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Abstract
The thick bar model, accounting for the lateral deformation, shear stiffness, and lateral inertia effect, is the most compre-
hensive structural theory to study the axial deformation of carbon nanotubes. Physically motivated definition of the axial 
force field and associated higher order boundary conditions are determined applying a consistent variational framework. 
The effects of long-range interactions are suitably realized in the framework of the nonlocal integral elasticity. The integral 
convolutions of the nonlocal constitutive law are determined and suitably resorted with the equivalent nonlocal differential 
model equipped with non-standard boundary conditions. Preceding contributions on the elastodynamic analysis of the elastic 
thick bar are, therefore, amended by properly taking into account the higher order and non-standard boundary conditions. 
The established size-dependent thick bar model is demonstrated to be exempt from the inherent drawbacks of the nonlocal 
differential formulation and leads to well-posed elastodynamic problems. The wave desperation response and free vibrational 
behavior of elastic thick bars with kinematic constraints of nano-mechanics interest are rigorously investigated by making 
recourse to a viable solution approach. New numerical benchmarks are detected for the elastodynamic response of nonlocal 
thick nano-bars. A consistent approach for nanoscopic study of the field quantities in the nonlocal mechanics is proposed 
that is capable of properly confirming the smaller-is-softer phenomenon.

Keywords Thick nano-bar · Nonlocal integral elasticity · Wave dispersion · Vibrational behavior · Analytical modeling

1 Introduction

Nano-structured materials, like carbon nanotubes (CNTs), 
have found various conceivable applications in the ground-
breaking fields of nano-engineering in consequence of the 
significant material properties at micro- and nano-scales 
[1–4]. When the structural dimensions are comparable with 
the internal length-scales of the medium of interest, the 
validity of the classical theory of elasticity ceases to hold. 
To adequately describe the scale-effect phenomena, gen-
eralized elasticity theories equipped with intrinsic length-
scales are introduced in the literature. Implementation of the 

generalized elasticity theories can enhance the description of 
the physical behavior of media with nano-structural feature, 
and accordingly has stimulated a great deal of interest in the 
modeling and analysis of nano-structures [5–16].

The influences of long-range inter-atomic and inter-
molecular forces on the mechanical response of structures, in 
the regimes smaller than the classical elasticity model, can 
be properly realized in the framework of the nonlocal elastic-
ity theory [17]. The nonlocal stress state at a reference point 
in the continuum is expressed as a weighted mean value in 
terms of the local strain state measured at all points within 
the structural domain. The nonlocal effects are described 
through a constitutive law of integral-type wherein the 
stress field is the output of an integral convolution between 
an averaging nonlocal kernel and the strain field. To nano-
scopic study of the field quantities on unbounded domains, 
the kernel function of the nonlocal integral constitutive law 
is taken to coincide with the Green function of a Helmholtz 
differential equation in the nonlocal stress. The consequent 
differential formulation of the nonlocal elasticity model 
leads to paradoxical results as applied to bounded domains 
of nano-mechanics interest [18]. Several advanced remedies 
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are introduced in the literature to effectively eliminate the 
inherent drawbacks of the nonlocal differential problem, 
such as the strain-difference based nonlocal elasticity [19, 
20], nonlocal surface elasticity [21, 22], and higher order 
nonlocal gradient elasticity theory [23–25]. Both the inte-
gral and differential approaches associated with the nonlocal 
elasticity model are widely exploited to study diverse struc-
tural problems at nano-scale, where representative recent 
researches are addressed in Refs. [26–38].

