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Abstract
Recently, it has been proved that the common nonlocal strain gradient theory has inconsistence behaviors. The order of the 
differential nonlocal strain gradient governing equations is less than the number of all mandatory boundary conditions, and 
therefore, there is no solution for these differential equations. Given these, for the first time, transverse vibrations of nano-
beams are analyzed within the framework of the two-phase local/nonlocal strain gradient (LNSG) theory, and to this aim, 
the exact solution as well as finite-element model are presented. To achieve the exact solution, the governing differential 
equations of LNSG nanobeams are derived by transformation of the basic integral form of the LNSG to its equal differ-
ential form. Furthermore, on the basis of the integral LNSG, a shear-locking-free finite-element (FE) model of the LNSG 
Timoshenko beams is constructed by introducing a new efficient higher order beam element with simple shape functions 
which can consider the influence of strains gradient as well as maintain the shear-locking-free property. Agreement between 
the exact results obtained from the differential LNSG and those of the FE model, integral LNSG, reveals that the LNSG is 
consistent and can be utilized instead of the common nonlocal strain gradient elasticity theory.

Keywords  Two-phase local/nonlocal strain gradient · Exact solution · Finite-element method · Euler–Bernoulli · 
Timoshenko · Shear-locking · Vibration

1  Introduction

Due to paradoxical behaviors [1–4] of the common differen-
tial nonlocal elasticity [5–8] which has been widely utilized 
by researchers to consider the size effects for studying the 
mechanics of nano structures [9–15], other size-dependent 
elasticity theories such as stress-driven integral nonlocal 
[16, 17] and two-phase local/nonlocal have been recently 
attracted the attentions of the nano-mechanic researchers.

Although, some valuable efforts [18, 19] have been made 
to resolve the weakness of the differential nonlocal, it has 
been indicated [20, 21] that using the differential form of 

nonlocal elasticity instead of its integral form is allowable 
only in a few certain cases in which satisfying additional 
constitutive boundary conditions (CBCs), resulted from this 
transformation, is possible.

It should be noted that the integral form of nonlocal 
elasticity has been seldom used in the past years [22–24], 
while after presentation of Ref.[20], a significant growth 
occurs in applying the integral form of nonlocal theory. Due 
to this fact, the basic integral form of pure nonlocal elas-
ticity has been directly employed to probe into the static 
bending [25], vibration characteristics, and buckling [26] of 
Euler–Bernoulli nanobeams without any paradoxes. In these 
two works, the Laplace transform method has been applied 
to present an analytical solution which has led to some 
comments [27] and replies [28] about the correctness of the 
proposed exact solution. In addition, the integral nonlocal 
finite-element method (FEM) has been employed to examine 
the nonlocal characteristics of Euler–Bernoulli nanobeams 
[29–31]. Also, the vibration frequency shifts resulted from 
the attached mass on a cantilever carbon-nanotube sensor 
[32] have been predicted by the integral nonlocal FEM. To 
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analyze the nonlocal static bending of Timoshenko nano-
beams [33], an integral nonlocal FEM model has been con-
structed using a higher order beam element with eight nodes 
to avoid the shear-locking effect. Along these works, it can 
be pointed to the papers in which the isogeometric analysis 
[34–36] as well as FEM [37, 38] have been developed within 
the framework of the integral nonlocal and strain gradient 
elasticity theories.

Applying two-phase local/nonlocal elasticity, for con-
sidering the nonlocal effects in nanostructures, has been 
recently proposed by researchers due to its advantages over 
the common differential nonlocal. Being paradox free, com-
patibility between the results extracted from the differential 
form with those obtained by the integral form, and compat-
ibility between the order of the differential governing equa-
tions and the number of boundary conditions are some of 
these advantages. However, it is noted that employing two-
phase elasticity instead of the differential nonlocal increases 
the complexity of the problems, so that finding efficient solu-
tions is now an important challenge.

On the basis of the two-phase elasticity, nonlocal bend-
ing analysis of nanobeams has been performed and associ-
ated exact solutions have been presented for the Euler–Ber-
noulli [39] and Timoshenko nanobeams [40]. Also, different 
mechanical characteristics of nanostructures such as axial, 
torsional, and transverse vibrations of nanorods [41], nano-
beams [42, 43], and double nanobeams system [44] have 
been evaluated by developing the exact solutions [41–43] as 
well as numerical methods such as FEM [43] and general-
ize differential quadrature method (GDQM) [44]. To utilize 
the advantages of two-phase elasticity, size dependence of 
elastic medium and axial loads, resulted from the thermal 
expansion and nonlinear van-Karman strain, has been con-
sidered by two-phase elasticity and their influences on the 
linear [45] and nonlinear [46] vibrations of nanobeams have 
been investigated. In addition, by combination of surface 
and two-phase elasticity theories, the damping vibrations of 
local/nonlocal nanobeams [47] have been studied. Assess-
ment of the complex natural frequencies obtained by exact 
solution indicated that using the local/nonlocal theory elimi-
nates the paradoxes in both of the real and imaginary parts 
of vibration frequencies. Also, size-dependent coupled flex-
ural–axial vibrations of cantilevered mass nanosensors [48] 
have been investigated by two-phase elasticity to prevent the 
paradoxical behavior due to applying differential nonlocal 
on clamped-free beams.

In addition to the common differential nonlocal, the non-
local strain gradient elasticity, introduced by Lim et al. [49], 
has been widely utilized [50–52] by researchers to explore 
on the size-dependent mechanics of various nanostructures. 
For instance, wave propagation [49, 53–55], longitudinal 

vibration [56], bending, buckling, and transverse vibrations 
[57, 58] of nanobeams and nanoplates have been compre-
hensively studied in the recent years by using this theory.

Here, it is essential to express that the nonlocal strain gra-
dient is resulted from the combination of integral nonlocal 
theory with the strain gradient one and its differential form 
has been considered in most works without paying atten-
tion to this fact that the transformation of integral nonlocal 
strain gradient to a differential form is allowable if the CBCs 
related to this conversion can be satisfied. This common 
negligence leads to significant differences [59] between the 
results of the differential nonlocal strain gradient and those 
that have been extracted by the integral nonlocal strain gra-
dient. Despite the suggestion [60] of satisfying the CBCs, 
resulted from conversion of the integral nonlocal strain gra-
dient to the differential form, instead of the higher order 
boundary conditions related to the strain gradient theory, 
inconsistency of this theory has been proved [61, 62] and 
it has been shown that achieving to correct results from the 
differential nonlocal strain gradient is impossible, and there-
fore, using the common differential form of nonlocal strain 
gradient theory is not correct. To present more explanations 
about this issue, it should be said that the order of the dif-
ferential governing equations derived by the nonlocal strain 
gradient is less than the number of all boundary conditions 
and these differential equations have no solution at all. To 
resolve these issues, the two-phase local/nonlocal strain 
gradient (LNSG) theory has been utilized to extract the 
closed-form solutions for the static deflections of nanorods 
subjected to a tensional force [63] and, for studying the size-
dependent longitudinal vibrations of nano-scaled rods [64].

According to these facts, in this work, free transverse 
vibrations of nanobeams are analyzed on the basis of the 
LNSG, for the first time. By transformation of the integral 
form of LNSG to the equal differential form, the differential 
equations associated with the LNSG Euler–Bernoulli and 
Timoshenko nanobeams as well as all mandatory CBCs are 
derived, and then, the exact solutions are presented by sat-
isfying all BCs. In addition, by introducing a new higher 
order shear-locking-free beam element and using the basic 
integral form of LNSG, the FE model of LNSG Timoshenko 
nanobeams is constructed with the aim of preventing shear-
locking effect without increasing the complexity of the 
integral nonlocal strain gradient FE model. It is shown that 
employing the LNSG makes it possible to obtain solvable 
differential equations with the order equal to the number 
of all mandatory BCs. Also, compatibly between the exact 
results obtained by solving the differential LNSG with those 
of the integral LNSG FE model reconfirms the consistency 
of the LNSG theory.
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2 � Problem formulation

To apply the LNSG elasticity for recognizing the size-
dependent vibration characteristics of nanobeams, the dif-
ferential governing equations, all constitutive boundary con-
ditions, and exact solutions will be derived using the equal 
differential form of LNSG. To provide a comprehensive 
study, the formulations associated with the Euler–Bernoulli 
beam theory (EBT) as well as Timoshenko beam theory 
(TBT) are presented in the following.

