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Abstract
In this paper, the bending, buckling, and vibration behaviors of bi-directional functionally graded (BDFG) nonuniform 
micro/nanobeams are investigated. A new Euler–Bernoulli beam model is developed for BDFG tapered micro/nanobeams 
using Gurtin–Murdoch surface elasticity theory and modified couple stress theory to capture the effects of surface energy 
and microstructure stiffening, respectively. The present formulation accounts for the physical neutral surface. The material 
properties of the bulk and surface continuums of the nanobeam are assumed to vary along the thickness and length directions 
according to power law. Also, the cross section is assumed to vary linearly along the length direction. Hamilton principle 
is employed to derive the nonclassical equations of motions and boundary conditions. The generalized differential quad-
rature method (GDQM) is employed to accurately evaluate the variable coefficients of the obtained governing equations. 
Then after, the Navier’s method is employed for the simply supported BDFG nanobeam for its static bending deflection, 
critical buckling load, and fundamental frequency. The proposed model is validated by comparing the obtained results with 
available literature. Effects of different geometrical and material parameters on static and dynamic behaviors of small-scale 
BDFG nanobeams with the simultaneous effects of microstructure and surface elasticity are comprehensively studied and 
discussed. Results disclose that the nonuniformity parameters, aspect ratio, dimensionless material length-scale parameter, 
surface stress, surface elasticity, and gradient indices have a significant effect on the bending, buckling, and free vibration 
responses of BDFG tapered micro/ nanobeams.

Keywords Bi-directional functionally graded material · Nonuniform nanobeams · Surface elasticity theory · Modified 
couple stress theory · Semi-analytical solution

1 Introduction

Functionally graded materials (FGMs) are a subclass of 
composite materials, which are designed to achieve the 
optimal distribution of constituent materials suitable for 
certain applications. The superior properties of FGMs such 

as designability, lower weight, higher fracture toughness, 
enhanced thermal properties, lower stress intensity factor, 
reduced residual thermal stress, reduced interface problems, 
smaller stress concentration, enhanced corrosion resistance 
damage resistance, etc., enable them to be suitable candidates 
for a wide range of different practical fields of engineering 
and science [1–6]. Based on their application, the spatial 
variations of the mechanical, thermal, electrical, magnetic, 
etc. of FGMs are tailored to satisfy particular applications in 
numerous industrial/medical fields such as energy electron-
ics, aerospace, automotive, military, dentistry, and implants, 
sensors and thermos-generators [7–10]. In addition, with the 
rapid advance in nanotechnology, FGMs are currently used 
in micro/nano-electro-mechanical systems (MEMs/NEMs) 
such as electrically actuated micro/nano-electromechanical 
systems [11, 12], atomic force microscopes [13] and also in 
thin films in the form of shape memory alloys [14]. At small 
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scale, both experimental and molecular dynamics simulation 
results have invariably shown that the small-scale effects 
cannot be neglected in the analysis of mechanical properties 
of micro- and nanostructures, especially in micro- and nano-
beams applied as sensors and actuators [15–20]. Nowadays, 
microbeams have been widely used in micro-/nanoelectro-
mechanical systems (MEMS/NEMS) such as micro-engines, 
micro-turbomachinery, and micro-machining, the ultrasonic 
piezoelectronic motor, and the development of a micromo-
tor for in vivo medical procedures. However, the classical 
continuum mechanics theories failed to accurately predict 
the responses of such small-scale structures.

