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Abstract

In this paper, the bending, buckling, and vibration behaviors of bi-directional functionally graded (BDFG) nonuniform
micro/nanobeams are investigated. A new Euler-Bernoulli beam model is developed for BDFG tapered micro/nanobeams
using Gurtin—-Murdoch surface elasticity theory and modified couple stress theory to capture the effects of surface energy
and microstructure stiffening, respectively. The present formulation accounts for the physical neutral surface. The material
properties of the bulk and surface continuums of the nanobeam are assumed to vary along the thickness and length directions
according to power law. Also, the cross section is assumed to vary linearly along the length direction. Hamilton principle
is employed to derive the nonclassical equations of motions and boundary conditions. The generalized differential quad-
rature method (GDQM) is employed to accurately evaluate the variable coefficients of the obtained governing equations.
Then after, the Navier’s method is employed for the simply supported BDFG nanobeam for its static bending deflection,
critical buckling load, and fundamental frequency. The proposed model is validated by comparing the obtained results with
available literature. Effects of different geometrical and material parameters on static and dynamic behaviors of small-scale
BDFG nanobeams with the simultaneous effects of microstructure and surface elasticity are comprehensively studied and
discussed. Results disclose that the nonuniformity parameters, aspect ratio, dimensionless material length-scale parameter,
surface stress, surface elasticity, and gradient indices have a significant effect on the bending, buckling, and free vibration
responses of BDFG tapered micro/ nanobeams.

Keywords Bi-directional functionally graded material - Nonuniform nanobeams - Surface elasticity theory - Modified
couple stress theory - Semi-analytical solution

1 Introduction as designability, lower weight, higher fracture toughness,

enhanced thermal properties, lower stress intensity factor,

Functionally graded materials (FGMs) are a subclass of
composite materials, which are designed to achieve the
optimal distribution of constituent materials suitable for
certain applications. The superior properties of FGMs such
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reduced residual thermal stress, reduced interface problems,
smaller stress concentration, enhanced corrosion resistance
damage resistance, etc., enable them to be suitable candidates
for a wide range of different practical fields of engineering
and science [1-6]. Based on their application, the spatial
variations of the mechanical, thermal, electrical, magnetic,
etc. of FGMs are tailored to satisfy particular applications in
numerous industrial/medical fields such as energy electron-
ics, aerospace, automotive, military, dentistry, and implants,
sensors and thermos-generators [7—10]. In addition, with the
rapid advance in nanotechnology, FGMs are currently used
in micro/nano-electro-mechanical systems (MEMs/NEMs)
such as electrically actuated micro/nano-electromechanical
systems [11, 12], atomic force microscopes [13] and also in
thin films in the form of shape memory alloys [14]. At small
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scale, both experimental and molecular dynamics simulation
results have invariably shown that the small-scale effects
cannot be neglected in the analysis of mechanical properties
of micro- and nanostructures, especially in micro- and nano-
beams applied as sensors and actuators [15-20]. Nowadays,
microbeams have been widely used in micro-/nanoelectro-
mechanical systems (MEMS/NEMS) such as micro-engines,
micro-turbomachinery, and micro-machining, the ultrasonic
piezoelectronic motor, and the development of a micromo-
tor for in vivo medical procedures. However, the classical
continuum mechanics theories failed to accurately predict
the responses of such small-scale structures.

In the open literature, several size-dependent nonclassical
continuum mechanics theories that contain additional mate-
rial length-scale parameter(s) have been developed to over-
come this barrier such as couple stress theory (CST) [21],
strain gradient theory (SGT) [22], modified strain gradient
theory (MSGT) [20], modified couple stress theory (MCST)
[23], nonlocal elasticity theory [24], and nonlocal strain
gradient theory (NSGT) [25]. For more details about the
nonclassical continuum mechanics theories, the interested
readers may refer to the review articles [26-28]. Over these
nonclassical continuum mechanics theories, MCST has the
merit of involving only one additional higher-order material
length-scale parameter to simulate the small-scale effect, in
addition to classical material Lamé constants. Based on this
feature, the MCST has been employed by many researchers
to capture the scale effect on the behavior of microstructures.
To evaluate the material length-scale parameter of micro-
scale structures, some experiment tests have been performed
such as torsion test of slim microcylinders having various
diameters [29-31] and bending test of thin microbeams of
various thicknesses [20, 32]. However, experimental results
proved that different materials have different material length-
scale parameters [20, 33]. Furthermore, the surface elasticity
theory proposed by Gurtin and Murdoch [34, 35] is widely
used to model the surface energy effect for thin and ultra-
thin structures.

Due to the vast applications of FGM micro/nanostruc-
tures, many studies have been performed to investigate the
static and dynamic behaviors of FG micro/nanobeams with
material variation along the thickness, length, or combina-
tion of them. In the framework of the modified couple stress
theory, a major part of these studies is focused on microbe-
ams made of transverse functionally graded material (TFG)
which are graded along the thickness direction [36—48], and
on the axially functionally graded material (AFG) microbe-
ams whose material properties are varied through the length
direction [49-55].

As pointed out by Nemat-Alla [56], in some engineering
applications such as aerospace craft and shuttles, distribu-
tions of the stress or thermal field in the structural elements
of such advanced machines can be in two or three directions
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and thus, the conventional 1D FGMs are not sufficient. As
a consequent, there is a need for multi-directional FGMs
whose material properties are tailored in two or three direc-
tions to obtain more effective high-temperature resistant
materials. However, performance of bi-directional (two-
dimensional) functionally graded materials (BD-FGMs)
beams whose material properties vary along both the thick-
ness and length directions was modeled and investigated
by researchers for different mechanical problems. Lii et al.
[57] studied the static bending and thermal deformations of
BDFG beams with exponential material variation employing
the state-space-based differential quadrature method (DQM).
Zhao et al. [58] suggested a symplectic framework using the
state-space formulation for the static and free vibration anal-
yses of exponential BDFG beams. Simsek [59] studied the
free and forced vibrations of exponential BDFG Timoshenko
beam subjected to a moving load using the Lagrange equa-
tions and simple polynomial forms. Simsek [60] also inves-
tigated the buckling behavior of BDFG Timoshenko beams
with different boundary conditions using Ritz method.
Wang et al. [61] investigated the free vibration of BDFG
Euler-Bernoulli beam with clamped-free ends employ-
ing semi-analytical and semi-numerical methods. Pydah
and Sabale [62] analytically studied the flexural response
of curved Euler-Bernoulli beams made of power-law BD-
FGM. In another study, Pydah and Batra [63] analyzed
the static behavior of BDFG thick circular sandwich beam
using the shear deformation beam theory. Karamanli [64]
explored the elastostatic behavior of a BDFG beam with
different boundary conditions using various beam theo-
ries and the symmetric smoothed particle hydrodynamics
method. The flexural behavior of BD-FGM sandwich beams
is investigated by Karamanli [65] using a quasi-3D theory
and a meshless method. Based on the third-order beam the-
ory, Karamanli [66] investigated free vibration response of
exponential BDFG beams with various boundary conditions
using the Lagrange equations. Nguyen et al. [67] used finite
element method (FEM) to compute the vibration response
of BDFG Timoshenko beams obeying power-law material
distribution under a moving concentrated load. Rajasekaran
and Khaniki [68] studied the effect of crack type, posi-
tion, and depth on the dynamic behavior of BDFG cracked
Euler-Bernoulli beams using FEM. Li et al. [69] utilized
the meshless total Lagrangian corrective smoothed particle
method to study the bending behavior of BDFG beams fol-
lowing power-law and exponential distributions in thickness
and length directions, respectively. Tang et al. [70] stud-
ied the nonlinear free vibration of BDFG Euler-Bernoulli
beams by employing the DQM and the homotopy analysis
method. Based on the third-order shear deformation and
von Kirmén nonlinear theories, postbuckling response of
BDFG porous beams was investigated by Lei et al. [71]
via the DQM. Huang and Ouyang [72] introduced an exact
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solution for bending analysis of power-law and exponential
BDFG Timoshenko beams based on the classical analy-
sis. The bending and free vibrational behaviors of BDFG
cylindrical beams with radially and axially varying material
properties based on a high-order beam model are studied by
Huang [73]. Chen and Chang [74] studied the free vibration
behavior of BDFG Timoshenko beams based on the Che-
byshev collocation method. Using the variational iteration
method and the Hamiltonian approach, Mohammadian [75]
presented closed-form analytical solutions for the nonlinear
vibration of damped and undamped BDFG Euler—Bernoulli
incorporating higher-order nonlinear terms in the strain field.
Using FEM, Nguyen [76] investigated the dynamic behav-
ior of power-law BDFG sandwich beam due to nonuniform
motion of a moving point load based on the first-order shear
deformation beam theory. Recently, Ghatage et al. [77] pre-
sented an exhaustive review on the modeling, analysis, appli-
cation, and future vision of multi-directional FG structures.

In the framework of nonclassical continuum theories,
some studies have been carried for BDFG micro/nanobe-
ams. Using DQM, Nejad et al. [78] and Nejad and Hadi
[79] studied the size effects via Eringen’s differential non-
local elasticity theory (EDNET) on the linear buckling and
free vibration responses of BDFG Euler—Bernoulli nano-
beams with an arbitrary material variation. Karamanli and
Vo [80] developed a finite element model for studying the
flexural behavior of BDFG microbeams based on the quasi-
3D theory and modified couple stress theory (MCST). In
Karamanli and Vo [81], the size effects on the structural
behaviors of BDFG porous microbeams was captured via the
MSGT with three material length-scale parameters. Shafiei
et al. [82] and Shafiei and Kazemi [83] employed DQM to
investigate the influences of the gradation indices, micro-
scale, nonlocal parameters, and porosity on the free vibra-
tion and buckling responses of porous BDFG microbeams
and nanobeams, adopting MCST and EDNET, respectively.
In the framework of MCST and quasi-3D deformation the-
ory, Trinh et al. [84] studied the free vibration behavior of
exponentially varying BDFG microbeams using the state-
space concept. Based on the nonlocal strain gradient theory
(NSGT), Li et al. [85] investigated the nonlinear bending
response of BDFG Euler—Bernoulli nanobeams with power-
law material distribution along thickness using DQM. Yang
et al. [86] employed DQM to obtain the nonlinear responses
of exponentially varying BDFG Euler—Bernoulli nanobeam
based on EDNET and von Kidrmén geometric nonlinear-
ity. Yu et al. [87, 88] adopted the quasi-3D beam theory
and MCST to study the size-dependent bending and free
vibration of BDFG microbeams using isogeometric finite
element analysis. Based on the Euler—Bernoulli theory and
MCST, Khaniki and Rajasekaran [89] used FEM to investi-
gate the mechanical behavior of BDFG nonuniform micro-
beam whose material properties are arbitrary varied. Forced

vibration analysis of a general nonuniform varying BDFG
Euler—-Bernoulli microbeam resting on Winkler elastic foun-
dation subjected to a moving harmonic load is presented by
Rajasekaran and Khaniki [90]. Utilizing third-order shear
beam theory and MCST, Chen et al. [91] investigated the
static and dynamic analysis of postbuckling of BDFG micro-
beams using DQM. This work was extended by Chen et al.
[92] to study the free vibration, buckling, and dynamic sta-
bility of BDFG microbeams embedded in an elastic medium.
Sahmani and Safaei [93, 94] investigated the size-dependent
nonlinear free vibration and resonance behaviors of BDFG
nanobeams within the context of the hyperbolic shear defor-
mation beam theory and NSGT employing DQM. In another
study, Sahmani and Safaei [95] extended this model to study
the effect of homogenization scheme of FGM on the nonlin-
ear bending and postbuckling responses of BDFG nanobe-
ams. Rahmani et al. [96] analyzed the vibration response of
power-law BDFG rotating porous nanobeams based on Red-
dy’s beam theory and a general nonlocal theory employing
DQM. Attia and Mohamed [97, 98] developed a microbeam
model based on MCST to explore the static and vibration
behaviors of thermal buckling and postbuckling of BDFG
nonuniform shear deformable microbeam. Barati et al. [99]
investigated the transverse vibration of BDFG nanobeams
subjected to a longitudinal magnetic field is investigated via
the EDNET. The static bending of Euler—Bernoulli nano-
beams made of BDFG material with the method of initial
values in the frame of gradient elasticity is studied by Celik
and Artan [100]. The free vibration behavior of BDFG nano-
beams is analyzed via EDNET by Dangi et al. [101]. Malik
and Das [102] studied the free vibration behavior of rotating
BDFG Euler—Bernoulli nanobeam based on EDNET.
According to surface elasticity theory (SET) proposed
by Gurtin and Murdoch [34, 35], the surface layers of the
bulk continuum material are treated as a two-dimensional
membrane of zero thickness with different properties from
the bulk continuum. This theory can efficiently incorporate
the surface energy effect into the mechanical responses of
micro/nanostructures. In recent years, Gurtin-Murdoch sur-
face elasticity theory has been adopted in many studies to
explore the surface effects on the bending, buckling, vibra-
tion, and instability responses of FGM micro/nanobeam, i.e.,
[103-112]. Simultaneous effects of surface energy and cou-
ple stress have been investigated on the static and dynamic
analyses of micro/nanobeams by some authors. Gao and
co-workers [113-116] developed a size-dependent model
incorporating microstructure and surface energy effects for
homogeneous beams using different beam theories. Attia
and Mahmoud [117, 118] investigated the mechanics of
elastic and viscoelastic Euler—Bernoulli beam on the basis
of nonlocal-couple stress elasticity and surface energy theo-
ries. Zhang et al. [119] studied the size-dependent behavior
of nanobeams incorporating bulk and surface effects. For
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FGM micro/nanobeams, Attia [120] and Attia and Rahman
[121] explored the mutual effects of microstructure and sur-
face energy on the mechanics of elastic and viscoelastic FG
nanobeams. The pull-in stability and freestanding of elec-
tromechanically actuated FG nanobeams in the framework
of MCST and SET in [122—-124]. Shanab et al. [125-127]
and Attia et al. [128] presented a comprehensive investiga-
tion of nonlinear bending and vibration of TFG Euler—Ber-
noulli and Timoshenko nanobeams using an integrated
couple stress—surface energy model. On the basis of two-
phase local/nonlocal formulation, Hosseini-Hashemi et al.
[129] studied the damped vibration behavior of viscoelas-
tic Euler—Bernoulli nanobeams in the presence of surface
energy. Yin et al. [130, 131] studied the static bending and
free vibration behaviors of the nonclassical Bernoulli—Euler
and Timoshenko beams based on MCST and SET using
isogeometric FE analysis.