Furthermore, the finite-element model of LNSG 
Timoshenko beam is constructed using a new efficient 
higher order locking-free beam element and direct use of the 
integral form of LNSG. To this aim, a beam is assumed with 
the length of L and cross section with the height of h and 
width of b which they are respectively located along the x-, 
z-, and y-directions of the Cartesian coordinates, see Fig. 1.

2.1 � Two‑phase local/nonlocal strain gradient

First, the corresponding local/nonlocal stress relations of 
LNSG nanobeams are presented as follow using the local 
stresses, �local

kl
 , due to local strains, and the higher order ones, 

�1 local
kl

 , resulted from the strain gradient [63, 64]:

where �1 , �2 , and k, indicate the local phase fraction fac-
tor, nonlocal phase fraction factor, and nonlocal parameter, 
respectively. In addition, �

(|x − x�|, k) is nonlocal kernel 
function. Also, it has been shown [42, 65] that the follow-
ing integral equation, i.e., Eq. (2), can be replaced with an 
equal differential equation, i.e., Eq. (3), by satisfying essen-
tial CBCs, i.e., Eq. (4):

(1)

𝜎kl(x) = 𝜁1𝜎
local
kl

(x) + 𝜁2 ∫
L

𝛼
(||x − x�||, k

)
𝜎local
kl

(
x�
)
dx�

𝜎1
kl
(x) = 𝜁1𝜎

1 local
kl

(x) + 𝜁2 ∫
L

𝛼
(||x − x�||, k

)
𝜎1 local
kl

(
x�
)
dx�

𝜁1 > 0, 𝜁2 > 0 , 𝜁1 + 𝜁2 = 1 and 𝛼
(||x − x�||, k

)
=

1

2k
e
−

|x−x̄|
k ,

(2)ℜ(x) = ℑ(x) + C ∫
L

0

e�|x−x|ℑ(
x
)
dx.

2.2 � Governing equations of EBT

To extract the equations governed on the EBT within the 
framework of the LNSG, the displacement field is consid-
ered as follows:

where uE
1
, uE

2
, and uE

3
 are the deflections in the x-, y-, and 

z-directions, respectively. Also, the superscript “E” refers 
to the EBT and wE(x, t) is the transverse displacement of 
the neutral axis. Next, the axial strain related to the EBT is 
presented:

According to Eq. (1), the LNSG stress–strain relations 
can be obtained for EBT:

where lm and E indicate the length scale of the strain gradient 
and Young modulus, respectively. By employing the integra-
tion by parts method, the variation of the strain potential is 
written as:

According to Eq. (8), it can be expressed that the stress 
of LNSG is resulted from the �E

xx
 and the first derivative of 

the �E1

xx
 by satisfying the strain gradient boundary conditions, 

i.e., �E1
xx
δ�E

xx
||L0 = 0 . Given this, the LNSG bending moment 

of EBT is obtained as Eq. (9) in which A and I stand for the 
area and the moment of inertia of cross section, 
respectively:

(3)ℜ
��(x) − ϑ2ℜ(x) = ℑ

��(x) + �(2C − �)ℑ(x).

(4)
ℜ

�(x) + �ℜ(x) = ℑ
�(x) + �ℑ(x) at x = 0

ℜ
�(x) − �ℜ(x) = ℑ

�(x) − �ℑ(x) at x = L.

(5)uE
1
= −z

�wE(x, t)

�x
, uE

2
= wE(x, t), uE

3
= 0,

(6)�E
xx
= −z

�2wE

�x2
.

(7)
�E
xx
= �1E�

E
xx
+

(
1 − �1

)
2k

E ∫
L

0

e
−
|x−x|

k �E
xx
(x)dx

�E1
xx

= l2
m
�1E�

E
xx,x

+
l2
m

(
1 − �1

)
2k

E ∫
L

0

e
−
|x−x|

k �E
xx,x

(x)dx,

(8)

δUE = ∫
V

�
�E
xx
δ�E

xx
+ �E1

xx
δ�E

xx,x

�
dAdx

δUE = ∫
V

�
�E
xx
−

d

dx
�E1
xx

�
δ�E

xx
dAdx +

⎡⎢⎢⎣∫A
�E1
xx
δ�E

xx
dA

⎤⎥⎥⎦

L

0

tE
xx
= �E

xx
−

d

dx
�E1
xx
; �E1

xx
δ�E

xx

���
L

0
= 0.

b

x

Two Phase Local/Nonlocal
Strain Gradient

z

h
L

y
z

Fig. 1   Schematic of problem
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To transform this complex differential-integral equa-
tion, i.e., Eq. (9), into an equal differential form, it is essen-
tial to rewrite this equation with the help of the procedure 
presented in [63]. Therefore, the following relation is 
considered:

And, to summarize the following equations, Eq. (11) is 
presented:

Now, by applying Eqs (10) and (11), Eq.  (9) can be 
rewritten as Eq. (12):

(9)
ME = −�1EI

�2wE

�x2
−

�2

2k
EI ∫

L

0

e
−
|x−x|

k
�2wE

�x
2
dx

+�1EIl
2
m

�4wE

�x4
+

�2

2k
EIl2

m

d

dx

[
∫

L

0

e
−
|x−x|

k
�3wE

�x
3
dx

]
.

(10)

d

dx

[
∫

L

0

e
−
|x−x|

k
�3wE

�x
3
dx

]
= −

2

k

�2wE

�x2
+

1

k2

[
∫

L

0

e
−
|x−x|

k
�2wE

�x
2
dx

]
+

+
1

k

(
�2wE

�x2
(0)e−

x

k +
�2wE

�x2
(L)e

x−L

k

)
.

(11)�2wE

�x2
(0) = StE

1
,
�2wE

�x2
(L) = StE

2
.

(12)

ME = −EI

(
�1 +

(
1 − �1

)
l2
m

k2

)
�2wE

�x2
−

EI

2k

(
1 −

l2
m

k2

)(
1 − �1

)
∫

L

0

e
−
|x−x|

k
�2wE

�x
2
dx + �1EIl

2
m

�4wE

�x4

+

(
1 − �1

)
2k2

EI l2
m

(
StE

1
e
−

x

k + StE
2
e

x−L

k

)
.

Here, the following relations are represented:

Now, Eq. (12) can be rewritten by utilizing Eq. (13):

It can be seen that Eq. (14) is obtained in the form of 
Eq. (2), and therefore, the equal differential form of this 
integral–differential equation can be generated using Eq. (3):

In addition, as previously mentioned, it is essential to sat-
isfy the CBCs associated with the LNSG bending moment 
of EBT if Eq. (14) is replaced with Eq. (15). Therefore, 
according to the Eqs.(4) and (5), two CBCs can be extracted 
from Eq. (14):

In this step, the equilibrium equations of EBT are 
represented:

where � is the mass density. Next, the first part of Eq. (17) is 
substituted into Eq. (15) and the LNSG bending moment of 
EBT is obtained. Also, the shear force of EBT, which should 
be utilized for satisfying the boundary conditions related to 
the beams with free ends, is written using the second part 
of Eq. (17):

(13)

�E
1
= EI

(
�1 +

(
1 − �1

)
l2
m

k2

)
, �E

2
=

EI

2k

(
1 −

l2
m

k2

)(
1 − �1

)

�E
3
= −�1EIl

2
m
, �E

4
= −

EI

2

l2
m

k2
(1 − �1), �E

5
= StE

1
e
−

x

k + StE
2
e

x−L

k .

(14)

ME

�E
1

+
�E
3

�E
1

�4wE

�x4
−

�E
4

�E
1

�E
5
= −

�2wE

�x2
−

�E
2

�E
1
∫

L

0

e
−
|x−x|

k
�2wE

�x
2
dx.

(15)1

�E
1

�2ME

�x2
+

�E
3

�E
1

�6wE

�x6
−

1

k2

[
ME

�E
1

+
�E
3

�E
1

�4wE

�x4

]
= −

�4wE

�x4
+

1

k

(
2�E

2

�E
1

+
1

k

)
�2wE

�x2
.

(16)

1

�E
1

�ME

�x
+

�E
3

�E
1

�5wE

�x5
−

�E
4

�E
1

��E
5

�x
−

1

k

[
ME

�E
1

+
�E
3

�E
1

�4wE

�x4
−

�E
4

�E
1

�E
5

]
= −

�3wE

�x3
+

1

k

�2wE

�x2
at x = 0

1

�E
1

�ME

�x
+

�E
3

�E
1

�5wE

�x5
−

�E
4

�E
1

��E
5

�x
+

1

k

[
ME

�E
1

+
�E
3

�E
1

�4wE

�x4
−

�E
4

�E
1

�E
5

]
= −

�3wE

�x3
−

1

k

�2wE

�x2
at x = L.