In the open literature, several size-dependent nonclassical 
continuum mechanics theories that contain additional mate-
rial length-scale parameter(s) have been developed to over-
come this barrier such as couple stress theory (CST) [21], 
strain gradient theory (SGT) [22], modified strain gradient 
theory (MSGT) [20], modified couple stress theory (MCST) 
[23], nonlocal elasticity theory [24], and nonlocal strain 
gradient theory (NSGT) [25]. For more details about the 
nonclassical continuum mechanics theories, the interested 
readers may refer to the review articles [26–28]. Over these 
nonclassical continuum mechanics theories, MCST has the 
merit of involving only one additional higher-order material 
length-scale parameter to simulate the small-scale effect, in 
addition to classical material Lamé constants. Based on this 
feature, the MCST has been employed by many researchers 
to capture the scale effect on the behavior of microstructures. 
To evaluate the material length-scale parameter of micro-
scale structures, some experiment tests have been performed 
such as torsion test of slim microcylinders having various 
diameters [29–31] and bending test of thin microbeams of 
various thicknesses [20, 32]. However, experimental results 
proved that different materials have different material length-
scale parameters [20, 33]. Furthermore, the surface elasticity 
theory proposed by Gurtin and Murdoch [34, 35] is widely 
used to model the surface energy effect for thin and ultra-
thin structures.

Due to the vast applications of FGM micro/nanostruc-
tures, many studies have been performed to investigate the 
static and dynamic behaviors of FG micro/nanobeams with 
material variation along the thickness, length, or combina-
tion of them. In the framework of the modified couple stress 
theory, a major part of these studies is focused on microbe-
ams made of transverse functionally graded material (TFG) 
which are graded along the thickness direction [36–48], and 
on the axially functionally graded material (AFG) microbe-
ams whose material properties are varied through the length 
direction [49–55].

As pointed out by Nemat-Alla [56], in some engineering 
applications such as aerospace craft and shuttles, distribu-
tions of the stress or thermal field in the structural elements 
of such advanced machines can be in two or three directions 

and thus, the conventional 1D FGMs are not sufficient. As 
a consequent, there is a need for multi-directional FGMs 
whose material properties are tailored in two or three direc-
tions to obtain more effective high-temperature resistant 
materials. However, performance of bi-directional (two-
dimensional) functionally graded materials (BD-FGMs) 
beams whose material properties vary along both the thick-
ness and length directions was modeled and investigated 
by researchers for different mechanical problems. Lü et al. 
[57] studied the static bending and thermal deformations of 
BDFG beams with exponential material variation employing 
the state-space-based differential quadrature method (DQM). 
Zhao et al. [58] suggested a symplectic framework using the 
state-space formulation for the static and free vibration anal-
yses of exponential BDFG beams. Şimşek [59] studied the 
free and forced vibrations of exponential BDFG Timoshenko 
beam subjected to a moving load using the Lagrange equa-
tions and simple polynomial forms. Şimşek [60] also inves-
tigated the buckling behavior of BDFG Timoshenko beams 
with different boundary conditions using Ritz method. 
Wang et al. [61] investigated the free vibration of BDFG 
Euler–Bernoulli beam with clamped-free ends employ-
ing semi-analytical and semi-numerical methods. Pydah 
and Sabale [62] analytically studied the flexural response 
of curved Euler–Bernoulli beams made of power-law BD-
FGM. In another study, Pydah and Batra [63] analyzed 
the static behavior of BDFG thick circular sandwich beam 
using the shear deformation beam theory. Karamanlı [64] 
explored the elastostatic behavior of a BDFG beam with 
different boundary conditions using various beam theo-
ries and the symmetric smoothed particle hydrodynamics 
method. The flexural behavior of BD-FGM sandwich beams 
is investigated by Karamanlı [65] using a quasi-3D theory 
and a meshless method. Based on the third-order beam the-
ory, Karamanlı [66] investigated free vibration response of 
exponential BDFG beams with various boundary conditions 
using the Lagrange equations. Nguyen et al. [67] used finite 
element method (FEM) to compute the vibration response 
of BDFG Timoshenko beams obeying power-law material 
distribution under a moving concentrated load. Rajasekaran 
and Khaniki [68] studied the effect of crack type, posi-
tion, and depth on the dynamic behavior of BDFG cracked 
Euler–Bernoulli beams using FEM. Li et al. [69] utilized 
the meshless total Lagrangian corrective smoothed particle 
method to study the bending behavior of BDFG beams fol-
lowing power-law and exponential distributions in thickness 
and length directions, respectively. Tang et al. [70] stud-
ied the nonlinear free vibration of BDFG Euler–Bernoulli 
beams by employing the DQM and the homotopy analysis 
method. Based on the third-order shear deformation and 
von Kármán nonlinear theories, postbuckling response of 
BDFG porous beams was investigated by Lei et al. [71] 
via the DQM. Huang and Ouyang [72] introduced an exact 
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solution for bending analysis of power-law and exponential 
BDFG Timoshenko beams based on the classical analy-
sis. The bending and free vibrational behaviors of BDFG 
cylindrical beams with radially and axially varying material 
properties based on a high-order beam model are studied by 
Huang [73]. Chen and Chang [74] studied the free vibration 
behavior of BDFG Timoshenko beams based on the Che-
byshev collocation method. Using the variational iteration 
method and the Hamiltonian approach, Mohammadian [75] 
presented closed-form analytical solutions for the nonlinear 
vibration of damped and undamped BDFG Euler–Bernoulli 
incorporating higher-order nonlinear terms in the strain field. 
Using FEM, Nguyen [76] investigated the dynamic behav-
ior of power-law BDFG sandwich beam due to nonuniform 
motion of a moving point load based on the first-order shear 
deformation beam theory. Recently, Ghatage et al. [77] pre-
sented an exhaustive review on the modeling, analysis, appli-
cation, and future vision of multi-directional FG structures.

