQI-CBO 
is quite competitive with other meta-heuristic algorithms in terms of reliability, solution accuracy, and convergence speed.

Keywords Colliding bodies optimization · Quadratic interpolation · Wavelet mutation · Structural optimization · Discrete 
and continuous optimization

1 Introduction

In recent years, there has been research towards developing 
meta-heuristic algorithms (MAs) for solving engineering 
optimization problems since they can be readily applicable 
to a wide range of problems. Unlike traditional optimization 
methods, MAs are problem-independent algorithms and do 
not require gradient information for finding suboptimal/opti-
mal solution in optimization problems. The feasibility and 
effectiveness of meta-heuristic algorithms on the optimal 
design of structures are studied by many researchers [1–7].

Meta-heuristic algorithms (MAs) generally have a signifi-
cant performance in seeking the search space but they may 
face some problems during their performance which can 
make the algorithms unable to find the optima; they can be 
trapped in the local minima. There have been several studies 

addressing this issue for different optimization algorithms. 
One of the operators that has been commonly used in various 
optimization problems is mutation. In a genetic algorithm 
(GA) [8], after survival of the best solutions, one candidate 
solution is selected from the population for regenerating by 
a mutation operator to enhance the diversity of the solutions, 
thereby ensuring a well-performed search. Ling and Leung 
proposed a real-coded genetic algorithm (RCGA) with new 
genetic operations including wavelet mutation and a crosso-
ver operator to minimize operation cost in economic load 
dispatch problems [9]. In HPSOWM [10], a mutation with 
a dynamic mutating space by incorporating Morlet wavelet 
mutation is utilized to prevent the algorithm from immature 
convergence and has performed on three industrial applica-
tions to solve the load flow problems, model the development 
of fluid dispensing for electronic packaging and to design a 
neural network-based controller. Mondal et al. introduced a 
differential evolution with wavelet mutation for the optimal 
design of linear phase finite impulse response filters [11]. 
A hybridized version of the gravitational search algorithm 
(GSA) and wavelet mutation (WM) strategy is utilized for 
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the design of an 8th-order infinite impulse response (IIR) 
filter [12]. In a binary hybrid particle swarm optimization 
introduced by Jiang et al. [13], a mutation process based on 
wavelet theory is adopted to improve the searchability of 
standard PSO and has been tested in various mathematical 
experiments to evaluate the algorithm validity. In SMWOA 
[14], the Morlet wavelet mutation is incorporated into the 
WOA’s exploration phase to enhance the algorithm’s ability 
to jump out of local optima and improve the convergence 
speed and accuracy of the algorithm. This algorithm is used 
for solving the three water resources forecasting in Shaanxi 
Province of China and the results have shown great predic-
tion accuracy of 99.68%.

On the other hand, it can be seen that some meta-heuristic 
algorithms suffering from some drawbacks like inefficient 
search near global optima and low convergence speed, so 
that, they are needed to be improved by some operators. 
One of the reliable operators is quadratic interpolation (QI) 
crossover which has been widely used in MAs. Pant et al. 
presented a new variant of the basic particle swarm optimi-
zation (BPSO) algorithm named QIPSO for solving global 
optimization problems [15]. Deep and Das introduced a 
quadratic approximation-based hybrid genetic algorithm 
for function optimization in which QI is utilized for gener-
ating new offspring in crossover operation [16]. In a modi-
fied whale optimization algorithm (MWOA), a Lévy-flight 
strategy with a quadratic interpolation method is applied to 
the leader of the population to enhance solution accuracy; 
this method is employed to solve large-scale optimization 
problems [17]. In QIWOA [18] proposed by Sun et al., QI 
is adopted to improve the exploitation process. A QI-based 
teaching–learning-based optimization is introduced by Chen 
et al. and is applied to solve six chemical dynamic optimiza-
tion problems including three parameter estimation prob-
lems and three optimal control problems [19].

Colliding bodies optimization (CBO) is a recently devel-
oped population-based algorithm introduced by Kaveh and 
Mahdavi [20] based on collision’s concept in physics. In 
this method, every search agent is considered as a collid-
ing body (CB) with specified mass and velocity that the 
positions of CBs will be updated after a collision occurs 
between two bodies to find better positions in the search 
space. The CBO almost has a good convergence rate but the 
possibility that the algorithm will be trapped in the local 
optima exists. By proposing enhanced CBO (ECBO) [21], 
tried to alleviate CBO’s drawbacks using a mechanism to 
escape from local minima and a memory to store some best 
solutions. The performance of the CBO and ECBO is stud-
ied in solving various kinds of optimization problems [22, 
23]. This paper represents a novel algorithm called MWQI-
CBO. In this algorithm, Morlet wavelet (MW) mutation 
[10] and quadratic interpolation (QI) crossover [18] are 
employed to improve the performance of the CBO. These 

two mechanisms are utilized in diversification and intensi-
fication phases, respectively. Here, viability of the MWQI-
CBO is examined using 24 mathematical benchmark func-
tions and 5 structural design problems. Results show that the 
proposed algorithm is a robust and reliable method.

The rest of this paper is organized as follows: In Sect. 2, 
a brief overview of the CBO is presented. Section 3 intro-
duces the efficient version of the CBO based on MW muta-
tion and QI (MWQI-CBO). Section 4 utilizes benchmark 
mathematical functions and structural design problems to 
compare MWQI-CBO against CBO, ECBO, and some other 
well-known optimization methods. Concluding remarks are 
described in Sect. 5.

2  A brief explanation of the CBO algorithm

The CBO is a population-based algorithm proposed by 
Kaveh and Mahdavi [20], based on the collision phenom-
enon between two bodies which are called colliding bodies 
(CBs). After each collision, two CBs will move toward new 
positions based on updating equations which will be pre-
sented in the following.

In this method, CBs have a specified mass defined as:

where fit(i) represents the objective function value of the ith 
candidate solution and n is the number of CBs. Obviously, 
a CB with good values exerts a larger mass than the bad 
ones. In addition, for maximization, the objective function 
fit(i) will be replaced by 1

fit(i)
.

Two CBs for collision are selected from two equal groups 
named (1) stationary CBs and (2) moving CBs which are 
generated from organized CBs in a descending order based 
on their mass values. The first half of these organized CBs 
is for the first group and the second half of them is for the 
second group. Moving CBs collide stationary CBs to move 
them towards better positions and improve themselves’ posi-
tions. The velocity of the CBs in the stationary group before 
the collision is zero. Thus,

The velocity of each CB in moving group before colli-
sion is

The velocity of each stationary CB after collision is 
obtained by:

(1)mk =

1

fit(k)

1∑n

i=1
1

fit(i)

, k = 1, 2,… , n,

(2)vi = 0, i = 1, 2,… ,
n

2
.

(3)vi = xi− n

2

− xi, i =
n

2
+ 1,

n

2
+ 2,… , n.
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The velocity of each moving CB after collision is defined 
by:

where � is the coefficient of restitution (COR) which 
decreases linearly from 1 to zero and is defined as:

where t is the current iteration and tmax is the maximum 
number of iterations.

New positions of CBs are evaluated based on the veloci-
ties generated after collision and the position of station-
ary CBs. Thus, the new position of each stationary CB is 
obtained by:

where xnew
i

,xi and v′

i
 are the new position, current position 

and the velocity of the ith CB after collision, respectively. 
rand is a random vector uniformly distributed in the interval 
of [− 1,1] and the sign “ ◦ ” denotes an element-by-element 
multiplication.

The new position of each moving CB is defined by:

For further details, the reader may refer to [20].

3  Colliding bodies optimization with Morlet 
wavelet mutation and quadratic 
interpolation (MWQI‑CBO)

Standard CBO has some shortcomings such as lack of diver-
sity and trapping into local optimum. To prevent these issues 
and improve solution stability, Morlet wavelet mutation is 
used in the exploration phase due to its fine-tuning abil-
ity. However, the standard CBO has a good performance 
in the exploitation phase but its convergence rate is low. 
To improve the exploitation phase, quadratic interpolation 
crossover is used in this algorithm to improve the search 
near the global-best search agent. The implementation of 
the exploration and exploitation phase is controlled by two 
parameters A and B. Details of the proposed algorithm are 
described more in the following subsections.

(4)v
�

i
=

(
mi+

n

2

+ �mi+
n

2

)
vi+ n

2

mi + mi+
n

2

, i = 1, 2,… ,
n

2
.