(17)

�2ME

�x2
− m1

�2wE

�t2
= 0

QE =
�ME

�x

m1 = �A,
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Now that the differential form of the LNSG bending 
moment is available, it is possible to obtain the differential 
governing equation of EBT by substituting the first part of 
Eq. (18) into the first part of Eq. (17):

Also, the CBCs presented in Eq. (16) should be obtained 
in term of wE by substituting the differential form of ME, 
Eq. (18), into Eq. (16).

2.3 � Governing equations of TBT

To derive the TBT governing equations using the LNSG 
elasticity theory, the displacements of Timoshenko beams 
are written in terms of the transverse, wT(x,t), and rotational 
deflections, �(x, t) , of the neutral axis:

Also, the nonzero strains are achieved using Eq. (20):

(18)

ME = k2�E
3

�6wE

�x6
−
(
�E
3
− k2�E

1

)�4wE

�x4

−
(
2�E

2
k + �E

1

)�2wE

�x2
+ k2m1

�2wE

�t2

QE = k2�E
3

�7wE

�x7
−
(
�E
3
− k2�E

1

)�5wE

�x5

−
(
2�E

2
k + �E

1

)�3wE

�x3
+ k2m1

�3wE

�x�t2
.

(19)
k2�E

3

�8wE

�x8
−
(
�E
3
− k2�E

1

)�6wE

�x6

−
(
2�E

2
k + �E

1

)�4wE

�x4
+ k2m1

�4wE

�x2�t2
− m1

�2wE

�t2
= 0.

(20)uT
1
= z�(x, t), uT

2
= wT (x, t), uT

3
= 0.

(21)�T
xx
= z

��

�x
, �xz =

�wT

�x
+ �.

By utilizing Eq. (1) as well as Eq. (21), the stress–strain 
relations corresponding to the TBT can be obtained as 
follows:

Here, G shows the shear modulus. In this step, variations 
of the strain potential are written using the integration by 
parts method:

According to Eq. (21), Eq. (22), and Eq. (23), the LNSG 
bending moment and shear force of Timoshenko nanobeams 
are generated as Eq. (24):

Here, Ks is the shear correction factor. In this step, the 
following relations are presented:

(22)

�T
xx
= �1E�

T
xx
+

(
1 − �1

)
2k

E ∫
L

0

e
−
|x−x|

k �T
xx
(x)dx

�T1
xx

= l2
m
�1E�

T
xx,x

+
l2
m

(
1 − �1

)
2k

E ∫
L

0

e
−
|x−x|

k �T
xx,x

(x)dx

�xz = �1G�xz +

(
1 − �1

)
2k

G∫
L

0

e
−
|x−x|

k �xz(x)dx

�1
xz
= l2

m
�1G�xz,x +

l2
m

(
1 − �1

)
2k

G∫
L

0

e
−
|x−x|

k �xz,x(x)dx.

(23)

δUT = ∫
V

�
�T
xx
δ�T

xx
+ �T1

xx
δ�T

xx,x
+ �xzδ�xz + �1

xz
δ�xz,x

�
dAdx

δUT = ∫
V

�
�T
xx
−

d

dx
�T1
xx

�
δ�T

xx
dAdx + ∫

V

�
�xz −

d

dx
�1
xz

�
δ�xzdAdx

+

⎡⎢⎢⎣∫A
�T1
xx
δ�T

xx
dA

⎤⎥⎥⎦

L

0

+

⎡⎢⎢⎣∫A
�1
xz
δ�xzdA

⎤⎥⎥⎦

L

0

tT
xx
= �T

xx
−

d

dx
�T1
xx
; �T1

xx
δ�T

xx

���
L

0
= 0

txz = �xz −
d

dx
�1
xz
; �1

xz
δ�xz

���
L

0
= 0.

(24)

MT = �1EI
��

�x
+

�2

2k
EI ∫

L

0

e
−
|x−x|

k
��

�x
dx

−�1EIl
2
m

�3�

�x3
−

�2

2k
EIl2

m

d

dx

[
∫

L

0

e
−
|x−x|

k
�2�

�x
2
dx

]

QT = �1KsGA

(
�wT

�x
+ �

)
+

�2

2k
KsGA∫

L

0

e
−
|x−x|

k

(
�wT

�x
+ �

)
dx

−�1KsGAl
2
m

(
�3wT

�x3
+

�2�

�x2

)
−

�2

2k
KsGAl

2
m

d

dx

[
∫

L

0

e
−
|x−x|

k

(
�2wT

�x
2

+
��

�x

)
dx

]
.
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Next, to brevity, it is assumed that:

Substituting Eq. (27) into Eqs. (25), (26) and then into 
Eq. (24) gives:

(25)

d

dx

[
∫

L

0

e
−
|x−x|

k
�2�

�x
2
dx

]
= −

2

k

��

�x
+

1

k2

[
∫

L

0

e
−
|x−x|

k
��

�x
dx

]
+

+
1

k

(
��

�x
(0)e−

x

k +
��

�x
(L)e

x−L

k

)

(26)

d

dx

[
∫

L

0

e
−
|x−x|

k

(
�2wT

�x
2

+
��

�x

)
dx

]
= −

2

k

(
�wT

�x
+ �

)

+
1

k2

[
∫

L

0

e
−
|x−x|

k

(
�wT

�x
+ �

)
dx

]
+

+
1

k

((
�wT

�x
+ �

)
(0)e−

x

k +

(
�wT

�x
+ �

)
(L)e

x−L

k

)
.

(27)

��

�x
(0) = StT

1
,
��

�x
(L) = StT

2(
�wT

�x
+ �

)
(0) = StT

3
,

(
�wT

�x
+ �

)
(L) = StT

4
.

By employing the symbols presented in Eq. (29), Eq. (28) 
is rewritten as follows:

Now, according to the transformation procedure pre-
sented in Eq. (2) and Eq. (3), the equal differential form of 
Eq. (30) can be obtained as follows:

(29)

�T
1
= EI

(
�1 +

(
1 − �1

)
l2
m

k2

)
, �T

2
=

EI

2k

(
1 −

l2
m

k2

)(
1 − �1

)

�T
3
= −�1EIl

2
m
, �T

4
= −

EI

2

l2
m

k2
(1 − �1), �T

5
= StT

1
e
−

x

k + StT
2
e

x−L

k

�1 = KsGA

(
�1 +

(
1 − �1

)
l2
m

k2

)
, �2 =

KsGA

2k

(
1 −

l2
m

k2

)(
1 − �1

)

�3 = −�1KsGAl
2
m
, �4 = −

KsGA

2

l2
m

k2
(1 − �1), �5 = StT

3
e
−

x

k + StT
4
e

x−L

k .

(30)

MT

�T
1

−
�T
3

�T
1

�3�

�x3
−

�T
4

�T
1

�T
5
=

��

�x
+

�T
2

�T
1
∫

L

0

e
−
|x−x|

k
��

�x
dx

QT

�1
−

�3

�1

�2�xz

�x2
−

�4

�1
�5 = �xz +

�2

�1 ∫
L

0

e
−
|x−x|

k �xzdx.

Here, to facilitate, the following symbols are introduced:

(28)

MT = EI

(
�1 +

(
1 − �1

)
l2
m

k2

)
��

�x
+

EI

2k

(
1 −

l2
m

k2

)(
1 − �1

)
∫

L

0

e
−
|x−x|

k
��

�x
dx − �1EIl

2
m

�3�

�x3

−

(
1 − �1

)
2k2

EI l2
m

(
StT

1
e
−

x

k + StT
2
e

x−L

k

)

QT = KsGA

(
�1 +

(
1 − �1

)
l2
m

k2

)
�xz+

KsGA

2k

(
1 −

l2
m

k2

)(
1 − �1

)
∫

L

0

e
−
|x−x|

k

(
�wT

�x
+ �

)
dx − �1KsGAl

2
m

(
�3wT

�x3
+

�2�

�x2

)

−

(
1 − �1

)
2k2

KsGA l2
m

(
StT

3
e
−

x

k + StT
4
e

x−L

k

)
.