Elastodynamic analysis of nano-sized structures can be 
advantageously exploited to characterize the mechanical 
response of materials with nano-structural features. Thick 
bar model, accounting for the lateral deformation, shear stiff-
ness, and lateral inertia effect, is perhaps the most inclu-
sive structural theory to examine the axial deformation of 
CNTs [39–44]. The present study provides an important 
insight into the dynamics of thick nano-bars in the frame-
work of the nonlocal integral elasticity and offers necessary 
amendments for the previous contributions on the matter. 
The paper proceeds as follows. The local thick bar theory 
is evoked in Sect. 2 providing a thorough understanding 
on the mathematical and mechanical model of stubby bars 
via a novel approach. The nonlocal elasticity theory in the 
original integral-type framework is utilized to introduce the 
constitutive law of the thick nano-bar in Sect. 3. The equiva-
lent differential problem of the nonlocal thick bar is closed 
by prescribing the suitable form of variationally consistent 
non-standard boundary conditions naturally stemmed from 
the variational framework. The established nonlocal thick 
bar model is demonstrated to result in well-posed prob-
lems, exempt from all the drawbacks associated with the 
nonlocal differential approach. The axial wave dispersion 
and free vibrational behavior of thick nano-bars are analyti-
cally examined in Sect. 4 by making recourse to a viable 
solution procedure. Section 4 is furthermore enriched by 
illustrating, collecting, and commenting upon the numerical 
results associated with elastodynamic analysis of nonlocal 
thick bars. The detected wave dispersion relation and natu-
ral frequencies consistently illustrate a remarkable softening 
feature of the nonlocal elasticity theory and properly confirm 
the smaller-is-softer phenomenon. Concluding remarks are 
outlined in Sect. 5.

2  Local thick bar model

An elastic thick bar of length L = b − a with the circular 
cross-section Υ is considered, as depicted in Fig. 1. The 
bar ends, located at x = a and x = b , are restrained to pre-
vent any rigid-body motion. The material density of the 
bar is denoted by � and the elastic and shear moduli are, 
respectively, designated by E and � = E∕2(1 + �) along 
with � being the Poisson’s ratio. The bar is referred to the 

cylindrical coordinate system (x, r, �) with the abscissa x 
taken along the bar longitudinal axis and orthogonal to the 
cross-section plane identified by the axes r and � . The stubby 
bar is assumed to be subject to a distributed axial force f. 
Consistent with the kinematic assumptions of the thick bar 
theory, the dimension of the cross-section is considered to be 
small enough in comparison with the bar length. The radial 
displacement component can be accordingly determined via 
vanishing of the radial stress on the cross-section. The cir-
cumferential displacement component is also overlooked in 
consequence of assuming the axially symmetric state [45, 
46]. The displacement field u, therefore, writes as:

where u designates the axial displacement component and 
assumed to have a uniform distribution over the bar cross-
section. For non-vanishing values of the Poisson’s ratio, the 
effect of lateral deformation, neglected in the slender bar 
model, is properly comprised in the kinematics of the thick 
bar. The kinematically compatible strain field is given by:

where the axial strain component is defined by � = �xu and 
the standard dyadic product of arbitrary first-order tensors 
�, � is indicated by �⊗ �.

The corresponding stress field in the thick rod model is 
then expressed by:

where the radial and circumferential components of the 
stress field vanish over the cross-section in view of the fun-
damental hypotheses of the thick bar model. The kinetic 

(1)� = u(x, t)�� − �r�xu(x, t)�� ,

(2)

� = 𝜀(x, t)
(

�� ⊗ ��
)

− 𝜈𝜀(x, t)
(

�� ⊗ �� + �� ⊗ ��
)

−
1

2
𝜈r𝜕x𝜀(x, t)

(

�� ⊗ �� + �� ⊗ ��
)

,

(3)
� = E𝜀(x, t)

(

�� ⊗ ��
)

− 𝜇𝜈r𝜕x𝜀(x, t)
(

�� ⊗ �� + �� ⊗ ��
)

,

Fig. 1  Coordinate system and configuration of an elastic thick bar
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energy �  and the total elastic strain energy � , for the elas-
tic thick bar model under consideration, can be written as 
follows:

where the standard single and double tensor contrac-
tion of arbitrary first-order tensors ��, �� are, correspond-
ingly, defined by �� ⋅ �� and 