(5)v
�

i
=

(
mi − �mi−

n

2

)
vi

mi + mi−
n

2

, i =
n

2
+ 1,

n

2
+ 2,… , n

(6)� = 1 −
t

tmax

,

(7)xnew
i

= xi + rand ◦v
�

i
, i = 1, 2,… ,

n

2
,

(8)xnew
i

= xi− n

2

+ rand ◦v
�

i
, i =

n

2
+ 1,

n

2
+ 2,… , n.

3.1  Improving exploration phase

The CBO can easily be trapped in local optima which can 
prevent the algorithm to search the whole search space. 
To improve the exploration phase, reliability of the search 
and the stability of solutions, Morlet wavelet mutation is 
employed in this study. Based on “Wavelet theory”, certain 
seismic signals can be modeled by combining translations 
and expansions of an oscillatory function within finite dura-
tion called a “wavelet”. A continuous time function �(x) is 
called a “mother wavelet” or a “wavelet” if it satisfies the 
following properties [10].

Property 1 

This equation shows that the total negative and positive 
momentum of �(x) is equal.

On the other hand, it is possible to show that the admis-
sibility condition implies that �̂�(0) = 0 so that a wavelet 
must integrate to zero. Notice that �̂� is Fourier transform 
of wavelet � , and the admissibility condition is defined as 
follows [10]:

Property 2 

Morlet wavelet is the example of �(x) which integrates to 
zero (property 1) and over 99% of total energy of the func-
tion is contained in [− 2.5,2.5] (property 2).

The implementation of Morlet wavelet mutation in 
MWQI-CBO is controlled by parameter A, which is defined 
as:

where t is the current iteration and tmax is the maximum num-
ber of iterations. By increasing the iterations, the probability 
of using MW is reduced. When rand which is a random 

(9)

+∞

∫
−∞

�(x)dx = 0.

(10)0 < C𝜓 < +∞, C𝜓 =

+∞

∫
−∞

|�̂�(v)|2
|v| dv.

(11)

+∞

∫
−∞

|𝜓(x)|2dx < ∞.

(12)A = 0.9 + 0.1 ×
t

tmax

,
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number in the interval of [0,1] is more than A, the positions 
of a candidate solution is updated by the following formula.

where xij is the jth variable of CB i, varmax and varmin are 
the upper and lower bounds of each variable. � =

1√
a
�

�
�j

a

�
 

is the coefficient of wavelet mutation and �(x) = e−
x2

2 cos (5x) 
is Morlet wavelet mutation where �j is a random number in 
the range of [− 2.5a, 2.5a]. a is the scaling parameter of MW 
and increases from 1 to S as the number of iterations rises.

where S is a constant number is set to 10,000. When t/tmax 
is 0, a is 1 and as a result, � is obtained as 1. By substituting 
that in Eq. (13), varmax will be obtained which shows that 
the whole search space has the chance to be explored. In the 
other side, if t = tmax, a is equal to S = 10,000, so that, the 
value of � will become so small which leads the algorithm 
to search in a smaller search area.

3.2  Improving exploitation phase

The CBO generally has a good exploitation phase but to 
obtain fast convergence and improve its intensification, 
quadratic interpolation crossover is utilized in this study 
which is a local search operator. Mathematically, QI uses a 
parabola that curve passes through three points to find the 
minimum point of the curve in D-dimensional space [18]. 
QI crossover is defined as:

where f(x*), f(y), and f(z) are the fitness of the three distinct 
search agents X*, Y, and Z, respectively. X* = (x1, x2,…, xd) 
is the global-best search agent, Y = (y1, y2,…, yd) and Z = (z1, 
z2,…, zd) are two randomly selected from current popula-
tion. X = (x1, x2,…, xd) is the generated solution vector by QI 
crossover which is around the optimal solution vector. The 
implementation of QI is controlled by parameter B which 
is set to 0.15.

3.3  Procedure of the proposed MWQI‑CBO

According to the previous parts, the following steps intro-
duce the MWQI-CBO algorithm.

(13)xnew
ij

=

{
xij(t) + 𝜎

(
varmax − xij(t)

)
if 𝜎 > 0

xij(t) + 𝜎
(
xij(t) − varmin

)
if 𝜎 ≤ 0

,

(14)a = s
(
1

s

)(
1−

t

tmax

)

,

(15)xi = 0.5 ×

(
y2
i
− z2

i

)
⋅ f (X∗) +

(
z2
i
− x∗2

i

)
⋅ f (Y) +

(
x∗2
i
− y2

i

)
⋅ f (Z)(

yi − zi
)
⋅ f (X∗) +

(
zi − x∗

i

)
⋅ f (Y) +

(
x∗
i
− yi

)
⋅ f (Z)

, i = 1, 2,… , d,

Step 1 Initialize MWQI-CBO algorithm parameters. The 
positions of all CBs are randomly set within predefined 
ranges and the objective function is evaluated for each CB:

where x0
i
 is the initial position of the ith CB, xmin and xmax are 

the lower and upper bounds of each variables in the search 
space; random is a randomly generated vector which each 
component is in the interval [0,1]; n is the number of CBs.

Step 2 To enhance the convergence speed, some of the 
historically best CBs are replaced with the worst CBs in the 
current population.

Step 3 Solution candidates are divided into stationary and 
moving groups.

Step 4 The positions of each two colliding bodies are 
updated by the following procedure.

If rnd > A, the new location is updated by Eq. (13); other-
wise, the equations proposed by CBO or QI is employed for 
updating CBs. If rnd < B, QI is adopted for updating candi-
date solutions; otherwise, the new positions are calculated 
by Eqs. (7) and (8). rnd is a random number uniformly dis-
tributed in the range of [0,1].

Step 5 With a predefined probability, one of the compo-
nents of each CB is changed to make population diversity. 
The new component is determined randomly in the search 
space. The selected probability is usually set to a small value 
and only one dimension is expected to be regenerated to 
protect the structure of the candidate solution.

Step 6 When the terminal condition is met, the optimi-
zation process is terminated; Otherwise, go to step 2 for a 
new round.

4  Experiments and optimization results

4.1  Experiment 1: mathematical optimization 
problems

In this experiment, 24 benchmark functions are adopted from 
[24] to evaluate the performance of the proposed method. 
These functions are divided into unimodal (f1–f12) and mul-
timodal (f13–f24) functions which are described in Table 1. 
The unimodal and multimodal functions are generally taken 
to test the exploitation and exploration phases, respectively. 
These functions have either a narrow valley, basin, or a huge 
number of local optima, which are challenging for optimiza-
tion algorithms. For all mathematical problems, population 
size is set to 20 with the maximum function evaluation of 

(16)x0
i
= xmin + random ◦

(
xmin − xmax

)
, i = 1, 2,… , n,
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Table 1  Mathematical benchmark functions

Function Equation Geometry shape f
min

Sphere
f1 =

D∑
i=1

x2
i

Unimodal 0

Noncontiguous-sphere
f2 =

D∑
i=1

�
x2
i
+ 0.5

�2 Unimodal 0

Uniform-distribution perturbed 
Ellipsoid f3 =

D∑
i=1

ix2
i
+
⋃

(0, �)
Unimodal 0

Rosenbrock
f4 =

D−1∑
i=1

(100(xi+1 − x2
i
)2 +

�
xi − 1

�2
)

Unimodal 0

Schwefel
f5 =

D∑
i=1

�xi� +
D∏
i=1

��xi��
Unimodal 0

1st Schwefel
f6 =

D∑
i=1

�
i∑

j=1

xj

�2 Unimodal 0

Alpine
f7 =

D∑
i=1

(
���xisin

�
xi
���� + 0.1xi)

Unimodal 0

Different power
f8 =

D∑
i=1

��xi��i+1
Unimodal 0

Bent Cigar
f9 = x2

1
+ 106

D∑
i=1

x2
i

Unimodal 0

Discus
f10 = 106x2

1
+

D∑
i=1

x2
i

Unimodal 0

Zakharov
f11 =

D∑
i=1

x2
i
+

�
D∑
i=1

0.5xi

�2

+

�
D∑
i=1

0.5xi

�4 Unimodal 0

High conditioned elliptic
f12 =

D∑
i=1

(106)
i−1

D−1 x2
i

Unimodal 0

Rastrigin
f13 =

D∑
i=1

(x2
i
− 10 cos

�
2�xi

�
+ 10)