From the above literature review, it is noted that most
of the researchers are focused on the mechanical behav-
ior of the BDFG microbeams with uniform cross section
and in the absence of surface energy effects. To the best
of the author’s knowledge, there is no reported work on
the mechanics of BDFG micro/nanobeams accounting for
the simultaneous effects of cross-section nonuniformality,
microstructure, and surface energy. The present study aims
to investigate the static bending, buckling, and free vibration
behaviors of tapered BDFG nanobeams based on MCST and
Gurtin—Murdoch SET to simulate, respectively, the micro-
structure and surface energy contributions for the first time.
All the material properties of the bulk continuum and sur-
face layers including the material length-scale parameter
and surface parameters are varies according to power-law
in both thickness and length directions. Hamilton’s energy
principle has been used to obtain the equations of motion of
Euler-Bernoulli nanobeam on the basis of physical neutral
surface concept. To this end, the Navier solution in con-
junction with GDQM is employed to solve the nonclassical
equations for simply supported nanobeams. To authenticate

A5 (), T (x), T (), p* (%)

A0, 1 (), T (), p*T (%)

“I” Pure
ceramic

the preciseness of the developed model and solution pro-
cedure, the obtained results are compared with those in the
open literature. The influences of different geometrical and
material parameters on the static and dynamic responses of
nonuniform BDFG micro/ nanobeams are examined and
discussed in detail.

2 Theory and formulation

In this section, the size-dependent governing differen-
tial equations, and corresponding boundary conditions of
a BDFG nonuniform micro/nanoscale beams are exactly
derived using the Hamiltonian principle. To model a general
micro/nanobeam for mechanical problems, the present for-
mulation considers the simultaneous effect of microstructure
and surface energy using the modified couple stress theory
and Gurtin—-Murdoch surface elasticity theory, respectively,
in the framework of continuum mechanics. This is the first
time to include the surface energy effects on BDFG tapered
nanobeams in the presence of microstructure effect. For this
purpose, consider a nonuniform nanobeam whose dimen-
sions with respect to Cartesian coordinate system (x, y, z)
are shown in Fig. 1. The middle plane being z = 0 with ori-
gin at x = 0. Both the thickness and width of the nanobeam
are assumed to vary along length L as h(x) = h (1 - bx/ L)
and b(x) = by(1 — B,x/L), respectively, where §, and B,
denote the taperness parameters describing the cross-sec-
tional change along thickness and width directions, respec-
tively; and A, and b, represent, respectively, the thickness
and width at x = 0.

2.1 Bi-directional functionally graded material

Due to the continuous grading of the material properties of a
BDFG beam along both the axial and transverse directions,
the effective material properties are defined in terms of the
power law in both directions as follows: [59, 60]

“w

r” Pure z
metallic

b(x)

Fig. 1 Schematic sketch of a nonuniform bi-directional functionally graded nanobeam
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where V), is the volume fraction of the constituent at the
upper right corner of the beam, and the subscripts [ and
r represent, respectively, the phases at the lower left and
upper right corners of the BDFG beam. In Eq. (1), k, and
k, stand for non-negative numbers (FGM property gradient
1ndlces) that determine the material variation profile through
the length and thickness directions, respectively. Following
Eq. (1) the variations of the effective Young’s modulus (E?),
mass density (p?), Poisson’s ratio (v), and variable micro-
structure material length-scale (/) of the bulk continuum,

can be defined as
Z 1\ x\&
B (g _ By 241 (_)
+( r 1)<h(x)+2> L (23)
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The effective surface parameters, surface Lamé’s con-
stants (A° and y*), surface residual stress (z*), and surface
mass density (p*) of the BDFG beam are expressed accord-
ing to the bi-directional power law in Eq. (1), as follows:

EP(x,2) =

pP(x,2) =

v(x,2) = v, + (vr

k, K,
Boz) =4+ (2= ) <h(x) + 1> ($)" (3a)
s _ s s < 1 8 x\k
Ko =w+ (=) 45+ 3 ()" (3b)
z 1\ x\&
T(XZ)_T +(T —T)<ﬁ+§> (Z) s (3C)
s s s s Z 1 k: X kx
n@x)=pf+0n—pﬂ<—65+§> (Z)' (3d)

Herein and throughout the paper, superscripts “B” and
“s” refer to the bulk and surface continuums, respectively,
of the nanobeam.

In Egs. (1-3a, 3b, 3c, 3d), the position of the midplane (z)
is taken as a reference. It is obvious that the variation of the
material properties of a BDFG is non-symmetric about the
geometric midplane of the beam. Consequently, the associ-
ated physical neutral plane deviates from the midplane coun-
terpart [97]. So, it is defined that e, = z — z,,, in which gz,
refers to the z-coordinate of the physical neutral plane that
can be determined as follows:

/A(x)Z[AB(x’ 2) +2uB(x, 2)|dA

() = S s [ AP, 2) + 2B (x, 2)] dA 7

“

where e, is the distance between the midplane and the neu-
tral plane as shown in Fig. 1. It is clear that the position of
physical neutral plane is a function of axial direction due
to the variations of both the cross section and the material
properties along the axial direction. For symmetric varia-
tion of the beam material properties about its midplane, the
parameter e, is equal to zero. Lamé’s moduli of the bulk
material u®(x, z) and A8(x, z) are related to Young’s modulus
EB(x,z) and Poisson’s ratio v(x, z) of the beam material as
follows:

EB(x, 2)v(x, 2)
(1 +v(x,2)(1 = 2v(x,2)’
3
It is obvious when the Poisson’s ratio effect is neglected,
the term (A8(x, 2) + 2uP(x, 2)) yields to E(x, z), as reported
in [59, 60, 93, 94].

EP(2)

=% B —
0@+ D) and A°(x,z2)

WPx,2) =

2.2 Modified couple stress theory

Based on Euler—Bernoulli beam theory, all applied loads and
geometry are such that displacement field of a BDFG micro/
nanobeam at an arbitrary point at a height (z) measured from
the midplane and time (#) can be given as

Iw(x,1)

Ux,z,0) = ux, 1) — 2, = (6)

W(x,z,t) = w(x, 1),

where U and W represent the displacements in axial and
transversal directions, respectively, of an arbitrary point
(x,y,z) on the beam cross section at time (). u(x, ) and
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w(x, t) are the axial and transverse components of displace-
ment of the point on the physical neutral axis.

In the context of the modified couple stress theory
(MCST) proposed by Yang et al. [23], the strain energy of
the bulk continuum of deformed micro/nanobeam made of
an isotropic linear elastic BDFG is given as

// € +m,j)(l])dAdx @)

where £; and o;; are, respectively, the strain tensor and the
classwal Cauchy stress tensor; and y; and m;; are, respec-
tively, the symmetric rotation gradient tensor and devia-
toric part of the couple stress tensor. These tensors can be
expressed as follows [23]:

1
e = 5 (i + 1) (8a)
oy = 2pu(x, 2)€;; + Ax, 2)Ey Sy, (8b)
1 1
2= 50+ 0,:)30; = Sy, (%a)
my = 2u(x, 2P (x, 2) 1 (9b)

in which, e is the cyclic permutation symbol and 6; denotes
the Kronecker delta. u; is the displacement vector given by
Eq. (6), 6; is the rotation vector, and I(x, z) denotes the mate-
rial length-scale parameter which captures the size-effect
due to the material microstructures in the nonclassical
BDFG beam model. In the aforementioned equations and
throughout the paper, the summation convention and stand-
ard index notation are used, with the Latin indices running
from 1 to 3 and the Greek indices from 1 to 2 unless other-
wise indicated.

Based on the kinematic relations of EBBT in Eq. (6), the
nonvanishing components of Ejjs Ojjs 0, Xij» and my; can be,
respectively, obtained as

ou(x, 1) *w(x, 1)
- - , 10
€y o Z, o2 (10a)
ou(x, 1) O*w(x, 1)
— B B
0 = (A0 0 + 20 0) | —= - 5, 2| (10D)
ow(x, 1)
0, = ——22,
; — (11a)
1 0°w(x, 1)
Yy = =555 (11b)
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2.3 Surface elasticity theory

In this study, Gurtin—-Murdoch theory of surface elastic-
ity is employed to model the interactions between the bulk
material and elastic surface of nanoscale structures, Gurtin
and Murdoch [33, 34]. In this theory, the surface layer of
a bulk elastic material satisfies distinct constitutive equa-
tions involving surface elastic constants and surface residual
stress. According to the Gurtin-Murdoch surface elasticity
theory, the strain energy in the surface layers continuum
of deformed micro/nanobeam made of an isotropic linear
elastic BDFG can be obtained as [113-115, 117]

L
= 1/ ?{ 0} (x, e (x, NdSdx. (12)
2/ 0

In accordance with the Gurtin—Murdoch theory of surface
elasticity, the surface stress—strain constitutive equations for
the surface layers can be introduced as follows [33, 34]:

o =T D80 + 2(HH (0, 2) — T (1, 2) )€l

+ (A0, 2) + 75(x,2) ) €2 8,5 + T, Z)uaﬂ’ (13a)

o =T, uy (e, B =), (13b)

where A° and p* are the surface elastic Lame’s constants and
7° is the residual surface stress under unstrained conditions
(i.e., the surface stress at zero strain). ¢’ _ is the out-of-plane
components of the surface stress tensor. Signs (+) and (—)
stand for the upper and lower surface layers at z = h(x)/2
and z = —h(x)/2, respectively, of the BDFG nanobeam. Fol-
lowing Egs. (6) and (10a), the nonvanishing components of
the surface stresses in terms of the displacement field can
be obtained as

s _ st . o du(x, 1) _ o*w(x, 1)
o =7%x2) + (I, 2) + 21 (x, 2)) ( E L ),
(14a)
s st s _ sk ow
o, =T u, =T, z)anz. (14b)
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where n_ is the z-component of the unit outward normal vec-
tor to the beam lateral surface.

2.4 The equations of motion of BDFG nanobeam
based on the surface elasticity

Hamilton’s principle is used to obtain the nonclassical equa-
tions of the motion of BDFG tapered nanobeam considering
the simultaneous effect of modified couple stress and surface
elasticity. Unlike the existing BDFG beam models, the pre-
sent model accounts for both axial and transverse deforma-
tions and the Poisson’s effect is incorporated.

According to Gurtin—Murdoch surface continuum theory
of elasticity and modified couple stress theory, the first varia-
tion of the total strain energy, including the bulk and surface
continuums of a BDFG tapered nanobeam can be given as

L
o
ST = 6TIP + 6IT° = 55/0{/A(GM6H +2m, 1, ) dA

+7§ (0 Ex T ZGnXenx)dS}dx,
A
as)

where €, Ea_n Substitution of Egs. (10a, 10b), (11a,
11b, llc) and (14a, 14b), Eq. (15) can be obtained in terms

of the stress resultants as follows:
L
ST = / [N( oou Y+ (e, (x)a_w>05_w] dx
0 " ox/ o0x
(16)

in which,
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The stress resultants of the surface continuum are given
by

N (x) :?{ S AL (0%~
M?(x) 2,05, B (0% —

where

B ()22 +Cy)
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(20)

3 3
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Z

In Egs. (18) and (21a, 21b), dA and dS are the differential
area and line elements, respectively.

Performing the partial integration over the time interval
(% tf] and after some mathematical manipulations, the first
variation of the strain energy can be obtained as

0M(x)> _M(x)aa_w] }d,, (22)
ox 0

NG = N2 + N () = 330, (17a)

1 o
M(x) = MP(x) + M°(0) + YP () — EC‘I (), (17b)
The stress and couple-stress resultants of the bulk con-

tinuum are given by

N o, Au05 =~ BuTE
MB(x) z/ 240y (dA =1 B, ()% =D ()% ,
B X
Y7 (x) A m,, A (x )ax2
(13)

The first variation of the kinetic energy of the BDFG
nanobeam incorporating the effect of surface mass density
can be obtained as

oW \?
W) )}

s (/.1 B<w<<a o
of rea((5) (5 )]s}
=a/:%{/A{f<x’z)(<z—:—zn%>2+<a%>2)}dA
of oo (2-az) e (2))] o} .

Proceeding the above integration by parts over the time
interval [#,, tf], one can obtain the following:

H,_/
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o°’w
/det //{[IA(x) - ()d aﬂ]&

u dlg(x) 9%u
+1 +1 + Ju
[A(x) s05052 T Tox o

o*w ol,H(x) 93w
-1 — o dxdt
oW 592~ “ax ooz |0V [P

. 5 L
+//{[IB(x)g—;— px )aadz]éw} dt
L
+ / {[IA(x)a IB(x) ]5u+ [IA(x)—]
0

ow
B WA YAl P AL O
D()axar] ax} -

—Fma
24)

where the effective mass moments of inertia are given by

1

L,(x) by fhy)
Iz(x) / / pp(X,2)9 2, ¢dzdy + 7{ py(x,2)9 z, ¢dS.
I,(x) bW ) 2,2 0A z,2

(25)
From the general expression of the work done by external
forces in the modified couple stress theory and in the surface

elasticity theory, the virtual work done by the forces applied
on the current beam can be written as [46, 113-115, 132]

ST =/ (f-5u+fm-69)d£2+}2{
Q
dou
+/LP(E + 2
(26)

where f and f,_ are, respectively, the body force resultant per
unit volume and body couple resultant per unit volume, and
t and § are, respectively, the traction resultant per unit area
and surface couple resultant per unit area, and S represents
the surface of domain Q. The first variation of work done
by the external applied forces on the time interval £, 7] can
be obtained as

r
of v [ [ -2
0]

2
<q—Pa—W _oBow ﬁ)aw}dxdz

(t.6u+5.50)dS
0A

ow 06w )
dx,
ox 0x

ox2 Ox 0x  Ox
+ /zf {(W+P)ou+ (V+P— fuc ) = (W1, + A1, )22 }Ldt,
% ox Jo

@7
in which, f and g are the distributed axial and transverse
loads per unit length along the x-axis; P is the applied exter-
nal compressive axial; and f,. is the y- component of the
body couple per unit length along the x-axis. N and V are

the applied axial force and transverse force at the two ends of
the beam, respectively; and M, and M, denote the classical

@ Springer

and non-classical bending moments due to, respectively, the
normal stress component o, and the couple stress compo-
nent m,, at the two ends of the microbeam.