(

�� ⊗ ��
)

∶
(

�� ⊗ ��
)

=
(

�� ⋅ ��
)(

�� ⋅ ��
)

 . Furthermore, the cross-sectional mass 
A� , mass polar moment of inertia I� , elastic axial stiffness 
AE , and elastic shear stiffness J� are introduced as:

The first-order variation of the corresponding Lagran-
gian functional � = � − � , while applying the kinematic 
compatibility condition � = �xu and integrating by parts, 
is written as:

The axial force field N, the corresponding stress field 
in the elastic thick bar model, and associated higher order 
boundary conditions can be accordingly introduced in 
view of the detected variation of the Lagrangian functional 
while assuming arbitrary variation of the axial strain:

The constitutive law of the elastic thick bar equipped 
with higher order boundary conditions is appropriately 
defined in terms of the axial strain field and of its gradi-
ents. Noticeably, the classical constitutive model of the 
elastic slender bar can be recovered via vanishing of either 
the Poisson’s ratio or the shear stiffness effect.

(4)

� = ∫
b

a

[

∬Υ

(

1

2
� ∶ �

)

dA − fu

]

dx

= ∫
b

a

[

1

2
AE�(x, t)

2 +
1

2
�2J�

(

�x�(x, t)
)2

− f (x)u(x, t)
]

dx

� = ∫
b

a

[

∬Υ

(

1

2
��t� ⋅ �t�

)

dA

]

dx

=
1

2 ∫
b

a

[

A�

(

�tu(x, t)
)2

+ �2I�
(

�xtu(x, t)
)2
]

dx,

(5)
AE = ∬Υ

EdA, J� = ∬Υ

�(� ⋅ �)dA

A� = ∬Υ

�dA, I� = ∬Υ

�(� ⋅ �)dA.

(6)

�� = ∫
b

a

[

−A��ttu(x, t) + �2I��xxttu(x, t) + f (x)

+ �x
(

AE�(x, t) − �2J��xx�(x, t)
)]

�udx

−
(

AE�(x, t) − �2J��xx�(x, t)
)

�u
|

|

|

x=b

x=a
−

(

�2J��x�(x, t)
)

��
|

|

|

x=b

x=a
.

(7)
N(x, t) = AE�(x, t) − �2J��xx�(x, t)

�2J��x�
|

|

|x=a
= �2J��x�

|

|

|x=b
= 0.

Implementing the Hamilton’s variational principle, the 
differential and boundary conditions of dynamic equilib-
rium associated with the local thick bar are determined:

It is noticeably inferred from the detected boundary-
value problem that the effects of lateral deformation, shear 
stiffness, and lateral inertia are consistently comprised in 
the elastic thick bar model. A consistent variational frame-
work is therefore established to introduce the constitu-
tive law of elastic thick bars along with corresponding 
higher order boundary conditions, while the differential 
and boundary conditions of dynamic equilibrium are also 
appropriately recovered.

3  Nonlocal integral elasticity of thick bars

To properly introduce the long-range nonlocality to the thick 
bar model, the nonlocal constitutive law is considered to be 
governed by the elastic potential functional �  as:

with x, x being the points of the structural domain. The aver-
aging nonlocal kernel � , enriched with the nonlocal char-
acteristic length � , is also assumed to fulfill the positivity, 
symmetry, normalization, and limit impulsivity properties 
[18]. The nonlocal characteristic length, reflecting the size-
effects in the nonlocal elasticity theory, is commonly intro-
duced as � = e0a0 with e0 and a0 , respectively, standing for 
the nonlocal material constant and the internal characteris-
tic length [17]. The constitutive law of the nonlocal thick 
nano-bar is then provided by the variational condition of 
equality of the directional derivative of the elastic potential 
functional �  along a virtual strain field �� (having compact 
support in the domain) and the virtual work of the nonlocal 
axial force field [40, 47]. Applying a standard localization 
procedure, the nonlocal axial force field N associated with 
the axial strain field � is determined as:

To establish the equivalent nonlocal differential formula-
tion, a suitable choice for the nonlocal kernel, commonly 

(8)
�xN(x, t) + f (x) = A��ttu(x, t) − �2I��xxttu(x, t)

N�u|x=a = N�u|x=b = 0.