(31)

1

�T
1

�2MT

�x2
−

�T
3

�T
1

�5�

�x5
−

1

k2

[
MT

�T
1

−
�T
3

�T
1

�3�

�x3

]
=

�3�

�x3
−

1

k

(
2�T

2

�T
1

+
1

k

)
��

�x

1

�1

�2QT

�x2
−

�3

�1

�4�xz

�x4
−

1

k2

[
QT

�1
−

�3

�1

�2�xz

�x2

]
=

�2�xz

�x2
−

1

k

(
2�2

�1
+

1

k

)
�xz.
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Also, the essential CBCs should be derived using Eq. (4). 
Therefore:

Now, the equilibrium equations associated with the TBT 
are written:

In this step, by performing some mathematical manipula-
tions on Eq. (33) to extract the second derivate of MT and 
QT, and substituting them into Eq. (31), the LNSG bending 
moment as well as the LNSG shear force of TBT can be 
achieved in differential form:

Now, it is possible to extract the LNSG governing equa-
tions of Timoshenko nanobeams by substituting Eq. (34) 

(32)

1

�T
1

�MT

�x
−

�T
3

�T
1

�4�

�x4
−

�T
4

�T
1

��T
5

�x
−

1

k

[
MT

�T
1

−
�T
3

�T
1

�3�

�x3
−

�T
4

�T
1

�T
5

]
=

�2�

�x2
−

1

k

��

�x
at x = 0

1

�T
1

�MT

�x
−

�T
3

�T
1

�4�

�x4
−

�T
4

�T
1

��T
5

�x
+

1

k

[
MT

�T
1

−
�T
3

�T
1

�3�

�x3
−

�T
4

�T
1

�T
5

]
=

�2�

�x2
+

1

k

��

�x
at x = L

1

�1

�QT

�x
−

�3

�1

�3�xz

�x3
−

�4

�1

��5

�x
−

1

k

[
QT

�1
−

�3

�1

�2�xz

�x2
−

�4

�1
�5

]
=

��xz

�x
−

1

k
�xz at x = 0

1

�1

�QT

�x
−

�3

�1

�3�xz

�x3
−

�4

�1

��5

�x
+

1

k

[
QT

�1
−

�3

�1

�2�xz

�x2
−

�4

�1
�5

]
=

��xz

�x
+

1

k
�xz at x = L.

(33)

�QT

�x
− m1

�2wT

�t2
= 0

�MT

�x
− QT − m2

�2�

�t2
= 0

m1 = �A, m2 = �I.

(34)

MT = −k2�T
3

�5�

�x5
+
(
�T
3
− k2�T

1

)�3�
�x3

+
(
2�T

2
k + �T

1

)��
�x

+ k2
(
m2

�3�

�t2�x
+ m1

�2wT

�t2

)

QT = −k2�3

(
�5wT

�x5
+

�4�

�x4

)
+
(
�3 − k2�1

)(�3wT

�x3
+

�2�

�x2

)

+
(
2�2k + �1

)(�wT

�x
+ �

)
+ k2m1

�3wT

�t2�x
.

into Eq. (33). These equations are written as follows by 
applying the symbols introduced in Eq. (29):

Similarly, the CBCs should be obtained in terms of wT 
and � by replacing the Eq. (34) into Eq. (32):

2.4 � Exact solution

To achieve the exact solution of the Eq. (19), which is related 
to the EBT, as well as the solution of the governing equa-
tions corresponding to the TBT, i.e., Eq. (35), the separa-
tion of variables method is employed and non-dimensional 
parameters are introduced as follows:

(35)

−m1

�2wT

�t2
+ KsGA

��

�x
+ KsGA

�2wT

�x2
+ k2m1

�4wT

�t2�x2

−
(
KsGAl

2
m
+ KsGA�1k

2
)(�4wT

�x4
+

�3�

�x3

)

+KsGAl
2
m
�1k

2

(
�6wT

�x6
+

�5�

�x5

)
= 0

KsGA

((
l2
m
+ �1k

2
)�3wT

�x3
−

�wT

�x
− l2

m
�1k

2 �
5wT

�x5

)
− m2

�2�

�t2
− KsGA�

+
(
EI + KsGA

(
l2
m
+ �1k

2
))�2�

�x2
+ k2m2

�4�

�t2�x2

−
(
KsGAl

2
m
�1k

2 + EI
(
l2
m
+ �1k

2
))�4�

�x4
+ EIk2l2

m
�1
�6�

�x6
= 0.

(36)

wE(x, t) = WE(x)ei�t for EBT

{
wT (x, t) = WT (x)ei�t

�(x, t) = Φ(x)ei�t
for TBT

x =
x

L
, WE =

WE

L
WT =

WT

L

Γ1 =
k

L
, Γ2 =

m1L
2

m2

, Γ3 =
EI

KsGAL
2
, Γ4 =

lm

L
, � = �L2

√
m1

EI
,
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where � and � show the dimensional and non-dimensional 
vibration frequencies, respectively.

2.4.1 � EBT

In the first step, Eq. (19) is rewritten in the non-dimensional 
form:

Next, the non-dimensional bending moment and shear 
force as well as two CBCs related to the EBT should be 
presented. Therefore:

Now, the general solution of Eq. (37), which is an eight-
order differential equation with constant coefficients, can be 
considered as follows:

where Ri are the roots of the following equation and Ci are 
unknown coefficients which can be extracted by satisfying 
all boundary conditions:

(37)
�2W

E
−W

(4)

E
+ Γ2

4
W

(6)

E
− Γ2

1

(
�2W

��

E
− �1W

(6)

E
+ �1Γ

2
4
W

(8)

E

)
= 0.

(38)

ME = −W
��

E
+ Γ2

4
W

(4)

E
− Γ2

1

(
�2WE − �1W

(4)

E
+ �1Γ

2
4
W

(6)

E

)

QE = −W
(3)

E
+ Γ2

4
W

(5)

E
− Γ2

1

(
�2W

�

E
− �1W

(6)

E
+ �1Γ

2
4
W

(7)

E

)

(39)

⎛⎜⎜⎜⎜⎜⎝

�
�1 − 1

�
Γ2
4
W

��

E
−
�
�1 − 1

�
Γ1Γ

2
4
W

(3)

E
−
�
�1 − 1

�
Γ2
1

�
W

��

E
− Γ2

4
W

(4)

E

�

+
�
�1 − 1

�
Γ3
1

�
W

(3)

E
− Γ2

4
W

(5)

E

�
+ Γ4

1

�
�2WE − �1W

(4)

E
+ �1Γ

2
4
W

(6)

E

�

−Γ5
1

�
�2W

�

E
− �1W

(5)

E
+ �1Γ

2
4
W

(7)

E

�
−W

��

E

�
−Γ2

4
+ �1Γ

2
4

�

⎞
⎟⎟⎟⎟⎟⎠

= 0 at x = 0

⎛⎜⎜⎜⎜⎜⎝

�
�1 − 1

�
Γ2
4
W

��

E
+
�
�1 − 1

�
Γ1Γ

2
4
W

(3)

E
−
�
�1 − 1

�
Γ2
1

�
W

��

E
− Γ2

4
W

(4)

E

�

−
�
�1 − 1

�
Γ3
1

�
W

(3)

E
− Γ2

4
W

(5)

E

�
+ Γ4

1

�
�2WE − �1W

(4)

E
+ �1Γ

2
4
W

(6)

E

�

+Γ5
1

�
�2W

�

E
− �1W

(5)

E
+ �1Γ

2
4
W

(7)

E

�
+W

��

E

�
Γ2
4
− �1Γ

2
4

�

⎞⎟⎟⎟⎟⎟⎠

= 0 at x = 1.

(40)WE

(
x
)
=

8∑
i=1

Cie
Rix,

Here, according to the higher order boundary conditions 
associated with the strain gradient, i.e., �E1

xx
δ�E

xx
||L0 = 0 , the 

following boundary conditions must be satisfied:

Finally, the vibration frequencies of the LNSG Euler–Ber-
noulli nanobeams can be obtained by constructing the con-
stant coefficients matrix and find the values of � which lead 
to zero determinant. It is helpful to be mentioned that there 
are eight boundary conditions including four geometrical or 
natural, two CBCs, Eq. (39), and two boundary conditions 
due to the strain gradient, Eq. (42).

2.4.2 � TBT

The non-dimensional governing equations of TBT, Eq. (35), 
are rewritten as follows:

(41)�2 − Γ2
1
�2D2 − D4 +

(
Γ2
4
+ Γ2

1
�1
)
D6 − Γ2

1
Γ2
4
�1D

8 = 0.