Multimodal 0

2nd Schwefel
f14 =

D∑
i=1

��xi�� �sin(
���xi��)�

Multimodal 0

Ackley

f15 = −20 exp

⎛⎜⎜⎝
−0.2

�
1

D

D∑
i=1

x2
i

⎞⎟⎟⎠
− exp(

1

D

D∑
i=1

cos
�
2�xi

�
+ 20 + e

Multimodal 0

Griewank
f16 =

1

4000

D∑
i=1

x2
i
−

D∏
i=1

cos
�

xi√
i
+ 1

� Multimodal 0

Schaffer
f17 = 0.5 +

sin2
�√∑D

i=1
x2
i

�
−0.5

1+0.1
∑D

i=1
x2
i

Multimodal 0

Levy
f18 = sin2

�
�w1

�
+

D−1∑
i=1

(wi − 1)2(1 + 10 sin2
�
�wi + 1

�
) +

�
wD − 1

�2
(1 + sin2

�
2�wD

�
)

Multimodal 0

Weierstrass
f19 =

D∑
i=1

�
kmax∑
k=0

�
ak cos

�
2�bk

�
xi + 0.5

����
− D

kmax∑
k=0

ak cos
�
�bk

� Multimodal 0

Katsuura
f20 =

10

D2

D∏
i=1

(1 + i
32∑
j=1

�2jxi−round(2jxi)�
2j

)
10

D1.2 −
10

D2

Multimodal 0

Expanded Schaffer f21 = f12
(
x1, x2

)
+ f12

(
x2, x3

)
+…+ f12

(
xD−1, xD

)
+ f12

(
xD, x1

)
Multimodal 0

HappyCat
f22 =

�����
D∑
i=1

x2
i
− D

�����

1

4

+
1

2

∑D

i=1
x2
i
+
∑D

i=1
xi

D
+

1

2

Multimodal 0
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wi = 1 +
xi−1

4
(∀i = 1,… ,D), a =

1

2
, b = 3, kmax = 20

Table 2  Performance 
comparison for the 24 
mathematical benchmark 
functions

The smallest values in each row are bolded

Function G-PSO [25] PSO-DTT [26] PSO-DFCM [24] CBO ECBO MWQI-CBO

f1 3.4733e−15 4.5759e−30 1.010e−38 1.0059e−16 4.0987e−17 0
f2 0 0 0 0 0 0
f3 0.0079 0.0059 0.0021 0.0758 0.0206 0.01073
f4 11.536 17.993 0.2639 4.7013 0.0704 2.4996e−04
f5 0.54216 3.3967e−05 2.3276e−09 1.75e−13 1.0542e−07 0
f6 1.0513e−06 1.2530e−08 2.7669e−07 38.4346 2.9832 0
f7 5.7395e−07 1.7238e−07 1.1705e−11 7.8902e−12 1.0899e−05 0
f8 9.91533 6.1246e−13 8.5617e−17 6.7636e+06 8.786e−49 0
f9 1.0000e−18 1.4076e−23 2.762e−26 9.1774e−14 5.912e−12 0
f10 1.3158e−25 3.1181e−30 1.4563e−40 6.4884e−16 7.9111e−04 0
f11 3.1189e−25 1.671e−27 2.0309e−35 3.7753e+04 1.6484e+04 0
f12 1.1826e+05 8.5218e−10 5.8791e−25 1.1210e−16 7.9077e−10 0
f13 21.8891 0 1.1997e−15 136.3085 1.959e−10 0
f14 5.4424e−10 9.3069e−14 3.1774e−14 4.7985e−13 4.5752e−08 0
f15 20 2.66e−15 8.8817e−08 20.8543 20.0042 8.8818e−16
f16 0.0369 1.1102e−18 0 0 0 0
f17 0.39813 0.44918 2.4520e−04 0.4989 0.4492 0
f18 5.67708e−25 3.2198e−27 3.0815e−33 148.9869 1.3082e−17 7.5290e−21
f19 28.1026 13.5372 0.0072 32.9654 1.7672 0
f20 0 0 0 0 0.0026 0
f21 11.492 11.492 2.7153e−04 11.2481 2.0928e−14 0
f22 0.25112 0.24713 0.2106 0.1408 0.2670 0.1371
f23 3.7537e−04 3.0054e−04 2.3162e−06 33.9933 0.1804 0.0363
f24 2.8654 2.7687 1.4319 28.7074 1.4793 0

Function Equation Geometry shape f
min

HGBat

f23 =

������

�
D∑
i=1

x2
i

�2

−

�
D∑
i=1

xi

�2������

1

2

+
1

2

∑D

i=1
x2
i
+
∑D

i=1
xi

D
+

1

2

Multimodal 0

Expanded Griewank f24 = f10
(
f5
(
x1, x2

))
+ f10

(
f5
(
x2, x3

))
+⋯ + f10

(
f5
(
xD−1, xD

))
+ f10

(
f5
(
xD, x1

))
Multimodal 0

Table 1  (continued)

100,000 and 20 independent runs were performed under 30 
dimensions. In addition, the search space for all problems 
is − 100 ~ 100.

4.1.1  Results analysis

In Table 2, optimal values of MWQI-CBO, CBO, ECBO 
and several variants of PSO including gravitational PSO 
(G-PSO) [25], PSO using dynamic tournament topology 
(PSO-DTT) [26], and particle swarm optimization with 
damping factor and cooperative mechanism (PSO-DFCM) 
[24] have been compared. As illustrated in Table 2, for all 
the unimodal functions except f3, the MWQI-CBO has the 
best performance among six algorithms. In f3, PSO-DFCM 

gains the best results although it cannot find the optimal 
value. Moreover, among 12 unimodal functions, the pro-
posed method achieved the global best for 10 functions (f1, 
f2, f5–f12) which can verify the algorithm’s great performance 
in exploitation. The other five algorithms can find the global 
optima for f2. For multimodal functions, the proposed algo-
rithm outperforms five others in most functions except 
for f18 and f23. Furthermore, MWQI-CBO can achieve the 
local optima for 8 functions (f13, f14, f16, f17, f19–f21, and f24) 
that can prove a good exploration ability of the algorithm. 
PSO-DTT can also find the optimal value for f13 as well 
as MWQI-CBO. All the algorithms except ECBO have the 
capability to find the global optimum for f20.
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Table 3  Statistical results of mathematical benchmark functions for 
CBO, ECBO, and MWQI-CBO

Function CBO ECBO MWQI-CBO

f1
Best 1.0059e−16 4.0987e−17 0
Mean 1.1666e−09 1.415e−15 0
Std 5.3109e−09 3.0259e−15 0
Rank 3(–) 2(–) 1
f2
Best 0 0 0
Mean 0 0 0
Std 0 0 0
Rank 1( ~) 1( ~) 1
f3
Best 0.0758 0.0206 0.01073
Mean 0.1691 0.0383 0.0187
Std 0.0381 0.0103 0.0054
Rank 3( ~) 2( ~) 1
f4
Best 4.7013 0.0704 2.4996e−04
Mean 5.4358e+03 193.7732 42.3602
Std 1.4068e+04 319.9334 68.3999
Rank 3(–) 2(–) 1
f5
Best 1.75e−13 1.0542e−07 0
Mean 1.2463e−06 3.7685e−07 0
Std 4.1586e−06 2.018e−07 0
Rank 3(–) 2(–) 1
f6
Best
Mean
Std
Rank

38.4346
495.4065
338.5972
3(–)

2.9832
9.3523
14.1745
2(–)

0
0.0141
0.0143
1

f7
Best 7.8902e−12 1.0899e−05 0
Mean 4.0664e−07 2.0691e−04 2.5178e−07
Std 1.5105e−07 2.0671e−04 2.4753e−07
Rank 2(~) 3(–) 1
f8
Best 6.7636e+06 8.786e−49 0
Mean 5.6722e+19 1.8706e−37 0
Std 2.3445e+20 7.8777e−37 0
Rank 3(–) 2(–) 1
f9
Best 9.1774e−12 5.912e−12 0
Mean 2.5374e−06 5.6164e−10 0
Std 7.8352e−05 1.7047e−10 0
Rank 3(–) 2(–) 1
f10

Best 6.4884e−16 7.9111e−04 0
Mean 2.3062e−10 271.8075 0
Std 6.1054e−10 439.6761 0

Table 3  (continued)

Function CBO ECBO MWQI-CBO

Rank 2(–) 3(–) 1
f11

Best 3.7753e+04 1.6484e+04 0
Mean 1.6528e+05 4.1933e+04 1.3349e+03
Std 9.0981e+04 2000 1.7329e+03
Rank 3(–) 2(–) 1
f12