(9)
� =

1

2 ∫
b

a

[

AE�(x, t)∫
b

a

�
(

x − x,�
)

�
(

x, t
)

dx

+�2J��x�(x, t)∫
b

a

�
(

x − x,�
)

�x�
(

x, t
)

dx

]

dx,

(10)
N(x, t) = AE ∫

b

a

�
(

x − x,�
)

�
(

x, t
)

dx

− �2J��x ∫
b

a

�
(

x − x,�
)

�x�
(

x, t
)

dx.
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adopted in the nonlocal elasticity theory, is the bi-exponen-
tial kernel function:

Following the mathematical approach originally intro-
duced in Ref. [48], the nonlocal integral constitutive model 
Eq. (10), endowed with the bi-exponential kernel Eq. (11), 
can be demonstrated to be equivalent to the nonlocal dif-
ferential law:

subject to the variationally consistent non-standard bound-
ary conditions of:

Notably, the local constitutive law of the axial force field 
and the associated higher order boundary conditions Eq. (7) 
can be recovered in view of the limit impulsivity property 
of the nonlocal kernel. The closure of the nonlocal differ-
ential problem on bounded domains and, accordingly, the 
equivalence to the nonlocal integral law Eq. (10) are also 
assured via prescribing the non-standard boundary con-
ditions Eq. (13). In contrast to the nonlocal model of the 
elastic slender bar, the introduced non-standard boundary 
conditions are non-homogenous, and, thus, do not conflict 
with the boundary conditions enforced by the equilibrium. 
The axial force field, as the solution of the nonlocal differ-
ential constitutive Eq. (12), can effectively meet the equilib-
rium requirements. The established size-dependent thick bar 
model is accordingly free from the inherent drawbacks of 
the nonlocal differential theory, and leads to consistent and 
well-posed elastodynamic problems, as put in evidence by 
rigorously examining the wave desperation and free vibra-
tions of elastic thick bars with kinematic constraints of nano-
mechanics interest.

The nonlocal differential law associated with the slen-
der bar model can be deduced from the constitutive rela-
tions Eqs. (12, 13) via disregarding the effects of lateral 
deformation and shear stiffness. For a nonlocal slender bar, 
the conflict between the equilibrium and the constitutive 
requirements is apparent as the homogenous non-standard 
boundary conditions are compared with the equilibrium 
conditions. The nonlocal axial force field of the slender 
bar model generated as the output of the nonlocal constitu-
tive law, therefore, cannot meet the equilibrium conditions. 
The similar ill-posedness issue is addressed in preceding 

(11)�(x,�) =
1

2�
exp

(

−
|x|

�

)

.

(12)1

�
2
N(x, t) − �xxN(x, t) =

1

�
2
AE�(x, t) −

�2

�
2
J��xx�(x, t),

(13)
�xN(a, t) −

1

�

N(a, t) =
�2

�
2
J��x�(a, t)

�xN(b, t) +
1

�

N(b, t) =
�2

�
2
J��x�(b, t).

studies with reference to inflected beams [18]. The local-
nonlocal mixture constitutive model has been adopted in 
previous contributions [49–51] to overcome the inher-
ent drawbacks of the nonlocal differential formulation. 
Implementation of the local–nonlocal mixture constitutive 
model is capable of assuring the existence of a solution; 
nevertheless, results in ill-posed nonlocal problems for 
small volume fractions of the local elastic model. Nota-
bly, the conceived nonlocal integral elasticity formulation 
of the thick bar model is exempt from the aforementioned 
drawbacks and can advantageously realize the smaller-is-
softer phenomenon.