(42)
�x,xWE = 0 or �1

xx
= 0 → �1�x,x,xWE +

(1 − �1)

2Γ1

1∫
0

e
−

y

Γ1 �y,y,yWE dy = 0 at x = 0

�x,xWE = 0 or �1
xx
= 0 → �1�x,x,xWE +

(1 − �1)

2Γ1

1∫
0

e
−

1−y

Γ1 �y,y,yWE dy = 0 at x = 1.

(43)

Φ� +W
��

T
+ �2Γ3(WT − Γ2

1
W

��

T
)−

�
�1Γ

2
1
+ Γ2

4

��
Φ(3) +W

(4)

T

�
+ �1Γ

2
1
Γ2
4

�
Φ(5) +W

(6)

T

�
= 0

1

Γ2

⎛⎜⎜⎝

�2Γ3

�
−Φ + Γ2

1
Φ��

�
+

Γ2

�
Φ +W

�

T
−
�
�1Γ

2
1
+ Γ3 + Γ2

4

�
Φ�� −

�
�1Γ

2
1
+ Γ2

4

�
W

(3)

T

�⎞⎟⎟⎠
+

��
�1Γ

2
1
Γ3 + �1Γ

2
1
Γ2
4
+ Γ3Γ

2
4

�
Φ(4)

+�1Γ
2
1
Γ2
4
W

(5)

T
− �1Γ

2
1
Γ3Γ

2
4
Φ(6)

�
= 0.
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In addition, the LNSG bending moment and shear force 
should be represented in dimensionless form:

Similarly, the non-dimensional form of all CBCs is 
obtained and pretend in Appendix. Afterward, using the 
derivative operator as Dn ≡ �n∕�xn , the matrix form of 
Eq. (43) is presented:

Now, taking the determinant of the coefficients matrix of 
Eq. (45) gives:

It is worth noting that, as can be seen from Eq. (46), the 
order of corresponding governing differential equation of 
LNSG Timoshenko nanobeam is 12 which is equal to the 
total number of boundary conditions including 4 natural or 
geometric BCs, 4 BCs related to the strain gradient, and 4 
CBCs relevant to the transformation of integral equations to 
differential ones. Accordingly, the exact solution of Eq. (43) 

(44)

M =
(
Φ� − Γ2

4
�(3)

)
−

Γ2
1

Γ2

(
�2Φ� + Γ2

(
�2WT + �1Φ

(3) − �1Γ
2
4
Φ(5)

))

Q = Φ +
(
1 − �2Γ2

1
Γ3

)
W

�

T
−
(
�1Γ

2
1
+ Γ2

4

)
Φ�� −

(
�1Γ

2
1
− Γ2

4

)
W

(3)

T

+�1Γ
2
1
Γ2
4
Φ(4) + �1Γ

2
1
Γ2
4
W

(5)

T
.

(45)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1Γ
2
1
Γ2
4
D6 −

�
�1Γ

2
1
+ Γ2

4

�
D4

+
�
1 − �2Γ2

1
Γ3

�
D2 + �2Γ3

�1Γ
2
1
Γ2
4
D5 +

�
−�1Γ

2
1
− Γ2

4

�
D3 + D

�1Γ
2
1
Γ2
4
D5 +

�
−�1Γ

2
1
− Γ2

4

�
D3 + D

−�1Γ
2
1
Γ3Γ

2
4
D6+�

�1Γ
2
1
Γ3 + �1Γ

2
1
Γ2
4
+ Γ3Γ

2
4

�
D4+�

−�1Γ
2
1
Γ2 + �2Γ2

1
Γ3 − Γ2Γ3 − Γ2Γ

2
4

�
Γ2

D2

+
Γ2 − �2Γ3

Γ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
WT

Φ

�
= 0.

(46)

(
−�2

1
Γ4
1
Γ3Γ

4
4

)
D12 +

(
2�1Γ

2
1
Γ3Γ

2
4

(
�1Γ

2
1
+ Γ2

4

))
D10+

Γ3

Γ2

(
−4�1Γ

2
1
Γ2Γ

2
4
− Γ2Γ

4
4
+ �1Γ

4
1

(
�2Γ2

4
+ Γ2

(
−�1 + �2Γ3Γ

2
4

)))
D8

−
Γ3

Γ2

(
−2Γ2Γ

2
4
+ �1�

2Γ4
1

(
1 + Γ2

(
Γ3 + Γ2

4

))
+

Γ2
1

((
1 + �1

)
�2Γ2

4
+ Γ2

(
−2�1 +

(
1 + �1

)
�2Γ3Γ

2
4

))
)
D6+

Γ3

Γ2

(
Γ4
1

(
�1�

2Γ2 − �4Γ3

)
+ �2Γ2

4
+ Γ2

(
−1 + �2Γ3Γ

2
4

)
+(

1 + �1
)
�2Γ2

1

(
1 + Γ2

(
Γ3 + Γ2

4

))
)
D4+

�2Γ3

Γ2

(
−1 − Γ2

1

((
1 + �1

)
Γ2 − 2�2Γ3

)
− Γ2

(
Γ3 + Γ2

4

))
D2+

�2Γ3

(
1 −

�2Γ3

Γ2

)
= 0.

can be obtained by satisfying all boundary conditions. 
Therefore, the general solution of this differential equation 
is considered as follows:

in which Ci are constant coefficients, Ri are the roots of 
Eq. (46) and:

(47)

WT

(
x
)
=

12∑
i=1

Cie
Rix

Φ
(
x
)
=

12∑
i=1

�iCie
Rix,

Fig. 2   Two-node beam element with five degrees of freedom per 
node

As previously mentioned and also, it can be seen from the 
Eq. (23), the higher order boundary conditions related to the 
strain gradient, i.e., �1

kl
δ�kl

|||
L

0
= 0 , must be satisfied. Owing 

this, it is essential to be considered that:

(48)

�i =
−�2Γ3 + R2

i

(
−1 + �2Γ2

1
Γ3

)
− �1R

6
i
Γ2
1
Γ2
4
+ R4

i

(
�1Γ

2
1
+ Γ2

4

)

Ri

(
−1 + �1R

2
i
Γ2
1

)(
−1 + R2

i
Γ2
4

) .
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Now, by satisfying all 12 BCs, the coefficients matrix is 
constructed, and then, its determinant should be set equal to 
zero for extracting the characteristic equation.

Finally, the vibration frequencies of LNSG Timoshenko 
beams are obtained by solving this equation by employing 
numerical ways such as the method presented in Reference 
[66]. It is helpful to note that to prevent ill-conditioning, 
all elements of each column of the coefficients matrix are 
divided by the norm of that column.

2.5 � Local/nonlocal strain gradient finite‑element 
model

First of all, it should be noted that the present FEM of LNSG 
is constructed using the basic integral form of the LNSG 

(49)

�xΦ = 0 or �1
xx
= 0 → �1�x,xΦ +

(1 − �1)

2Γ1

1∫
0

e
−

y

Γ1 �y,yΦ dy = 0 at x = 0

�xΦ = 0 or �1
xx
= 0 → �1�x,xΦ +

(1 − �1)

2Γ1

1∫
0

e
−

1−y

Γ1 �y,yΦ dy = 0 at x = 1
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Timoshenko beam and no transformation is implemented 
on the integral equation. Also, to create an efficient shear-
locking-free beam element, the shear strain is considered as 
an independent degree of freedom and the order of element 
is set in such a way that the derivative of the strains related 
to the strain gradient is not neglected. Therefore, the rotation 
of cross section is rewritten as follows by this assumption 
that � = −�xy:

Now, according to Eq. (21), Eq. (22), and Eq. (50), the 
strain potential energy, per length, of the LNSG Timoshenko 
nanobeam can be expressed:
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In which the superscripts “L” and “NL” stand for the local 
and nonlocal cases, respectively. Now, a two-node beam ele-
ment with five degrees of freedom per node is introduced as 
Fig. 2 for jth element. In fact, to consider the influences of 
strain gradient, the higher order form of the beam element 
proposed in Reference [43] is considered.

Due to independency of the shear strain from the trans-
verse displacement, the shape functions of them can be eas-
ily derived as follow. These shape functions are presented as 
functions of x which is the axial distance from the beginning 
of the beam:

Now, for the jth element, it can be written as:

(52)
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where an are the degrees of freedom that are illustrated in 
Fig. 2. In this step, the nonlocal strain gradient potential 
energy of the jth element which is resulted from the contri-
bution of the ith element is written as Eq. (54):

(53)
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n
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(54)
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� = EI, � = KsGA.