Best 1.1210e−16 7.9077e−10 0
Mean 1.9459e−07 1.3838e−05 0
Std 8.5823e−07 5.2898e−05 0
Rank 2(–) 3(–) 1
f13

Best 136.3085 1.959e−10 0
Mean 418.4701 0.3982 0.398
Std 205.6728 0.5004 0.6771
Rank 3(–) 2( ~) 1
f14

Best 4.7985e−13 4.5752e−08 0
Mean 1.2423e−07 1.9622e−06 7.0513e−08
Std 3.879e−07 2.3141e−06 1.2808e−07
Rank 2(–) 3(–) 1
f15

Best 20.8543 20.0042 8.8818e−16
Mean 20.9786 20.009 10.0557
Std 0.0535 0.0043 8.0026
Rank 3(–) 2(–) 1
f16

Best 0 0 0
Mean 0.0399 0.0205 0.0100
Std 0.05 0.0246 0.017
Rank 3( ~) 2( ~) 1
f17

Best 0.4989 0.4492 0
Mean 0.4994 0.4701 0.3997
Std 3.0287e−04 0.0054 0.1384
Rank 3(–) 2(–) 1
f18

Best
Mean

148.9869
729.8776

1.3082e−17
1.611e−15

7.5290e−21
4.0941e−20

Std 395.4678 2.2347e−14 3.1553e−20
Rank 3(–) 2(–) 1
f19

Best 32.9654 1.7672 0
Mean 40.1779 2.2571 0.4026
Std 2.1766 0.6144 0.7791
Rank 3(–) 2(–) 1
f20

Best 0 0.0026 0
Mean 0 0.0053 0.0011
Std 0 0.0016 0.0015
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In Table 3, the results of CBO, ECBO, and MWQI-CBO 
algorithms for mathematical benchmark functions are shown 
in more detail such as the best fitness values among 20 inde-
pendent runs (Best), the mean values of them (Mean), and 
also standard deviations (Std). In addition, for each function, 
algorithms are ranked based on their mean values and the 
overall rank based on the average rank for each algorithm 
is also presented in this table. +, − and, ~  demonstrate 
that CBO or ECBO’s performance is statistically superior, 
inferior, or similar to the performance of the MWQI-CBO. 
Besides, superior results are highlighted with boldface let-
ters in the corresponding table. It is evident that MWQI-
CBO acquires the best results for most functions in com-
parison with two others.

In terms of unimodal functions, MWQI-CBO achieves 
very competitive results. For f1 and f2 which are simple func-
tions, easy to converge, and usually test for evaluating the 
convergence rate of the algorithms, the proposed algorithm 
obtained the global optimum in each run; other algorithms 
perform as well as MWQI-CBO for merely f2. Besides, for 
f5, f8–f10, and f12, MWQI-CBO performs astonishing and the 
results show the solution stability and also efficient local 
search ability of the proposed algorithm due to utilizing 
quadratic interpolation crossover. It can be observed that 

there are not significant differences between algorithms for 
f3, in spite of that, MWQI-CBO has the least mean and Std 
values. Although the proposed algorithm has better execu-
tion and can find the global best for f11 which there is a wide 
discrepancy at different dimensions, according to the mean 
value, it rarely occurs to achieve the optimum result. On the 
whole, it can be recognized from the results of unimodal 
functions, MWQI-CBO has been successful to enhance 
standard CBO’s exploitation and there is a good balance 
between exploration and exploitation phases.

For multimodal functions, as can be seen from Table 3, 
MWQI-CBO obtained the first rank for most cases. For f13, 
f14, f17, and f21 with a large number of local optima, the pro-
posed algorithm is capable to find the global optima. For 
remain functions, MWQI-CBO is more successful than oth-
ers except for f20. As can be observed, CBO can find the 
global best in each run and the suggested algorithm achieved 
the second rank while it has the capability of finding the 
global optimum. f15 is characterized by a nearly flat outer 
region with a large hole at the center and poses a risk for 
optimization algorithms to be trapped in one of its many 
local minima. MWQI-CBO performs well for this case in 
comparison with other algorithms which can be understood 
the high potential of the proposed algorithm’s exploration 
ability. For f16 which has many widespread local minima, 
MWQI-CBO gains better results with less mean and Std cost 
values and all algorithms can sometimes find global optima. 
For f18, f19, and f24, both ECBO and MWQI-CBO achieve 
much better results compared to CBO and in all of them, 
MWQI-CBO obtained the first rank. It can be understood 
that CBO without mutation operator or improvement in the 
exploration phase, cannot execute an efficient search and it 
does need an operator to prevent it from sticking in local 
optima. Based on the overall results, it can be perceived that 
the exploration capacity of the CBO is extended as a result 
of the using Morlet wavelet mutation.

In conclusion, MWQI-CBO is observed to give more 
successful and robust results for most of the mathematical 
benchmark functions including both unimodal and multi-
modal functions, and as can be seen, it totally ranks first.

4.1.2  Wilcoxon’s rank sum test

The Wilcoxon’s rank sum test is a non-parametric test to 
detect a significant difference between the behaviors of the 
algorithms which is done at 5% level of significance [27]. 
As is shown in Table 4, there are two parameters: p value 
and h value. The p value of the test returned as a positive 
scalar from 0 to 1. p is the probability of observing a test 
statistic as or more extreme than the observed value under 
the null hypothesis. h value returned as a logical value of 1 
or 0. When the p value is less than 5% or h value equals to 
1, it means that there is a statistically significant difference 

Table 3  (continued)

Function CBO ECBO MWQI-CBO

Rank 1( +) 3( ~) 2
f21

Best 11.2481 2.0928e−14 0
Mean 12.2710 2.4343 0.5574
Std 0.5998 2.6164 1.1638
Rank 3(–) 2(–) 1
f22

Best 0.1408 0.2670 0.1371
Mean 0.4586 0.4677 0.3668
Std 0.1541 0.1383 0.1113
Rank 2( ~) 3( ~) 1
f23

Best
Mean

0.2332
0.5468

0.1804
0.4537

0.0363
0.279

Std 0.3019 0.2124 0.1136
Rank 3(–) 2(–) 1
f24

Best 33.9933 1.4793 0
Mean 151.4149 2.3237 2.441
Std 128.5221 0.527 1.2359
Rank 3(–) 2(~) 1
Average rank 2.67 2.21 1.042
Overall rank 3 2 1

The smallest values in each row are bolded
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between MWQI-CBO and other algorithms; otherwise, there 
is a little difference between them. As can be seen from 
Table 4, there is a significant difference between MWQI-
CBO and CBO for most functions except for f2, f7, and f22. 
CBO performs better than MWQI-CBO for f20. Besides, for 
MWQI-CBO and ECBO, there is a considerable difference 
for all functions except for f2, f13, f16, f23, and f24.

4.1.3  Convergence rate analysis

The convergence curves of MWQI-CBO, CBO, and ECBO 
for 24 mathematical benchmark functions are compared in 
Fig. 1. It can be witnessed that the proposed algorithm has a 
faster convergence speed compared with other algorithms for 
most functions. While CBO and ECBO are trapped in local 
optima for f1, f5, f8, f9, f10, and f12 that are unimodal func-
tions, MWQI-CBO can escape and find global optimum in 
less than 1600 iterations. For f8, the proposed algorithm per-
forms brilliantly and can reach the global optima in nearly 
50 iterations. For  f7, although CBO shows a better conver-
gence rate than MWQI-CBO, it eventually is trapped in local 
optimum, but as can be seen, the suggested algorithm is 
successful to find the global best. In multimodal functions, 
the fast convergence rate of the suggested method and its 
high ability to escape from local optima can be observed 

Table 4  Results of Wilcoxon’s rank sum test for MWQI-CBO, 
ECBO, and CBO

Function ECBO CBO

f1
p value 8.8575e−05 8.8575e−05
h value 1 1
f2
p value 1 1
h value 0 0
f3
p value 8.8575e−05 8.8575e−05
h value 1 1
f4
p value 0.0479 4.4934e−04
h value 1 1
f5
p value 8.8575e−05 8.8575e−05
h value 1 1
f6
p value 8.8575e−05 8.8575e−05
h value 1 1
f7
p value 8.8575e−05 0.0522
h value 1 0
f8
p value 8.8449e−05 8.8575e−05
h value 1 1
f9
p value 8.8575e−05 8.8575e−05
h value 1 1
f10

p value 8.8575e−05 8.8575e−05
h value 1 1
f11

p value 8.8575e−05 8.8575e−05
h value 1 1
f12

p value
h value

8.8575e−05
1

8.8575e−05
1

f13

p value 0.1913 8.8575e−05
h value 0 1
f14

p value 8.8449e−05 8.8575e−05
h value 1 1
f15

p value 3.9023e−04 8.8575e−05
h value 1 1
f16

p value 0.0582 0.0126
h value 0 1
f17

Table 4  (continued)