4  Elastodynamic analysis of nonlocal thick 
bars

The distributed axial loading f is allowed to vanish to 
study the elastodynamic response of nonlocal thick bars. 
The expression of the axial force field N is determined via 
applying the differential condition of equilibrium Eq. (8)1 
to the nonlocal constitutive law Eq. (12) as:

The differential condition governing the dynamics of 
the nonlocal thick bar, applying the kinematic compat-
ibility condition � = �xu , is thus written as:

Prior to performing the elastodynamic analysis of the 
nonlocal thick bar theory, let us examine the dynamics 
differential condition of the slender bar model. Overlook-
ing the effects of lateral deformation, shear stiffness, and 
lateral inertia in Eq. (15) leads to a partial differential 
equation of second-order in x. The requirement to meet 
two types of standard boundary conditions Eq. (8)2 and 
non-standard boundary conditions Eq.  (13) makes the 
problem over-constrained with no solution in general. 
The nonlocal formulation of the slender bar model, thus, 
leads to an ill-posed boundary-value problem. Contrary to 
the slender bar model, the established nonlocal elasticity 
theory of thick bars results in well-posed elastodynamic 
problems and is able to successfully capture the softening 
size-effects in nano-structured materials.

(14)

1

�
2
N(x, t) = A��xttu(x, t) − �2I��xxxttu(x, t)

+
1

�
2
AE�(x, t) −

�2

�
2
J��xx�(x, t).

(15)

1

�
2
AE�xxu(x, t) −

�2

�
2
J��xxxxu(x, t) −

1

�
2
A��ttu(x, t) +

�2

�
2
I��xxttu(x, t)

+ A��xxttu(x, t) − �2I��xxxxttu(x, t) = 0.
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4.1  Wave dispersion

Studying of the wave dispersion can be efficiently applied 
to realize the softening/stiffening behavior of structures 
at nano-scale. Employing the inverse theory approach 
[52, 53], the wave dispersion analysis can be furthermore 
utilized for calibration of the characteristic parameters of 
the generalized elasticity theory in comparison with the 
numerical or experiment data [54–57].

The wave dispersion phenomenon is formulated on 
unbounded domains where vanishing of the non-standard 
boundary conditions is tacitly fulfilled. The solution of the 
nonlocal thick bar with steady waves dispersing along the 
axial direction x takes the form of:

where i =
√

−1 , and k and c, respectively, denote the wave 
number and the phase velocity along with u designating 
the wave amplitude. Imposing the wave dispersion solution 
Eq. (16) to the differential condition of dynamic equilibrium 
Eq. (15), the dispersion relation of axial waves consistent 
with the nonlocal integral theory of thick bars is determined:

The phase velocity of axial wave dispersion for a uni-
form homogenous nano-bar can be simplified as:

where � =
√

I�∕A� denotes the radius of gyration of the 
thick bar. The derived wave dispersion relation for a uniform 
homogenous nano-bar as Eq. (18) is identical to the one 
detected in Ref. [44] disregarding the strain gradient effects.

(16)u(x, t) = u exp (ik(x − ct)),

(17)c =

√

√

√

√

AE + �2k2J�
(

A� + �2k2I�
)(

1 + k2�2
) .

(18)c =

√

E

�

√

√

√

√

√

1 +
�2�2

2(1+�)
k2

(

1 + �2k2�2
)(

1 + k2�2
) ,

The established wave dispersion relation has been 
applied to simulate the X-ray scattering measurements 
of the monolayer graphene as reported in Refs. [58, 59] 
and recently addressed in other size-dependent elasticity 
approaches [49, 50]. The experimental data are graphi-
cally demonstrated in Fig. 2 and compared with the cor-
responding wave frequency kc associated with the nonlo-
cal integral elasticity model. Applying the inverse theory 
approach [52, 53], the nonlocal characteristic length is 
identified as � = 5.9339 × 10−2nm . The conceived nonlo-
cal integral elasticity theory can accurately describe the 
axial wave dispersion in a wide range of wave numbers and 
effectively capture all the qualitative aspects of experimen-
tal measurements with excellent accuracy.

