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Abstract
The Chimp optimization algorithm (ChoA) inspired by the individual intelligence and sexual motivation of chimps in their 
group hunting, which is separate from the another social predators. Generally, it is developed for trapping in local optima 
on the complex functions and alleviate the slow convergence speed. This algorithm has been widely applied to find the best 
optima solutions of complex global optimization tasks due to its simplicity and inexpensive computational overhead. Nev-
ertheless, premature convergence is easily trapped in the local optimum solution during search process and is ineffective in 
balancing exploitation and exploration. In this paper, we have developed a modified novel nature inspired optimizer algorithm 
based on the sine–cosine functions; it is called as sine–cosine chimp optimization algorithm (SChoA). During this research, 
the sine–cosine functions have been applied to update the equations of chimps during the search process for reducing the 
several drawbacks of the ChoA algorithm such as slow convergence rate, locating local minima rather than global minima, 
and low balance amid exploitation and exploration. Experimental solutions based on 23-standard benchmark and 06 engi-
neering functions such as welded beam, tension/compression spring, pressure vessel, multiple disk clutch brake, planetary 
gear train and digital filters design, etc. demonstrate the robustness, effectiveness, efficiency, and convergence speed of the 
proposed algorithm in comparison with others.

Keywords  Chimp Optimization Algorithm (ChoA) · Meta-heuristics · Optimization · Single objective engineering 
optimization problems · Sine–cosine functions · Swarm intelligence

1  Introduction

In the last few decades, optimization is a hot topic in each 
and every field of research. Researchers are developing 
the best-to-best optimizer algorithms for complex issues 
of engineering, statistics, mathematics, computer science, 
medical fields, and many more [1–7]. In general, the opti-
mization is identified as the process of selecting the best 
possible optima solutions for a given function/or problem 
globally or almost globally. Most issues in the real world can 
be seen as problems of optimization [8–12]. Day by day, the 
demand of every field faces several complex issues related 
to real-world optimization problems [13–16]. Frankly, the 
high performing algorithms are required for fulfilling the 
future complex issues. Therefore, the researchers are trying 
to develop highly effective optimization algorithms for these 
kinds of issues. So that these algorithms fulfill the future 
complex issue requirements. In general, the optimization 
method has been applied to find the accurate best solution 
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of the optimization problems which are mostly deterministic 
that suffer from various drawbacks or major issues like that 
unbalanced exploitation or exploration, local optima, slow 
convergence, premature convergence, and the need to deri-
vate search space [17].

The interest of the researcher of the different fields is 
growing in the nature inspired techniques in the last few 
years due to these drawbacks [18, 19]. Often, mainly of 
the real applications in dissimilar fields/or domain like that 
tuning of machine learning parameters, engineering, pat-
tern recognition, clustering, bio-medical, digital filtering, 
computer science, statistics, applied mathematics, image 
processing, etc., are severely non-linear, linear, not continu-
ous, so it includes complex constraints and many design 
variables. Furthermore, there is no guarantee of searching a 
best and possible optima solution in the search space as well 
as often failing to solve such kinds of complex functions 
[20]. Being these reasons, the real-world problems motivate 
the scientists to originate an effective and alternative highly 
robust optimization algorithm to find the solutions of these. 
In this regard, the various robust optimizer algorithms suffer 
from some drawbacks in finding the solution for complex 
functions, and hence, nature inspired algorithms [21, 22] is 
considered as the most widely used among the algorithms 
for solving the optimization problems recently.

With the advantage of the different nature inspired tech-
niques, merge/modified two or various techniques while 
enhancing their constraints. Several algorithms have failed 
to prove better convergence performance without modified 
or hybridization to apply on complex function and enhance 
its competence. With the strategy of hybridization [23] or 
modification [24] of the algorithms could be fully improved 
the exploitation and exploration parts of the algorithm.

A hybrid SSA–PSO algorithm has been developed by 
Ibrahim et al. [25] to enhance SSA’s exploration and exploi-
tation capacity. The algorithm implemented makes apply of 
the attributes of the particle swarm optimization algorithm 
to enhanced the feasibility of the Salp swarm optimization 
algorithm in searching the best or possible optima solutions. 
Therefore, the performance of the convergence is increased.

Luis and Arribas [26] have proposed a new approach for 
the design of digital frequency selective FIR filters using an 
flowers pollination algorithm (FPA), with a novel multiple 
fitness function, to get optimized filter coefficients that best 
approximate ideal specifications.

Ibrahim et al. [27] introduced a segmentation approach 
using SSA to select the Perfect Threshold for multi-level 
image segmentation thresholds.

Saha et al. [28] applied Cat Swarm optimization (CSO) 
approach to determine the best optimal impulse response 
coefficients of FIR band stop filters, band pass, low pass, 
high pass, and trying to meet the respective ideal frequency 
response characteristics.

Liu et al. [29] developed a novel approach merging the 
salp swarm optimizer algorithm with a local search strat-
egy to classify the passive location of the non-linear Time-
Difference-Of-Arrival (TDOA) problem. Numerical and 
statistical results have proven that salp swarm optimizer 
has significantly enhanced position precision, fewer control 
parameters, and more reliable performance verified to par-
ticle swarm optimization.

In [30], the effectiveness of employing the swarm intel-
ligence (SI) based and nature inspired algorithm is investi-
gated for determining the optimal global best solutions to the 
Finite Impulse Response filter design problem.

[31] have been designed a new modified approach and 
framework for retiming the DSP blocks based on evolution-
ary computation processes. During this study, the authors 
have used various algorithms for fair comparison.

In [32], SSA is utilized to train Feed-Forward Neural 
Networks (FNNs). The planned strategy applies to various 
conventional classification and regression datasets. Results 
also appreciate the better and balanced exploitation–explora-
tion properties of the SSA optimization algorithm, making 
the algorithm favorable for neural network training.

Sahu et al. [33] have been presented a modified version 
of sine–cosine algorithm-based fuzzy-aided PID controller 
which is called M-SCA algorithm. In this methodology, the 
SCA version by improving and updating few mathemati-
cal equations which is able of making the balance between 
exploitation and exploration phase of this version and 
enhancing the updating quality of generation. On the basis 
of experiential results has been showed the superior ability 
in fast convergence rate performance outperform than others.

However, the merits of Chimp optimization algorithm 
(ChoA) have satisfied the convergence performance, and it 
has a best balance amid exploitation and exploration. How-
ever, this version is not able to solve each type of complex 
problem during the search process. This algorithm also faces 
several drawbacks such as premature convergence, slow con-
vergence rate, locating local minima rather than global min-
ima, and low balance amid exploitation and exploration etc.

Considering the above, it is necessary to improve the 
ChoA algorithm to hide its limitations. Therefore, dur-
ing this research, the proposed method is introduced from 
its original Chimp Optimization Algorithm by updating 
and improving the various mathematical equations by 
sine–cosine functions, which is able of enhancing the qual-
ity of optima outputs, updating quality of iteration, and is 
also capable to making the balance amid exploitation and 
exploration phases of the original ChoA algorithm. This 
concept is helpful in optimization, because they help to gen-
erate accurate solutions. The inclusion of these functions in 
optimization methods helps to increase the diversity of the 
solutions avoiding the local solutions.
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This research introduces a modified version of Chimp 
Optimizer that combines the features of sine–cosine func-
tions with original ChoA called SChoA algorithm. The idea 
is to enhance the search process of the original version of 
ChoA to find the optimal solutions. Different comparisons 
and experiments are performed between the version to select 
the one that provide the most accurate solutions. It is noted 
that, in terms of numerical results, statistical measurements, 
and convergence curves, the SChoA algorithm trapped the 
best optima solutions verified with the competitor versions. 
To sum up, the major contributions of this work are: 

1.	 Sine–cosine functions are applied to tackle with the 
drawbacks of original ChoA algorithm to enhance its 
convergence performance.

2.	 SChoA is developed for solving complex single objec-
tive optimization problems.

3.	 The experimental solutions and convergence graphs are 
demonstrate the superiority of the proposed algorithm in 
solving single objective complex optimization problems.

The rest of the paper is organized as follows: In Sect. 2, the 
literature review is presented. In Sect. 3, preliminaries of 
various methods including the basic of Chimp Optimiza-
tion Algorithm Salp swarm algorithm (SSA) are introduced. 
Section 4 explains the proposed SChoA algorithm. Section 5 
discusses and analyzes the obtained experimental results. 
In Sect. 6, the proposed algorithm is tested on engineering 
problems. Finally, Sect. 7 provides conclusion and future 
work for this paper.

2 � Literature review

In the literature, the meta-heuristic techniques are classi-
fied in different phases such as (1) evolutionary Algorithms 
(EA), but not SI, (2) swarm intelligence (SI), includes nature 
inspired optimizer algorithms that mimic the social behavior 
of groups of birds, human, animals and plants, (3) natu-
ral phenomenon algorithms (NP), imitates the chemistry 
and physical principles also, includes methods inspired by 
human behavior but neither SI nor EA [34].

For fulfilling the demand of the complex issues of differ-
ent fields, the researchers are developing the robust modi-
fied or hybrid nature nature techniques [35], such as genetic 
algorithm (GA) [36], and particle swarm optimization (PSO) 
[37], Salp swarm optimization [38] , sine cosine algorithm 
[39], Harris Hawks Optimization (HHO) [40], suggested 
chaotic SSA (CSSA) [41], binary version of the SSA named 
BSSA [42], and many more [43]. Furthermore, the recently 
hybrid and modified version has been reported.