To this end, the Hamilton’s principle states that

1
5/f [ — (T = 11*) |dt = 0. (28)
Ty

Substituting Egs. (22), (24) and (27) into Eq. (28), apply-
ing the fundamental lemma of calculus of variation and
invoking the condition of zero variation at times ¢ = #, and
1 =1, the governing equations of the nonuniform BDFG
nanobeam are obtained as the follows:

0’u ON(x) op
u= -1, (L Lo,
“= g+ ax o
(29a)
*w u_ ) 9%u
sw=—1 2z
W= h@gs )a o2 ox oP
o'w () Pw | PM(x)
+1
PGt Tox axar T ow
*w dC, (x) 9P\ ow
+(Ca0=P) o ' < ox  ox ) ox
of..
+ == +4=0,
ox 1 (29b)
with the following boundary conditions:
Su : Eitheru =u or — N(x) + (N + P) =0, (30a)
~ oM
Sw : Either w =w or ) +C (x)a - Pd_w
0 "7 ox ox
02 _ 0 ~
-1 + V= =W,
505 T )a o7 e =V = Oorw (30b)
52 Either? =2 o) - (7, + i,,) = 0. (300)
ox ox Ox

2.5 The equations of motion of BDFG nanobeam
in terms of the displacement field

Substitution of Egs. (17a, 17b), (18) and (20) into Eq. (29a,
29b) gives the following size-dependent governing differen-
tial equations in terms of the displacement field:
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02
ou= —I,(x)— on + Ip(x )0 0 5

0%u aAl 1 (%) ou
+A —t —=
10 0x2 ox Ox
*w 0B (x) 92w
- B = - 2
0x3 ox  0x?
aC’ (x)
Py 0 +fu - ﬁ) = 0’
2 ox ox (31a)
0*w u 6IB(x) 0*u
ow= LGy ~bW55E T o aﬂ
otw I Pw
M5 302 T Tox ovor B”(x)_
aBll(x) 0%u 0? Bll(x) au
T e 0x2  ox _D“()
an(x) 93 W . 02 Dll(x)
T ox o <C"(x) P ox? 6x2
L (G _op\ow 176 af
ox ox Jox 2 o0x? ox B (31b)

Moreover, the corresponding boundary conditions at
x =0 and x = L are as follows:

Su : Either u =u orA“(x) B”(x) S+ CS( )= (N+P) =0,
(32a)
herw =i Cu
éw : Eit = -1
w : Eitherw =w or — Iz(x)— s +Ip(x )a at2
! ow 0*u 0B (%) ou
A _ P - - huthed
+(Cw-P) = B, (x) = o ax
a w aDu(x) 0*w
-D —ur/Z e
nlx ) ox  0x?
1 acsl(x) _
= ~V=0,
2 ox TV (32b)
déw aw dw
. Either —
ox 0x o8, (x )
-D + C‘ M. +M, ) =0,
ll(x) (x) ( c nc) (320)
with
Ap () A (%) + AL (x)
B x) ¢ = B,,(x) + B} (x) ) (33)
D (x) D, (x)+ D;x(x) +A,(x)

When the material gradation is assumed in thickness
direction only and by neglecting the axial displacement

component, the obtained equation of motion and boundary
conditions for the transverse displacement are identical with
those reported in [120, 121]. Moreover, without consider-
ing surface energy and the material gradation in the axial
direction, the obtained governing equations and associated
boundary conditions of a uniform transverse functionally
graded (TFG) microbeam are the same as those presented
in [46].

3 Solution procedure

In general, deriving an analytical solution of the equations
of motion (Egs. 31a, 31b) is quite difficult because of their
variable coefficients attributed to the nature of bi-directional
material nonhomogeneity and the nonuniform cross sec-
tion. In addition, accounting for the physical neutral axis
as a function of axial direction of the beam and considering
the gradation of all the material properties of both the bulk
and surface continuums makes the problem more complex.
However, obtaining closed form formulas for the governing
equations coefficients is quite difficult. To solve this issue,
these coefficients are numerically calculated in an accurate
way using quadrature method at each point of coordinate x.
In this circumstance, the generalized differential quadrature
method (GDQM) is employed to translate Eqgs. (31a, 31b)
into a set of coupled fourth-order ordinary differential equa-
tions. Besides, with the help of GDQM, the derivative of the
discretized calculated coefficients with respect to coordinate
x is easily obtained. First, the procedure of GDQM is briefly
reviewed.

3.1 Generalized differential quadrature method

The generalized differential quadrature method (GDQM), as
an efficient and effective method in differentiating smooth
functions, is employed to obtain the derivatives of the coef-
ficients with respect to coordinate x arise in the governing
equations, i.e., 0B, (x)/dx, 0*B,,(x)/0x>,...etc. For this pur-
pose, let the nanobeam length (0 < x < L) is discretized to
N sampling points along the axial direction according to the
Chebyshev—Gauss—Lobatto formula as

X —1[1—cos<i_
2

N_lln')],i= 12,....N, (34)

where the inner sampling points x; are not equally spread in
the domain.
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In the framework of the GDQM, the r th-order deriva-
tive vector of any continuously function (coefficient) can be
expressed as follows:

F" =D'F, (35a)
with

r r r r r T drf
FO = [f(), () ,frf )] and f;,() = % x', (35b)

where D" is the r th-order derivative weighting coefficient
matrix of dimension NXN. If r = 1, the first-order derivative
weighting coefficient matrix (D') is computed as follows
[133, 134]:

N
1 X=X, . .
X;—X; H Xj—X,, ! ?é‘]
| m=1
Dij:< m;él',m;éj s (36)
N
1 l==j
m#Lm:le_%
and D" = D'D" ' forr > 2.

For simplicity, in the following subsections, the notation
of the discretized calculated coefficients at each node will be
unchangeable, just dropping (x). The corresponding vector
of the first and second derivates of any coefficient will be
noted by subscripts d and dd, respectively.

3.2 Semi-analytical solutions

After evaluating the nodal values of the coefficients as
well as their derivatives accurately, the Navier-type solu-
tion is developed for nonuniform BDFG simply supported
nanobeam in the form of power series with M terms. Equa-
tions (31a, b) are analytically solved to obtain the static
bending, buckling, and free vibration of BDFG nanobeam.
The displacement field is assumed as follows:

M M
u(x, 1) = Z U,cos(a,x) e andw(x, 1) = Z W, sin(a,x)e™",
n=1 n=1
(37
wherei = \/—1,a, = nz /L, ® is the fundamental linear fre-
quency, and U, and W, are the unknown Fourier coefficients
to be determined.
Substituting Egs. (37) into Egs. (31a, 31b) yields
anx) + A0, sin(anx) - (ozIAcos(anx)] U,

M
it 2 .
e Z —[ A acos(

n=1

+ [8110‘3 cos(anx) + B”dai sin(anx) -’ [IBancos(anx)H W,

5 . 0P
+C()d+ju - E =0,
(38a)
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M
P 2 -Dy,asin(a,x) + 2Dy 40 cos(a,x)
n=1

—(C = Dy1ga), sin(a,x) + C: ja,cos(a,x) + Pa’sin(a,x)
+o? [Ipa? sin(a,x) +I;sin(a,x) — Iyya,cos(a,x)]|W,
+ By @sin(a,x) — 2B, 02 cos (a,x)

- IBansin(anx)” U,

—B“ddansin(anx) + @’ [IBdcos(zx"x) -
aﬁl( =0

ox (38b)

+Cluta+t

For simplicity, the terms C;,, and C} ,,(x) are dropped from
Egs. (38a) and (38b), respectively.

3.2.1 Semi-analytical solution for static bending

The static bending problem of simply supported nanobeam
is obtained from Eqgs. (38a) and (38b) by setting o to zero
and the external forces P and f body couple f,. are also set
to zero. The applied transverse load ¢ is expanded in Fourier
series as follows:

gx) = Z 0, sin(a,x), (392)
n=1
L

0, = 2/ q(x) sin(anx)dx, (39b)
0

where the coefficient Q, is determined according to the
applied load, i.e., for a uniform load with load intensity ¢,
0, =4qy/nx,(n=13,5,...).

Multiplying Eq. (38a) and (38b) by cos(a,,x) andsin (a,,x),
respectively,m = 1,2,3, ... M, and integrating the resulting
equations with respect to x from 0 toL, the following system
of linear algebraic equations of the unknown vectors of coef-
ficients W, and U,, is obtained:

el {2 3 ={en

Then, by solving the above algebraic system, the displace-
ment field amplitudes can be obtained as

{ v(‘]/” } =[K]™'Q, 1

n

in which,
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<, (rn, m) [B)1a cos(a,x) + By 0 sin(a,x)]|cos(a,x)
Kpp(mm) | L —A”aﬁcos(anx) - A, 0,80 anx)]cos(amx) J (42)
Koy(mom) [~ ) o) [{(DP11a0 = C)a? — Dy }sin(a,x) + {2D) 402 + C,a, fcos(a,x)] sin(a,,x) -
Ky, (n, m) By &} — By, }sin(a,x) — 2By ,a>cos(a,x)] sin(a,,x)
L To this end, the integrals in Eqs. (42, 43, 45, 47) are
Q,(n,m) = / [Qnsin(anx)] sin (e, x)dx. (43)  implemented via numerical differential integral quadrature
0 method (DIQM) [133, 134].

3.2.2 Semi-analytical solution for buckling

The critical buckling load can be obtained from Eqs. (38a)
and (38Db) after setting all the external loads except P to zero
and o is also set to zero. With some mathematical opera-
tions, one gets the following matrix form of coupled system
of equations

sl Leaal = o) o
with
Pyi(n,m) = P / Laj sin(a,x) sin(a,,x)dx, (45)

0

where the elements of [[K] are pre-defined in Egs. (42). Equa-
tion (44) represents a standard eigenvalue problem and has
nontrivial solution only for a critical axial load P,.(n), by
setting the determinant of its coefficient matrix to zero.

3.2.3 Semi-analytical solution for free vibration

For free vibration analysis, setting all the external forces in
Egs. (38a) and (38b) to zero leads to

(Ll e [+ Lo Bl ey = 01

4 Model verification

Before performing the parametric study, this section is
devoted to the validation and accuracy assessment of the
developed nonclassical model and the proposed solution pro-
cedure. Since there are no published data for BDFG micro/
nanobeams including the simultaneous effects of surface
energy and modified couple stress, we compared the present
Euler—Bernoulli model results for bending, buckling, and
free vibration behaviors with those available in the literature
for simply supported micro/nanobeams.

The dimensionless center deflection of a simply supported
homogeneous microbeam under a uniformly distributed load
is presented in Table 1, based on MCST and compared with
references [38, 45]. Table 2 shows the validation of the present
model by comparing the dimensionless center deflection based
on the classical and integrated modified couple stress—surface
energy formulations with the reported results in [114, 125].

To check the accuracy of the present buckling analysis,
different numerical examples are solved and compared with
the available literatures [60, 135, 136]. A comparison of
the critical buckling load of a homogeneous microbeam
based on surface energy formulation is provided in Table 3,
whereas Table 4 validates the predicted critical buckling
load of a BDFG uniform beam based on the classical elas-
ticity theory at various gradient indices. Table 5 compares
the present classical dimensionless critical buckling load of
AFG tapered beam and that reported by Shahba et al. [135].

dx. (47)

(46)
where
M, (n, m) —Iza,cos(a,x)cos(a,x)
My,,m) | " I, cos(a,x)cos(a,x)
My (n,m) [~ ) o) [{1pa? + L, }sin(a,x) — Ip,a,cos(a,x)]sin(a,x)
M, (n, m) [Iz4c08(a,x) — Iza, sin(a,x)]|sin(a,x)

Equation (47) represents a polynomial eigenvalue prob-
lem in the form

(IK] + [M]o?)X = 0, (48)

which is numerically solved to obtain the fundamental fre-
quency .

Tables 6, 7, 8 are devoted to comparing the fundamental
frequency obtained via the current model and those reported
in the previous studies. The fundamental frequency are pre-
sented and compared in Tables 6, 7, 8 for, respectively, a
homogeneous uniform nanobeam including both effects of
the modified couple stress and surface energy, a BDFG uni-
form microbeam based on modified couple stress theory, and
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Table 1 Comparison of the dimensionless center deflection w = IOO(WEI / (qL4)) of a homogeneous microbeam under uniform load based on the
MCST analysis (E = 1.44 GPa, v = 0.38, h = 88 pm, L = 20h and b = 2h)

Dimensionless material length parameter (//h)

0.0 0.2 0.4 0.6 0.8 1.0
Present 1.3021 1.1092 0.7679 0.5076 0.3442 0.2435
Reddy [45] 1.3021 1.1092 0.7679 0.5076 0.3442 0.2435
Arbind and Reddy [38] 1.3021 - - 0.5076 - 0.2435

Table 2 Comparison of dimensionless center deflection (w = w/h) of
homogeneous nanobeam under midpoint load based on classical and
integrated couple stress—surface energy analyses (E =90 GPa, p =

2700,v = 0.23, | = 6.58 pm,A* = 3.4939 N/m, u® = —5.4251 N/m,
7% = 0.5689 N/m, L = 20h and b = 2h)