Function ECBO CBO

p value 8.7949e−05 8.8199e−05
h value 1 1
f18

p value 8.8575e−05 8.8575e−05
h value 1 1
f19

p value 1.4013e−04 8.8575e−05
h value 1 1
f20

p value 0.0032 1.3183e−04
h value 1 1
f21

p value 4.4934e−04 8.8575e−05
h value 1 1
f22

p value 0.0022 0.0793
h value 1 0
f23

p value 1 0.004
h value 0 1
f24

p value 0.7089 8.8575e−05
h value 0 1
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clearly for f13, f15–f18, and f24. For f21–f23, MWQI-CBO has 
a slower convergence rate than ECBO but as time continues, 
it converges to superior results. For f14, in spite of CBO’s 
faster convergence in early iterations, MWQI-CBO can 
finally reach the global optima which demonstrates efficient 
search of the proposed algorithm. On the whole, these plots 
indicate that the convergence rate of standard CBO has been 
developed successfully due to the efficient improvement of 
its both exploration and exploitation processes.

4.2  Experiment 2: structural design problems

Sizing optimization of truss and frame structures are fre-
quent structural design problems. Here, five benchmark 
examples are provided to demonstrate the effectiveness, 
robustness, and efficiency of the proposed method. These 
problems are subjected to various constraints such as dis-
placements, stress, buckling, and natural frequencies. To 
reduce statistical errors, each test is repeated 20 times 

Fig. 1  Convergence curves for mathematical benchmark functions
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independently. The algorithms are coded in MATLAB and 
the structures are analyzed using the direct stiffness method 
by our own codes.

4.2.1  A 200‑bar planar truss problem

The first structural optimization problem is the optimal 
design of a 200-bar planar truss schematized in Fig. 2. Due 
to the symmetry, the elements are divided into 29 groups. 
The modulus of elasticity is 210 GPa and the material 

density is 7860 kg/m3 for all elements. The minimum cross-
sectional area of all members is 0.1 cm2. Non-structural 
masses of 100 kg are attached to the upper nodes. The first 
three natural frequencies of the structure must satisfy the 
following limitations: f1 ≥ 5 Hz, f2 ≥ 10 Hz, and f3 ≥ 15 Hz.

Optimal structures found by LCA-Tie-2 (league cham-
pionship algorithm with tie concept) [28], ISOS (improved 
symbiotic organisms search) [29], differential evolution 
(DE) [30], AHEFA (adaptive hybrid evolutionary firefly 
algorithm) [30], CBO [31], ECBO [31], and MWQI-CBO 

Fig. 1  (continued)
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are compared in Table 5. It can be seen that the lightest 
design (i.e., 2157.06 kg) is obtained by the MWQI-CBO. 
The mean of the independent runs for the proposed method 
is 2159.88 kg which is less than those of all other methods. 
Table 6 reports the natural frequencies of the optimized 
structures and it is clear that none of the frequency con-
straints are violated. Figure 3 shows the convergence curves 
of the best results found by CBO, ECBO, and MWQI-CBO. 
The MWQI-CBO converges to the optimum solution after 
15,060 analyses. The CBO and ECBO get the optimal solu-
tion after 10,500 and 14,700 analyses, respectively. It should 

be mentioned that the proposed algorithm achieved the best 
designs of CBO and ECBO after 8240 and 13,680 analyses, 
respectively.

4.2.2  The 3‑bay 15‑story frame problem

The configuration, applied loads and the numbering of mem-
ber groups for the 3-bay 15-story frame is shown in Fig. 4. 
This frame consists of 64 joints and 105 members. The mod-
ulus of elasticity is 29,000 ksi (200 GPa) and the yield stress 
is 36 ksi (248.2 MPa) for all members. The effective length 

Fig. 2  Schematic of the 200-bar 
planar truss
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Table 5  Performance comparison for the 200-bar planar truss problem

Element group Areas  (cm2)

LCA-Tie-2 [28] ISOS [29] DE [30] AHEFA [30] CBO [31] ECBO [31] MWQI-CBO

1 0.30891160 0.3072 0.3035 0.2993 0.3059 0.2993 0.2966
2 0.48871045 0.5075 0.4528 0.4508 0.4476 0.4497 0.4657
3 0.10162941 0.1001 0.1000 0.1001 0.1000 0.1000 0.1008
4 0.10657586 0.1000 0.1000 0.1000 0.1001 0.1 0.1002
5 0.54794212 0.5893 0.5162 0.5123 0.4944 0.5137 0.5077
6 0.81394811 0.8328 0.8203 0.8205 0.8369 0.7914 0.8253
7 0.11532799 0.1431 0.1004 0.1011 0.1001 0.1013 0.1001
8 1.29042334 1.3600 1.4393 1.4156 1.5514 1.4129 1.4194
9 0.11282050 0.1039 0.1003 0.1000 0.1000 0.1019 0.1002
10 1.56294014 1.5114 1.5918 1.5742 1.5286 1.6460 1.6222
11 1.14548904 1.3568 1.1641 1.1597 1.1547 1.1532 1.1746
12 0.18455251 0.1024 0.1319 0.1338 0.1000 0.1000 0.1013
13 2.92990485 2.9024 2.9561 2.9672 2.9980 3.1850 2.9609
14 0.11534915 0.1000 0.1003 0.1000 0.1017 0.1034 0.1006
15 3.29811115 3.4120 3.2491 3.2722 3.2475 3.3126 3.2534
16 1.60489863 1.4819 1.5949 1.5762 1.5213 1.5920 1.5706
17 0.29433408 0.2587 0.2525 0.2562 0.3996 0.2238 0.2417
18 5.25387865 4.8291 5.1567 5.0956 4.7557 5.1227 5.154
19 0.10219255 0.1499 0.1004 0.1001 0.1002 0.1050 0.1065
20 5.44086222 5.5090 5.4938 5.4546 5.1359 5.3707 5.46
21 2.02955602 2.2221 2.1094 2.0933 2.1181 2.0645 2.1291
22 0.57323199 0.6113 0.6731 0.6737 0.9200 0.5443 0.656
23 7.47936823 7.3398 7.6922 7.6498 7.3084 7.6497 7.4562
24 0.28990234 0.1559 0.1150 0.1178 0.1185 0.1000 0.1616
25 7.85261204 8.6301 8.0035 8.0682 7.6901 7.6754 8.0675
26 2.86794791 2.8245 2.7794 2.8025 3.0895 2.7178 2.8185
27 10.38474350 10.8563 10.5173 10.5040 10.6462 10.8141 10.4169
28 21.59152982 20.9142 21.2292 21.2935 20.7190 21.6349 21.3471
29 10.25871058 10.5305 10.7286 10.7410 11.7463 10.3520 10.4155
Best weight (kg) 2159.96 2169.4590 2160.7747 2160.7445 2161.15 2158.08 2157.06
Average optimized 

weight (kg)
2168.21 2244.6372 2162.2495 2161.0393 2447.52 2159.93 2159.88

Standard deviation 
on average weight 
(kg)

9.51 43.4808 3.0003 0.1783 301.29 1.57 2.94

Table 6  Natural frequencies 
(Hz) evaluated at the optimum 
designs of the 200-bar planar 
truss problem

Fre-
quency 
number

Natural frequencies (Hz)

LCA-Tie-2 [28] ISOS [29] DE [30] AHEFA [30] CBO [31] ECBO [31] MWQI-CBO

1 5.000015 5.0000 5.0000 5.0000 5.000 5.000 5.000
2 12.363073 12.4477 12.2301 12.1821 12.221 12.189 12.179
3 15.173504 15.2332 15.0277 15.0160 15.088 15.048 15.058
4 16.728441 N/A 16.7054 16.6837 16.759 16.643 16.673
5 21.576253 N/A 21.4238 21.3547 21.419 21.342 21.365
6 21.688359 N/A 21.4435 21.4168 21.501 21.382 21.520
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factors of the members are calculated as kx ≥ 0 for a sway-
permitted frame and the out-of-plane effective length factor 
is specified as ky = 1.0. Each column is considered as non-
braced along its length, and the non-braced length for each 
beam member is specified as one-fifth of the span length. 
Limitations on displacement and strength are imposed 
according to the provisions of the AISC [32] as follows:

(a) Maximum lateral displacement:

where ΔT is the maximum lateral displacement; H is the 
height of the frame structure; and R is the maximum drift 
index which is equal to 1/300.