As can be seen from Eq. (54), due to integral nonlocal 
stress, all elements are coupled with together. Given this, 
three different types of nonlocal strain gradient stiffness ele-
ment are defined according to the location of jth element 
relative to the ith element position. Therefore:

Table 1   The first four 
non-dimensional vibration 
frequencies of two-phase strain 
gradient SSSS nanobeams, 
k/L = 0.05, lm/L = 0.10

�
1

# Of element 1st 2nd 3rd 4th

h/L = 0.01 0.10 FEM 10 10.1960 44.2310 109.8706 214.9033
20 10.1958 44.2293 109.8646 214.8913
30 10.1958 44.2292 109.8643 214.8906
40 10.1958 44.2292 109.8642 214.8905

Exact-TBT – 10.1958 44.2292 109.8642 214.8904
Exact-EBT – 10.1972 44.2545 110.0107 215.4134

0.50 FEM 10 10.2638 45.3203 115.4446 232.7452
20 10.2638 45.3203 115.4444 232.7438
30 10.2638 45.3203 115.4444 232.7438
40 10.2638 45.3203 115.4444 232.7438

Exact-TBT – 10.2638 45.3203 115.4444 232.7438
Exact-EBT – 10.2651 45.3450 115.5936 233.2995

h/L = 0.20 0.10 FEM 10 9.6875 37.0270 78.6826 131.1593
20 9.6867 37.0194 78.6605 131.1256
30 9.6867 37.0189 78.6591 131.1234
40 9.6867 37.0188 78.6589 131.12308

Exact-TBT – 9.6867 37.0188 78.6588 131.1230
Exact-EBT – 10.1972 44.2545 110.0107 215.4134

0.50 FEM 10 9.7821 38.1903 83.1985 141.9528
20 9.7820 38.1900 83.1978 141.9511
30 9.7820 38.1900 83.1978 141.9510
40 9.7820 38.1900 83.1978 141.9510

Exact-TBT – 9.7820 38.1900 83.1978 141.9510
Exact-EBT – 10.2651 45.3450 115.5936 233.2995
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(55)
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Table 2   The first four 
non-dimensional vibration 
frequencies of two-phase strain 
gradient CSFS nanobeams, 
k/L = 0.05, lm/L = 0.10

�
1

# Of element 1st 2nd 3rd 4th

h/L = 0.01 0.10 FEM 10 4.0095 26.1238 78.5879 167.5304
20 4.0067 26.1029 78.5143 167.3487
30 4.0066 26.1017 78.5101 167.3381
40 4.0066 26.1015 78.5095 167.3368

Exact-TBT – 4.0066 26.1015 78.5093 167.3365
Exact-EBT – 4.0069 26.1177 78.6247 167.7862

0.50 FEM 10 4.1760 27.4340 83.9691 183.4334
20 4.1759 27.4331 83.9650 183.4209
30 4.1759 27.4331 83.9649 183.4206
40 4.1759 27.4331 83.9649 183.4206

Exact-TBT – 4.1759 27.4331 83.9649 183.4206
Exact-EBT – 4.1763 27.4507 84.0928 183.9324

h/L = 0.20 0.10 FEM 10 3.8752 21.3879 54.2124 97.1308
20 3.8726 21.3731 54.1731 97.0610
30 3.8725 21.3723 54.1707 97.0567
40 3.8725 21.3721 54.1704 97.0562

Exact-TBT – 3.8725 21.3721 54.1703 97.0560
Exact-EBT – 4.0069 26.1177 78.6247 167.7862

0.50 FEM 10 4.0313 22.3207 57.3520 104.7240
20 4.0312 22.3201 57.3501 104.7202
30 4.0312 22.3200 57.3500 104.7201
40 4.0312 22.3200 57.3500 104.7201

Exact-TBT – 4.0312 22.3200 57.3500 104.7201
Exact-EBT – 4.1763 27.4507 84.0928 183.9324
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Table 3   The first four 
non-dimensional vibration 
frequencies of two-phase strain 
gradient CSCS nanobeams, 
k/L = 0.05, lm/L = 0.10

�
1

# Of element 1st 2nd 3rd 4th

h/L = 0.01 0.10 FEM 10 30.1902 88.4054 185.4841 327.2339
20 30.1394 88.2344 185.0767 326.4289
30 30.1365 88.2244 185.0531 326.3821
40 30.1361 88.2232 185.0501 326.3763

Exact-TBT – 30.1360 88.2229 185.0494 326.3747
Exact-EBT – 30.1630 88.4021 185.6992 328.1158

0.50 FEM 10 33.2106 98.9171 212.2762 384.6866
20 33.2080 98.9069 212.2469 384.6108
30 33.2080 98.9067 212.2462 384.6091
40 33.2080 98.9066 212.2461 384.6090

Exact-TBT – 33.2080 98.9066 212.2461 384.6089
Exact-EBT – 33.2404 99.1259 213.0598 386.8484

h/L = 0.20 0.10 FEM 10 23.1542 55.1064 97.7910 148.8453
20 23.1224 55.0300 97.6542 148.6507
30 23.1205 55.0254 97.6457 148.6383
40 23.1203 55.0248 97.6446 148.6366

Exact-TBT – 23.1202 55.0246 97.6443 148.6361
Exact-EBT – 30.1630 88.4021 185.6992 328.1158

0.50 FEM 10 25.0153 60.0106 108.4558 167.8622
20 25.0139 60.0068 108.4487 167.8521
30 25.0138 60.0067 108.4485 167.8518
40 25.0138 60.0066 108.4485 167.8518

Exact-TBT – 25.0138 60.0066 108.4485 167.8518
Exact-EBT – 33.2404 99.1259 213.0598 386.8484

Table 4   The first four non-
dimensional frequencies of 
LNSG nanobeams with SFSF, 
CFFF, and CFCF boundary 
conditions. h/L = 0.10, 
k/L = 0.05, and �

1
= 0.10

B.C Lm/L 1st 2nd 3rd 4th

SFSF 0.01 FEM 9.59765 35.5311 71.4561 111.313
Exact-TBT 9.59759 35.5302 71.4529 111.306
Exact-EBT 9.77332 38.0160 81.9950 138.413

0.10 FEM 9.87936 39.9565 91.9994 167.369
Exact-TBT 9.87936 39.9565 91.9992 167.368
Exact-EBT 10.0511 42.4512 103.612 201.864

CFFF 0.01 FEM 3.27844 19.4821 50.0303 87.4159
Exact-TBT 3.27814 19.4799 50.0242 87.4047
Exact-EBT 3.30270 20.4753 55.8353 105.131

0.10 FEM 3.40853 22.2859 63.6034 125.342
Exact-TBT 3.40852 22.2858 63.6029 125.340
Exact-EBT 3.43523 23.6115 72.6312 156.761

CFCF 0.01 FEM 18.5304 46.7411 82.1336 120.081
Exact-TBT 18.5265 46.7304 82.1145 120.053
Exact-EBT 19.6305 52.9152 100.2635 158.850

0.10 FEM 22.8086 64.5556 126.184 205.344
Exact-TBT 22.8084 64.5546 126.181 205.339
Exact-EBT 24.6365 77.0886 168.305 304.566
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Table 5   Comparison between 
the first non-dimensional 
vibration frequency of the 
present LNSG Timoshenko 
nanobeams with h = 0.0001 
L and lm/L = 0 with those of 
two-phase Euler–Bernoulli 
nanobeams provided through 
the exact solution (exact) 
proposed in Reference[42]

B.C k/L �
1

0.05 0.10 0.50 0.75 1.00

SS 0.05 Present-FEM 9.76014 9.76715 9.81485 9.84255 9.86960
Exact [42] 9.76014 9.76715 9.81485 9.84255 9.86960

0.10 Present-FEM 9.46849 9.49880 9.67978 9.77714 9.86960
Exact [42] 9.46849 9.49880 9.67978 9.77714 9.86960

CF 0.05 Present-FEM 3.26170 3.29081 3.41739 3.47050 3.51602
Exact [42] 3.26167 3.29081 3.41739 3.47050 3.51602

0.10 Present-FEM 3.04116 3.09381 3.32818 3.42887 3.51602
Exact [42] 3.04116 3.09381 3.32818 3.42887 3.51602

CC 0.05 Present-FEM 19.0815 19.4233 21.0156 21.7345 22.3733
Exact [42] 19.0812 19.4232 21.0156 21.7345 22.3733