Alresheedi et al. [44] combined the SSA and sine cosine 
algorithm (SCA) with the means of improving MOPS 

techniques (MOSSASCA) to find a suitable solution for vir-
tual machine location problem. The main purpose of the pro-
posed MOSSASCA is to mitigate infringements of service 
quality, reduce power usage, and increase the average time 
before an agent termination, as well as minimize tension 
between the three goals. In SCA, a local search technique 
is followed to increase SSA’s performance to increase con-
vergence speed and avoid being trapped in a local optimum 
solution. In a set of experiments, there were different digital 
and physical devices to test the performance of the combined 
algorithm. Well-known methods of MOP were compared 
with MOSSASCA’s findings. Results show a compromise 
between achieving the three goals.

In [45], a least-squares support vector machine (LS-SVM) 
model was suggested by Zhao et al. to predict carbon dioxide 
emissions ( CO2)using the principles of SVM. Compared to 
the other selected models, the proposed model showed more 
predictive performance. The numerical results showed the 
great superiority and ability of the SSA–LSSVM model to 
improve the accuracy and reliability of predicting emissions 
of CO2.

SSA can approximate the optimum solution with high 
convergence, but the search for the optimum solution that 
affects the efficiency of the algorithm is not yet advanta-
geous to SSA. To that this impact and boost its capacity and 
efficacy, Sayed et al. [41] suggested chaotic SSA (CSSA) by 
combining SSA with chaos algorithm. Chaos has recently 
been used a novel numerical approach to improve the exe-
cution of meta-heuristic approaches. Chaos is described as 
a simulation for non-linear [46] self-motivated conduct. 
Meta-heuristic method populations have the same advan-
tages as scalable approach, simplicity, and reduced compu-
tational time. However, there are two intrinsic weaknesses 
in these approaches; low convergence rate and local optima 
recession.

Features selection (FS) problems with binary parameters 
are considering binary problems. Al-Zoubi and Mirjalili 
[47] introduced two versions of binary SSA. The SSA is 
transformed from continuous to binary in the first iteration 
using eight separate transfer functions (TFs). SSA is built 
into a crossover operator in the second version. In addition, 
the best search agent (leader) of SSA is updated to facilitate 
exploration using the crossover operator while maintaining 
the main mechanism of this algorithm.

Qu et al. [48] have been proposed improved SCA algo-
rithm by Greedy Levy mutation. This algorithm adopts the 
method of linear decreasing inertia weight to better balance 
the global searching and both exponential decreasing con-
version parameter and local development ability of the algo-
rithm. On the basis of simulation results prove that existing 
method can it has faster convergence speed and effectively 
avoid falling into the local optimum, and higher optimiza-
tion accuracy.
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While the original study of Salp algorithm was proposed 
to solve continuous problems, and it cannot be applied to 
binary problems directly, Rizk and Hassanien [42] proposed 
a new binary version of the SSA named BSSA to enhance 
the exploration and exploitation capabilities by modifying 
Arctan transformation. This modification has two features 
regarding the transfer function, namely multiplicity and 
mobility. The proposed BSSA is compared among four 
variants of transfer functions for solving global optimiza-
tion problems. Furthermore, the non parametric statistical 
test based on Wilcoxon’s rank-sum is carried out to judge 
statistically the significant of the obtained results among the 
different algorithms. The results affirm the superior perfor-
mance of the modified BSSA variant over the other variants 
as well as the existing approaches regarding solution quality.

A novel method based on the new moth flame optimizer 
technique has been developed by Mohammad Reza Esmaeili 
et al. [49]. After applying this method in synthesizing digital 
filters, it was observed that compared to the genetic algo-
rithm-based and the Particle Swarm Optimization-based 
techniques, it exhibited a higher ability to reach an optimal 
solution under the same initial conditions (the initial popula-
tion and the same number of iteration)

Gholizadeh and Sojoudizadeh [50] have developed a 
modified version of the SCA algorithm known as Modified 
SCA algorithm (MSCA). The proposed strategy combines 
with two computational strategies during its search process, 
such that, first, a kind of elitism is utilized by substituting 
a number of worst solutions of the current population with 
some variants of the global best optima solution, and second, 
a mutation operation is performed to increase the probability 
of searching the best global optimum solution. Experimental 
results showed that the proposed algorithm is able to give 
the highly accurate or fast convergence results than others.

3 � Chimp optimization algorithm (ChoA)

A new nature inspired algorithm known as Chimp optimiza-
tion algorithm (ChoA) has been developed by Khishe et al. 
[51]. This strategy is inspired by individual intelligence and 
sexual motivation of chimps in their group hunting. It is 
different from the other social predators. During this meth-
odology, four different phases have been used for simulat-
ing diverse intelligence such as attacker, barrier, chaser, and 
driver, etc.

The mathematical model of this proposed algorithm has 
been described as following step by step:

The driving and chasing the target or prey is illustrated by 
the following mathematical equations (Eqs. ((1)–(2)):

(1)D =
|||c.aprey(n) − machimp(n)

|||

where n is represented the total number of iterations, and c, 
m, and a are the coefficient vectors. The coefficients c, m, 
and a are calculated by Eqs. [(3)–(4)]:

where r1 and r2 are random values in range of [0, 1] , m is 
represented the chotic vector, and l is reduced non-linearly 
from 2.5 to 0 through the iteration process.

During this step has been implemented the behavior of 
the chimps mathematically. Here, it assumes that the ini-
tial solution is available by the attacker, driver, barrier, and 
chaser which are better informed about the location of the 
target. In the next iteration, four of the other optima solu-
tions yet obtained are stored and the rest of the chimps are 
forced to update their own location according to the best 
chimp locations. This process have been illustrated by the 
following mathematical Eqs. (6)–(9):

When the random vectors are lie between the range of 
[−1, 1] , then the next location of a chimp can be in any loca-
tion amid its present location and the location of the target 
or prey:

From the overall equations, the position of the chimps during 
the search process is updated by the following mathematical 
Eq. (14):

(2)achimp(n + 1) = aprey − a.d,

(3)a =2.l.r1 − l

(4)c =2.r2

(5)m =choticvalue,

(6)dattacker =
||c1aattacker − m1.x

||

(7)dbarrier =
||c2abarrier − m2.x

||

(8)dchaser =
||c3achaser − m3.x

||

(9)ddriver =
||c4adriver − m4.x

||.

(10)x1 = aattacker − a1.dattacker

(11)x2 = abarrier − a2.dbarrier

(12)x3 = achaser − a3.dchaser

(13)x4 = adriver − a4.ddriver.

(14)xn+1 =
x1 + x2 + x3 + x4

4
.
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Finally, for the update of the location of the chimps during 
the search process in the search domain has been applied to 
the following mathematical equation 15:

3.1 � 3.0.1 Pseudocode of ChoA

The pseudocode of CHoA algorithm is reported in 
Algorithm 1.

(15)achimp(n + 1) =

{
aprey(n) − x.d, if 𝜙 < 0.5

chaoticvalue if 𝜙 > 0.5.

Fig. 1   The performance graph 
of sine and cosine function

4 � The proposed sine–cosine Chimp 
optimization algorithm (SChoA)

The complex optimization application is challenges for the 
optimization meta-heuristics. According to the literature, 

each optimization method could not be able to shows the 
best solution of all type of complex problems. All algorithms 
may be faced some drawbacks, so due to these weakness 
these could failure to find the solution of complex functions.

Therefore, due to the present competitive situations, we 
are needed most powerful optimization techniques, so that 
these could tackle complex problems easily. However, these 
techniques could be tackle complex functions easily if the 
exploration and exploitation phase of these techniques will 
be too strong.

After learning the initial phase of chimp optimization 
algorithm, here, we are trying to present a newly modified 

algorithm with the help of sine–sine function functions for 
the complex optimization functions. The sine and cosine 
function are helped by the algorithm in fluctuating outward 
or toward finding the optimal solutions. These functions 
help to ignore the local optima and force the algorithm for 
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trapping the global optima fastly. The performance of the 
sine and cosine functions in the search space is illustrated 
by Fig. 1.

Figure 1 illustrates the present solution which will be 
away from the target and explore the search domain when 
the search member moves in [−2,−1) or (1, 2]. Additionally, 
the present solution will be toward the target and exploit the 
search domain when the search member moves in [−1, 1].

However, the ChoA algorithm is capable to solve vari-
ous complex optimization functions; nevertheless, it face 
various drawbacks for trapping the local, global, and explore 
optima values in the search domain. It could not be fitted for 
highly complex optimization problems and cannot tackle 
their several drawbacks such as slow diversity, premature 
convergence, slow convergence speed, etc. For improving 
exploitation phase of the standard chimp optimization algo-
rithm, we are trying to incorporate the sine–cosine functions 
in the position updation equations of the ChoA algorithm, 
and to improve the weaknesses of standard ChoA version.

In the search domain for identify the accurate and best 
global optimum for complex optimization functions have 
been applied this modified algorithm. The chimp optimiza-
tion algorithm (ChoA) phases operate in the directions of 
exploration of the optima solution and modified phases have 
been applied for exploitation of the optima in the search 
domain. The modification has helped for getting the best 
global outputs fastly and ignoring the local optima. Due to 
the impact of this, we have enhanced the convergence rate 
of the standard ChoA algorithm through this modification.

Furthermore, the mathematical formulation of the SChoA 
algorithm has been illustrated by the following steps:

•	 Constants  During the runs of the Matlab code of the 
algorithms have applied the various parameter settings 
such as search agents is 30, total number of iterations are 
500, and dimension as per Table 15.

•	 Initialization  In this stage, first, we are initializing the 
population of the search agents and these are initialized 
randomly as per the given functions. Where the algo-
rithms assigns a random vector of n dimensional for the 
ith chimp; Xi(i = 1, 2, ..., n).

•	 Evaluation  In this stage, the search members of the pop-
ulation are evaluated according to the superiority of the 
own position in the search space during the search pro-
cess. After that, the fitness value of each search member 
is tested through the given objective function and each 
search member of the crowd during the search process is 
used these fitness values for locating the new positions 
in the search space.