Classical elasticity theory

Thickness-to-material length-scale parameter ratio,k/1

Integrated couple stress—surface energy

1 2 4 6 1 2 4 6
Present 0.0221 0.0055 0.0014 0.0006 0.0043 0.0027 0.0011 0.0006
Gao [114] 0.0223 0.0056 0.0014 0.0006 0.0043 0.0027 0.0011 0.0006
Shanab et al. [125] 0.0223 0.0056 0.0014 - 0.0043 0.0027 0.0011 -
T?ble 3. C;)mpar%s.onlof thlfl' Surface modulus of elasticity, E Dimensionless surface residual
dimension essscrltlca buc2 ing stress.7, = (z,/EL)
load P,, = 10° x P,/ (EL?) of
homogeneous nanobeam based —7.262 0.0 7.262 —0.626 0.0 0.626
on surface energy formulation
(E =210 GPa, v = 0.24, Present 7.7696 8.2247 8.6797 8.2246 8.2247 8.2248
h= 5nm,L=10hand b = h) Hashemian etal.  7.8834 8.2247 8.5660 8.2224 8.2247 8.2269
[136]
Téble 4 Comparison of the Present (EBT) Simsek [60] (TBT)
dimensionless critical buckling
load P,, = PC,(L2 JE 1 ) for k. k=00 k=05 k=1 k=2 k=5 k=00 k=05 k=1 k=2 k=5
BDFG beam based on classical
analysis (E, /E, =2 and 0 19.7392 15.7575 14.2561 13.2006 12.3298 19.7099 15.7385 14.2383 13.1845 12.3149
L/h=50) 0.5 165678 13.9372 12.9591 122591 11.6279 16.5451 13.9210 12.9437 12.2448 11.6145
1 14.5113 12.7473 12.0898 11.6090 11.1483 14.4924 12.7328 12.0758 11.5957 11.1357
2 12.3414 114478 11.1106 10.8563 10.5954 12.3271 11.4355 11.0985 10.8445 10.5839
5 10.5264 10.2993 10.2131 10.1460 10.0728 10.5157 10.2889 10.2026 10.1356 10.0623
Table 5 Comparison of the Present Shahba et al. [135]
dimensionless critical buckling
load P,, = P,,(L?/E,l) for B, B,=0 0.2 0.4 0.6 B, =0 0.2 0.4 0.6
AFG tapered beam based
on classical analysis, with 0 14.5113 13.1398 11.6969 10.1451 14.5113 13.1398 11.6969 10.1451
E(x) = Ey(1+x/L) 0.2 10.6860 9.5971 8.4543 7.2285 10.6860 9.5971 8.4543 7.2285
0.4 7.2831 6.4715 5.6228 4.7165 7.2831 6.4715 5.6228 4.7164
0.6 4.3289 3.7894 3.2286 2.6343 4.3287 3.7892 3.2284 2.6338
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Table 6 Comparison of fundamental frequency (MHz) for homogeneous nanobeam based on classical and integrated couple stress—surface
energy analyses (E = 90 GPa,p =2700,v = 0.23,/ = 6.58 pm,A* = 3.4939 N/m,y* = —5.4251 N/m,z* = 0.5689 N/m, L = 20/ andb = 2h)

Classical elasticity theory

Thickness-to-material length-scale parameter ratio,k/1

Integrated couple stress—surface energy

1 6 11 16 1 6 11 16
Present 6.7222 1.1204 0.6111 0.4201 15.3416 1.1841 0.6217 0.4236
Gao [114] 6.7222 1.1204 0.6111 0.4201 15.3416 1.1841 0.6217 0.4236
Attia et al. [128] 6.7222 1.1204 0.6111 0.4201 15.3425 1.1842 0.6217 0.4236
T?ble 7, Comparison of the Analysis k, Present (Euler beam theory) Chen et al. [92] (Reddy beam theory)
dimensionless fundamental -
frequency k=05 k=10 k=2 k=5 k=10 k=05 k=10 k=2 k=5 k=10
o= w(L2 \/m/h) for
BDEG uniform microbeam CL 0.5 2.0602 1.8499 1.5872 1.3349 1.2610 2.0488 1.8373 1.5753 1.3250 1.2518
based on the classical and 1 1.8523 1.7021 1.5103 1.3157 1.2562 1.8408 1.6900 1.4989 1.3059 1.2471
couple stress analysis (/;, = 15 2 1.6840 1.5853 1.4499 1.3004 1.2524 1.6728 1.5737 1.4388 1.2907 1.2433
. ’{OE hzi'i ”;l‘)" h=1, 5 15809 15069 14024 12850 12486 1.5687 14948 13912 12762 12394
’ 10 15169 1.4512 1.3645 1.2735 1.2452 1.5041 1.4390 1.3535 1.2638 1.2361
CS 0.5 4.4628 3.7381 2.9819 2.3739 22124 45013 3.7688 2.9936 2.3659 2.1989
1 39697 34061 2.8176 2.3331 22020 3.9999 3.4289 2.8247 2.3240 2.1882
3.4684 3.0679 2.6471 22900 2.1912 3.4873 3.0807 2.6484 2.2792 2.1769
2.9427 2.7089 2.4597 22406 2.1787 29462 2.7088 2.4533 22277 2.1639
10 2.6631 25132 23533 22115 2.1714 2.6579 25061 2.3429 2.1975 2.1563
T?ble 8_ Convergence of the Present Shahba et al. [134]
imensionless frequency
8&; = a)Lzy/pLA/ELIS for AFG By =0 0.2 0.4 0.6 p,=0 0.2 0.4 0.6
tapered beam based on classical
analysis, with 0 9.0239 9.0553 9.0822 9.0951 9.0286 9.0599 9.0867 9.0994
E(x) = Ey(1 + (x/L)) and 0.2 8.1309 8.1430 8.1466 8.1305 8.1341 8.1462 8.1498 8.1336
p(x) = po (1 + (x/L) + (x/L)?) 0.4 7.1509 7.1434 7.1232 7.0772 7.1531 7.1455 7.1254 7.0794
0.6 6.0343 6.0068 5.9623 5.8853 6.0357 6.0082 5.9638 5.8868

an AFG tapered beam based on the classical model. It can
be noticed from the comparisons in Tables 1, 2, 3,4, 5,6, 7,
8 that the obtained results from the newly developed model
and solution procedure are in a good accordance with those
in the literature.

5 Parametric study

The newly developed nonclassical modified couple
stress—surface energy BDFG model incorporating the effects
of physical neutral axis and Poisson’s ratio to investigate
the mechanical response of simply supported graded non-
uniform micro/nanobeams. The effects of various material
properties, i.e., gradient indices in thickness and length
directions, dimensionless material length-scale parameter,
surface residual stress, surface modulus of elasticity, and
geometrical parameters, i.e., aspect ratio and taperness

ratios, on the mechanics of BDFG tapered simply supported
nanobeams are investigated in detail.

In the forthcoming parametric studies, the BDFG beam
shown in Fig. 1, is made from aluminum (Al) and silicon (Si)
as metallic and ceramic constituent materials, respectively,
with the material properties given in Table 9 [105, 109, 114].
The values of geometrical parameters are as follows: thick-
ness h(x) = hy(1 = px/L), width b(x) = by(1 — f,x/L),
in which Ay = h(0) and b, = b(0) with b, = h,, taperness
parameters are —1 < f,, f, < 1, and aspect ratio L/hy=25,
unless specifying other material or geometrical parameters.
However, due to the lack of experimental data for the mate-
rial length-scale parameter for silicon (Ig;) or bi-directionally
functionally graded materials I(x, z) in the open literature, a
range of i/l can be supposed to investigate the effect of the
material length-scale parameter on the response of micro-
scale structures [37]. In this study, we avoided the problem
of the unknown material length-scale parameter of silicon
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lg; by assuming [g; as a ratio of that of aluminum /,; , [47, 91,
92, 129]. The material length-scale parameter-to-thickness
ratio is taken as /; = 0.5h and [, = (4/3)/,, unless other values
are mentioned.

The size-dependent static and dynamic responses of the
BDFG nanobeam are explored using different formulations;
“CL” which is based on the classical elasticity theory, “SE”
incorporating effect of surface energy only (I = 0), “CS”
which is based on the modified couple stress theory, and
fully integrated model “CSSER” which is based on the
modified couple stress and surface elasticity theories. The
predicted results are presented as figures and tables to serve
as benchmarks for future analyses of nonuniform BDFG
micro/nanobeams. For convenience, the results are presented
in terms of the following dimensionless deflection, critical
buckling load, and fundamental frequency, respectively:

- E)I D ErL2 — prA 2
w(x) = 100 ——w(x), P,=—P, and &®=wy/—L
qL* 1 E1l

(49)
where E, and p, are, respectively, the Young’s modulus and
mass density of the bulk material at the upper right corner
of the beam (metallic phase) and / is the second moment of
area about the y-axis.

5.1 Effect of the taperness parameters

The effect of the rates of cross-section changes along thick-
ness and width directions, f, and f,, respectively, on the
bending, buckling, and vibration responses of BDFG is
investigated using classical (CL) and nonclassical (CSSER)
analyses. The dimensionless deflection throughout the beam
length shows asymmetric curve as shown in Fig. 2, which is
attributed to the tapering effect as well as the material gra-
dation in the axial direction. The predicted deflection with
positive values of f, and f, is much higher than that with
negative values, which can be explained in view of Fig. 3. It

is depicted from Fig. 3 that the equivalent stiffness D, (x),
defined in Eq. (33), of the nanobeam becomes higher when
p, and p, are negative. Such asymmetric distribution of the
equivalent stiffness through beam length leads to asymmet-
ric deflection.

Figures 4, 5, 6 demonstrate the simultaneous effects of
varying the taperness parameters f, and f, on the dimen-
sionless maximum deflection, critical buckling load, and
fundamental frequency, respectively, for BDFG nanobeams
atk, = k, = 1. Some numerical values of the dimensionless
maximum deflection, critical buckling load, and fundamen-
tal frequency are tabulated in Tables 10, 11, 12 at different
values of f, and f, and different gradation schemes; AFG,
TFG, and BDFG. Generally, it is notable that increasing the
taperness parameter f, and/or §, from negative to positive
values significantly increases the dimensionless maximum
deflection and decreases the dimensionless critical buckling
load and the dimensionless fundamental frequency. For both
the static and vibration responses, the influence of varying
the thickness parameter f, is significantly greater than that
of the width parameter f,, especially with the classical for-
mulation. As f, changes from negative to positive values, the
influence of f, rises and vice versa. Generally, the influence
of changing the rates of cross section in classical analysis
is higher than that for the nonclassical one for all gradation
distributions. The mutual contribution of the nonclassical
parameters, i.e., material length-scale parameter and surface
properties, on the static and vibration responses is greatly
increased by increasing f, and slightly affected by increasing
f,- In addition, it is important to emphasize that the maxi-
mum impact of the taperness parameters is associated with
the deflection response, followed with the buckling, and
vibration responses. For both the classical and nonclassical
formulations, the highest and lowest effects of the taper-
ness parameters are associated with AFG and homogene-
ous nanobeams, respectively. The taperness parameters £,
and f, have the same effect on the classical response of
homogeneous and TFG nanobeams. Furthermore, for the

Table 9 Material properties

N . Property Silicon “/” Aluminum “r”

of the constituents of BDFG

nanobeam Bulk properties
Young’s modulus (GPa) EF =210 EB =90
Poisson’s ratio v, =024 v, =023
Bulk density (kg/m?) PP =12331 p% =2700
Material length-scale parameter (um) - I, =6.58

Surface properties

Surface density (kg/m’) p=3.1688 x 107’ P =5.46x10""
Surface residual stress (N/m) 7} = 0.6056 7’ =0.5689
Surface Lame modulus (N/m) u =-2.7719 u =-54251
Surface Lame modulus (N/m) /1; = —4.4939 A% =3.4939
Surface elastic modulus (N/m) E} = —10.0497 Ef = -7.3563

r
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Fig.2 The effect of the taperness parameters f3, and 3, on the dimensionless deflection along the length of BDFG nanobeam at k, =k =1
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Fig.3 Variation of the equivalent stiffness D;,(x) (Eq. (33)) along
the length of BDFG nanobeam at different taperness parameters and
k=k=1

same taperness ratio and material gradation, the predicted
deflection based on the nonclassical formulation is lower
than that predicted using classical elasticity theory, whereas
the predicted nonclassical critical load and fundamental fre-
quency are distinctly higher than their corresponding clas-
sical values.

5.2 Effect of the material gradation

The effect of bi-directional gradient indices along thick-
ness and length directions, k, and k,, respectively, on the

response of BDFG nanobeams is investigated, considering
both uniform and tapered cross sections. The dimension-
less deflection versus the beam length is shown in Fig. 7 at
different gradient indices. It is seen that the axial gradient
index k, as well as the nonuniform cross section can tend
the deflection of BDFG nanobeam to asymmetric curves
for both classical and nonclassical analyses. Uniform and
nonclassical nanobeams give lower dimensionless deflection
along the beam length compared with tapered and classi-
cal nanobeams, respectively. It is important to emphasize
that a homogeneous nanobeam with k,=k,=0 is made from
pure metal constituent and therefore has the smallest stiff-
ness. The variations of the dimensionless maximum deflec-
tion, dimensionless critical buckling load, and dimension-
less fundamental frequency are plotted in Figs. 8, 9, 10,
respectively, and are recorded in Tables 13, 14, 15 versus
the gradation indices k, and k, at different taperness param-
eters (f,=p,=p). For the considered material properties, it
is noticed that inclusion of the microstructure and surface
energy effects leads to increasing the beam rigidity. There-
fore, the predicted dimensionless deflection using CSSER
formulation is always lower than that predicted using CL
one, whereas the obtained dimensionless critical buckling
load and the dimensionless fundamental frequency based
on CSSER are larger than those obtained using CL analy-
sis. Such behavior is observed for all values of the gradient
indices and taperness parameters.