Nanoscopic effects of the nonlocal characteristic and geo-
metrical parameter of the nonlocal thick bar on the phase 
dispersion response are graphically elucidated in Figs. 3 and 
4. For consistency of illustrations, the non-dimensional form 
of the radius of gyration �  , nonlocal characteristic parameter 
� , wave number k , and phase velocity c are introduced as:

3-D variation of the phase velocity of the axial wave dis-
persion consistent with the nonlocal integral theory of elastic 
thick bars is exhibited in Figs. 3 and 4. Effect of the nonlocal 
characteristic parameter on the dispersion curve is studied 
for different values of the non-dimensional radius of gyra-
tion, wherein the logarithmic scaling of the non-dimensional 
wave number is utilized [60]. The nonlocal characteristic 
parameter � is assumed to range in the interval ]0, 0.5] , as the 
(logarithm of) non-dimensional wave number k is ranging in 
the interval 

[

10−1, 102
]

 . While the non-dimensional radius of 
gyration is prescribed as � = 0.3 in Fig. 3, the phase disper-
sion response is demonstrated in Fig. 4 for two values of 

(19)� =
1

L

√

I�

A�

, � =
�

L
, k = kL, c = c

√

A�

AE

.

Fig. 2  Wave dispersion frequency and comparison of X-ray scattering 
measurements with the nonlocal elasticity theory

Fig. 3  Axial wave dispersion in a nonlocal thick nano-bar, effect of � 
on c
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� = 0.1 and � = 0.5 . In all illustrations, the value of the Pois-
son’s ratio � = 0.2 is considered consistent with the elastic 
material properties of the (10, 10) armchair CNT [56].

It is inferred from the illustrative results associated with 
the nonlocal integral approach that larger values of � and �  
involve a smaller phase velocity, and accordingly, both the 
nonlocal characteristic parameter and the radius of gyration 
have the effect of decreasing the phase velocity of the axial 
wave dispersion. A softening response in terms of both the 
nonlocal characteristic parameter and the radius of gyration 
is, therefore, realized. The effect of nonlocality is, however, 
more pronounced in comparison with the gyration radius 
effect. This phenomenon is in contrast to the stiffening 
structural response associated with the gyration radius, as 
reported in the elastostatic study of nonlocal thick bars [40]. 
The phase dispersion response is not sensitive to the nano-
structural material properties for large wavelengths, and 
consequently, the phase velocity remains unaffected for low 
wave numbers. The softening effect of the nonlocal param-
eter and the gyration radius is merely enhanced at higher 
wave numbers. As the nonlocal parameter tends to zero, the 
phase velocity of the axial wave dispersion consistent with 
the local thick bar model is inevitably recovered.

4.2  Free vibrational behavior

In view of the differential condition of dynamic equilibrium 
consistent with the nonlocal elastic thick bar, natural fre-
quencies and mode shapes of axial vibrations can be deter-
mined by utilizing a standard procedure of separating spatial 
and time variables:

with Ψ and � denoting the mode shape and the natural fre-
quency of the axial vibration. The governing equation on the 

(20)u(x, t) = Ψ(x) exp (i�t),

spatial coordinate function can be established, applying the 
separation of variables Eq. (20), as:

The analytical solution for the differential condition of 
spatial coordinate functions is written as:

where unknown constants U1,… ,U4 have yet to be deter-
mined, along with:

In the framework of the nonlocal integral elasticity of 
thick bars, the spatial coordinate functions should fulfill the 

(21)

�2
(

−
J�

�
2
+ I��

2

)

d4

dx4
Ψ(x)

−

((

A� +
�2

�
2
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)

�2 −
1

�
2
AE

)

d2

dx2
Ψ(x)

+
1

�
2
A��

2Ψ(x) = 0.