•	 Exploration phase  In this state, the chimps are update 
their position for the purpose of searching next nearest 
position of his prey. These position are updated through 
Eqs. 1–5.

•	 Exploitation phase  In this phase, the search agent posi-
tion has been evaluated through modified mathematical 
equations (Eqs. 16–20). These equations have played an 
important role for enhancing the exploitation phase for 
chimps for trapping the best optima values in the search 
domain during the search process and ignoring the local 
optima solutions. With the help of this modification 
chimps could be easily trapped in the optima solutions 
in the complex space in at least a number of iterations. 
Additionally, it also helps in reducing the computational 
time in searching the next best position for the search 
agents: 

 where r2 represents the rand number lies between 0 and 
1, x1 , x2 , x3 , x4 are update positions of the chimps, and a1 , 
a2 , a3 , a4 are coefficient vectors, respectively.

•	 Leader Chimp position  The leader chimp position 
updated through Eq. 14.

•	 Stopping conditions   Finally, the stopping conditions 
have been implemented for searching the best possible 
optima value in the search domain. These conditions have 
been applied for evaluating the assessment process of the 
all search agents of the group and replacing the position 
according to best search agent’s positions. It is repeated 
again and again until it satisfies the criteria of prevention 
for example it reaches the highest maximum iterations or 
the solution is earliest found.

4.1 � 4.0.1 Pseudocode of modified SChoA algorithm

The pseudocode of SCHoA algorithm is reported in 
Algorithm 2.

(16)r2 =(2�) × rand

(17)x1 =aattacker − cos(r2) × a1.dattacker

(18)x2 =abarrier − sin(r2) × a2.dbarrier

(19)x3 =achaser − cos(r2) × a3.dchaser

(20)x4 =adriver − sin(r2) × a4.ddriver,
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5 � Complexity

The complexity of the proposed method is illustrated in the 
two different following forms;

5.1 � Time complexity of SChoA

The computational complexity of the proposed algorithm 
(SChoA) can be represented as:

where v, s, d, c, m, and L illustrate the number of runs, num-
ber of solutions, dimension, cost of objective function, num-
ber of objective function, and number of iterations.

5.2 � Search space complexity of SChoA

The search space complexity of SChoA algorithm in terms 
of the memory space depends on the constants or parameters 
of both the dimension of the given function and the search 
members. This identifies the amount of space that proposed 
method needs during the initialization process. Therefore, 
the search space complexity of proposed method can be 
illustrated by the mathematical equation as follows:

(21)R(v(M(sd + cs + ms2))),

Here, the proposed algorithm also requires additional search 
space for other constants. However, this extra search space 
is not critical, and hence, the search space complexity of 
the proposed algorithm remains within the range of above 
mathematical equation (Eq. (22)).

6 � Results and discussion

To evaluate the convergence and accuracy performance of 
the proposed SChoA algorithm, a experiential analysis has 
been performed in this section. For comparison, various 
robust population-based algorithms, such as MPSO, SCA, 
PSO, TACPSO, and Chimp, have been used.

6.1 � Parameter setting and standard benchmark 
functions

The Matlab 2015a software has been applied for the coding 
of all algorithms for verifying the performance with each 

(22)R(sd).
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Table 1   The optimal solutions 
obtained on 23-benchmark 
functions by the SChoA 
algorithm and the competitors

F Algorithm Best score Best max. value Average S.D.

F1 MPSO 6.2999 6.6617e+04 1.1797e+04 1.5447e+04
SCA 0.0087 3.8468e+04 1.4023e+04 1.7417e+04
PSO 1.5989 6.3536e+04 1.5924e+04 5.8033e+03
TACPSO 0.1459 7.2293e+04 1.8818e+03 6.0679e+03
Chimp 3.3939e−05 7.1812e+04 3.6421e+04 3.1559e+04
SChoA 5.6626e−33 7.7909e+04 1.5717e+03 5.6803e+03

F1 MPSO 49.4796 3.0056e+12 6.0384e+09 1.3442e+11
SCA 0.0017266 3.1649e+12 6.9533e+09 1.4219e+11
PSO 4.1197 2.3624e+12 4.7248e+09 1.0565e+11
TACPSO 0.0968 4.7624e+11 1.0848e+09 2.1463e+10
Chimp 2.1407e−06 3.3150e+13 7.3674e+12 1.3275e+13
SChoA 1.7204e−20 3.6525e+13 1.0220e+09 1.9135e+10

F3 MPSO 2.6593e+04 1.3615e+05 4.5715e+04 2.2307e+04
SCA 13531.6371 1.7753e+05 5.2755e+04 3.9729e+04
PSO 281.3240 6.5932e+04 2.5335e+03 7.3345e+04
TACPSO 814.3129 1.4726e+05 8.2458e+03 2.3106e+04
Chimp 13.3838 1.6046e+05 9.0156e+04 7.3125e+04
SChoA 6.1983e−08 1.9481e+05 1.0592e+03 2.2571e+04

F4 MPSO 10.4225 86.5907 41.5662 27.8297
SCA 54.8864 89.0673 78.0030 17.7977
PSO 2.4063 82.2175 6.3489 9.2631
TACPSO 8.2275 86.5125 24.0546 14.2789
Chimp 0.1265 45.0615 53.3266 37.1912
SChoA 2.7577e−10 88.6998 12.1931 1.2680

F5 MPSO 138.8381 1.8253e+08 2.4462e+07 3.8299e+07
SCA 2730.7454 3.1997e+08 6.9233e+07 1.1339e+08
PSO 383.9547 1.9914e+08 8.6423e+05 1.0530e+07
TACPSO 132.8287 2.4246e+08 2.20209e+06 1.3789e+07
Chimp 28.7388 3.4148e+08 1.5709e+08 1.4146e+08
SChoA 28.5806 3.6247e+08 5.9587e+05 1.007e+07

F6 MPSO 33.4766 7.9077e+04 1.6596e+04 2.1433e+04
SCA 34.762 8.3331e+04 2.9954e+04 3.7143e+04
PSO 3.1046 7.1844e+04 1.6113e+03 6.5984e+03
TACPSO 130.7833 7.5853e+04 3.0128e+03 6.8110e+03
Chimp 4.5517 6.8753e+04 3.8289e+04 3.2264e+04
SChoA 3.0114 8.3694e+04 1.0111e+03 5.6249e+03

F7 MPSO 0.1142 61.2874 6.5500 9.4360
SCA 0.073601 112.4585 41.3224 51.3600
PSO 5.2057 75.4536 48.4544 21.9777
TACPSO 0.0458 122.5885 1.5274 8.3476
Chimp 0.076766 120.8919 60.3297 55.4527
SChoA 0.0010 160.0359 1.4378 5.7739

F8 MPSO − 8.9951e+03 − 3.0052e+03 − 8.2104e+03 1.4418e+03
SCA − 3.7518e+03 0 − 3.5110e+03 246.9999
PSO − 7.0215e+03 − 2.9755e+03 − 5.5697e+03 1.7085e+03
TACPSO − 9.2891e+03 − 1.5318e+03 − 7.4832e+03 2.4864e+03
Chimp − 5.7312e+03 − 2.8322e+03 − 5.7088e+03 188.8485
SChoA − 9.8671e+03 0 − 3.8115e+03 180.0194
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Table 1   (continued) F Algorithm Best score Best max. value Average S.D.

F9 MPSO 166.3000 457.7561 238.6882 79.6640

SCA 6.7832 446.6224 164.6431 174.8304

PSO 142.1316 471.1388 264.5869 82.7104

TACPSO 77.5040 460.2153 151.2479 80.9861

Chimp 23.6326 441.4657 287.2308 179.1193

SChoA 0 475.4462 43.9680 77.7203
F10 MPSO 2.6987 20.5399 10.3732 7.2253

SCA 15.6986 20.6395 19.4357 1.8108
PSO 2.5733 20.0753 5.7380 2.4067
TACPSO 4.2307 20.6507 6.5348 3.6142
Chimp 19.9597 20.5567 19.9626 0.0333
SChoA 1.5099e−14 20.9545 1.8949 1.7160

F11 MPSO 0.6988 653.3792 102.4597 134.2159
SCA 1.0643 552.4245 141.6881 225.4360
PSO 0.0985 607.9306 44.4302 120.1320
TACPSO 0.0634 624.8712 15.0644 48.4517
Chimp 3.5813e-−07 629.2019 329.8227 285.5492
SChoA 0 660.3577 20.9825 83.0538

F12 MPSO 59.8943 6.5263e+08 4.9864e+07 8.4607e+07
SCA 13032.133 7.8927e+08 3.5222e+08 3.5999e+08
PSO 0.3456 6.0060e+08 2.9000e+06 3.6721e+07
TACPSO 4.1876 5.3468e+08 5.3068e+06 3.4991e+07
Chimp 2.0981 9.1085e+08 5.1711e+08 4.0341e+08
SChoA 0.1626 9.4327e+08 2.5932e+06 3.3113e+07

F13 MPSO 7.7595 1.2000e+09 5.0545e+07 1.0305e+08
SCA 12411.2108 1.0777e+09 4.2834e+08 4.9404e+08
PSO 0.7689 1.1876e+09 5.0020e+06 6.4531e+07
TACPSO 3.7814 1.4184e+09 6.4690e+07 8.0294e+07
Chimp 2.7450 1.3221e+09 6.6209e+08 6.0195e+08
SChoA 0.67679 1.6739e+09 1.6103e+07 5.1686e+07

F14 MPSO 0.9980 14.7165 1.1510 1.0258
SCA 0.99804 137.6850 3.0215 10.7374
PSO 1.9920 21.7810 2.3615 1.2611
TACPSO 0.9980 284.7727 2.8733 17.9660
Chimp 0.99801 247.5210 3.9429 20.2848
SChoA 0.998 311.9313 1.3330 10.4292

F15 MPSO 0.0204 0.4371 0.0214 0.0189
SCA 0.0013794 0.0593 0.0022 0.0032
PSO 8.8218e−04 0.1171 0.0020 0.0069
TACPSO 7.8266e−04 0.3714 0.0033 0.0266
Chimp 0.0013 0.0764 0.0028 0.0095
SChoA 6.8388e−04 0.4462 0.0020 0.0017

F16 MPSO − 1.0316 10.3537 − 0.9861 0.5221
SCA − 1.0316 33.8446 − 0.9027 1.5922
PSO − 1.0316 25.6828 − 0.9121 1.2668
TACPSO − 1.0316 2.1536 − 1.0076 0.2272
Chimp − 1.0316 10.5347 − 0.1030 2.9730
SChoA − 1.0316 36.4936 − 1.0088 0.2212
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others. In this implementation, have been applied differ-
ent parameters settings, like total number of iterations 500, 
search chimps 30, dim, and upper and lower bounds as per 
as standard functions, respectively.