(b) The inter-story displacements:

where di is the inter-story drift; hi is the story height of the 
ith floor; ns is the total number of stories; RI is the inter-story 
drift index (1/300).

(c) Strength constraints:

where Pu is the required strength (tension or compression); 
Pn is the nominal axial strength (tension or compression); 
�c is the resistance factor ( �c = 0.9 for tension, �c = 0.85 for 
compression); Mu is the required flexural strengths; Mn is the 
nominal flexural strengths; �b denotes the flexural resistance 
reduction factor ( �b = 0.90).

The nominal tensile strength for yielding in the gross sec-
tion is calculated by:

(17)
ΔT

H
− R ≤ 0,

(18)
di

hi
− RI ≤ 0, i = 1, 2,… , ns,

(19)

{ Pu

2𝜑cPn

+
Mu

𝜑bMn

− 1 ≤ 0, for
Pu

𝜑cPn

< 0.2
Pu

𝜑cPn

+
8Mu

9𝜑bMn

− 1 ≤ 0, for
Pu

𝜑cPn

≥ 0.2
,

The nominal compressive strength of a member is com-
puted as:

(20)Pn = Ag .Fy.

Fig. 3  Convergence curves for the 200-bar planar truss problem

Fig. 4  Schematic of the 3-bay 15-story frame
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where

where Ag is the cross-sectional area of a member, and k is the 
effective length factor that is calculated by (Dumonteil [33]):

where GA and GB are stiffness ratios of columns and gird-
ers at the two end joints A and B of the column section, 
respectively.

In addition, in this example, the sway of the top story is 
limited to 9.25 in (23.5 cm).

The results found by discrete symbiotic organisms search 
(DSOS) [34], cuckoo search (CS) [35], teaching–learning-
based optimization (TLBO) [35], water evaporation opti-
mization (WEO) [35], CBO [23], ECBO [23], and MWQI-
CBO algorithms are summarized in Table 7. MWQI-CBO 
achieves the lightest design (i.e., 86,917 lb). The best design 
obtained by DSOS, CS, TLBO, WEO, CBO, and ECBO 
are 91,248 lb, 87,469 lb, 87,735 lb, 87,745 lb, 93,795 lb, 

(21)Pn = Ag ⋅ Fcr,

(22)

{
Fcr = (0.658𝜆

2
c )Fy, for 𝜆

c
≤ 1.5

Fcr =
(

0.877

𝜆2
c

)
Fy, for 𝜆

c
> 1.5

,

(23)�c =
kl

r�

√
Fy

E
,

(24)k =

√
1.6GAGB + 4.0(GA + GB) + 7.5

GA + GB + 7.5
,

and 86,986 lb, respectively. The proposed method has better 
performance in terms of the average optimized weight and 
standard deviation on average weight which are 88,353 lb, 
and 1948 lb, respectively. Convergence histories are depicted 
in Fig. 5. The required number of structural analyses to 
achieve the best design by CBO, ECBO, and MWQI-CBO 
are 9520, 9000, and 14,420 analyses, respectively. MWQI-
CBO found the best designs of CBO after 6420 analyses. 
Figure 6 demonstrates the existing stress ratios and inter-
story drifts for the best designs of proposed algorithm. The 

Table 7  Performance comparison for the 3-bay 15-story frame problem

Element group Optimal W-shaped sections

DSOS [34] CS [35] TLBO [35] WEO [35] CBO [23] ECBO [23] MWQI-CBO

1 W16 × 100 W14 × 109 W12 × 96 W21 × 111 W24 × 104 W14 × 99 W14 × 90
2 W32 × 152 W27 × 161 W27 × 161 W27 × 146 W40 × 167 W27 × 161 W36 × 170
3 W12 × 79 W27 × 84 W27 × 84 W30 × 90 W27 × 84 W27 × 84 W27 × 84
4 W27 × 114 W24 × 104 W24 × 104 W21 × 101 W27 × 114 W24 × 104 W24 × 104
5 W21 × 93 W14 × 61 W10 × 68 W24 × 68 W21 × 68 W14 × 61 W14 × 61
6 W12 × 79 W30 × 90 W30 × 90 W27 × 84 W30 × 90 W30 × 90 W30 × 90
7 W21 × 55 W14 × 48 W8 × 48 W18 × 55 W8 × 48 W14 × 48 W14 × 48
8 W14 × 61 W21 × 68 W24 × 68 W10 × 60 W21 × 68 W14 × 61 W14 × 61
9 W14 × 22 W6 × 25 W8 × 28 W16 × 36 W14 × 34 W14 × 30 W14 × 34
10 W14 × 43 W14 × 43 W10 × 39 W18 × 35 W8 × 35 W12 × 40 W8 × 35
11 W21 × 48 W21 × 44 W21 × 50 W14 × 48 W21 × 50 W21 × 44 W21 × 44
Best weight (lb) 91,248 87,469 87,735 87,745 93,795 86,986 86,917
Average optimized 

weight (lb)
N/A 99,674 95,206 94,912 98,738 88,410 88,353

Standard deviation 
on average weight 
(lb)

N/A 24,308 11,346 18,101 N/A N/A 1,948

Fig. 5  Convergence curves for the 3-bay 15-story frame problem
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maximum stress ratio for the best designs of the MWQI-
CBO is 99.14%.

4.2.3  The 3‑bay 24‑story frame problem

The third structural optimization problem is the size opti-
mization of a 3-bay 24-story frame depicted in Fig. 7. The 
material has a modulus of elasticity equal to E = 29.732 Msi 
(205 GPa) and a yield stress of fy = 33.4 ksi (230.3 MPa). It 
consists of 168 members that are collected in 20 groups (16 
column groups and 4 beam groups). Each of the four beam 
element groups is chosen from all 267 W-shapes, while the 

Fig. 6  Constraint margins for the best design obtained by MWQI-
CBO for the 3-bay 15-story frame problem: a element stress ratio and 
b inter-story drift

Fig. 7  Schematic of the 3-bay 24-story frame
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16 column element groups are limited to W14 sections. The 
effective length factors of the members are calculated as kx ≥ 
0 for a sway-permitted frame and the out-of-plane effective 
length factor is specified as ky = 1.0. All columns and beams 
are considered as non-braced along their lengths. The frame 
is designed following the LRFD specification and uses an 
inter-story drift displacement constraint similar to the previ-
ous problem AISC [32].

Table 8 presents the results obtained by school-based 
optimization (SBO) [36], cuckoo search (CS) [35], teach-
ing–learning-based optimization (TLBO) [35], water evap-
oration optimization (WEO) [35], CBO [23], ECBO [23], 
and MWQI-CBO. The lightest design (i.e., 201,618 lb) is 
obtained by the ECBO. After that, the best design found 
by MWQI-CBO is better than those of the other methods 
(201,906 lb). The best weight found by SBO, CS, TLBO, 

WEO, and CBO are 202,422 lb, 202,482 lb, 202,626 lb, 
203,058  lb, and 215,874  lb, respectively. The proposed 
method is the most robust optimizer, achieving the low-
est average weight over the independent optimization runs. 
It also performs better than other algorithms in terms of 
standard deviation on average weight. The SBO, CS, TLBO, 
WEO, CBO, ECBO, and MWQI-CBO algorithms achieved 
the optimal solutions after 14,572, 18,760, 8760, 15,465, 
8280, 15,360, and 12,760 structural analyses, respectively. 
The proposed method obtained the best design of CBO after 
4540 structural analyses. Convergence history diagrams are 
depicted in Fig. 8. Element stress ratio and inter-story drift 
evaluated at the best design optimized by MWQI-CBO are 
shown in Fig. 9. The maximum stress ratio is 95.95% and 
the maximum inter-story drift is 47.92.