(22)
Ψ(x) = U1 sin �1x + U2 cos �1x + U3 sinh �2x + U4 cosh �2x,

(23)

�2
1
=

−
((

A� +
�2

�
2
I�

)

�2 −
AE

�
2

)

2�2
(

−
J�

�
2
+ I��

2

)

+
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�
2
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)

�2 −
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�
2

)2

− 4
A�

�
2
�2�2

(

−
J�

�
2
+ I��

2

)

2�2
(

−
J�

�
2
+ I��

2

)

�2
2
=

+
((
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�2

�
2
I�

)

�2 −
AE

�
2

)

2�2
(

−
J�

�
2
+ I��

2

)

+

√

((

A� +
�2

�
2
I�

)

�2 −
AE

�
2

)2

− 4
A�

�
2
�2�2

(

−
J�

�
2
+ I��

2

)

2�2
(

−
J�

�
2
+ I��

2

) .

Fig. 4  Axial wave dispersion in 
a nonlocal thick nano-bar, effect 
of �  on c
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non-standard boundary conditions in addition to the stand-
ard boundary conditions, prescribed in the cantilever thick 
bar as:

and in the fully fixed thick bar as:

A homogeneous fourth-order algebraic system in terms of 
the unknown constants U1,… ,U4 is formulated adopting the 
spatial base function Eq. (22) and enforcing two non-stand-
ard boundary conditions Eq. (13) together with two standard 
boundary conditions, Eqs. (24) or (25). The resulted system 
of algebraic equation should be singular to get a non-trivial 
solution for the natural frequency. A highly nonlinear char-
acteristic equation is obtained, as a result of vanishing of the 
determinant of the coefficients of the homogeneous fourth-
order system, which should be numerically solved.

Nano-scale effects of the nonlocality and the geometrical 
parameter (gyration radius) on the free vibrational behavior 
of the thick nano-bar are exhibited in Figs. 5 and 6. For the 
sake of generality, the non-dimensional fundamental fre-
quency � is defined by:

Numerically detected fundamental frequencies are fur-
thermore normalized applying the corresponding natural fre-
quencies associated with the local slender bar model (LOC). 
3-D variation of the normalized fundamental frequency of 
the cantilever and the fully fixed thick nano-bar associ-
ated with the nonlocal integral elasticity theory is, respec-
tively, demonstrated in Figs. 5 and 6. While the nonlocal 

(24)Ψ(a) = N(b) = 0,

(25)Ψ(a) = Ψ(b) = 0.

(26)�
2
=

L2A�

�2AE

�2.

characteristic parameter � is assumed to range in the same 
interval as the wave dispersion analysis, the non-dimensional 
radius of gyration is ranging in the interval [0.1, 0.5] . The 
Poisson’s ratio is also set to � = 0.2 consistent with the elas-
tic material properties for the CNT of armchair (10, 10).

It is noticeably deducible from the numerical illustrations 
that the fundamental frequency of the nonlocal thick bar 
decreases by increasing the nonlocal characteristic param-
eter, and accordingly, it exposes a softening response in 
terms of the nonlocal parameter � for a given value of �  . 
The non-dimensional radius of gyration has also the effect 
of decreasing the fundamental frequency, i.e., a larger �  
involves a smaller fundamental frequency for a given value 
of � . Therefore, the fundamental frequency of the nonlocal 
thick bar reveals a softening behavior in terms of both the 
nonlocality and the gyration radius. The softening effects 
of the radius of gyration are, nevertheless, less conspicuous 
compared with the nonlocality. The size-dependent elasto-
dynamic response of a fully-fixed thick nano-bar is found 
to be more affected by the nonlocality and the geometrical 
parameter. The fundamental frequency of the thick nano-bar 
detected in the framework of the nonlocal integral approach 
coincides with the fundamental frequency of the local thick 