It is always beneficial to use a set of standard testbeds 
with different characteristics to conveniently and confidently 

test the performance of any new optimization algorithm on 
different standard benchmark problems and compare it with 
other nature inspired algorithms. The diversity of test prob-
lems or functions allows observing and testing the ability of 
any new optimizer algorithm from different perspectives.

Table 1   (continued) F Algorithm Best score Best max. value Average S.D.

F17 MPSO 0.3979 0.4363 0.4987 0.0050

SCA 0.40003 1.2605 0.4393 0.1469

PSO 0.3979 1.3905 0.4015 0.0456

TACPSO 0.3979 2.0111 0.4007 0.0258

Chimp 0.39794 0.7576 0.4181 0.0801

SChoA 0.3979 2.1936 0.4007 0.0049
F18 MPSO 3.0000 135.7076 3.4676 6.1680

SCA 3.0000 27.9057 3.1789 1.6783
PSO 3.0000 26.8088 3.0669 1.0733
TACPSO 3.0000 16.5713 3.0690 0.6871
Chimp 3.0002 131.3970 4.6893 11.6675
SChoA 3.0000 171.1468 3.0000 0.1925

F19 MPSO − 3.8628 − 3.4964 − 3.8587 0.0256
SCA − 3.8527 0 − 3.8059 0.1828
PSO − 3.8628 − 2.8312 − 3.8575 0.0502
TACPSO − 3.8628 − 3.7018 − 3.8588 0.0213
Chimp − 3.8534 − 2.9339 − 3.8183 0.1347
SChoA − 3.8649 0 − 3.8410 0.0916

F20 MPSO − 3.2031 − 2.5071 − 3.1871 0.1694
SCA − 2.9821 0 − 2.8162 0.2699
PSO − 3.2031 − 1.8479 − 3.1217 0.1257
TACPSO − 3.2031 − 1.3054 − 3.1663 0.1675
Chimp − 3.0135 − 2.5059 − 2.9688 0.0913
SChoA − 3.3219 0 − 3.2537 0.1243

F21 MPSO − 5.1008 − 0.2814 − 4.8030 0.8142
SCA − 5.4441 0 − 1.9466 1.6559
PSO − 2.6829 − 0.3367 − 2.4692 0.4574
TACPSO − 2.6305 − 0.6105 − 2.5814 0.2104
Chimp − 0.8806 − 0.2929 − 0.8594 0.0648
SChoA − 10.0944 0 − 5.0904 0.3433

F22 MPSO − 2.7659 − 0.4677 − 2.6932 0.2668
SCA − 4.3615 0 − 2.9022 1.2943
PSO − 5.0877 − 0.5200 − 4.5385 0.8716
TACPSO − 2.7519 − 0.3959 − 2.6837 0.3173
Chimp − 0.9070 − 0.4569 − 0.8668 0.0980
SChoA − 10.3082 − 0.5907 − 5.1439 0.0574

F23 MPSO − 2.8711 − 0.3416 − 2.6117 0.5576
SCA − 2.4286 0 − 1.5989 0.6660
PSO − 3.8354 − 0.5958 − 3.3157 0.8183
TACPSO − 5.1756 − 0.4448 − 4.0242 0.6726
Chimp − 0.9475 − 0.3232 − 0.8982 0.1091
SChoA − 10.5139 0 − 4.1068 0.0495



S985Engineering with Computers (2022) 38 (Suppl 2):S975–S1003	

1 3

A set of 23-standard functions are applied to demonstrate 
the performance and efficiency of the SChoA algorithm 
compared to other existing optimization techniques in the 
literature. These functions can be divided into three different 
phases: uni-modal [52], multi-modal [53], and fixed dimen-
sion multi-modal [52] functions, respectively. The math-
ematical details of these functions have been illustrated in 
“Appendix”. A detailed description of the characteristics 
of the unimodal ( F1–F7 ), multi-modal ( F8–F13 ), and fixed 

dimension multi-modal functions ( F14–F23 ) are reported in 
Table 15 in “Appendix” .

The unimodal problems have only one global optimum 
with no local optima. These problems are highly suitable to 
explore the exploitative efficiency and convergence behavior 
of the new proposed optimization algorithm. Multimodal 
and fixed-dimension multimodal benchmark test problems 
face the existence of several local optimum solutions and 
more than one global optimum.

Fig. 2   Convergence graphs of algorithms on uni-modal functions
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The landscapes of these benchmark test functions have 
been showed in 2-D versions through figures, respectively.

To verify the accuracy of the proposed SChoA algorithm 
have been tested on these 23-test functions as comparison 
with the other recent algorithms: MPSO, PSO, TACPSO, 
Chimp, etc. Furthermore, the more analysis of the results of 
algorithms on these functions has been illustrated through 
the following sections.

6.2 � Experiment and comparison

The simulation must be required to done multiple n-times to 
evaluate stable numerical and statistical efforts for the per-
formance of the optimizer methods. And for evaluating the 
stability of the algorithms, every run must be carried out to 
m number of generations or iterations [54]. In this work, has 
been applied the same experimental procedure for testing the 
performance of proposed method. And the accuracy of the 
results obtained by algorithms has been verified through dif-
ferent categories such as least best minima value, max best 
value, standard deviation, and mean. Experimental solutions 
of the algorithms are reported in Table 1, and convergence 
graphs are illustrated by Figs. 2, 3 and 4.

Here, the accuracy and performance of the SChoA algo-
rithm has been compared with recent algorithms MPSO, 
PSO, TACPSO, Chimp, etc. in terms of best numerical and 
statistical outputs.

6.3 � Discussion

The standard deviation (SD) and mean measures were used 
to verify the result output performance of SChoA to those 
of the Standard ChoA or Chimp and other nature inspired 
techniques on 23-standard test benchmark problems. All 
algorithms has run 30 independent times with at least 500 
number of iterations on every test suite, to evaluate meaning-
ful solutions. The statistical solutions are computed at the 
last iteration of each nature inspired approach on each test 
suite to get the best optimal result and give a highly fair com-
parison among all comparative nature inspired algorithms.

Furthermore, in the following sections have been illus-
trated the comparison of proposed algorithm with other 
algorithms in three different phases; evaluation of uni-
modal, multi-modal, and fixed dimension multi-modal test 
suites.

Fig. 3   Convergence graphs of algorithms on multi-modal functions



S987Engineering with Computers (2022) 38 (Suppl 2):S975–S1003	

1 3

Fig. 4   Convergence graphs of algorithms on fixed dimension multi-modal functions
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6.3.1 � Assessment of exploitation capability

The uni-modal ( F1–F7 ) functions of 23-test suites have only 
one global compatibility, so these functions have been used 
to evaluate the exploitation phase. In Table 1, it can be seen 
that the SChoA algorithm gives better optimal solutions on 
these test suites as comparison to others. Experimental solu-
tions of these test suites reveals that the SChoA algorithm 
has demonstrated better exploitation capabilities than the 

others. The main motive for these global optima solutions 
is that the modification by sine–cosine functions in stand-
ard chimp optimization algorithm allowed the test suites to 
reach the best optimum global point. Hence, all simulations 
have proven that the SChoA algorithm strategy has a robust 
exploitation behavior which is important for most issues 
of compatibility that need to be addressed. As mentioned 
earlier, these functions are most suitable for these standard 

Table 2   Comparison of 
average values of algorithms on 
23-benchmark functions

Functions MPSO SCA PSO TACPSO Chimp SChoA

F1 W W W W W B
F2 W W W W W B
F3 W W W W W B
F4 W W B W W W
F5 W W W W W B
F6 W W W W W B
F7 W W W W W B
F8 W W W B W W
F9 W W W W W B
F10 W W W W W B
F11 W W W B W W
F12 W W W W W B
F13 W W B W W W
F14 B W W W W W
F15 W W B W W B
F16 W W W W B W
F17 W W W W W B
F18 W W W W W B
F19 W W W B W W
F20 W W W W W B
F21 W W W W W B
F22 W W W W W B
F23 W W W W W B

Fig. 5   The SD values of SChoA 
algorithm on 23-standard 
benchmark functions
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test suits. The solutions prove that the SChoA algorithm is 
highly functional.

Additionally, superior to the global results of ChoA algo-
rithm, it is revealed that modification is most successful 
and effective in providing the best and accurate solutions 
for complex optimization functions with a single objective 
phase and reaching best global optima.

6.3.2 � Capability assessment

In multimodal ( F8–F13 ) and fixed dimension multimodal 
( F14–F23 ) test suits are contains many local optima and the 
number of design variables increases exponentially with 
the size of the problem compared to the unimodal function. 
These functions have the ability to assess the exploration 
capability of algorithms.