Also, the obtained results reveal that due to the increase
in the stiffness of the nanobeam, increasing k, and/or k,
decreases the maximum deflection and increases the dimen-
sionless critical buckling load, and the dimensionless natu-
ral frequencies. Further increasing of the gradient indices
(almost more than 5), the response converges towards the
pure ceramic behavior. The influence of the gradation indi-
ces is reduced by incorporating the nonclassical effect and/or
nonuniform cross section. Considering BDFG nanobeams,
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Tabl? 10 Dimens.ionless (YA Classical analysis Nonclassical CSSER analysis
maximum deflection of FG N
nanobeam at different values Width taperness parameter f, Width taperness parameter f,
of taperness parameters and
-05 -025 00 0.25 0.5 -05 -025 00 0.25 0.5

gradient indices

0,00 —-05 04875 0.5345 0.5931 0.6714 0.7811 0.1587 0.1750 0.1959 0.2235 0.2622
—-0.25 0.6451 0.7117 0.7959 0.9067 1.0614 0.1797 0.1988 0.2229 0.2550 0.3002

0.0 09029 0.9999 1.1232 1.2868 1.5183 0.2039 0.2259 0.2539 0.2912 0.3441

0.25 1.3538 1.5061 1.7016 1.9650 2.3596 0.2313 0.2567 0.2893 0.3327 0.3956

0.5 22931 2.5755 29448 3.4528 4.2079 0.2622 0.2916 0.3293 0.3804 0.4577

(1,0) —-0.5 02819 03115 0.3490 0.3985 0.4682 0.1183 0.1309 0.1468 0.1680 0.1980
—0.25 03815 04228 0.4754 0.5455 0.6450 0.1376 0.1525 0.1715 0.1968 0.2328

0.0 0.5429 0.6040 0.6822 0.7874 0.9455 0.1606 0.1783 0.2009 0.2312 0.2752

0.25 0.8350 0.9362 1.0679 1.2483 1.5146 0.1876 0.2086 0.2356 0.2723 0.3274

0.5 14774 1.6666 19162 22634 2.7997 0.2191 0.2442 0.2773 0.3230 0.3902

0,1) =05 03065 03360 0.3729 0.4221 0.4911 0.1228 0.1353 0.1513 0.1725 0.2021
—-0.25 0.4056 0.4475 0.5004 0.5700 0.6673 0.1418 0.1568 0.1758 0.2010 0.2365

0.0 05677 0.6286 0.7062 0.8090 0.9546 0.1646 0.1823 0.2050 0.2350 0.2777

0.25 0.8512 0.9469 1.0698 1.2354 1.4835 0.1913 0.2124 0.2394 0.2754 0.3277

0.5 1.4417 1.6193 1.8515 2.1708 2.6456 0.2225 0.2476 0.2798 0.3239 0.3899

(1,1) =05 02383 0.2621 0.2928 0.3331 0.3893 0.1082 0.1196 0.1339 0.1528 0.1794
—-0.25 03195 0.3532 0.3961 0.4527 0.5324 0.1269 0.1404 0.1576 0.1804 0.2127

0.0 0.4507 0.5001 0.5633 0.6475 0.7676 0.1493 0.1655 0.1863 0.2139 0.2532

0.25 0.6827 0.7611 0.8643 1.0063 1.2142 0.1761 0.1956 0.2207 0.2543 0.3042

0.5 1.1819 1.3302 1.5249 1.7940 2.1971 0.2078 0.2314 0.2618 0.3044 0.3671

Table 11 Dimensionless critical buckling load of FG nanobeam at different values of taperness parameters and gradient indices

(ke k) By, Classical analysis Nonclassical CSSER analysis

Width taperness parameter f, Width taperness parameter f,

-05 -0.25 0.0 0.25 0.5 -05 - 025 0.0 0.25 0.5
(0,0) -05 25.7440 235647  21.3027  18.9256  16.3725 79.5045 72.4374  65.0797  57.3124  48.9086

-0.25 19.6372 17.8777 16.0553 14.1445 12.0979 70.7177 642160  57.4515  50.3156  42.6008

0.0 14.2018 12.8442 11.4417 9.9758 8.4114 62.6900 56.7196  50.5118  43.9682  36.8995

0.25 9.4628 8.4867 7.4819 6.4360 5.3257 55.4008 49.9238 442326  38.2374  31.7659

0.5 5.4576 4.8392 4.2058 3.5506 2.8606 48.7890 43.7633  38.5428  33.0455  27.1139

(1,0) -0.5 45.1491  40.9989  36.6988  32.1879  27.3505 107.6622 97.6468  87.2382  76.2729  64.4368
—-025 336195 30.3600 26.9916  23.4692 19.7071 92.9605 84.0187 747377 649757  54.4591

0.0 23.5870  21.1586 18.6571 16.0517 13.2830 79.8197 71.8719  63.6338  54.9827  45.6825

0.25 15.0973 13.4310  11.7216 9.9502 8.0805 68.1928 61.1531 53.8658  46.2257  38.0295

0.5 8.2199 7.2333 6.2265 5.1904 4.1069 57.9622 51.7389 453043  38.5679  31.3546

,1) -05 40.9464  37.4801 33.8824  30.1016  26.0408 102.7439 93.6503  84.1933 742250  63.4640
—-025 31.2333 284349  25.5363  22.4972 19.2419 89.6289 81.3986  72.8472  63.8425  54.1325

0.0 22.5882  20.4290 18.1983 15.8667 13.3785 717.7246 703065  62.6065  54.5074  45.7851

0.25 15.0508 13.4983 11.9001 10.2366 8.4706 67.0230 60.3601  53.4508  46.1919  38.3851

0.5 8.6804 7.6969 6.6894 5.6472 4.5499 57.4656 51.4940 453072  38.8142  31.8398

(1,1) -0.5 529768 483136 434773  38.3987  32.9474 116.9352 106.3910  95.4315  83.8867  71.4317
—-025 399618 36.2446 323983  28.3704  24.0611 100.5506 91.1436  81.3778  71.1046  60.0398

0.0 28.4975  25.6753  22.7637 19.7252 16.4888 85.8493 77.5033  68.8499  59.7608  49.9892

0.25 18.6383 16.6526 14.6116 12.4917 10.2470 72.8191 65.4491 57.8176  49.8144  41.2272

0.5 10.4667 9.2474 8.0007 6.7142 5.3640 61.3840 54.8962  48.1864  41.1602  33.6350

@ Springer



2286 Engineering with Computers (2022) 38:2269-2312

Table 12 Dimensionless fundamental frequency of FG nanobeam at different values of taperness parameters and gradient indices

(ke,k) By Classical analysis Nonclassical CSSER analysis

Width taperness parameter Width taperness parameter S,

- 0.5 -0.25 0.0 0.25 0.5 - 0.5 - 0.25 0.0 0.25 0.5
(0,0) - 0.5 12.9861 13.0385 13.0917 13.1409 13.1735 21.2947 21.2822 21.2471 21.1712 21.0138

-0.25 11.8347 11.8668 11.8959 11.9163 11.9131 21.0006 209709  20.9153 20.8141 20.6244

0.0 10.6028 10.6145 10.6196 10.6111 10.5719  20.8251 20.7772  20.6995 20.5708 20.3457

0.25 9.2577 9.2491 9.2304 9.1929 9.1174  20.8106  20.7423 20.6399  20.4803 20.2144

0.5 7.7354 7.7071 7.6648 7.5987 7.4871 21.0159  20.9237  20.7920  20.5951 20.2796

(1,0) -05 17.5435 17.5925 17.6376 17.6696 17.6656  25.6800  25.6649  25.6218 255270  25.3276
-025 15.8732 15.8966 159116 15.9076 15.8594  25.0119 24.9765 249094 247856  24.5501

0.0 14.0937 14.0921 14.0776 14.0384 13.9467 24.4837  24.4271 24.3347 24.1801 23.9058

0.25 12.1617 12.1360 12.0931 12.0197 11.8858 24.1487  24.0691 239490  23.7602  23.4421

0.5 9.9925 9.9442 9.8747 9.7694 9.5961 24.0811 239748  23.8221 23.5923  23.2205
0,1) -05 16.9661 17.0346 17.1041 17.1685 17.2110  25.3191 253196 252970 252310  25.0764
-0.25 15.4621 15.5040 15.5421 15.5688 155646  24.7241 247022 24.6528 245540  24.3578

0.0 13.8528 13.8681 13.8748 13.8637 13.8124 242538  24.2083  24.1306  23.9969  23.7558

0.25 12.0955 12.0844 12.0599 12.0109 11.9123 239599  23.8887  23.7800  23.6076  23.3162

0.5 10.1067 10.0697 10.0145 9.9280 9.7822 239150  23.8144  23.6697  23.4519  23.1005

(1,1) -05 19.5128 19.5806 19.6470 19.7038 19.7288  27.5566  27.5600  27.5386  27.4700  27.3035
-025 17.7231 17.7611 17.7926 17.8074 177806  26.7442  26.7232  26.6727  26.5688  26.3581

0.0 15.8119 15.8206 15.8174 15.7905 157120  26.0674  26.0210  25.9403  25.7993  25.5414

0.25 13.7306 13.7104 13.6732 13.6052 13.4755 255853 255117 253982 252167  24.9067

0.5 11.3837 11.3359 11.2659 11.1582 10.9789  25.3815 25.2771 25.1259  24.8972 245253

Dimensionless Deflection
Dimensionless Deflection

Solid lines: ﬂh= ﬂb=0.0
Dash lines: ﬂh=,3b=0.5

0 0.2 04 06 08 1 o 02 04 06 08 1
Coordinate x/L Coordinate x/L

Fig.7 The effect of the gradient indices k, and k, on the dimensionless deflection along the length of FG nanobeams with uniform and tapered
cross-sections

it is notable that the effect of varying k, decreases as k,  the dimensionless maximum deflection by 54.6% (f=0) and
increases and being very small as k, approach 10. Also, the  53.2% ($=0.5), increases the dimensionless critical buckling
influence of k, is decreased with increasing k,. Using clas- load by 119.9% ($=0) and 109.6% ($=0.5), and increases
sical analysis, varying (k,.k,) from (0,0) to (2,2) decreases the dimensionless frequency by 58.5% (f=0) and 27.2%

($=0.5). Introducing the nonclassical microstructure and
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eters

surface energy effects reduces the impact of the gradient
indices, i.e., based on CSSER formulation, varying (k,.k,)
from (0,0) to (2,2) decreases the dimensionless maximum
deflection by 29.3% (f=0) and 21.7% (f=0.5), increases the
dimensionless critical buckling load by 41.4% (f=0) and
27.2% (p=0.5), and increases the dimensionless frequency
by 29.6% (p=0) and 24.3% ($=0.5). Therefore, ignoring
the nonclassical effects leads to a significant error in the
predicted static and vibration responses of BDFG micro/
nanobeams.

For AFG nanobeams (k, = 0), increasing k, has a more
significant influence on the static and dynamic responses
for classical and uniform nanobeams compared with non-
classical and tapered nanobeams, respectively. As k,

increases from O to 2, the dimensionless maximum deflec-
tion decreases by 48.7% (#=0) and 43.9% ($=0.5) using CL.
analysis and by 26% (f=0) and 18.8% (f=0.5) using CSSER
analysis. Whereas, increasing k, from 0 to 2, shows an
increase in the dimensionless critical buckling load by 93%
(p=0) and 69% (p=0.5) for CL formulation and by 34.7%
(p=0) and 21.6% (f=0.5) for CSSER formulation. Rising
k, of AFG nanobeam from 0 to 2 leads to an increase in the
dimensionless fundamental frequency by about 47% (f=0)
and 42% (=0.5) based on CL analysis and by 24.4% (f=0)
and 19.9% ($=0.5) based on CSSER analysis. Again, the
highest impact of &, is associated with the buckling response.
Regarding TFG nanobeams (k, = 0), it is depicted that the
impact of varying k_ on the bending, buckling, and vibration
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Table 13 Dimensionless maximum deflection of BDFG nanobeam at different gradient indices and taperness parameters f, and g,

By, By k, Classical analysis Nonclassical CSSER analysis
Axial gradient index k, Axial gradient index k,
0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0
(0.0,0.0) 0.0 1.1232 0.8066 0.6822 0.5761 0.4979 04790 0.2539 0.2162 0.2009 0.1878 0.1783  0.1759
0.50 0.7810 0.6493 0.5888 0.5326 0.4880 0.4768 0.2144 0.1972 0.1893 0.1822 0.1768 0.1754
1.0 0.7062 0.6093 0.5633 0.5198 0.4850 0.4761 0.2050 0.1922 0.1863 0.1808 0.1765 0.1753
2.0 0.6460 0.5775 0.5431 0.5098 0.4826 04756 0.1974 0.1883 0.1839 0.1796 0.1762 0.1753
5.0 0.5789 0.5407 0.5197 04982 04798 04749 0.1893 0.1840 0.1811 0.1783 0.1759 0.1752
10.0 0.5381 0.5162 0.5034 0.4897 04777 04744 0.1844 0.1810 0.1792 0.1773 0.1757 0.1752
(0.25, 0.25) 0.0 19650 1.4637 1.2483 1.0512 0.8895 0.8438 0.3327 0.2899 0.2723 0.2567 0.2455 0.2425
0.50 1.3663 1.1599 1.0573 0.9552 0.8646 0.8376 0.2864 0.2669 0.2579 0.2497 0.2435 0.2419
1.0 1.2354 1.0839 1.0063 0.9277 0.8569 0.8357 0.2754 0.2611 0.2543 0.2480 0.2431 0.2418
20 1.1301 1.0234 0.9658 0.9060 0.8509 0.8341 0.2668 0.2566 0.2515 0.2467 0.2428 0.2417
5.0 1.0127 09536 09188 0.8807 0.8439 0.8324 0.2578 0.2516 0.2484 0.2453 0.2425 0.2416
10.0 09415 09077 0.8866 0.8627 0.8387 0.8310 0.2523 0.2484 0.2463 0.2441 0.2422 0.2416
(0.5,0.5) 0.0 42079 3.2405 2.7997 23613 1.9550 1.8262 0.4577 04110 0.3902 03716 03575 0.3537
0.50 2.9258 2.5301 2.3198 2.0977 1.8803 1.8052 0.4026 0.3817 0.3716 0.3621 0.3546 0.3526
1.0 2.6456 2.3558 2.1971 2.0267 1.8576 1.7986 0.3899 0.3746 0.3671 0.3600 0.3542 0.3525
2.0 24201 22166 2.0997 19708 1.8398 1.7934 0.3802 0.3693 0.3637 0.3584 0.3538 0.3524
5.0 2.1687 2.0567 19869 1.9058 1.8191 1.7874 0.3704 0.3637 0.3602 0.3567 0.3535 0.3524
10.0 2.0161 19523 19104 1.8599 1.8039 1.7829 0.3648 0.3602 0.3578 0.3554 0.3532 0.3523

responses is independent of the taperness parameters when
the classical formulation is employed, i.e. With the rise of k,
from O to 2 based on CL analysis, the dimensionless maxi-
mum deflection is reduced by 42.5% and the dimensionless
buckling load and dimensionless fundamental frequency are
increased by 73.9% and 38.3%, respectively. On the contrary,
the effect of k, on the nonclassical responses of TFG nano-
beam becomes more pronounced with uniform cross section,

@ Springer

i.e., as k, changes from O to 2 based on CSSER analysis, the
dimensionless maximum deflection is decreased by 22.3%
(p=0) and 16.9% (=0.5) and the dimensionless buckling
load and dimensionless fundamental frequency are raised
by, respectively, 28.7% and 20.4% ($=0) and 17% ($=0.5).

In addition, it is observed that the taperness parameters
have a significant influence on the role of k, in AFG and
have no influence on the role of k, in TFG nanobeams.