Fig. 5  Fundamental frequency of a nonlocal thick nano-bar with can-
tilever ends

Fig. 6  Fundamental frequency of a nonlocal thick nano-bar with 
fully-fixed ends

Table 1  Normalized fundamental frequencies of a cantilever nonlocal 
thick nano-bar

�

�LOC

� � = 0.1 � = 0.2 � = 0.3 � = 0.4 � = 0.5

0+ 0.998720 0.997912 0.996627 0.994919 0.992842
0.1 0.899652 0.898337 0.896596 0.894473 0.892011
0.2 0.807077 0.804822 0.802228 0.799333 0.796179
0.3 0.726453 0.723298 0.719909 0.716322 0.712570
0.4 0.657627 0.653706 0.649670 0.645547 0.641365
0.5 0.599034 0.594457 0.589904 0.585389 0.580923
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bar, for vanishing of the nonlocal characteristic parameter. 
Tables 1 and 2 summarize the normalized fundamental fre-
quencies of the nonlocal thick bar with cantilever and fully 
fixed ends for different values of the nonlocal characteristic 
parameter and the radius of gyration.

5  Concluding remarks

There has been recently a great interest in the modeling and 
analysis of one-dimensional nano-structures due to their 
significant potential applications in advanced nano-systems. 
While the majority of investigations focus on the transverse 
vibrations of nano-beams, limited studies have been devoted 
to examine the elastodynamic response of thick nano-bars. 
An important insight into the dynamics of thick nano-bars 
in the framework of the nonlocal integral elasticity theory 
is provided in the present study. The elastic thick bar theory 
is evoked and the structural model of the thick bar is re-
established in a consistent variational framework. The local 
constitute law of the axial force field and associated higher 
order boundary conditions are appropriately introduced 
and the differential and boundary conditions of dynamic 
equilibrium are restored. The proposed structural model 
suitably comprises the effects of lateral deformation, shear 
stiffness, and lateral inertia. The nonlocal constitutive law of 
the axial force field in the original integral-type framework 
is conceived. The integral convolutions of the constitutive 
law are substituted with the equivalent nonlocal differential 
model equipped with variationally consistent non-standard 
boundary conditions. The closure of the nonlocal constitu-
tive problem on bounded domains is accordingly obtained. 
The introduced non-standard boundary conditions are dem-
onstrated not to conflict with the equilibrium requirements 
as put in evidence by an accurate elastodynamic analysis 
of a nonlocal thick bar with kinematic constraints of nano-
mechanics interest. As the boundary-value problem gov-
erning the nonlocal slender bar model is demonstrated to 
be ill-posed, the proposed size-dependent thick bar model 
is realized to be free from the inherent drawbacks of the 

nonlocal differential formulation and leads to consistent and 
well-posed elastodynamic problems. Previous contributions 
on the thick bar model are, therefore, amended to properly 
take into account the higher order and non-standard bound-
ary conditions, correspondingly, associated with the local 
and nonlocal thick bar model.

The wave dispersion response and free vibrational behav-
ior of the nonlocal thick bar are rigorously examined apply-
ing a viable analytical approach. Nanoscopic effects of the 
nonlocality and the geometrical parameter of the thick bar 
on the elastodynamic response are analytically detected, 
graphically illustrated, and thoroughly discussed. The con-
ceived nonlocal integral elasticity theory is demonstrated 
to be capable of effectively capturing all the qualitative 
aspects of experimental measurements with excellent accu-
racy. The softening structural behavior in terms of the nonlo-
cal characteristic length is properly confirmed. Contrary to 
the elastostatic analysis of nonlocal thick bars, a softening 
response is also realized for increasing the cross-sectional 
radius of gyration. A consistent variational framework to 
tackle the dynamics of nonlocal thick bars is introduced that 
can accurately recognize the smaller-is-softer phenomenon 
in the nonlocal mechanics.
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