In general, these functions are used to indicate the suita-
bility of the suit meta-heuristics. Here, all outputs in Table 1 
show that the SChoA method achieves a higher detection 
capability and better exploitation capabilities.

6.3.3 � Accuracy of the algorithms

The average values obtained by the algorithms are discussed 
in Table 2. These values has been divided into two differ-
ent phases, such as (B) is best value and (W) is indicate 
the worse average value of the algorithm. In general, the 
least mean values of the algorithm denoted accuracy of 
the algorithm for the best optimal score. On the basis of 
table, we notice that the proposed algorithm is providing 
the least mean values at the maximum number of standard 
test suits. Hence, SChoA algorithm could be capable to pro-
vide the best global optima outputs for complex optimization 
functions.

6.3.4 � Stability of SChoA algorithm

In this section has been verified the performance of the pro-
posed algorithm through standard deviation (SD) outputs, as 
shown in the table and illustrated through Fig. 5.

Through Fig. 5, we could be analyzed that the proposed 
algorithms on the 23-standard benchmark functions are near 
to zero, and it means that the SChoA algorithm is stable 
on the given functions that were performed. Furthermore, 
the least standard scores show the fast convergence perfor-
mance of the algorithms. Here, it could easily be seen that 
the SChoA algorithm is able to give the least standard score 
at maximum test suites outperform than the others. There-
fore, it can be concluded that SChoA algorithm convergence 
speed is faster than others for trapping the best global opti-
mum value during the search process in the search domain.

Table 3   The optimal solutions 
of the algorithms on welded 
beam design problem

Algorithm h l t b Optimal sol.

RANDOM 0.4575 4.7313 5.0853 0.6600 4.1185
GA 0.2489 6.1730 8.1789 0.2533 2.4331
Chimp 0.1656 4.0829 10 0.2046 1.9036
GSA 0.1821 3.8569 10.0000 0.2023 1.8799
RO 0.20368 3.52846 9.00423 0.20724 1.73534
CPSO 0.202369 3.544214 9.048210 0.205723 1.73148
WOA 0.2053 3.4842 9.0374 0.2062 1.7304
MVO 0.2054 3.4731 9.0445 0.2056 1.7264
GWO 0.2056 3.4783 9.0368 0.2057 1.7262
HSSAHHO 0.205727 3.470523 9.03673 0.205729 1.724867
SChoA 0.1998 3.4407 9.1056 0.2056 1.7229

Fig. 6   Welded beam design
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6.3.5 � Convergence graphs analysis and discussion

The convergence performance graphs of uni-modal, multi-
modal, and fixed dimension multi-modal test suites have 
been plotted through Figs. 2, 3 and 4. Please keep in mind 
that the average best solution for each iteration represents the 
average best solution found so far in each iteration.

In these graphs, Figs. 2, 3 and 4 could be seen easily that 
the convergence performance of the SChoA algorithm fall 
in two categories, such as if trapped the best optima value 
of the functions at least number of iterations and next, it 
tends to be accelerated as generation increases. Furthermore, 
as per Berg et al. [55], this behavior can assurance that a 
optimization algorithms ultimately converges to a point and 
finds locally. Therefore, SChoA algorithm is able to improve 
the fitness of all search chimps in the search domain and 
guarantee finding superior quality of global optima scores 
for complex optimization application as iteration increases.

Here, with this reasons, it can be discussed and as per 
reasoned to the modification of the chimp optimization 
algorithm. As the search agents move from higher values to 
global minimum values, so with the assumption of growth 
in ChoA, the overall chimps and their fitness are improved 
during the iterations.

Additionally, with the help of this strategy, we save the 
best value and this value helps to find the next best value 
to enhance the fitness of entire agents of the group during 
the search process. Here, we also observed that the SChoA 
algorithm is capable of getting the higher success rate in 
searching the optima solution in the complex space dur-
ing the search space than sine–cosine functions and ChoA 
algorithm and it finds these goals fast with least number of 
iterations.

With this modified strategy, which can help the search 
agents in the initial stages of the iteration to find new regions 
in the complex space during the search process and enhance 
the speed for searching the best optima goal with a least 
number of the iterations.

7 � The SChoA algorithm for engineering 
designs

In this section has been tested the performance of the pro-
posed SChoA algorithm on six-engineering real-world 
applications such as Welded beam, tension or compression 
spring, pressure vessel, multiple disk clutch brake, plan-
etary gear train, and digital filters design problems, etc. To 
optimize the restricted issues of these functions have been 
compared the proposed method with various recent algo-
rithms. These engineering designs are restricted in equal and 
in inequality measure. In the proposed methodology during 
the search process in the search domain the position updated 
through chimps.

However, between the fitness function of these designs 
and chimps, no any immediate relationship. On the basis of 
these designs have been verified the work performance of 
the proposed algorithm through recent optimizer.

7.1 � Welded beam design problem

The objective of this design is decreasing the cost of manu-
facturing a welded beam, it is shown in Fig. 6. This graph 
represents a rigid component which is welded on a beam. At 
the end of the member, a load is applied. Here, we have been 
finding the values of thickness of weld (h), length of attached 
part of bar (l), the height of the bar (t), and thickness of the 

Table 4   The optimal solutions of the algorithms on tension/compres-
sion spring design problem

Algorithm d D N Optimum weight

RO 0.0413 0.3490 11.762 0.0126
DE 0.0516 0.3547 11.410 0.0126
ES 0.0519 0.3639 10.890 0.0126
GA 0.05148 0.35166 11.6322 0.01270
PSO 0.05172 0.35764 11.2445 0.01267
GWO 0.05169 0.35673 1.2888 0.01266
MFO 0.05100 0.36410 10.8684 0.01266
WOA 0.05120 0.34521 12.0040 0.01267
GSA 0.050276 0.323680 13.525410 0.0127022
Halton-PSO 0.0537 0.4058 8.9027 0.0126981
HSSAHHO 0.0514215 0.3535735 11.354662 0.012485407
Chimp 0.052457 0.34897 10.99876 0.012482
SChoA 0.052099 0.34567 10.65437 0.011873

Fig. 7   Tension/compression spring design
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bar (b) for evaluating the minimum price of this function 
(see Sect. 9.1 in “Appendix”).

The performance of the proposed method has been veri-
fied with recent optimization techniques on this design like 
that CPSO [56], Random [57], GA [58], RO [59], GWO 
[60], MVO [61], GSA [62] Chimp [51], HSSAHHO [63], 
and WOA [62]. The experimental solutions of this design are 
reported in Table 3. All these numerical solutions reveal that 
the proposed version is capable of giving the highly accurate 
and least optimal scores as compared to others.

7.2 � Tension/compression spring design problem

The main objective of this design (see Sect. 9.4 in “Appen-
dix” ) is decreasing the pressure/voltage source weight, as 
shown in Fig. 7. The subject to constraints of this design 
has contain some restrictions such as shear stress, float-
ing frequency, and minimum floating deflections. During 
this research have been applied various recent optimiza-
tion techniques for the best or accurate possible solution 
of this design. By literature can be easily analysis that the 

Table 5   The optimal solutions 
of the algorithms on pressure 
vessel design problem

Algorithm X
1

X
2

X
3

X
4

Min f(x)

CGA​ 0.812500 0.437500 40.323900 200.0000 6288.744500
DGA 0.812500 0.437500 42.097400 176.654000 6059.946300
CPSO 0.812500 0.437500 42.091300 176.746500 6061.077700
HPSO 0.812500 0.437500 42.098400 176.636600 6059.714300
CDE 0.812500 0.437500 42.098411 176.637690 6059.734000
CSA 0.812500 0.437500 42.098445 176.636599 6059.714363
WOA 0.812500 0.437500 41.825682 180.046141 6093.211997
WOA-DE 0.812500 0.437500 42.098497 176.635957 6059.708057
WOA-BSA 0.812500 0.437500 42.098497 176.635954 6059.708025
Chimp 0 0 40.3301 200.0000 6058.6266
SChoA 1.0922 7.8270e−04 65.3254 10.0000 2318.0359

Fig. 8   Pressure vessel design

Table 6   The optimal solutions 
of the algorithms on multiple 
disk clutch brake design 
problem

Algorithm X
1

X
2

X
3

X
4

X
5

Min f(x)

NSGA-II 70 90 1.5 1000 3 0.4704
SSA 77.1459 97.2218 1 628.1937 3.3809 0.3758
APSO 76 96 1 840 3 0.337181
TLBO 70 90 1 810 3 0.313657
WCA​ 70 90 1 910 3 0.313657
FSO 70 90 1 870 3 0.313656
SCA 68.8526 90 1 1000 2.6774 0.3027
Chimp 69.8782 90 1 1000 2.6537 0.2880
EGWO 69.4920 90 1.0099 1000 2.3690 0.2727
TACPSO 75.0044 95.0044 1 1000 2.1779 0.2648
MPSO 70 90 1 1000 2.3128 0.2598
SChoA 31.7505 51.7853 1 1000 4.4759 0.2246
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meta-heuristic most useful for giving the accurate solu-
tions of these kinds of designs. All the simulation outputs 
obtained through algorithms are reported in Table 4.

During this study, the convergence performance of the 
proposed method has been verified with various recent 
techniques such as RO, DE, ES, GA, PSO, GWO, MFO, 
WOA, GSA, Halton-PSO [64], HSSAHHO [63], and Chimp 
[51] algorithms, which demonstrates that this algorithm can 

highly be effective in solving real problems outperform than 
others.

7.3 � Pressure vessel design

The main motive of this design (see Sect. 9.3 in “Appen-
dix”) is reducing the construction cost of pressure vessel 
design, as seen in Fig. 8. This design cost include; associate 
with geometric parameters of the pressure vessel, shaping, 
materials, and welding. Therefore, for reaching the least cost 
for this function, calculations of the optima solutions of the 
geometric constants are necessary. The mathematical formu-
lation of this design is provided in “Appendix”.