In the framework of nonclassical continuum theories, 
some studies have been carried for BDFG micro/nanobe-
ams. Using DQM, Nejad et al. [78] and Nejad and Hadi 
[79] studied the size effects via Eringen’s differential non-
local elasticity theory (EDNET) on the linear buckling and 
free vibration responses of BDFG Euler–Bernoulli nano-
beams with an arbitrary material variation. Karamanlı and 
Vo [80] developed a finite element model for studying the 
flexural behavior of BDFG microbeams based on the quasi-
3D theory and modified couple stress theory (MCST). In 
Karamanlı and Vo [81], the size effects on the structural 
behaviors of BDFG porous microbeams was captured via the 
MSGT with three material length-scale parameters. Shafiei 
et al. [82] and Shafiei and Kazemi [83] employed DQM to 
investigate the influences of the gradation indices, micro-
scale, nonlocal parameters, and porosity on the free vibra-
tion and buckling responses of porous BDFG microbeams 
and nanobeams, adopting MCST and EDNET, respectively. 
In the framework of MCST and quasi-3D deformation the-
ory, Trinh et al. [84] studied the free vibration behavior of 
exponentially varying BDFG microbeams using the state-
space concept. Based on the nonlocal strain gradient theory 
(NSGT), Li et al. [85] investigated the nonlinear bending 
response of BDFG Euler–Bernoulli nanobeams with power-
law material distribution along thickness using DQM. Yang 
et al. [86] employed DQM to obtain the nonlinear responses 
of exponentially varying BDFG Euler–Bernoulli nanobeam 
based on EDNET and von Kármán geometric nonlinear-
ity. Yu et al. [87, 88] adopted the quasi-3D beam theory 
and MCST to study the size-dependent bending and free 
vibration of BDFG microbeams using isogeometric finite 
element analysis. Based on the Euler–Bernoulli theory and 
MCST, Khaniki and Rajasekaran [89] used FEM to investi-
gate the mechanical behavior of BDFG nonuniform micro-
beam whose material properties are arbitrary varied. Forced 