Table 8  Performance comparison for the 3-bay 24-story frame problem

Element group Optimal W-shaped sections

SBO [36] CS [35] TLBO [35] WEO [35] CBO [23] ECBO [23] MWQI-CBO

1 W30 × 90 W14 × 176 W14 × 145 W14 × 159 W14 × 132 W14 × 145 W14 × 145
2 W8 × 18 W14 × 109 W14 × 90 W14 × 120 W14 × 120 W14 × 132 W14 × 109
3 W21 × 48 W14 × 99 W14 × 99 W14 × 90 W14 × 145 W14 × 99 W14 × 109
4 W6 × 8.5 W14 × 99 W14 × 74 W14 × 82 W14 × 82 W14 × 90 W14 × 82
5 W14 × 152 W14 × 74 W14 × 53 W14 × 48 W14 × 61 W14 × 74 W14 × 68
6 W14 × 120 W14 × 38 W14 × 90 W14 × 48 W14 × 43 W14 × 38 W14 × 38
7 W14 × 109 W14 × 30 W14 × 30 W14 × 43 W14 × 38 W14 × 38 W14 × 34
8 W14 × 74 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22
9 W14 × 82 W14 × 90 W14 × 90 W14 × 61 W14 × 99 W14 × 99 W14 × 99
10 W14 × 43 W14 × 109 W14 × 120 W14 × 68 W14 × 109 W14 × 99 W14 × 109
11 W14 × 34 W14 × 99 W14 × 99 W14 × 74 W14 × 82 W14 × 99 W14 × 99
12 W12 × 19 W14 × 82 W14 × 99 W14 × 68 W14 × 90 W14 × 82 W14 × 90
13 W14 × 109 W14 × 68 W14 × 90 W14 × 145 W14 × 74 W14 × 68 W14 × 74
14 W14 × 109 W14 × 61 W14 × 38 W14 × 48 W14 × 61 W14 × 61 W14 × 68
15 W14 × 99 W14 × 38 W14 × 43 W14 × 26 W14 × 30 W14 × 30 W14 × 34
16 W14 × 99 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22 W14 × 22
17 W14 × 68 W30 × 90 W30 × 90 W33 × 130 W27 × 102 W30 × 90 W30 × 90
18 W14 × 61 W6 × 15 W6 × 15 W8 × 18 W8 × 18 W6 × 15 W6 × 15
19 W14 × 34 W24 × 55 W24 × 68 W21 × 44 W24 × 55 W24 × 55 W24 × 55
20 W14 × 22 W6 × 8.5 W6 × 8.5 W6 × 8.5 W6 × 8.5 W6 × 8.5 W6 × 8.5
Best weight (lb) 202,422 202,482 202,626 203,058 215,874 201,618 201,906
Average optimized 

weight (lb)
209,560 230,342 218,853 222,880 225,071 209,644 206,025

Standard deviation 
on average weight 
(lb)

7052 65,703 37,979 66,839 N/A N/A 3202
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4.2.4  The spatial 582‑bar tower truss problem

The 582-bar tower truss is schematized in Fig. 10. The 
members are divided into 32 groups, because of structural 
symmetry. A single-load case is considered consisting of 
lateral loads of 1.12 kips (5.0 kN) applied in both x- and 
y-directions and vertical loads of − 6.74 kips (− 30 kN) 
applied in z-direction to all free nodes of the tower. Cross-
sectional areas of elements are selected from a discrete list 
of W-shaped standard steel sections based on area and radii 
of gyration properties. Cross-sectional areas of elements 
can vary between 6.16 and 215 in2 (i.e., between 39.74 and 
1387.09  cm2). Limitation on stress and stability of truss ele-
ments are imposed according to the provisions of AISC [37] 
as follows.

The allowable tensile stresses for tension members are 
calculated as:

where Fy is the yield strength.

(25)�+
i
= 0.6Fy,

Fig. 9  Constraint margins for the best design obtained by MWQI-
CBO for the 3-bay 24-story frame problem: a element stress ratio and 
b inter-story drift

Fig. 8  Convergence curves for the 3-bay 24-story frame problem
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The allowable stress limits for compression members are 
calculated depending on two possible failure modes of the 
members known as elastic and inelastic buckling. Therefore,

where E is the modulus of elasticity; λi is the slenderness 
ratio 

(
�i = kli

/
ri
)
 ; Cc denotes the slenderness ratio dividing 

the elastic and inelastic buckling regions Cc =

√
2�2E

/
Fy

 ; 

k is the effective length factor (k is set equal to 1 for all truss 
members); Li is the member length; and ri is the minimum 
radius of gyration.

(26)
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23𝜆2
i

for 𝜆i ≥ Cc

,

The maximum slenderness ratio is limited to 300 for ten-
sion members, and it is recommended to be 200 for compres-
sion members. Moreover, nodal displacements in all coor-
dinate directions must be less than ± 3.15 in (i.e., ± 8 cm) 
for this example.

Table 9 lists the optimal designs found by particle swarm 
optimization (PSO) [38], whale optimization algorithm 
(WOA) [39], enhanced whale optimization algorithm 
(EWOA) [39], CBO [23], ECBO [23], and MWQI-CBO. 
The proposed algorithm obtained the lightest design com-
pared to other methods that is 1,295,562 in3. Moreover, the 
average optimized volume and the standard deviation on 
average volume of MWQI-CBO (1,305,095  in3 and 5320 
 in3) are less than those of all other methods. The best designs 
found by the PSO, WOA, EWOA, CBO, and ECBO are 

Fig. 10  Schematic of the 582-
bar tower truss
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Table 9  Performance 
comparison for the spatial 582-
bar tower truss problem

Element group Optimal W-shaped sections

PSO [38] WOA [39] EWOA [39] CBO [23] ECBO [23] MWQI-CBO

1 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
2 W12 × 79 W14 × 90 W14 × 90 W14 × 82 W14 × 90 W14 × 90
3 W8 × 24 W8 × 24 W8 × 24 W8 ×28 W8 × 24 W8 × 24
4 W10 × 60 W14 × 61 W10 × 60 W12 × 50 W14 × 61 W12 × 58
5 W8 × 24 W8 × 24 W8 × 24 W8 × 24 W8 × 24 W8 × 24
6 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
7 W8 × 48 W10 × 49 W14 × 48 W12 × 53 W10 × 49 W10 × 45
8 W8 × 24 W8 × 24 W8 × 24 W12 × 26 W8 × 24 W8 × 24
9 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
10 W10 × 45 W10 × 39 W10 × 49 W14 × 48 W14 × 43 W10 × 54
11 W8 × 24 W8 × 24 W8 × 24 W8 × 24 W8 × 24 W8 × 24
12 W10 × 68 W12 × 72 W16 × 67 W14 × 61 W12 × 72 W12 × 65
13 W14 × 74 W14 × 74 W18 × 76 W14 × 82 W12 × 72 W14 × 74
14 W8 × 48 W12 × 50 W10 × 49 W12 × 50 W10 × 54 W10 × 49
15 W18 × 76 W10 × 77 W18 × 76 W14 × 74 W12 × 65 W14 × 74
16 W8 × 31 W8 × 31 W8 × 31 W8 × 40 W8 × 31 W8 × 31
17 W8 × 21 W10 × 49 W14 × 61 W12 × 53 W10 × 60 W14 × 61
18 W16 × 67 W8 × 24 W8 × 24 W6 × 25 W8 × 24 W8 × 24
19 W8 × 24 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
20 W8 × 21 W14 × 48 W14 × 34 W8 × 40 W14 × 43 W8 × 40
21 W8 × 40 W6 × 25 W8 × 24 W8 × 24 W8 × 24 W8 × 24
22 W8 × 24 W10 × 22 W8 × 21 W8 × 21 W8 × 21 W8 × 21
23 W8 × 21 W8 × 21 W8 × 21 W12 × 26 W8 × 21 W8 × 28
24 W10 × 22 W8 × 24 W8 × 24 W12 × 26 W8 × 24 W8 × 24
25 W8 × 24 W8 × 21 W8 × 21 W10 × 22 W8 × 21 W8 × 21
26 W8 × 21 W10 × 22 W10 × 22 W10 × 22 W8 × 21 W8 × 21
27 W8 × 21 W8 × 24 W8 × 24 W6 × 25 W8 × 24 W8 × 24
28 W8 × 24 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
29 W16 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
30 W8 × 21 W8 × 24 W8 × 24 W8 × 24 W8 × 24 W8 × 24
31 W8 × 24 W8 × 21 W8 × 21 W8 × 21 W8 × 21 W8 × 21
32 W8 × 24 W8 × 28 W8 × 24 W6 × 25 W8 × 24 W8 × 24
Best volume  (in3) 1,366,674 1,302,038 1,295,738 1,334,994 1,296,776 1,295,562
Average optimized 

volume  (in3)
1,371,667 1,349,290 1,310,836 1,345,429 1,306,728 1,305,095

Standard devia-
tion on average 
volume  (in3)

N/A N/A N/A 9116 7536 5320
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1,366,674  in3, 1,302,038  in3, 1,295,738  in3, 1,334,994  in3, 
and 1,296,776  in3, respectively. Convergence histories are 
demonstrated in Fig. 11. It should be noted that the pro-
posed method requires 15,560 structural analyses to find the 
optimum solution while WOA, EWOA, CBO, and ECBO 
require 18,840, 19,300, 17,700, and 19,700 structural analy-
ses, respectively. Stress ratios and nodal displacements in all 
directions evaluated for the best design achieved by MWQI-
CBO are shown Fig. 12. The maximum stress ratio and the 
maximum nodal displacement are 99.95% and 3.1488 in, 
respectively.