Table 5 provides the optimal solutions of SChoA algo-
rithm and the other meta-heuristics CGA [65], DGA [66], 
CPSO [67], HPSO [68], CDE [69], CSA [70], WOA-DE 
[71], WOA-BSA [72], and Chimp [51] algorithm, respec-
tively, for this design.

The solution accuracy of the proposed algorithm is 
clearly revealed in this design by giving the best or accurate 
result among the other recent meta-heuristics and is capable 
of evaluating the best design with the minimum cost.

7.4 � Multiple disk clutch brake design

The main objective of this design is to minimize the weight 
of a multiple disc clutch brake (see Sect. 9.2 in “Appendix” 
) by considering various discrete variables such as inner 

Fig. 9   Multiple disk clutch brake design

Table 7   The optimal solutions 
of the algorithms on planetary 
gear train design problem

Optimal value SSA EGWO TACPSO MPSO SCA Chimp SChoA

X
1

35.4479 5.0200 65.7076 31.1533 56.9155 33.1809 36.1699
X
2

15.4274 2.7175 46.5288 54.4900 29.8118 19.6612 13.5100
X
3

14.0812 3.1710 20.5288 34.3362 13.5100 16.3498 17.9748
X
4

26.2348 2.6564 21.3166 26.5122 27.9305 18.5740 33.1821
X
5

15.9919 2.0467 20.0452 13.5100 24.4353 16.8072 35.7875
X
6

65.6218 12.6182 75.7920 117.4903 102.7000 68.8582 120.4121
X
7

3.1904 1.8098 2.3735 3.3266 1.5732 2.6944 3.1167
X
8

1.0999 1.0563 0.5100 0.5100 0.5100 0.6425 1.8475
X
9

0.5100 0.6231 2.2143 0.5100 0.8265 0.9238 0.6235
Min f(x) 1.1233 2.2233 0.5328 1.2583 0.9789 0.5332 0.5264

Table 8   The statistical solutions 
of the algorithms on planetary 
gear train design problem

Algorithm X
min

X
max

X
mean

X
sd

X
median

EGWO 2.2233 4.2366e+07 8.4587e+05 5.1177e+06 708.7422
MPSO 1.2583 6.2092e+04 819.7833 6.9427e+03 1.6460
SSA 1.1233 1.0291e+04 363.5411 1.6264e+03 2.8148
SCA 0.9789 2.6436e+04 478.8328 3.0108e+03 2.0076
Chimp 0.5332 3.8973e+03 52.7726 435.3218 0.9433
TACPSO 0.5328 2.1118e+04 1.0605e+03 4.5581e+03 0.5946
SChoA 0.5264 27.9900 1.8058 4.2594 1.2615
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radius, number of friction surfaces outer radius, actuating 
force, and thickness of discs. This design includes eight 
different constraints based on operating conditions and 
the geometry. The global optima solution for this design is 
f(x) at X = (70, 90, 1, 810, 3) with one active constant. This 
design is represented by Fig. 9.

This design has been compared with various recent opti-
mization algorithms like NSGA-II, TLBO, WCA, APSO 
[73], SCA [39], FSO [73], EGWO [74], TACPSO [75], 
MPSO [76], and Chimp [51] algorithms. The comparison 
to discover the best scores, given by such meta-heuristics, 
is reported in Table 6, respectively. Simulation results have 

proven that the proposed algorithm is able to find the best 
minima solution for this design outperform than others.

7.5 � Planetary gear train design

The main motive of this design (see Sect. 9.5 in “Appen-
dix”) is to synthesize the gear-teeth number for an automatic 
planetary transmission system, as shown in Fig. 10: which 
is used in automobiles to reduce the errors in the gear ratio, 
Which involved 6 design variables based on the number of 
teeth in the gears ( N1 , N2 , N3 , N4 , N5 , and N6 ), respectively, 
and which can only take specified integer constant values. 
There are three more design variables such as modules of the 
gears ( m1 and m2 ) and number of planets gears (P), which 
can only take specific discrete constant values. In this design, 
11 restrictions are considered in subject to constraints.

The numerical and statistical solutions of this design are 
reported in Tables 7 and 8. In these tables, has been com-
pared the performance of the algorithms in different forms 
such as best optimal value, minima, maxima, mean, stand-
ard deviation and median, respectively. All these simulation 
results reveal that the proposed algorithm gives the best or 
accurate solutions for this design than others.

Fig. 10   Planetary gear train design

Fig. 11   Data flow graph for Eq. (23)
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7.6 � HLS of digital filter design

In this section, we are implementing the proposed strategy 
for datapaths in digital filters. During designing, the digital 
filters HLS is highly paramount stage for this. In general, 
high-level optimization reduces design time at lower levels, 
leading to better circuit indices [77]. HLS is a stage of very-
large-scale integration (VLSI) design where in behavioral 
description (here the filter’s behavioral characteristic) is 
converted into a structural characteristic [78, 79].

The high-level synthesis (HLS) is the first step in synthe-
sizing a circuit and data flow graph (DFG) is used to display 
the behavioral description, which describes the operators’ 
type and the relationships between them. The hypothetical 
data flow graph is illustrated by the mathematical Eq. (23):

In Fig. 11, 04 adder and 04 multiplier operators have been 
used for evaluating the given function (23). Here, 1, 2 and 

(23)
Y = (((a + b) × (c × d)) + ((e + f ) × (g × h))) + ((e + f ) × (g × h)).

3, 4 output operators are considered as the inputs operator 5 
and 6. Similarly, 5 and 6 output operators are considered as 
the inputs operator 7 and 7, 8. At the end, 7 output operator 
is considered as the input operator 8, respectively.

In general, the digital filters are most used for images, 
videos, digital signal processing, process signals, commu-
nication applications, and so on. The finite impulse response 
(FIR), the infinite impulse response (IIR), the band-pass fil-
ter (BPF), the auto regressive filter (ARF), the wave digital 
filter (WDF), and the elliptic wave filter (EWF) are the digi-
tal filters used in this article. The data flow graph of the ARF 
used in this article is illustrated by Fig. 12 [80].

In this phase, the proposed strategy is applying for opti-
mizing chip area, power, and delay in HLS of datapaths in 
digital filters. The obtained results of the proposed algorithm 
have been compared with the literature results of MFO [49] 
and PSO [49]. The working steps of the proposed strategy 
are illustrated by the following.

Fig. 12   The ARF data flow 
graph
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•	 The decision variables of the function are the same as the 
position of the chimps in the search domain. The position 
of the chimps can be defined by Eq. (24): 

 Where n is the number of chimps or search agents and d 
is a dimension. The fitness values of the chimps or search 
agents in the search domain can be stored by Eq. (25): 

(24)C =

⎡⎢⎢⎢⎣

c1,1 c1,2 , ..., c1,d
c2,1 c2,2 , ..., c2,d
⋮ ⋮ ⋱ ⋮

cn,1 cn,2 , ..., cn,d

⎤⎥⎥⎥⎦
,  where n is number of search agents or chimps in search 

domain and fci represents the fitness values of the ith 
chimp. In the same way, the other two matrices can be 
defined for preys by the following equations: 

(25)FC =

⎡⎢⎢⎢⎣

fc1
fc2
⋮

fcn

⎤⎥⎥⎥⎦
,

Table 9   Results of algorithms 
on IIR DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 Mean 5 6442.88 7007.66 5 5891.2 6349.97 5 5678.9 6187.76

w
2
= 0.1 SD 0 0.062 0.068 0 0.009 0.009 0 0.007 0.008

w
3
= 0.1

w
1
= 1 Mean 7.42 3199.68 3217.85 7.08 3074.88 3142.2 6.12 2899.56 3023.1

w
2
= 0.8 SD 0.538 0.025 0.021 0.340 0.009 0.005 0.288 0.006 0.004

w
3
= 0.1

w
1
= 1 Mean 7.3 3210.24 3187.59 7.14 3089.28 3142.2 6.55 2987.23 3078.4

w
2
= 0.1 SD 0.544 0.017 0.015 0.35 0.010 0.005 0.33 0.009 0.004

w
3
= 0.8

Table 10   Results of algorithms 
on FIR DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 mean 9.3 7855.04 8084.97 9.08 7143.04 7324.19 8.79 6876.23 7134.13

w
2
= 0.1 SD 0.462 0.077 0.088 0.274 0.063 0.073 0.219 0.045 0.054

w
3
= 0.1

w
1
= 1 mean 15 3742.72 3222.89 14.84 3549.12 3157.33 13.45 3435.34 3043.87

w
2
= 0.8 SD 0.782 0.024 0.021 0.548 0.013 0.009 0.4734 0.011 0.007

w
3
= 0.1

w
1
= 1 Mean 15.16 3723.2 3152.29 15.08 3694.08 3142.2 12.26 3478.23 3067.4

w
2
= 0.1 SD 0.618 0.001 0.008 0.274 0.01 0.005 0.213 0.001 0.004

w
3
= 0.8

Table 11   Results of algorithms 
on ARF DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 Mean 8.3 11,340.8 12,394.53 8.12 11,183.04 12,099.8 7.57 10,876.89 11,986.7

w
2
= 0.1 SD 0.505 0.023 0.027 0.328 0.004 0.004 0.298 0.003 0.004

w
3
= 0.1

w
1
= 1 Mean 18.44 3627.2 3258.2 18.18 3543.04 3192.63 17.98 3467.12 3079.78

w
2
= 0.8 SD 0.787 0.016 0.017 0.388 0.011 0.014 0.298 0.009 0.010

w
3
= 0.1

w
1
= 1 Mean 18.6 3688.32 3187.59 18.36 3575.04 3157.33 17.87 3498.57 3077.21

w
2
= 0.1 SD 0.670 0.014 0.014 0.485 0.12 0.009 0.408 0.011 0.008

w
3
= 0.8



S996	 Engineering with Computers (2022) 38 (Suppl 2):S975–S1003

1 3

(26)P =

⎡⎢⎢⎢⎣

p1,1 p1,2 , ..., p1,d
p2,1 p2,2 , ..., p2,d
⋮ ⋮ ⋱ ⋮

pn,1 pn,2 , ..., pn,d

⎤⎥⎥⎥⎦

(27)FP =

⎡⎢⎢⎢⎣

fp1
fp2
⋮

fpn

⎤⎥⎥⎥⎦
,

 where n is number of preys, d is the dimension of the 
function, and fpi is the fitness value of ith prey.