0.10 Present-FEM 16.3555 16.9236 19.7732 21.1379 22.3733
Exact [42] 16.3555 16.9236 19.7732 21.1379 22.3733

Table 6   Comparison between 
the first two frequency ratios of 
the present LNSG Timoshenko 
nanobeams with h = 0.0001 
L, lm/L = 0.20, and �

1
≃ 0.0 

with those of integral nonlocal 
strain gradient Euler–Bernoulli 
nanobeams [59]

B.C 0.01 0.05 0.1 0.2

1st 2nd 1st 2nd 1st 2nd 1st 2nd

SFSF Present-FEM 1.06213 1.3095 1.04687 1.26033 1.0198 1.16396 0.94825 0.94479
Reference [59] 1.06213 1.3095 1.04687 1.26032 1.01977 1.16391 0.94812 0.94465

SSSS Present-FEM 1.1755 1.58848 1.14424 1.47448 1.09906 1.30472 1 1.00001
Reference [59] 1.17551 1.58851 1.14403 1.47394 1.09896 1.30453 0.99999 0.99999

CFFF Present-FEM 1.05518 1.35113 1.0233 1.30239 0.97719 1.20268 0.87883 0.97787
Reference [59] 1.05518 1.35112 1.02327 1.30224 0.97708 1.20221 0.87855 0.97692

CSFS Present-FEM 1.46868 1.71322 1.34245 1.5247 1.20901 1.31569 1.00661 1.00669
Reference [59] 1.46868 1.71314 1.34054 1.5222 1.20717 1.31352 1.00506 1.00509

CFCF Present-FEM 1.61653 2.14515 1.51902 1.93537 1.32977 1.55395 0.9729 1.00592
Reference [59] 1.6165 2.14508 1.51862 1.93423 1.32867 1.55154 0.97119 1.00331

CSCS Present-FEM 2.40579 2.81432 1.93993 2.19268 1.51347 1.62454 1.01343 1.01358
Reference [59] 2.40561 2.81361 1.93373 2.18515 1.50852 1.61894 1.01024 1.01021
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Fig. 3   Influence of l
m
∕k on the 

fundamental frequency ratios 
of LNSG nanobeams with 
different boundary condi-
tions and thickness ratios, 
�
1
= 0.01, k∕L = 0.10
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Figure. 4   Influence of local 
phase fraction factor on the 
fundamental frequency ratios 
of LNSG nanobeams with 
different boundary conditions, 
h/L = k/L = 0.10
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Figure. 5   Variations of fre-
quency ratio of thin and thick 
LNSG nanobeams in different 
transverse vibration modes: 
�
1
= k∕L = 0.10
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By adding all of the knlmn elements which generated by 
changing i and j from one to the number of applied elements 

(57)

For j < i

m = 5i − 4, 5i − 3, ..., 5i + 4, 5i + 5
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(NE), the total nonlocal strain gradient stiffness matrix, 
KNSG, can be created.

In the following, the production process of the local strain 
gradient stiffness matrix, i.e., KLSG, is presented. Substitut-
ing Eq. (53) into the local strain potential energy, presented 
in Eq. (51), and taking the integral over the length of the 
beam element give the total potential energy due to local 
part of the jth element:

Now, the elements of KLSG matrix, associated with the 
jth element, can be generated by replacing the shape func-
tions into the Eq. (58) and taking the derivative with respect 
to the degrees of freedom. Therefore:

(58)
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Table 7   Comparison between 
the first non-dimensional 
frequencies of LNSG 
nanobeams obtained with 
different beam theories, 
k/L = 0.05 and �

1
= 0.1

h/L = 0.05 h/L = 0.15

BC lm/L lm/L

0.025 0.075 0.100 0.025 0.075 0.100

SFSF Exact-TBT 9.75324 9.91203 10.0071 9.41946 9.58071 9.67913
Exact-EBT 9.7981 9.9565 10.0511 9.7981 9.9565 10.0511
Dif. (%) 0.46 0.45 0.44 4.02 3.92 3.84

SSSS Exact-TBT 9.75639 9.97814 10.1622 9.44075 9.69881 9.89794
Exact-EBT 9.79866 10.0152 10.1972 9.79866 10.0152 10.1972
Dif. (%) 0.43 0.37 0.34 3.79 3.26 3.02

CFFF Exact-TBT 3.31872 3.38955 3.42848 3.26989 3.33848 3.37615
Exact-EBT 3.32501 3.39613 3.43523 3.32501 3.39613 3.43523
Dif. (%) 0.19 0.19 0.20 1.66 1.73 1.75

CSFS Exact-TBT 3.44834 3.80545 3.99801 3.3958 3.7424 3.92929
Exact-EBT 3.45511 3.81361 4.00691 3.45511 3.81361 4.00691
Dif. (%) 0.20 0.21 0.22 1.75 1.90 1.98

CFCF Exact-TBT 19.8359 22.3864 24.1371 17.7782 19.7195 21.0200
Exact-EBT 20.1500 22.8056 24.6365 20.1500 22.8056 24.6365
Dif. (%) 1.58 1.87 2.07 13.34 15.65 17.21

CSCS Exact-TBT 21.0843 26.2865 29.5118 18.8124 22.9695 25.5177
Exact-EBT 21.4342 26.8171 30.1630 21.4342 26.8171 30.1630
Dif. (%) 1.66 2.02 2.21 13.97 16.75 18.20



2380	 Engineering with Computers (2022) 38:2361–2384

1 3

Finally, to extract the mass matrix, the kinetic energy of 
jth element is written and then the mass matrix element is 
obtained as follows:

Here, it is helpful to note that, if the mesh distribution 
and nanobeam properties are uniform over the length of the 
nanobeam, the local stiffness and mass element matrices of 
all elements are similar, and therefore, they can be achieved 
easily by setting j = 1 in Eq. (59) and Eq. (60).

After generation of KLSG and KNSG matrices, the local/
nonlocal strain gradient matrix, KLNSG, can be produced by 
applying desired local phase fraction factor:

Since the rotation is not considered as a degree of free-
dom in the present element, two ways are proposed for sat-
isfying the boundary conditions with � = 0 and �x� = 0 . In 
the first one, similar to the approach utilized in Ref.[43], the 
penalty terms should be calculated and added to the total 
stiffness matrix, and in the second one, it can be considered 
that �xw = −� for � = 0 and �x,xw = −�x� for �x� = 0 in the 
boundaries, and therefore, the column and row associated 
with the � and � ′ in the boundaries should be, respectively, 
subtracted from the column and row of w′ and w′′ . Next, 
columns and rows related to the � and � ′ must be removed.

In the last step, free vibration of LNSG Timoshenko 
nanobeams can be investigated by solving the following 
eigenvalue problem:

3 � Numerical results and discussion

Before identifying the influences of applying the LNSG 
elasticity on the size-dependent vibrations of nanobeams, it 
is essential that the accuracy and correctness of the present 
formulations and solutions are examined. These assessments 
and further investigations on vibrations of LNSG nanobeams 
are performed by considering nanobeams with square cross 
section, i.e., b = h, and � = 1,E = 1, � = 0.3 and ks = 5∕6 . 
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(61)KLNSG = �1KLSG +
(
1 − �1

)
KNSG.

(62)
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⋮

adof

⎫⎪⎬⎪⎭
ei�t = 0 ; dof = 5NE + 5.

Furthermore, to conduct a comprehensive study, sev-
eral boundary conditions including simply supported 
(SS), clamped-free (CF), and clamped–clamped (CC) are 
evaluated.

Also, it should be noted that the BCs in which the bound-
ary strains are set equal to zero are shown by “S”, while 
“F” means that the zero higher order stress is satisfied. For 
example, “CSCS” stands for a clamped–clamped beam 
with zero strains at both ends, while “CFCF” refers to a 
clamped–clamped beam with zero higher order stress in the 
boundaries.

First of all, in Tables 1, 2, 3, the convergence trend of 
the present LNSG FEM is checked by comparing the non-
dimensional vibration frequencies obtained by the FE model 
with different number of elements and the exact ones gener-
ated by the present exact solutions. The results of Tables 1, 
2, 3 are extracted for the LNSG nanobeams with k/L = 0.05 
and lm/L = 0.1.