vibration analysis of a general nonuniform varying BDFG 
Euler–Bernoulli microbeam resting on Winkler elastic foun-
dation subjected to a moving harmonic load is presented by 
Rajasekaran and Khaniki [90]. Utilizing third-order shear 
beam theory and MCST, Chen et al. [91] investigated the 
static and dynamic analysis of postbuckling of BDFG micro-
beams using DQM. This work was extended by Chen et al. 
[92] to study the free vibration, buckling, and dynamic sta-
bility of BDFG microbeams embedded in an elastic medium. 
Sahmani and Safaei [93, 94] investigated the size-dependent 
nonlinear free vibration and resonance behaviors of BDFG 
nanobeams within the context of the hyperbolic shear defor-
mation beam theory and NSGT employing DQM. In another 
study, Sahmani and Safaei [95] extended this model to study 
the effect of homogenization scheme of FGM on the nonlin-
ear bending and postbuckling responses of BDFG nanobe-
ams. Rahmani et al. [96] analyzed the vibration response of 
power-law BDFG rotating porous nanobeams based on Red-
dy’s beam theory and a general nonlocal theory employing 
DQM. Attia and Mohamed [97, 98] developed a microbeam 
model based on MCST to explore the static and vibration 
behaviors of thermal buckling and postbuckling of BDFG 
nonuniform shear deformable microbeam. Barati et al. [99] 
investigated the transverse vibration of BDFG nanobeams 
subjected to a longitudinal magnetic field is investigated via 
the EDNET. The static bending of Euler–Bernoulli nano-
beams made of BDFG material with the method of initial 
values in the frame of gradient elasticity is studied by Çelik 
and Artan [100]. The free vibration behavior of BDFG nano-
beams is analyzed via EDNET by Dangi et al. [101]. Malik 
and Das [102] studied the free vibration behavior of rotating 
BDFG Euler–Bernoulli nanobeam based on EDNET.

According to surface elasticity theory (SET) proposed 
by Gurtin and Murdoch [34, 35], the surface layers of the 
bulk continuum material are treated as a two-dimensional 
membrane of zero thickness with different properties from 
the bulk continuum. This theory can efficiently incorporate 
the surface energy effect into the mechanical responses of 
micro/nanostructures. In recent years, Gurtin–Murdoch sur-
face elasticity theory has been adopted in many studies to 
explore the surface effects on the bending, buckling, vibra-
tion, and instability responses of FGM micro/nanobeam, i.e., 
[103–112]. Simultaneous effects of surface energy and cou-
ple stress have been investigated on the static and dynamic 
analyses of micro/nanobeams by some authors. Gao and 
co-workers [113–116] developed a size-dependent model 
incorporating microstructure and surface energy effects for 
homogeneous beams using different beam theories. Attia 
and Mahmoud [117, 118] investigated the mechanics of 
elastic and viscoelastic Euler–Bernoulli beam on the basis 
of nonlocal-couple stress elasticity and surface energy theo-
ries. Zhang et al. [119] studied the size-dependent behavior 
of nanobeams incorporating bulk and surface effects. For 
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FGM micro/nanobeams, Attia [120] and Attia and Rahman 
[121] explored the mutual effects of microstructure and sur-
face energy on the mechanics of elastic and viscoelastic FG 
nanobeams. The pull-in stability and freestanding of elec-
tromechanically actuated FG nanobeams in the framework 
of MCST and SET in [122–124]. Shanab et al. [125–127] 
and Attia et al. [128] presented a comprehensive investiga-
tion of nonlinear bending and vibration of TFG Euler–Ber-
noulli and Timoshenko nanobeams using an integrated 
couple stress–surface energy model. On the basis of two-
phase local/nonlocal formulation, Hosseini-Hashemi et al. 
[129] studied the damped vibration behavior of viscoelas-
tic Euler–Bernoulli nanobeams in the presence of surface 
energy. Yin et al. [130, 131] studied the static bending and 
free vibration behaviors of the nonclassical Bernoulli–Euler 
and Timoshenko beams based on MCST and SET using 
isogeometric FE analysis.

From the above literature review, it is noted that most 
of the researchers are focused on the mechanical behav-
ior of the BDFG microbeams with uniform cross section 
and in the absence of surface energy effects. To the best 
of the author’s knowledge, there is no reported work on 
the mechanics of BDFG micro/nanobeams accounting for 
the simultaneous effects of cross-section nonuniformality, 
microstructure, and surface energy. The present study aims 
to investigate the static bending, buckling, and free vibration 
behaviors of tapered BDFG nanobeams based on MCST and 
Gurtin–Murdoch SET to simulate, respectively, the micro-
structure and surface energy contributions for the first time. 
All the material properties of the bulk continuum and sur-
face layers including the material length-scale parameter 
and surface parameters are varies according to power-law 
in both thickness and length directions. Hamilton’s energy 
principle has been used to obtain the equations of motion of 
Euler–Bernoulli nanobeam on the basis of physical neutral 
surface concept. To this end, the Navier solution in con-
junction with GDQM is employed to solve the nonclassical 
equations for simply supported nanobeams. To authenticate 