•	 In the next phase, the new location and distance of the 
given node is evaluated by Eqs. (16)–(20); these equa-
tions denote the new positions of variables of chimp and 
(1)–(5); these equations indicate the distance amid the 
position decision variables of the prey and the position 
of variables of chimp.

•	 For updating the number of search agents or chimps 
in each iterations with the objective of enhancing the 
extractability of the algorithm has used Eq. (28): 

Table 12   Results of algorithms 
on EWF DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 Mean 14 6924.8 6702.99 14 6902.4 6677.78 14 6865.6 6532.90

w
2
= 0.1 SD 0 0.006 0.007 0 0.007 0.008 0 0.005 0.006

w
3
= 0.1

w
1
= 1 Mean 22.76 4039.04 3388.73 24.62 3873.6 3217.85 23.77 3765.4 3189.67

w
2
= 0.8 SD 5.057 0.043 0.057 4.347 0.016 0.021 4.123 0.015 0.019

w
3
= 0.1

w
1
= 1 Mean 24.46 4070.08 3323.16 24.74 3954.56 3182.55 23.67 3894.16 3090.33

w
2
= 0.1 SD 3.95 0.043 0.057 3.433 0.15 0.013 3.103 0.012 0.015

w
3
= 0.8

Table 13   Results of algorithms 
on BPF DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 Mean 8.22 6996.48 7203.75 8.02 6458.88 6584.18 7.89 6345.98 6432.11

w
2
= 0.1 SD 0.545 0.062 0.069 0.141 0.021 0.022 0.105 0.019 0.020

w
3
= 0.1

w
1
= 1 Mean 15.94 3884.48 3333.84 17.04 3628.8 3217.85 16.56 3534.22 3187.3

w
2
= 0.8 SD 3.449 0.033 0.027 4.035 0.02 0.016 3.546 0.01 0.011

w
3
= 0.1

w
1
= 1 Mean 17.42 3870.72 3263.24 17.48 3728.96 3197.68 16.98 3675.11 3044.45

w
2
= 0.1 SD 3.038 0.025 0.025 2.894 0.28 0.014 2.789 0.024 0.012

w
3
= 0.8

Table 14   Results of algorithms 
on WDF DFG

Modes Static PSO MFO SChoA

Delay Area Power Delay Area Power Delay Area Power

w
1
= 0.8 Mean 14.12 6904.64 6353.97 14.02 7040.96 6509.13 13.12 6987.43 6453.33

w
2
= 0.1 SD 0.385 0.063 0.082 0.141 0.028 0.037 0.127 0.026 0.034

w
3
= 0.1

w
1
= 1 Mean 22.28 4310.08 3359.06 23.66 4184.32 3253.15 22.43 4098.44 3187.99

w
2
= 0.8 SD 5.789 0.019 0.032 4.926 0.016 0.024 4.109 0.014 0.022

w
3
= 0.1

w
1
= 1 Mean 23.18 4342.72 3298.54 25.02 4257.28 3192.63 24.98 4201.22 3105.32

w
2
= 0.1 SD 5.283 0.016 0.029 4.321 0.012 0.014 4.002 0.010 0.012

w
3
= 0.8
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(28)CN = (N − I) ×
N

MI

,
 where N is the number of search agents or chimps, I is 
the current iteration, and MI is the maximum number 
of iterations. Hence, the search agents or chimps update 

Fig. 13   The best solutions for 
delay, occupied area, and power 
in HLS of digital filter problem
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their positions in the search domain w.r.t. the best prey 
or goal in the last iterations.

•	 Fitness function for DFG: For evaluating the area, power, 
and delay in the proposed hybrid algorithm and verifying 
its accuracy performance against the results of MFO [49] 
and PSO [49] algorithms, the following fitness functions 
are applied: 

 where F denotes the fitness function, w1,w2,w3 represent 
the weights of the power, delay, and area terms, lt denotes 
the schedule length of sample evaluated, a(t) denotes the 
total number of registers and transistors in the opera-
tors, pt denotes the power consumption of operators, lmax 
denotes the long scheduled length in the current crowd, 
amax denotes the largest area in the current crowd, and 
pmax denotes the highest power in the current crowd, 
respectively.

Further meticulously elaborates on the solutions obtained 
by the proposed algorithm in the next phase of this section. 
These solutions have been verified through the literature 
results obtained by MFO [49] and PSO [49]. The program 
of the proposed algorithm has been runned on Matlab-
R2015a under the system with Intel (R) Core (TM) i3-8130 
U processor and 8GM of RAM. During this process, various 
constant settings have been applied for obtaining the solu-
tions such as number search agents or chimps is 30, maxi-
mum number of iterations are 100, and maximum number of 
sources and operational units are 5, respectively.

The obtained experimental solutions of the HLS of the 
digital filters are illustrated in Tables 9, 10, 11, 12, 13 and 
14. And the best solutions of the proposed algorithm for 
lowest delay, occupied area, and power are illustrated in 
Fig. 13. These results have been categorized into three dif-
ferent phases like delay, area, and power. Additionally, all 
these results evaluated on three different modes w1 = 0.8 , 
w2 = 1,w3 = 1 , and w1 = 1 , w2 = 0.8,w3 = 1 , and w1 = 1 , 
w2 = 1,w3 = 0.8 , respectively. For each mode, the mean of 
the acquired response for a 50-times execution for the pro-
posed method has been tabulated along with their relevant 
the standard deviation(sd). The point to keep in mind is that, 
here, the sd for the proposed method has been reported for 
a comparison and superior presentation of the result due to 
the power consumption and largeness of the occupied area.

In Tables 9, 10, 11, 12, 13 and 14, all results are rep-
resent the best response in terms of the area, power, and 
delay in the three algorithms . All the results of IIR, FIR, 
ARF, EWF, BPF, and WDF-DFG have been obtained by 
replacing the parameter values of the weight ( w1 , w2 , w3 ) 
and a significant improvement in the optimal responses of 

(29)F = w1 ×
lt

lmax

+ w2 ×
at

amax

+ w3 ×
pt

pmax

,

the algorithms observed. For instance, the best delay will be 
achieved, compared to the other two modes, when assuming 
a weight of 0.8 for w1 ; this factor is connected to the delay, 
and assuming a coefficient of 0.1 for w2 and w1 as the coef-
ficients of the occupied area and power. The same is true for 
the other two modes.

The proposed hybrid algorithm is a superior than the 
MFO [49] and PSO [49] algorithms with average values 
2899.56 and 3078.4 for the lowest power consumption and 
occupied area. Similarly, in Table 10, the lowest average 
values for the delay 8.70, 0.0219, 13.45, 0.4734, 12.26, and 
0.213 have been obtained by proposed algorithm than oth-
ers. These results prove that the proposed method is able 
to reduced the delay time as comparison to MFO and PSO 
algorithm for digital filter problem.

Hence, the proposed method is able to provide the best 
output response in terms of delay, area, and power consump-
tion for high-level synthesis of VLSI circuits.

8 � Conclusion

The Chimp optimization algorithm is a most recent pop-
ulation-based meta-heuristic. Chimp optimization (ChoA) 
could be widely applied to solve complex tasks of different 
domains due to its inexpensive computational and imple-
mentation simplicity overhead. Nevertheless, ChoA is also 
faced several drawbacks during search process in the search 
domain like ineffective in balancing exploitation and explo-
ration, premature convergence, and complex multipeak 
search problems, especially in easily trapped in the local 
optima results. To overcome the shortcomings of ChoA, a 
modified chimp optimization algorithm with sine cosine 
functions is developed to solve single objective functions. 
In this work, we developed as new update position equations 
with sine–cosine functions to improving the convergence 
performance of the search agents during to search process 
in the search domain. So that, this algorithm could be effec-
tively controlled the local search and convergence to the 
global optimum result during the search process.

During this extensive investigational research efforts, a 
huge number of simulations have been carried out for veri-
fying the performance and results accuracy of the proposed 
SChoA method. Its performance has been verified through 
23-benchmark and 06-engineering designs. Experiential 
solutions proved that SChoA algorithm possesses some 
superior performance in terms of numerical results, statis-
tical measurements and convergence curves, stability, and 
robustness, as compared to state-of-the-art PSO and others, 
such as MPSO, SCA, PSO, TACPSO, and Chimp. Hence, 
the proposed algorithm can be a good alternative for tackling 
various complex applications.
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Additionally, the proposed strategy is able to successfully 
solve the HLS of datapaths in digital filters problem in terms 
of lowest delay, area, and power, respectively, than the other 
two algorithms.

In future direction, the SChoA can be implemented on 
complex real-life application problems. The constrained and 
multi-objective version of SChoA or based feature selec-
tion approach for high dimensional with small instance to 
simultaneously maximize the classification performance and 
minimize the number of features can be developed also.
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See Table 15.