Engineering with Computers (2022) 38:2269-2312 2289

Table 14 Dimensionless critical buckling load of BDFG tapered nanobeam at different gradient indices and taperness parameters f, and j,

By, By k, Classical analysis Nonclassical CSSER analysis
Axial gradient index k, Axial gradient index k,
0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0

(0.0,0.0) 0.0 11.4417 15.8437 18.6571 22.0828 25.6923 26.7950 50.5118 59.1929 63.6338 68.0743 71.8618 72.9334
0.50 16.4553 19.7598 21.7520 24.0311 26.2711 26.9329 59.8323 65.0393 67.6965 70.3174 72.5285 73.1507

1.0 18.1983 21.0706 22.7637 24.6515 26.4535 269771 62.6065 66.7377 68.8499 70.9279 72.6842 73.1869

2.0 19.8940 22.2425 23.6287 25.1582 26.5968 27.0115 65.0083 68.1378 69.7712 71.3988 72.8002 73.2136

5.0 22.1999 23.7650 24.7149 25.7699 26.7637 27.0513 67.7831 69.7700 70.8463 71.9490 72.9364 73.2451

10.0 23.8806 24.8955 25.5238 26.2259 26.8889 27.0814 69.6094 70.9161 71.6300 72.3684 73.0461 73.2711

(0.25,0.25) 0.0 6.4360 8.5387 9.9502 11.7921 14.0566 14.9267 38.2374 43.4716 46.2257 49.0481 51.5701 52.3456
0.50 9.2561 10.8459 11.8632 13.1148 14.5402 15.0626 44.4233 47.4536 49.0474 50.6616 52.0919 52.5305

1.0 10.2366 11.6214 12.4917 13.5373 14.6917 15.1058 46.1919 48.5652 49.8144 51.0778 52.2037 52.5577

2.0 11.1904 12.3228 13.0368 13.8872 14.8115 15.1395 47.6865 49.4654 50.4175 51.3931 52.2845 52.5769

5.0 12.4874 13.2407 13.7289 14.3145 14.9518 15.1785 49.3458 50.4763 51.0982 51.7523 52.3785 52.5996

10.0 13.4329 13.9207 14.2429 14.6322 15.0566 15.2080 50.4065 51.1655 51.5821 52.0224 52.4554 52.6193

(0.5,0.5) 0.0 2.8606 3.5883 4.1069 4.8393 5.9234 6.4837 27.1139 29.8467 31.3546 32.9590 34.4704 34.9681
050 4.1141 4.6688 5.0511 55642 6.2650 6.6043 30.8382 32.3449 33.1729 34.0411 34.8485 35.1129

1.0 45499 5.0343 53640 57979 6.3720 6.6424 31.8398 33.0005 33.6350 34.2976 349185 35.1296

20 49738 53698 5.6410 59956 6.4577 6.6723 32.6541 33.5141 33.9867 34.4848 34.9655 35.1398

50 55503 5.8129 59976 62413 6.5594 6.7071 33.4978 34.0505 34.3562 34.6839 35.0176 35.1517

100 59705 6.1402 6.2618 6.4235 6.6350 6.7333 34.0079 34.3949 34.6044 34.8276 35.0610 35.1632

Table 15 Dimensionless fundamental frequency of BDFG tapered nanobeam at different gradient indices and taperness parameters f;, and f,,

By, Br) k, Classical analysis Nonclassical CSSER analysis
Axial gradient index k, Axial gradient index k,
0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0

(0.0,0.0) 0.0 10.6196 12.7854 14.0776 15.5600 17.0280 17.4646 20.6995 23.0455 24.3347 25.7084 26.9738 27.3464
0.50 13.0354 14.5045 153680 16.3301 17.2492 17.5177 23.2799 24.7329 25.5430 26.4006 27.1806 27.4077

1.0 13.8748 15.1049 15.8174 16.5969 17.3261 17.5365 24.1306 25.2921 259403 26.6232 27.2415 27.4223

2.0 14.6876 15.6541 16.2162 16.8264 17.3905 17.5521 24.9260 25.8046 26.2995 26.8216 27.2951 27.4353

5.0 157138 16.3242 16.6901 17.0908 17.4626 17.5695 25.8114 26.3712 26.6931 27.0365 27.3526 27.4491

10.0 16.3941 16.7760 17.0103 17.2695 17.5114 17.5813 26.3274 26.7084 26.9293 27.1665 27.3878 27.4577

(0.25,0.25) 0.0 9.1929 10.9434 12.0197 13.2954 14.6427 15.0836 20.4803 22.5950 23.7602 24.9975 26.1283 26.4601
0.50 11.2842 12.4754 13.1976 14.0290 14.8733 15.1434 22.8421 24.1377 24.8626 25.6280 26.3188 26.5189

1.0 12.0109 13.0084 13.6052 14.2804 14.9519 15.1639 23.6076 24.6391 25.2167 25.8242 26.3714 26.5313

2.0 127144 13.4971 13.9676 14.4965 15.0172 15.1809 24.3207 25.0987 25.5374 25.9996 26.4177 26.5422

5.0 13.6028 14.0956 14.4008 14.7475 15.0911 15.1998 25.0962 25.5958 25.8821 26.1866 26.4669 26.5539

10.0 14.1916 14.4994 14.6944 149182 15.1418 15.2131 25.5343 25.8823 26.0825 26.2965 26.4964 26.5609

(0.5,0.5) 0.0 7.4871 8.7743 9.5961 10.6125 11.7851 12.2273 20.2796 22.1734 23.2205 24.3266 25.3205 25.6055
0.50 9.1904 10.0705 10.6256 11.2923 12.0291 12.2989 22.4225 23.5715 24.2160 24.8924 25.4915 25.6603

1.0 9.7822 10.5193 10.9789 11.5222 12.1104 12.3228 23.1005 24.0134 24.5253 25.0605 25.5344 25.6699

2.0 103552 10.9323 11.2942 11.7201 12.1775 12.3422 23.7302 24.4187 24.8060 252112 25.5722 25.6783

5.0 11.0787 11.4406 11.6741 11.9524 12.2542 12.3643 24.3960 24.8450 25.0997 25.3678 25.6115 25.6871

10.0 11.5582 11.7837 11.9324 12.1115 12.3078 12.3800 24.7564 25.0796 25.2626 25.4558 25.6342 25.6923
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Furthermore, as the gradation indices rise for all the grada-
tion distributions, the impact of the taperness parameters
greatly decreases for the classical analysis and slightly
increases for the nonclassical analysis.

5.3 Effect of the surface energy

This study is the first attempt to model and investigate the
response of BDFG nanobeams in the presence of surface
energy. In this section, the effect of the surface residual
stress 7°(x, z) and surface elasticity modulus E*(x, z), on the
static and vibration responses of simply supported nanobe-
ams is explored, considering different gradation schemes.
For this purpose, the material properties of bulk continuum
and surface layers provided in Table 9 are used, while the
microstructure effect is ignored, i.e., [;=[,=0. The nanobeam
dimensions are by = hy = 5Snm with equal thickness and
width taperness parameters, i.e., f=p,=p,. The effect of the
surface residual stress 77 (metallic phase) and z; (ceramic
phase) of the surface layers on the dimensionless maximum
deflection, dimensionless critical buckling load, and dimen-
sionless fundamental frequency is depicted in Figs. 11,
12, 13, respectively, for both uniform and tapered BDFG
nanobeams and L/hy=25 and 50. The reference values are
those given in Table 9 (rfo=0.5689 N/m, rf0=0.6056 N/m).
Tables 16, 17, 18 provide, respectively, the dimensionless
maximum deflection, dimensionless critical buckling load,
and dimensionless fundamental frequency at different values
of the residual surface stress, length-to-thickness ratio, and
taperness parameters for AFG, TFG, and BDFG nanobeams.

For the material properties under consideration, it is
noticeable that increasing the surface residual stress of
the metallic (z;) and/or ceramic (7)) constituent materials

(2) B,=B,=0

Dimensionless maximum deflection

1
S, §
7'1/7'10

significantly decreases the dimensionless deflection and
increases both the dimensionless critical buckling load and
dimensionless fundamental frequency for all the gradation
distributions. Accounting for the residual surface effect
induces tension stress in the surface layers, and hence, stiffer
surface results in lower deflections. The influence of the
surface residual stresses 7; and 7} becomes more prominent
with the increase of the aspect ratio (L/h) and may lead
to an increase or a decrease in the equivalent stiffness of
nanobeam depending on its material properties. For AFG,
TFG, and BDFG nanobeams, rising the residual surface
stress Tl" reduces the contribution of 7, and vice versa. It
is also depicted that the highest effects of z; and 7 cor-
respond to BDFG and TFG distributions, respectively. On
the other hand, the lowest effects of Tls and 7’ are associated
with, respectively, AFG and BDFG distributions. In other
words, the effect of varying the surface residual stress is
mainly controlled with the directions of gradation and the
geometrical parameters of the beam. Increasing the aspect
ratio noticeably rises the effect of surface residual stress on
the static and vibration responses, which is attributed to the
increase of the surface area-to-bulk volume ratio, and there-
fore, an increase in surface energy. It is also worth noting
that, the impact of the surface residual stress and aspect ratio
on the response of tapered nanobeams is much greater than
that of uniform nanobeams.

The effect of surface elasticity moduli E} and Ej of the
metallic and ceramic phases, respectively, of the surface lay-
ers is illustrated in Figs. 14, 15, 16 and Tables 19, 20, 21
at different aspect ratios, taperness parameters, and mate-
rial gradations. The reference values E7, and Ej, are taken
— 7.3563 N/m and — 10.0497 N/m, respectively, as given
in Table 9. It is found that the dimensionless maximum

2.5

() ,=8,=05

Dimensionless maximum deflection

T P 110

Fig. 11 The effect of the surface residual stress ratios 7,/z; and 7’/z), on the dimensionless maximum deflection of BDFG nanobeam with

k=k=1
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Fig. 12 The effect of the surface residual stress ratios 7,/zy, and 7’/z), on the dimensionless critical buckling load of BDFG nanobeam with

k=k=1
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1
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Dimensionless fundamental frequency

Fig. 13 The effect of the surface residual stress ratios 7,/z, and 7)/z), on the dimensionless fundamental frequency of BDFG nanobeam with

k=k=1

deflection for both uniform and tapered nanobeams is
slightly increased by increasing E7 and Ej individually or
simultaneously, whereas the both dimensionless critical
buckling load and dimensionless fundamental frequency are
decreased. It is observed that the effect of the surface elastic-
ity moduli on the static and vibration responses is reduced
with increasing the aspect ratio and taperness parameters.
Unlike the surface residual stress, the contribution of E? or
Ej is almost unaffected by varying Ej or E7, respectively.
Compared with surface residual stress, the bending, buck-
ling, and vibration responses have less sensitivity to surface
elasticity modulus.

5.4 Effect of the material length-scale parameter

Effect of microstructure effect via MCST on the mechanics
of tapered BDFG micro/nanobeams is explored by consid-
ering different values of the dimensionless material length-
scale parameter (/,/h) and material length-scale parameter
ratio (/;/1,) for various width and thickness taperness ratios
and material gradations. When a constant material length-
scale parameter is considered, the ratio /;/I, is set to unity.
To extract a clear investigation of the effect of the material
length-scale parameter, the present results are based on the
MCST formulation using the material properties in Table 9
with [, = 6.58 pm. In Figs. 17, 18, 19, the dimensionless
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Table 16 Dimensionless maximum deflection of uniform and tapered FG nanobeams at different surface residual stresses, aspect ratios, and gra-

dation indices (f,=p,=p)

p L5 AFG, (kk)=(10)

T

TFG, (kk,)=(0,1)

BDFG, (k k)=(1,1)

r0
S 5
7/

o/t

7/

0

0.5

1.0

1.5

2.0

0

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0.743
0.575
0.472
0.402
0.350
0.743
0.350
0.235
0.181
0.148
3.227
1.649
1.136
0.875
0.718
3.227
0.718
0.430
0.310
0.246

Uniform (f=0.0) 25 0
0.5

1.0

1.5

2.0

50 0

0.5

1.0

1.5

2.0

Tapered (f=0.5) 25 0
0.5

1.0

1.5

2.0

50 0

0.5

1.0

1.5

2.0

0.585
0.473
0.399
0.346
0.307
0.365
0.226
0.168
0.135
0.115
1.820
1.143
0.859
0.694
0.586
0.826
0.390
0.272
0.214
0.178

0.485
0.402
0.347
0.305
0.274
0.247
0.170
0.133
0.111
0.095
1.285
0.891
0.696
0.580
0.500
0.498
0.279
0.207
0.168
0.143

0.416
0.352
0.307
0.273
0.247
0.188
0.138
0.111
0.094
0.082
1.000
0.735
0.590
0.500
0.437
0.361
0.222
0.169
0.141
0.122

0.365
0.314
0.276
0.248
0.226
0.153
0.117
0.096
0.082
0.073
0.826
0.628
0.516
0.441
0.390
0.285
0.185
0.146
0.122
0.107

0.770
0.599
0.490
0.415
0.359
0.770
0.359
0.234
0.173
0.137
3.007
1.660
1.145
0.874
0.706
3.007
0.706
0.399
0.278
0.213

0.591
0.484
0411
0.356
0.314
0.347
0.229
0.170
0.136
0.113
1.613
1.123
0.861
0.697
0.586
0.673
0.388
0.272
0.210
0.170

0.479
0.407
0.353
0.312
0.280
0.224
0.168
0.134
0.111
0.095
1.101
0.848
0.689
0.580
0.501
0.378
0.267
0.207
0.168
0.142

0.403
0.350
0.310
0.278
0.252
0.165
0.132
0.110
0.095
0.083
0.835
0.681
0.574
0.496
0.437
0.262
0.204
0.166
0.141
0.122

0.347
0.307
0.276
0.250
0.229
0.131
0.109
0.094
0.082
0.073
0.673
0.569
0.492
0.434
0.388
0.201
0.164
0.139
0.121
0.107

0.607
0.544
0.494
0.452
0.417
0.607
0.417
0.321
0.262
0.223
2.465
1.816
1.447
1.208
1.040
2.465
1.040
0.679
0.513
0.415

0.448
0.412
0.382
0.357
0.334
0.250
0.210
0.181
0.160
0.143
1.211
1.027
0.895
0.795
0.717
0.479
0.372
0.308
0.264
0.233

0.355
0.332
0.312
0.294
0.279
0.158
0.140
0.126
0.115
0.106
0.803
0.716
0.648
0.593
0.547
0.265
0.227
0.201
0.180
0.164

0.294
0.278
0.264
0.251
0.239
0.115
0.105
0.097
0.090
0.085
0.600
0.549
0.508
0.473
0.443
0.183
0.164
0.149
0.137
0.127

0.250
0.239
0.228
0.218
0.210
0.091
0.084
0.079
0.074
0.070
0.479
0.445
0.417
0.393
0.372
0.140
0.128
0.119
0.111
0.104

values of the maximum deflection, critical buckling load,
and the fundamental frequency are plotted versus [,./h
and /,;/[, for uniform and tapered BDFG microbeams with
k. = k, = 1. The mutual effects of /. /h and /;/1, on the micro-
beam response are recorded in Tables 22, 23, 24, for differ-
ent gradient indices k, and k, and taperness ratios (f=f,=p,).
Based on the obtained results, it is noticeable that introduc-
ing the microstructure effect enhances the microbeam rigid-
ity, and consequently, decreases the dimensionless deflection
and increases the dimensionless critical buckling load and
dimensionless frequency.