the preciseness of the developed model and solution pro-
cedure, the obtained results are compared with those in the 
open literature. The influences of different geometrical and 
material parameters on the static and dynamic responses of 
nonuniform BDFG micro/ nanobeams are examined and 
discussed in detail.

2  Theory and formulation

In this section, the size-dependent governing differen-
tial equations, and corresponding boundary conditions of 
a BDFG nonuniform micro/nanoscale beams are exactly 
derived using the Hamiltonian principle. To model a general 
micro/nanobeam for mechanical problems, the present for-
mulation considers the simultaneous effect of microstructure 
and surface energy using the modified couple stress theory 
and Gurtin–Murdoch surface elasticity theory, respectively, 
in the framework of continuum mechanics. This is the first 
time to include the surface energy effects on BDFG tapered 
nanobeams in the presence of microstructure effect. For this 
purpose, consider a nonuniform nanobeam whose dimen-
sions with respect to Cartesian coordinate system ( x , y , z ) 
are shown in Fig. 1. The middle plane being z = 0 with ori-
gin at x = 0 . Both the thickness and width of the nanobeam 
are assumed to vary along length L as  h(x) = h0

(
1 − �hx∕L

)
 

and b(x) = b0
(
1 − �bx∕L

)
 , respectively, where �h and �b 

denote the taperness parameters describing the cross-sec-
tional change along thickness and width directions, respec-
tively; and h0 and b0 represent, respectively, the thickness 
and width at x = 0.

2.1  Bi‑directional functionally graded material

Due to the continuous grading of the material properties of a 
BDFG beam along both the axial and transverse directions, 
the effective material properties are defined in terms of the 
power law in both directions as follows: [59, 60]

Fig. 1  Schematic sketch of a nonuniform bi-directional functionally graded nanobeam
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where Vr is the volume fraction of the constituent at the 
upper right corner of the beam, and the subscripts l and 
r represent, respectively, the phases at the lower left and 
upper right corners of the BDFG beam. In Eq. (1), kx and 
kz stand for non-negative numbers (FGM property gradient 
indices) that determine the material variation profile through 
the length and thickness directions, respectively. Following 
Eq. (1) the variations of the effective Young’s modulus ( EB ), 
mass density ( �B ), Poisson’s ratio ( � ), and variable micro-
structure material length-scale ( l ) of the bulk continuum, 
can be defined as

The effective surface parameters, surface Lamé’s con-
stants ( �s and �s ), surface residual stress ( �s ), and surface 
mass density ( �s ) of the BDFG beam are expressed accord-
ing to the bi-directional power law in Eq. (1), as follows:

(1)P(x, z) = Pl +
(
Pr − Pl

)
Vr(x, z),Vr(z) =

(
z

h(x)
+

1

2

)kz(
x

L

)kx
,Vr(x, z) + Vl(x, z) = 1,

(2a)EB(x, z) = EB
l
+
(
EB
r
− EB

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(2b)�B(x, z) = �B
l
+
(
�B
r
− �B

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(2c)�(x, z) = �l +
(
�r − �l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(2d)l(x, z) = ll +
(
lr − ll

)( z

h(x)
+

1

2

)kz(
x

L

)kx
.

(3a)�s(x, z) = �s
l
+
(
�s
r
− �s

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(3b)�s(x, z) = �s
l
+
(
�s
r
− �s

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(3c)�s(x, z) = �s
l
+
(
�s
r
− �s

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
,

(3d)�s(x, z) = �s
l
+
(
�s
r
− �s

l

)( z

h(x)
+

1

2

)kz(
x

L

)kx
.