Table 15   23-standard benchmark test functions

Key Function formulation f (x∗) Category Dimension Range

f
1

∑n

i
x2
i

0 U 10,30,50,100 xi�[−100, 100]

f
2

∑n

i=1
��xi�� +

∏xi
i=1

��xi�� 0 U 10,30,50,100 xi�[−10, 10]

f
3

∑n

i=1

�∑i

j=1
xj

�2 0 U 10,30,50,100 xi�[−100, 100]

f
4 maxi

{||xi, 1 ⩽ i ≤ n||
}

0 U 10,30,50,100 xi�[−100, 100]

f
5

∑n−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 0 U 10,30,50,100 xi�[−30, 30]

f
6

∑n

i=1

���xi + 0.5��
�2 0 U 10,30,50,100 xi�[−100, 100]

f
7

∑n

i=1

�
ix4

i
+ rand[0, 1)

�
0 U 10,30,50,100 xi�[−128, 128]

f
8 ∑n

i=1
−xi sin

����xi��
�

−418.9829 × 5 M 10,30,50,100 xi�[−500, 500]

f
9

∑n

i=1

�
x2
i
− 10c0s

�
2�xi

�
+ 10

�
0 M 10,30,50,100 xi�[−5.12, 5.12]

f
10 −20e

(−0.2
√

1

n

∑n

i=1
x2
i
)
− e

�
1

n

∑n

i=1
cos(2�xi)+20+e

�
0 M 10,30,50,100 xi�[−32, 32]

f
11

1

400

∑n

i=1
x2
i
−
∏n

i=1
cos

�
xi√
i
+ 1

�
0 M 10,30,50,100 xi�[−600, 600]

f
12 �

n

�
10 sin

�
�yi

�
+
∏n−1

i=1

�
yi − 1

�2����1 + 10 sin
2

�
�yi + 1 +

�
yn−1

�2�����
�

0 M 10,30,50,100 xi�[−50, 50]

f
13 0.1

�
sin

2
�
3�xi

�
+
∑n

i=1

�
xi − 1

�2�
1 + sin

2
�
3�xi + 1

��
+
�
xn − 1

�2 0 M 10,30,50,100 xi�[−50, 50]

- �
1 + sin

2
�
2�xn

���
+
∑n

i=1
�
�
xi, 5, 100, 4

� - - - -
f
14

�
1

500
+
∑25

j=1

1∑2

j=1 (xi−ai)
6

�−1 1 F 2 xi�[−65, 65]

f
15

∑11

i=1

�
ai −

x1(b2i +bix2)
b2
i
+bixi+x4

�2 0.0003 F 4 xi�[−5, 5]

f
16 4x2

1
− 2.1x4

1
+

1

3
x6
1
+ x

1
x
2
− 4x2

2
+ 4x4

2
-1.0316 F 2 xi�[−5, 5]

f
17

(
x
2
−

5.1

4�2
x2
1
+

5

�
x
1
− 6

)2

+ 10

(
1 −

1

8�

)
cosx

1
+ 10

0.398 F 2 xi�[−5, 5]

f
18

[
1 +

(
x
1
+ x

2
+ 1

)2(
19 − 14x

1
+ 3x2

1
− 14x

2
+ 6x

1
x
2
+ 3x2

2

)] 3 F 2 xi�[−2, 2]

- ×
[(
30 + (2x

1
− 3x

2
)2
)
(18 − 32x

1
+ 12x2

1
+ 48x

2
− 36x

1
x
2
+ 27x2

2
)
]

- - - -
f
19

∑4

i=1
cie

−
∑3

j=1
(xj−pij)

2 -3.86 F 3 xi�[1, 3]

f
20

∑4

i=1
cie

−
∑6

j=1
aij(xj−pij)

2 -3.32 F 6 xi�[0, 1]

f
21 −

∑5

i=1

�
(X − ai)(X − ai)

T + ci
�−1 -10.1532 F 4 xi�[0, 10]

f
22 −

∑7

i=1

�
(X − ai)(X − ai)

T + ci
�−1 -10.4028 F 4 xi�[0, 10]

f
23 −

∑10

i=1

�
(X − ai)(X − ai)

T + ci
�−1 -10.5363 F 4 xi�[0, 10].
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Welded beam design problem

Consider � =
�
x1x2x3x4

�
= [h l t b]

Minimize f (�) = 1.10471x2
1
x2 + 0.04811x3x4

�
14.0 + x2

�
Subject to:

g1(�) = �(�) − 13600 ≤ 0

g2(�) = �(�) − 30000 ≤ 0

g3(�) = x1 − x4 ≤ 0

g4(�) = 0.10471
�
x2
1

�
+ 0.04811x3x4

�
14 + x2

�
− 5.0 ≤ 0

g6(�) = �(�) − 0.25 ≤ 0

g7(�) = 6000 − pc(�) ≤ 0

where

�(�) =

�
(��) + (2�����)

x2

2R
+ (���)2

�� =
6000√
2x1x2

��� =
MR

J

M = 6000
�
14 +

x2

2

�

R =

�
x2
2

4
+

�
x1 + x3

2

�2

j = 2

�
x1x2

√
2

�
x2
2

12
+

�
x1 + x3

2

�2
��

�(�) =
504000

x4x
2
3

�(�) =
65856000�

30 × 106
�
x4x

3
3

pc(�) =

4.013
�
30 × 106

�� x2
3
x6
4

36

196

⎛⎜⎜⎜⎜⎝
1 −

x3

�
30×106

4(12×106)

28

⎞⎟⎟⎟⎟⎠
with 0.1 ≤ x1, x4 ≤ 2.0 and 0.1 ≤ x2, x3 ≤ 10.0.

Tension/compression spring design problem

Consider:

Pressure vessel design problem

� =
[
x1x2x3

]
= [d DN]

Minimize f (�) =
(
x3 + 2

)
x2x

2
1

subject to:

g1(�) = 1 −
x3
2
x3

71785x4
1

≤ 0

g2(�) =
4x2

2
− x1x2

12566
(
x2x

3
1
− x4

1

) +
1

5108x2
1

− 1 ≤ 0

g3(�) = 1 −
140.45x1

x2
2
x3

≤ 0

g4(�) =
x1 + x2

1.5
− 1 ≤ 0

with 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3, and 2.0 ≤ x3 ≤ 15.0.

Minimize f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3

+ 3.1661x2
1
x4 + 19.84x2

1
x3

Subject to:

g1(x) = −x1 + 0.0193x

g2(x) = −x2 + 0.00954x3 ≤ 0

g3(x) = −�x2
3
x4 − (4∕3)�x3

3
+ 1, 296, 000 ≤ 0

g4(x) = x4 − 240 ≤ 0

0 ≤ xi ≤ 100, i = 1, 2

10 ≤ xi ≤ 200, i = 3, 4.
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Multiple disk clutch brake design problem

Minimizef (x) = �(x2
2
− x2

1
)x3(x5 + 1)�

Variable range

x1�{60, 61, ..., 79, 80}

x2�{90, 91, ..., 109, 110}

x3�{1, 1.5, ..., 3}

x4�{600, 610, ..., 990, 1000}

x5�{2, 3, ..., 8, 9}

Subject to;g1(x) = x2 − x1 − Δr ≤ 0

g2(x) = Lmax − (x5 + 1)(x3 + �) ≤ 0

g3(x) = pmax − prz ≤ 0

g4(x) = pmaxvsr, max − przvsr ≤ 0

g5(x) = vsr,max − vsr ≤ 0

g6(x) = Mh − sMs ≤ 0

g7(x) = T ≤ 0

g8(x) = Tmax − T ≤ 0

Δr = 20 (mm), Iz = 55 (kg, mm2), pmax = 1 (MPa),

Tmax = 15(s),� = 0.50

s = 1.50.Ms = 40 (Nm),Mf = 3 (Nm), n = 250 (rpm),

vsr, max = 10(
m

s
), Lmax = 30(mm).

Planetary gear train design problem

Maximize f (x) = max ||ik − iok
||;k = {1, 2,R}

where

i1 = N6∕N4

i01 = 3.11

i2 =
N6(N1N3 + N2N4)

N1N3(N6 − N4)

i02 = 1.84

iR = −
N2N6

N1N3

i0R = −3.11

X =
{
N1,N2,N3,N4,N5, p,m1,m2

}
,

Subject to:

g1(X) = m3(N6 + 2.5) ≤ Dmax

g2(X) = m1(N1 + N2) + m1(N2 + 2) ≤ Dmax

g3(X) = m3(N4 + N5) + m3(N5 + 2) ≤ Dmax

g4(X) =
||m1(N1 + N2) − m3(N6 − N3)

|| ≤ m1 + m3

g5(X) = (N1 + N2) sin

(
�

p

)
− N2 − 2 − �22 ≥ 0

g6(X) = (N6 − N3) sin

(
�

p

)
− N3 − 2 − �33 ≥ 0

g7(X) = (N4 + N5) sin

(
�

p

)
− N5 − 2 − �55 ≥ 0

g8(X) = (N6 − N3)
2 + (N4 + N5)

2 − (N6 − N3)(N4 + N5)

cos(
2�

p
− �) ≤ (N + 3 + N5 + 2 + �35)

2

where

� =
cos−1(N6 − N3)

2 + (N4 + N − 5)2 − (N3 + N5)
2

2(N6 − N3)(N4 + N5)

g9(X) = N6 − 2N3 − N4 − 4 − 2�34 ≥ 0

g10(X) = N6 − N4 − 2N5 − 4 − 2�56 ≥ 0

h(X) =
N6 − N4

p
= integer,

where

Dmax = 220, p = (3, 4, 5),m1,m3 = (1.75, 2.0, 2.25, 2.5, 2.75, 3.0),

�22, �33, �55, �35, �56,= 0.5

17 ≤ N1 ≤ 96, 14 ≤ N2 ≤ 54, 14 ≤ N3 ≤ 51, 17 ≤ N4 ≤ 46,

14 ≤ N5 ≤ 51, 48 ≤ N6 ≤ 124,Ni = integer.
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