Now, to compare the results of the exact solutions with 
the FEM ones in the cases of the boundary conditions with 
zero higher order stresses, �1

kl
= 0 , the first four vibration 

frequencies related to the SFSF, CFFF, and CFCF beams 
are computed and listed in Table 4. The FEM results of 
Table 4 are produced by applying 20 elements. Also, these 
results are provided by considering h/L = 0.10, k/L = 0.05, 
�1 = 0.10 , and two different values of lm/L.

Several interesting points can be taken from the results 
listed in Tables 1, 2, 3, 4. In all boundary conditions, there 
are good agreements between the FEM outcomes with the 
exact ones, and this confirms the consistency of LNSG 
theory, since the exact results are produced by solving the 
differential governing equations that are derived using the 
differential form of LNSG, while the FE model is directly 
constructed by the integral form of LNSG. Furthermore, 
the present FEM, which is constructed employing a new 
higher order beam element, maintains its precision in both 
thin and thick nanobeams. Therefore, it can be concluded 
that the present LNSG FEM is shear-locking-free and its 
convergence is desirable. Accordingly, all following results 
are produced from FEM with applying 20 elements.

In the following, since there is no work on the transverse 
vibrations of nanobeam with two-phase local/nonlocal strain 
gradient, the locking-free property and validity of the present 
FEM are more investigated by doing comparison between 
the present FEM results corresponding to thin beams with 
h/L = 0.0001 and Euler–Bernoulli ones reported in the pre-
vious works. Therefore, in Table. 5, by assuming lm/L = 0, 
the non-dimensional frequencies of two-phase nanobeams, 
without strain gradient effect, are obtained for different non-
local parameters and local phase fraction factors and then 
compared with the similar exact results which have been 
extracted by the procedure explained in Ref.[42]. Also, 
in Table 6, by applying a negligible value for local phase 
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fraction factor, �1 ≃ 0.0 , as well as considering h/L = 0.0001 
and lm/L = 0.20, the frequency ratios, defined as Eq. (63), of 
integral nonlocal strain gradient nanobeams are computed 
and compared with the results of Ref.[59]:

Tables 5 and 6 reveal that the present LNSG FE model of 
Timoshenko nanobeam is reliable and shear-locking-free, 
since, even in case of the thin nanobeams, there are good 
agreements between the present FEM outcomes with the 
results reported in the previous works. In the following, to 
identify how the LNSG affects the vibration of nanobeams, 
the frequency ratio (FR) is calculated in several cases and 
its variations are respectively plotted in Figs. 3, 4, 5 versus 
the lm/k, �1 , and mode number. In Fig. 3, by considering 
�1 = 0.01 and k∕L = 0.10 , the fundamental FRs of nanobe-
ams with different boundary conditions and thickness ratios 
are depicted against the values of lm/k. Figure 3 indicates that 
by going from the lower values of lm/k to the higher ones, 
the FR curves, which are first located below the classic line, 
rise, and intersect the classic line in a certain value of lm/k, 
depending on boundary conditions and thickness ratio. Thus, 
it can be said that the softening effect of nonlocal parameter 
is dominant in lower lm/k, while the stiffening effect of strain 
gradient becomes more influential in higher lm/k.

Also, the differences between the FRs corresponding to 
zero boundary strains, for example SSSS, with the ones of 
zero higher order boundary stresses, for example SFSF, are 
insignificant for small values of lm/k, while these differences 
become considerable in higher lm/k, especially for CF and 
SS nanobeams. Therefore, it can be concluded that the role 
of how the boundary conditions associated with strain gradi-
ent are satisfied is more important in the cases with higher 
values of lm/k.

To identify the influences of local phase fractions factor 
and strain gradient on the FRs of the LNSG nanobeams, 
variations of the FRs due to changes of �1 are calculated for 
lm/L = 0.0 as well as lm/L = 0.05 and shown in Fig. 4. Evalu-
ations of these results indicate that decreasing effect of non-
locality reduces when the local phase fraction factor grows. 
Also, considering strain gradient leads to stiffening effects 
and these effects are more significant in the cases with zero 
strains in boundaries than those associated with zero higher 
order boundary stresses. In addition, the clamped–clamped 
nanobeam shows more sensitivity to size-dependence factors 
than the other nanobeams, so that the lower value of FRs as 
well as the higher one occur in this type of nanobeam.

In the following, to study on the role of scale param-
eters associated with the LNSG on the different vibration 
modes of nanobeams, in Fig. 5, the FRs of the LNSG thin 
and thick nanobeams with zero strains in boundaries are 

(63)frequency ratio =
Size dependent frequency

Classic frequency
.

displayed from the first to the fifteen mode for constant 
�1 = k∕L = 0.10 and different values of h/L and lm/L.

From Fig. 5, it is clear that the FRs corresponding to 
lm/L = 0 have the values less than one in all boundary condi-
tions and mode numbers. This is due to the softening effect 
of nonlocal parameter which its effect intensifies in the 
higher modes. On the other hand, the curves of lm/L = 0.10 
locate above the one and it can be seen that these curves rise 
by going to the higher modes. Accordingly, it can be said 
that similar to the nonlocal effect, the role of stain gradient 
becomes more considerable in higher vibration modes. An 
interesting behavior can be seen in the cases of lm/L = 0.05, 
so that from the first mode up to a specific mode, the role 
of nonlocality is more than the strain gradient and therefore 
the FRs show reduction, while after that specific mode, the 
downward trends have stopped and they can even increase 
due to the stiffness-hardening effect resulted from the strain 
gradient. Comparisons between the FRs of thin and thick 
nanobeams disclose that the FRs of thin beams show uni-
form manners, while the curves of the beams with h/L = 0.2 
have non uniform trends. Also, in most cases, thin nanobe-
ams show more sensitivity to scale parameters than the thick 
ones, especially in the higher modes.

Finally, to make a comparison between the results of EBT 
and TBT, the first non-dimensional vibration frequencies of 
LNSG nanobeams with different boundary conditions are 
computed by means of the exact solutions and presented 
in Table 7. These results are extracted for different values 
of h/L and lm/L as well as constant values of k/L = 0.05 
and �1 = 0.1 . Also, the percent of the difference, Dif. (%), 
between the outcomes of two beam theories is calculated and 
presented into Table 7.

From Table 7, it can be realized that, in all cases, the EBT 
produces higher frequencies than the TBT ones and theses 
differences intensify in the nanobeams with higher thickness 
ratio and stiffer boundary conditions. It is interesting to note 
that the difference percent depends on the lm/L in such a way 
that, for the CF and CC nanobeams, the higher lm/L values, 
the more discrepancy between the outcomes of EBT and 
TBT appears, while an opposite trend can be observed in 
the cases of the SS nanobeams.

4 � Conclusion

Size-dependent transverse vibrations of Euler–Bernoulli 
and Timoshenko nanobeams are studied using the LNSG 
elasticity. The exact solutions and FEM are developed by 
two different approaches. For exact solutions, the equal dif-
ferential form of LNSG is utilized to derive the differential 
governing equations and boundary conditions while the 
basic integral form of LNSG is employed to create the FE 
model. In addition, a new higher order shear-locking-free 
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beam element with simple shape functions is proposed to 
construct a locking-free FE model of LNSG Timoshenko 
nanobeams. To determine the influences of nonlocality and 
strain gradient on the vibration of LNSG, several studies 
have been performed. Evaluating the results shows that:

•	 The softening effect of nonlocal parameter is dominant 
in lower lm/k, while the stiffening effect of strain gradient 
becomes more influential in higher lm/k.

•	 The role of how the boundary conditions associated with 
the strain gradient are satisfied is more important in the 
cases with higher values of lm/k.

•	 The clamped–clamped nanobeam shows more sensitivity 
to LNSG size-dependence factors.

•	 In most cases, thin nanobeams shows more sensitivity to 
scale parameters than the thick ones, especially in higher 
modes.

•	 The present higher order beam element is an efficient, 
simple, and locking-free beam element which can be uti-
lized in future studies in the problems of the LNSG with 
more complexity.

Finally, it can be stated that the consistency between the 
order of governing equations and number of all boundary 

conditions as well as agreement between the results of equal 
differential form of LNSG, exact solutions, and those of the 
integral from FEM prove that the LNSG can be a good alter-
native to the common nonlocal strain gradient theory which 
its inconsistency has been proved.

Appendix‑A

Non dimensional form of CBCs related to the TBT:
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4
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2
4
)(Φ + �xWT )) = 0 at x = 1.
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