It is noticeable that as the dimensionless material length-
scale parameter (/,/h) increases, the impact of micro-
structure on the static and vibration responses is distinctly
enhanced for all material gradations. For a homogeneous
microbeam, there is no effect of the material length-scale
parameter by varying /,/h and /,/I. on the dimensionless
values of deflection, critical buckling load, and frequency. It
is revealed that the impact of [, /h rises as [, /1, increases and
the maximum effect of /. /h for different gradation distribu-
tions depends mainly on the value of /;//,, i.e., the maxi-
mum effect of /, /h corresponds to AFG when /,/[,<1 and to

@ Springer

BDFG when /;/I, > 1. Also, the predicted responses using
a spatially constant material length-scale parameter (/,=/,)
are significantly different from those by the spatial-depend-
ent material length-scale parameter (/; # /,). For a uniform
microbeam with /,/h=0.5, altering the material length-
scale parameter ratio /;/I, from 0.5 to 2, the dimensionless
maximum deflection decreases by 49.5, 58.0, and 66.9%,
the dimensionless critical buckling load increases by 93.0,
138.2, and 200.9%, and dimensionless frequency increases
by 40.5, 54.3, and 73.7% for AFG, TFG, and BDFG distri-
butions, respectively. Therefore, assumption of a constant
material length-scale parameter for graded microbeams is
unacceptable and leads to distinct error in the predicted
response. Also, it is depicted that response of BDFG micro-
beam is the most sensitive to /,/I,, followed with TFG and
AFG. The effect of /;/1, is enhanced by increasing [, /h or
taperness parameters towards positive values. The obtained
results agree well with those in the previous sections, as
rising the taperness parameters, while holding /;//, and
[./h fixed, leads to a noticeable decrease in the microbeam
deflection and an increase in the dimensionless critical buck-
ling load and dimensionless frequency.
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Fig. 14 The effect of the surface elasticity moduli Ej/Ej, and EJ/E}, on the dimensionless maximum deflection of BDFG nanobeam with
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Fig. 15 The effect of the surface elasticity moduli E)/E} and EY/E’, on the dimensionless critical buckling load of BDFG nanobeam with
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5.5 Influence of the slenderness ratio

The effect of the slenderness ratio (L/h) on the dimen-
sionless deflection, buckling and frequency of BDFG
nanobeam with 2=15 nm is illustrated in Figs. 20, 21, 22,
employing classical “CL” and nonclassical “NC”, i.e.,
CS, SE, and CSSER, theories. In this section, the results
are obtained for FG nanobeams with the material prop-
erties provided in Table 9 and the material length-scale
parameters are /;= 10 nm and /,/I,= 3/4. For convenience
and better understanding of the effect of slenderness ratio
and thickness on the role of nonclassical parameters, the
predicted dimensionless maximum deflection, critical

buckling load, and free vibration frequency using non-
classical theories are normalized with their correspond-
ing values using the classical theory, i.e., W" = wV¢ /W,
PN = PNC/PCL and@" = @ /", respectively. Based
on the three different nonclassical theories, Tables 25, 26,
27 record the dimensionless maximum deflection, critical
buckling load, and fundamental frequency ratios (w" ,I_Jivr ,
and @"), at various values of the slenderness ratio and
thickness, considering different material gradations of both
uniform and tapered nanobeams. From these results, it is
revealed that for a fixed value of the beam thickness, the
ratios w", PV, and @" predicted using the MCST theory are

unchanged by varying the slenderness ratio. Employing the
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Fig. 16 The effect of the surface elasticity moduli E)/E}) and EJ/E’ on the dimensionless fundamental frequency of BDFG nanobeam with
ke=k.=1

Table 19 Dimensionless maximum deflection of uniform and tapered FG nanobeams at different surface elasticity moduli, aspect ratios, and
gradation indices (f,=,=f)

B L B AFG, (kk)=(10) TFG, (k,k)=(0,1) BDFG, (kk)=(1,1)
Ey

E/Ey E/Ey E/Ey
0 05 10 15 20 0 05 10 15 20 0 05 10 15 20

Uniform (f=0.0) 25 0 0333 0.336 0.340 0.344 0.348 0.339 0.342 0.345 0.348 0.352 0.300 0.305 0.309 0.314 0.319
0.5 0.336 0340 0.343 0.347 0.351 0.343 0.346 0.349 0.352 0.356 0.301 0.306 0.311 0.315 0.320

1.0 0.339 0.343 0.347 0350 0.354 0.347 0.350 0.353 0.356 0.360 0.303 0.307 0.312 0.317 0.322

1.5 0.342 0346 0.350 0.354 0.358 0.351 0.354 0.357 0.361 0.364 0.304 0.309 0.313 0.318 0.323

2.0 0.346 0349 0.353 0357 0.361 0.355 0.358 0.362 0.365 0.368 0.306 0.310 0.315 0.320 0.325

50 0 0.131 0.131 0.132 0.132 0.133 0.132 0.132 0.133 0.133 0.134 0.124 0.125 0.126 0.127 0.128

0.5 0.131 0.132 0.132 0.133 0.133 0.132 0.133 0.133 0.134 0.134 0.125 0.125 0.126 0.127 0.128

1.0 0.132 0.132 0.133 0.133 0.134 0.133 0.133 0.134 0.134 0.135 0.125 0.126 0.126 0.127 0.128

1.5 0.132 0.133 0.133 0.134 0.134 0.134 0.134 0.134 0.135 0.135 0.125 0.126 0.127 0.127 0.128

2.0 0.133 0.133 0.134 0.134 0.135 0.134 0.135 0.135 0.136 0.136 0.125 0.126 0.127 0.128 0.128

Tapered (f=0.5) 25 0 0.675 0.680 0.684 0.689 0.693 0.669 0.673 0.678 0.682 0.687 0.628 0.635 0.642 0.649 0.657
0.5 0.681 0.685 0.690 0.694 0.699 0.674 0.679 0.683 0.688 0.693 0.631 0.638 0.645 0.652 0.660

1.0 0.687 0.691 0.696 0.700 0.705 0.680 0.684 0.689 0.694 0.699 0.634 0.641 0.648 0.655 0.663

1.5 0.692 0.697 0.702 0.707 0.711 0.686 0.690 0.695 0.700 0.704 0.637 0.644 0.651 0.658 0.666

2.0 0.698 0.703 0.708 0.713 0.718 0.692 0.697 0.701 0.706 0.711 0.640 0.647 0.654 0.661 0.669

50 0 0206 0.206 0.206 0.207 0.207 0.205 0.205 0.206 0.206 0.206 0.199 0.200 0.200 0.201 0.202

0.5 0.206 0.206 0.207 0.207 0.208 0.205 0.206 0.206 0.206 0.207 0.199 0.200 0.201 0.201 0.202

1.0 0.206 0.207 0.207 0.208 0.208 0.206 0.206 0.207 0.207 0.207 0.199 0.200 0.201 0.201 0.202

1.5 0.207 0.207 0.208 0.208 0.209 0.206 0.207 0.207 0.207 0.208 0.200 0.200 0.201 0.202 0.202

2.0 0.207 0.208 0.208 0.209 0.209 0.207 0.207 0.208 0.208 0.208 0.200 0.201 0.201 0.202 0.203

SE and CSSE theories and with the increase of L/h, the pre-  L/h is observed for different taperness parameters, thick-
dicted dimensionless maximum deflection ratio decreases, nesses, and material gradations. For the studied ranges of
whereas the predicted dimensionless critical buckling load ~ L/h and h, the CSSER theory provides the maximum stiffen-
and dimensionless frequency ratios increase. This effect of  ing effect in comparison with CS and SE theories. For low
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Fig. 17 The mutual effect of the dimensionless material length scale parameter (//h) and material length scale parameter ratio (///,) on the
dimensionless maximum deflection of BDFG microbeam with k, =k_ =1

Dimensionless critical buckling load
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Fig. 18 The mutual effect of the dimensionless material length scale parameter (//h) and material length scale parameter ratio (///,) on the
dimensionless critical buckling load of BDFG microbeam with k, =k =1

values of L/h, the microstructure effect is greater than the  the effect of the slenderness ratio reduces. Increasing the
surface energy effect. With the increase of L/h, the contribu-  beam thickness decreases the influence of both the material
tion of surface energy rises and the predicted results from SE ~ length-scale parameter and surface energy on the static and
theory become greater than those from CS theory. For differ- ~ vibration behaviors of nanobeams. The effect of the beam
ent material gradations, with increasing the beam thickness  thickness on the beam response becomes more pronounced
or varying the taperness from positive to negative values,
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Fig. 19 The mutual effect of the dimensionless material length scale parameter (//h) and material length scale parameter ratio (///,) on the

dimensionless fundamental frequency of BDFG microbeam with k, =k =1

with increasing the slenderness ratio. Amongst the gradation
distributions, AFG nanobeam shows the highest sensitivity
to the slenderness ratio and thickness.

6 Conclusion

In this study, a nonclassical integrated modified couple
stress—surface elasticity model is developed to explore the
size-dependent static bending, buckling, and free vibration
responses of BDFG tapered micro/nanobeams, for the first
time. All the material properties describing the bulk and
surface continuums, including the material length-scale
parameter and surface parameters, are assumed to vary along
the thickness and length directions according to power-law
distribution. The governing equations and boundary condi-
tions of the proposed Euler—Bernoulli nanobeam are exactly
derived using Hamilton principle on the basis of the modi-
fied couple stress theory and Gurtin—Murdoch surface elas-
ticity theory. Accounting for the physical neutral surface
concept, a semi-analytical solution for the static deflection,
critical buckling load, and natural frequency of simply
supported BDFG tapered nanobeam are derived using the
Navier’s method combined with the GDQM. An extensive
detailed study on the effect of different characteristic mate-
rial and geometrical parameters on the static and vibration

@ Springer

responses is presented. The main results of this study are
summarized as follows:

e Both the microstructure via the MCST and surface
residual stress have distinct influences in stiffness-hard-
ening of FG nanobeams, and thus, the static deflection
decreases and both the critical buckling load and fun-
damental frequency increase. In contrast, the surface
elastic modulus has a softening effect leading to higher
deflection and lower critical buckling load and vibration
frequency.

e As the cross section of the nanobeam along the length
direction decreases, i.e. (f,, f,) changes from (0, 0) to
(0.5, 0.5), the predicted deflection increases; whereas,
both the critical buckling load and vibration frequency
decrease, for all gradation distributions. On the contrary,
changing (f,, f,) from (0, 0) to (— 0.5, — 0.5) has an
opposite effect. The effect of g, and f;, becomes more
pronounced for AFG nanobeams. Employing the CSSE
formulation significantly reduces the influence effect of
f,, while that of f§, may increase or decrease depending
on the gradation distribution. As f, increases towards
positive values, the impact of f, increases and vice versa.

¢ Increasing the surface residual stress of the ceramic (z})
and/or metallic (z¥) phases shows a distinct reduction in
the dimensionless bending deflection and a noticeable
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Fig.20 Variation of the dimensionless maximum deflection ratio (wN) with the slenderness ratio (L/h) of BDFG nanobeam using SE, CS, and
CSSER theories (h=15 nm and k,=k_=1.0)
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CSSER theories (h=15 nm and k,=k_=1.0)

increase in the dimensionless critical buckling load and ing to BDFG and TFG nanobeams. Also, the impact of

vibration frequency, for all gradation distributions. The 7) is reduced as 7 increases and the opposite is true.

buckling response is more sensitive to the surface resid- o The surface elasticity moduli E] and E} with negative

ual stress than the vibration and bending responses. The
highest impact of 7; and z; are, respectively, correspond-

@ Springer

values slightly enhances the stiffness-softening behav-
ior of FG nanobeams, and accordingly, the dimension-



Engineering with Computers (2022) 38:2269-2312

2305

-% 2.2 . .

i (a) B,=B,=0

)

220}

%)

=

[=n

[P

& 1.8F

= /

=

g 1.6 1

[

=

=

Z 1.4} !

g

= L2l = SE

2 — S

g — CSSER

E 10 . . :

a2 30 40 50 60 70
L/h

less bending deflection increases and the dimensionless
critical buckling load and vibration frequency decrease.
BDFG and TFG nanobeams give the highest effect of the
surface elasticity moduli £ and EJ, respectively. It can
be concluded that the effect of surface elasticity moduli
is very small compared with that of the surface residual
stress.

Increasing the material length-scale parameter-to-thick-
ness ratio (/,/h) and/or the material length-scale param-
eter ratio (/,//,) improves the stiffness-hardening effect of
the microbeam compared with the classical beam model.
Compared to the uniform microbeam, the effects of both
l./hand [, /], increase with positive taperness parameters.
The roles of [, /h and [, /[, are significantly influenced by
the gradation distribution as the maximum effect of /, /],
is obtained for BDFG microbeams, followed by TFG and
AFG.

The gradation indices k, and k, have a significant effect
on the response of BDFG tapered micro/nanobeams.
Increasing k, and/or k, increases the stiffness-hardening
of the beam and accordingly, the deflection decreases,
whereas the critical buckling load and free vibration

»
n

|(b) ﬁh=ﬂb=0.5 | .

w
=

g
n

g
o

Dimensionless fundamental frequency ratio

15E —=SE
- CS
== CSSER
1'0 A A i
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Fig.22 Variation of the dimensionless natural frequency ratio (wN) with the slenderness ratio (L/h) of BDFG nanobeam using SE, CS, and
CSSER theories (h=15 nm and k, =k =1.0)

frequency increase. Both the nonclassical formulation
and positive taperness parameters noticeably reduces the
effect of k, and k,. Also, the influence of the gradient
indices on the bending response is much greater than that
on the buckling and vibration responses.