4.2.5  The 600‑bar single‑layer dome truss problem

The sizing optimization of a 600-bar single-layer dome 
structure schematized in Fig. 13 is the last test case. The 
entire structure is composed of 216 nodes and 600 elements. 
Figure 14 shows a substructure in more detail for nodal num-
bering. The cross-sectional area of each of the member in 
this substructure is considered to be an independent vari-
able. Therefore, this is a size optimization problem with 25 
variables. Table 10 presents the coordinates of the nodes 
in the Cartesian coordinate system. The elastic modulus is 

Fig. 11  Convergence curves for the 582-bar tower truss problem

Fig. 12  Constraint margins for the best design obtained by MWQI-
CBO algorithm for the 582-bar tower truss problem: a element stress 
ratio and b nodal displacements
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200 GPa and the material density is 7850 kg/m3 for all ele-
ments. Non-structural masses of 100 kg are attached to each 
free node. The minimum and maximum admissible cross-
sectional areas are 1  cm2 and 100  cm2, respectively. The first 
frequency is required to be f1 ≥ 5 Hz and the third frequency 
is required to be f3 ≥ 7 Hz.

The optimized designs found by democratic particle 
swarm optimization (DPSO) [40], harmony search (HS) 
[41], cyclical parthenogenesis algorithm (CPA) [41], 
CBO [23], ECBO [23], and MWQI-CBO are compared in 
Table 11. The MWQI-CBO obtained the lightest design 
which is 6147.96 kg while it is 6344.55 kg for DPSO, 
6357.59 kg for HS, 6336.85 kg for CPA, 6182.01 kg for 
CBO, and 6171.51 kg for ECBO. The average optimized 
weight and the standard deviation on average weight of the 
ECBO is less than those of all other methods. Frequency 
constraints are satisfied by all methods (see Table 12). Fig-
ure 15 compares the convergence curves of the best results 
obtained by CBO, ECBO, and MWQI-CBO. The MWQI-
CBO requires 16,560 structural analyses to find the optimum 
solution while CBO and ECBO require 17,940, and 19,020 
structural analyses, respectively.

5  Concluding remarks

In this work, a new variant of CBO (MWQI-CBO) is pro-
posed considering Morlet wavelet mutation and quadratic 
interpolation. The CBO generally has a week performance 
in exploration and can easily be trapped in local optima. MW 
is a mutation operator that ensures a very good search in the 
search space and QI is a local operator near the so-far-best 
agent. In all 24 mathematical experiments, MWQI-CBO is 
compared with G-PSO, PSO-DTT, PSO-DFCM, CBO, and 
ECBO methods. The results are also analyzed by Wilcoxon’s 
rank sum test. The obtained statistical results show that the 
proposed algorithm is very competitive and often superior 
compared to the algorithms used in the experiments. To 
illustrate the efficiency and applicability of the MWQI-CBO, 
five structural design problems are also studied and the 
proposed algorithm demonstrates better performance than 
the considered metaheuristics. To sum up, comprehensive 
experiments have validated that MWQI-CBO has a good 
global search capacity and performs effectively and reliably 
when compared to standard CBO, ECBO, and some state-
of-art metaheuristics.

Fig. 13  Schematic of the 600-bar single-layer dome truss

Fig. 14  Details of a substructure of the 600-bar single-layer dome 
truss

Table 10  Coordinates of the nodes for the 600-bar single-layer dome 
truss problem

Node 
number

Coordinates (x, y, z) Node number Coordinates (x, y, z)

1 (1,0,7) 10 (0.9659,0.2588,7)
2 (1,0,7.5) 11 (0.9659,0.2588,7.5)
3 (3,0,7.25) 12 (2.8978,0.7765,7.25)
4 (5,0,6.75) 13 (4.8296,1.2941,6.75)
5 (7,0,6) 14 (6.7615,1.8117,6)
6 (9,0,5) 15 (8.6933,2.3294,5)
7 (11,0,3.5) 16 (10.6251,2.8471,3.5)
8 (13,0,1.5) 17 (12.5570,3.3646,1.5)
9 (14,0,0) 18 (13.5230,3.6235,0)
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Table 11  Performance comparison for the 600-bar single-layer dome truss problem

Element number (nodes) Areas  (cm2)

DPSO [40] HS [41] CPA [41] CBO [23] ECBO [23] MWQI-CBO

1 (1–2) 1.365 1.439 1.155 1.2404 1.4305 1.1414
2 (1–3) 1.391 1.425 1.304 1.3797 1.3941 1.1930
3 (1–10) 5.686 4.942 4.178 5.2597 5.5293 4.9972
4 (1–11) 1.511 1.677 1.335 1.2658 1.0469 1.3359
5 (2–3) 17.711 18.331 18.375 17.2255 16.9642 16.4705
6 (2–11) 36.266 36.074 39.914 38.2991 35.1892 40.9204
7( 3–4) 13.263 13.407 13.609 12.2234 12.2171 12.5481
8 (3–11) 16.919 17.066 16.470 15.4712 16.7152 16.8270
9 (3–12) 13.333 13.122 14.108 11.1577 12.5999 12.3559
10 (4–5) 9.534 10.061 10.038 9.4636 9.5118 9.8049
11 (4–12) 9.884 9.827 9.514 8.8250 8.9977 8.8128
12 (4–13) 9.547 9.388 9.329 9.1021 9.4397 8.9853
13 (5–6) 7.866 7.083 6.938 6.8417 6.8864 7.4324
14 (5–13) 5.529 5.697 5.545 5.2882 4.2057 4.4777
15 (5–14) 7.007 7.139 6.763 6.7702 7.2651 6.7637
16 (6–7) 5.462 5.082 5.209 5.1402 6.1693 5.3079
17 (6–14) 3.853 3.295 3.842 5.1827 3.9768 3.7870
18 (6–15) 7.432 7.663 8.112 7.4781 8.3127 7.5167
19 (7–8) 4.261 4.100 4.252 4.5646 4.1451 4.3198
20 (7–15) 2.253 1.882 2.227 1.8617 2.4042 1.9381
21 (7–16) 4.337 4.725 4.582 4.8797 4.3038 4.8992
22 (8–9) 4.028 3.860 3.336 3.5065 3.2539 3.2783
23 (8–16) 1.954 2.280 1.725 2.4546 1.8273 1.8130
24 (8–17) 4.709 4.912 4.675 4.9128 4.8805 4.8722
25 (9–17) 1.410 1.502 1.673 1.2324 1.5276 1.9181
Best weight (kg) 6344.55 6357.59 6336.85 6182.01 6171.51 6147.96
Average optimized weight (kg) 6674.71 6631.48 6376.01 6226.37 6191.50 6215.29
Standard deviation on average weight (kg) 473.21 304.09 90.39 60.12 39.08 51.42

Table 12  Natural frequencies 
(Hz) evaluated at the optimum 
designs of the 600-bar single-
layer dome truss problem

Frequency 
number

Natural frequencies (Hz)

DPSO [40] HS [41] CPA [41] CBO [23] ECBO [23] MWQI-CBO

1 5.000 5.000 5.000 5.000 5.002 5.004
2 5.000 5.000 5.000 5.000 5.003 5.004
3 7.000 7.000 7.000 7.000 7.001 7.000
4 7.000 7.001 7.000 7.000 7.001 7.000
5 7.000 7.001 7.000 7.001 7.002 7.001
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