¢ Increasing the aspect ratio enhances the influence surface
energy, whereas the microstructure effect is unchanged.
With the increase of aspect ratio, the influences of the
surface residual stress increases; whereas, the influence
of E} and E7 significantly decreases. The impact of the
aspect ratio is reduced by increasing the beam thickness
or varying the taperness parameters from positive to
negative values.

The present results could be helpful in reaching the
desired static and free vibration responses of micro/nano-
beam. As the beam response can be controlled by appro-
priate engaging of the gradient indices in thickness and/or
length directions and proper selection of the cross section.

@ Springer
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Table 25 Dimensionless L/h  heom)  AFG, (k.k)=(1,0) TFG, (k,k)=(0,1) BDFG, (k,k,)=(1,1)
maximum deflection ratio (") ° ‘ b

of uniform and tapered FG SE CS CSSER SE CS CSSER SE CS CSSER
nanobeams at different values

of the slenderness ratio and Nonuniform nanobeam, (8, §,)=(0.5,0.5)

thickness employing various 20 15 0.6138 02613 0.2247  0.6295 0.2390 0.2096  0.6687 0.2289 0.2057
nonclassical theories 30 0.7609 0.5831 0.4933  0.7728 0.5524 0.4753 0.8015 0.5394 0.4761

60 0.8643 0.8471 0.7477 0.8719 0.8293 0.7393  0.8898 0.8222 (.7464
30 15 0.4048 0.2613 0.1893  0.4208 0.2390 0.1799 0.4628 0.2289 0.1811
30 0.5763 0.5831 0.4092  0.5927 0.5524 0.4007 0.6329 0.5394 04114
60 0.7314 0.8471 0.6462  0.7444 0.8293 0.6458 0.7753 0.8222 0.6643
40 15 0.2744 0.2613 0.1551  0.2871 0.2390 0.1502  0.3232 0.2289 0.1551
30 0.4303 0.5831 0.3303  0.4467 0.5524 0.3284 0.4889 0.5394 0.3455
60 0.6017 0.8471 0.5431 0.6179 0.8293 0.5485 0.6568 0.8222 0.5756
60 15 0.1427 0.2613 0.1022  0.1502 0.2390 0.1019  0.1733  0.2289 0.1099
30 0.2499 0.5831 0.2128  0.2619 0.5524 0.2165 0.2960 0.5394 0.2370
60 0.3997 0.8471 0.3734 04156 0.8293 0.3832 0.4571 0.8222 0.4165
Uniform nanobeam, (g, f,)=(0.0,0.0)
20 15 0.8358 0.4186 0.3867 0.8314 0.3906 0.3620 0.8599 0.3781 0.3562
30 0.9106 0.7415 0.6911 0.9080 0.7194 0.6705 0.9247 0.7086 0.6699
60 0.9532 09197 0.8800 0.9518 09112 0.8709 0.9609 0.9068 0.8745
30 15 0.6773 0.4186 0.3486 0.6706 0.3906 0.3278  0.7160 0.3781 0.3288
30 0.8077 0.7415 0.6301 0.8029 0.7194 0.6115 0.8346 0.7086 0.6213
60 0.8937 09197 0.8289 0.8907 09112 0.8196 0.9098 0.9068 0.8320
40 15 0.5352 0.4186 0.3066  0.5275 0.3906 0.2895 0.5799 0.3781 0.2969
30 0.6974 0.7415 0.5608 0.6909 0.7194 0.5443  0.7343 0.7086 0.5640
60 0.8218 09197 0.7667 0.8173 09112 0.7570 0.8468 0.9068 0.7790
60 15 0.3343 04186 0.2280 0.3273 0.3906 0.2169  0.3754 0.3781 0.2323
30 0.5015 0.7415 04266 0.4938 0.7194 04142 0.5464 0.7086 0.4462
60 0.6682 09197 0.6312 0.6614 009112 0.6214 0.7069 0.9068 0.6590
Nonuniform nanobeam, (g, f,)=(—0.5, —0.5)
20 15 0.9151 0.5159 04924 0.9082 0.4857 04629 0.9271 04756 0.4584
30 0.9557 0.8075 0.7783  0.9519 0.7897 0.7594 0.9622 0.7814 0.7581
60 0.9773 0.9433 09231 09754 0.9374 09157 0.9807 0.9338 0.9170
30 15 0.8093 0.5159 04600 0.7961 0.4857 04319 0.8324 04756 0.4340
30 0.8946 0.8075 0.7374  0.8865 0.7897 0.7172  0.9086 0.7814 0.7244
60 0.9444 0.9433 0.8937 0.9399 0.9374 0.8844  0.9521 0.9338 0.8919
40 15 0.6965 0.5159 04211 0.6787 0.4857 0.3948 0.7283 0.4756 0.4040
30 0.8212 0.8075 0.6868  0.8088 0.7897 0.6654  0.8429 0.7814 0.6820
60 0.9019 0.9433 0.8555 0.8943 0.9374 0.8439 0.9148 0.9338 0.8590
60 15 0.4979 0.5159 0.3393 04772 04857 0.3170 0.5362 04756 0.3371
30 0.6651 0.8075 0.5741  0.6465 0.7897 0.5515 0.6984 0.7814 0.5843
60 0.7990 0.9433 0.7624  0.7854 0.9374 0.7463  0.8225 0.9338 0.7772

@ Springer
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I:i':i'ceazliulc)ﬁi“;;i‘;‘giiio ) L/h h(nm)  AFG, (k.k)=(1,0) TFG, (k,k,)=(0,1) BDFG, (kk)=(1.1)
of uniform and tapered FG SE CS CSSER SE CS CSSER  SE CS CSSER
nanobeams at different values
of the slenderness ratio and Nonuniform nanobeam, (8, £,)=(0.5, 0.5)
thickness, employing various 20 15 1.6112 3.9584 4.5919 1.5759 4.3510 49554 14851 4.5711 5.0795
nonclassical theories 30 13070 17463 20591 12889 18589  2.1560 12433 19104 2.1604
60 1.1539 1.1880 1.3428 1.1447 1.2195 1.3657 1.1219 1.2317 1.3549
30 15 24228 3.9584 54363 23389 4.3510 57596 2.1325 4.5711 5.7594
30 1.7172 1.7463 2.4766 1.6738 1.8589 2.5513 1.5697 1.9104 2.4952
60 1.3600 1.1880 1.5502 1.3380 1.2195 1.5609 1.2857 1.2317 1.5202
40 15 3.5401 3.9584 6.6130 3.3917 4.3510 6.8814 3.0271 4.5711 6.7082
30 2.2865 1.7463 3.0582 22086 1.8589 3.1026 2.0235 1.9104 2.9621
60 1.6475 1.1880 1.8394 1.6075 1.2195 1.8332  1.5142 1.2317 1.7510
60 15 6.6319 39584 99400 6.3142 43510 10.0608 5.5169 4.5711 9.4002
30 3.8836 1.7463 4.7010  3.7127 1.8589 4.6633 3.3018 1.9104 4.2856
60 24608 1.1880 2.6590 23715 1.2195 2.6060 2.1625 1.2317 2.4064
Uniform nanobeam, (S, §,)=(0.0, 0.0)
20 15 1.1956 23716 2.5664 1.2019  2.5600 27619 1.1622 2.6421 2.8042
30 1.0978 1.3444  1.4420 1.1010  1.3900 14910 1.0811 1.4107 1.4918
60 1.0489 1.0863 1.1352 1.0505 1.0975 1.1480 1.0405 1.1027 1.1432
30 15 1.4746 23716 2.8451 1.4887 2.5600 3.0487 1.3949 2.6421 3.0369
30 1.2373 1.3444 1.5815 1.2444  1.3900 1.6344 1.1974 1.4107 1.6081
60 1.1187 1.0863 1.2049 1.1222  1.0975 1.2197 1.0987 1.1027 1.2014
40 15 1.8651 2.3716 3.2352 1.8903  2.5600 3.4503 1.7207 2.6421 3.3627
30 1.4326 1.3444 1.7766 1.4452  1.3900 1.8352 1.3604 1.4107 1.7710
60 1.2163 1.0863 1.3025 1.2226  1.0975 1.3201 1.1802 1.1027 1.2829
60 15 29808 2.3716 4.3498 3.0377 2.5600 45977 2.6516 2.6421 4.2935
30 1.9905 1.3444 2.3343 2.0188  1.3900 2.4088 1.8258 1.4107 2.2365
60 1.4953 1.0863 1.5815 1.5094 1.0975 1.6069 1.4129 1.1027 1.5156
Nonuniform nanobeam, (S, f,)=(—0.5, —0.5)
20 15 1.0921 1.9546 2.0477 1.1000 2.0734 2.1747 1.0780 2.1261 2.2051
30 1.0461 1.2444 1.2907 1.0500 1.2706 1.3209 1.0390 1.2852 1.3245
60 1.0230 1.0618 1.0849 1.0250 1.0679 1.0930 1.0195 1.0718 1.0913
30 15 1.2339  1.9546 2.1913 1.2536  2.0734 2.3298 1.1996 2.1261 2.3281
30 1.1170  1.2444 1.3620 1.1269 1.2706 1.3981 1.0999 1.2852 1.3856
60 1.0585 1.0618 1.1204 1.0634  1.0679 1.1315 1.0499 1.0718 1.1218
40 15 1.4322 1.9546 2.3923 1.4684 2.0734 2.5469 1.3698 2.1261 2.5003
30 1.2162 1.2444 1.4617 1.2344 1.2706 1.5060 1.1850 1.2852 1.4712
60 1.1081 1.0618 1.1701 1.1172 1.0679 1.1853 1.0925 1.0718 1.1645
60 15 1.9980 1.9546 29662 2.0806 2.0734 3.1663 1.8553 2.1261 2.9919
30 1.4996 1.2444 1.7466 1.5412  1.2706 1.8142 1.4282 1.2852 1.7155
60 1.2499 1.0618 1.3121 1.2709 1.0679 1.3391 1.2142 1.0718 1.2863
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Table 27 Dimensionless

. L/h  h(nm) AFG, (k.k)=(1,0) TFG, (k,.k,))=(0,1) BDFG, (k,.k,)=(1,1)
fundamental frequency ratio < c b
(@) of uniform and tapered FG SE CS CSSER SE CS CSSER SE CS CSSER
nanobeams at different values
of the slenderness ratio and Nonuniform nanobeam, (8, £,)=(0.5, 0.5)
thickness, employing various 20 15 1.2335 19437 2.0318 1.2204 2.0197 2.0932 1.1876 2.0708 2.1255
nonclassical theories 30 11266 13038 13948  1.1190 13365 14183 1.1005 13549 14217
60 1.0662 1.0845 1.1444 1.0621 1.0955 1.1509 1.0522 1.1010 1.1470
30 15 1.5139 19437 22119 1.4888 2.0197 2.2582 14244 2.0708 2.2644
30 1.2915 13039 1.5302 1.2759 1.3365 1.5439 1.2369 1.3549 1.5286
60 1.1576  1.0845 1.2297  1.1485 1.0955 1.2307 1.1265 1.1010 1.2152
40 15 1.8336  1.9437 24413 1.7972 2.0197 24707 17001 2.0708 2.4455
30 1.4911 13039 1.7013  1.4670 1.3365 1.7039 14051 1.3549 1.6665
60 1.2741 1.0845 13397 12594 1.0955 1.3343 1.2228 1.1010 1.3045
60 15 2.5288 1.9437 3.0000 2.4719 2.0197 2.9954 23098 2.0708 2.9009
30 1.9487 13039 2.1134 19085 1.3365 2.0943 1.7993 1.3549 2.0083
60 1.5583 1.0845 1.6120 15317 1.0955 1.5931 14625 1.1010 1.5308
Uniform nanobeam, (g, #,)=(0.0, 0.0)
20 15 1.0691 15437 1.5701 1.0720 1.6000 1.6251 1.0564 1.6260 1.6416
30 1.0359 1.1606 1.1884 1.0374 1.1790 1.2073  1.0292 1.1879 1.2091
60 1.0183 1.0425 1.0597 1.0191 1.0476 1.0654 1.0148 1.0501 1.0638
30 15 1.1873 1.5437 1.6531 1.1931 1.6000 1.7074 1.1574 1.6260 1.7083
30 1.0998 1.1606 1.2445 1.1030 1.1790 1.2640 1.0832 1.1879 1.2554
60 1.0516 1.0425 1.0917 1.0533 1.0476 1.0981 1.0428 1.0501 1.0905
40 15 1.3352  1.5437 17626  1.3445 1.6000 1.8164 1.2855 1.6260 1.7976
30 1.1833 1.1606 13190 1.1886 1.1790 1.3394 1.1545 1.1879 1.3175
60 1.0966 1.0425 1.1351 1.0994 1.0476 1.1424 1.0808 1.0501 1.1269
60 15 1.6878 1.5437 2.0434 1.7044 1.6000 2.0968 1.5958 1.6260 2.0312
30 1.3947 1.1606 1.5117 1.4049 1.1790 1.5346 1.3375 1.1879 1.4805
60 1.2158 1.0425 1.2507 1.2216 1.0476 1.2605 1.1826 1.0501 1.2248
Nonuniform nanobeam, (g, f,)=(—0.5, —0.5)
20 15 1.0265 13866 1.3939 1.0302 1.4286 1.4369 1.0216 1.4459 1.4488
30 1.0136 1.1113 1.1216  1.0155 1.1234 1.1351 1.0111 1.1294 1.1372
60 1.0069 1.0292 1.0356 1.0078 1.0323 1.0396 1.0056 1.0340 1.0392
30 15 1.0912 1.3866 1.4421 1.0999 1.4286 1.4875 1.0778 1.4459 1.4889
30 1.0474 1.1113 1.1522 1.0520 1.1234 1.1678 1.0403 1.1294 1.1632
60 1.0242  1.0292 1.0525 1.0266 1.0323 1.0578 1.0205 1.0340 1.0536
40 15 1.1758 1.3867 1.5070  1.1905 1.4286 1.5554 1.1519 1.4459 1.5431
30 1.0930 1.1114 1.1938  1.1011 1.1234 1.2121 1.0799 1.1294 1.1986
60 1.0480 1.0292 1.0756 1.0523 1.0323 1.0827 1.0410 1.0340 1.0735
60 15 1.3894 13867 1.6786 1.4176 1.4286 1.7348 1.3410 1.4459 1.6884
30 1.2139 1.1114 13052 1.2306 1.1234 1.3306 1.1856 1.1294 1.2946
60 1.1131 1.0292 1.1391  1.1223 1.0323 1.1509 1.0975 1.0340 1.1283
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