Herein and throughout the paper, superscripts “ B ” and 
“ s ” refer to the bulk and surface continuums, respectively, 
of the nanobeam.

In Eqs. (1–3a, 3b, 3c, 3d), the position of the midplane ( z ) 
is taken as a reference. It is obvious that the variation of the 
material properties of a BDFG is non-symmetric about the 
geometric midplane of the beam. Consequently, the associ-
ated physical neutral plane deviates from the midplane coun-
terpart [97]. So, it is defined that en = z − zn , in which zn 
refers to the z-coordinate of the physical neutral plane that 
can be determined as follows:

where en is the distance between the midplane and the neu-
tral plane as shown in Fig. 1. It is clear that the position of 
physical neutral plane is a function of axial direction due 
to the variations of both the cross section and the material 
properties along the axial direction. For symmetric varia-
tion of the beam material properties about its midplane, the 
parameter en is equal to zero. Lamé’s moduli of the bulk 
material �B(x, z) and �B(x, z) are related to Young’s modulus 
EB(x, z) and Poisson’s ratio �(x, z) of the beam material as 
follows:

It is obvious when the Poisson’s ratio effect is neglected, 
the term 

(
�B(x, z) + 2�B(x, z)

)
 yields to EB(x, z) , as reported 

in [59, 60, 93, 94].

2.2  Modified couple stress theory

Based on Euler–Bernoulli beam theory, all applied loads and 
geometry are such that displacement field of a BDFG micro/
nanobeam at an arbitrary point at a height ( z ) measured from 
the midplane and time ( t ) can be given as

where U and W  represent the displacements in axial and 
transversal directions, respectively, of an arbitrary point 
( x, y, z ) on the beam cross section at time ( t  ). u(x, t) and 

(4)en(x) =
∫

A(x)
z
[
�B(x, z) + 2�B(x, z)

]
dA

∫
A(x)

[
�B(x, z) + 2�B(x, z)

]
dA

,

(5)

�B(x, z) =
EB(z)

2(�(z) + 1)
and �B(x, z) =

EB(x, z)�(x, z)

(1 + �(x, z))(1 − 2�(x, z))
.

(6)
U(x, z, t) = u(x, t) − zn

�w(x,t)

�x

W(x, z, t) = w(x, t),
,
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w(x, t) are the axial and transverse components of displace-
ment of the point on the physical neutral axis.

In the context of the modified couple stress theory 
(MCST) proposed by Yang et al. [23], the strain energy of 
the bulk continuum of deformed micro/nanobeam made of 
an isotropic linear elastic BDFG is given as

where �ij and �ij are, respectively, the strain tensor and the 
classical Cauchy stress tensor; and �ij and mij are, respec-
tively, the symmetric rotation gradient tensor and devia-
toric part of the couple stress tensor. These tensors can be 
expressed as follows [23]:

in which, eijk is the cyclic permutation symbol and �ij denotes 
the Kronecker delta. ui is the displacement vector given by 
Eq. (6), �i is the rotation vector, and l(x, z) denotes the mate-
rial length-scale parameter which captures the size-effect 
due to the material microstructures in the nonclassical 
BDFG beam model. In the aforementioned equations and 
throughout the paper, the summation convention and stand-
ard index notation are used, with the Latin indices running 
from 1 to 3 and the Greek indices from 1 to 2 unless other-
wise indicated.

Based on the kinematic relations of EBBT in Eq. (6), the 
nonvanishing components of �ij , �ij , �i , �ij , and mij can be, 
respectively, obtained as

(7)ΠB =
1

2∫
L

0
∫ A

(
�ij�ij + mij�ij

)
dAdx,

(8a)�ij =
1

2

(
ui,j + uj,i

)
,

(8b)�ij = 2�(x, z)�ij + �(x, z)�kk�ij,

(9a)�ij =
1

2

(
�i,j + �j,i

)
;�i =

1

2
eijkuk,j,

(9b)mij = 2�(x, z)l2(x, z)�ij,

(10a)�xx =
�u(x, t)

�x
− zn

�2w(x, t)

�x2
,

(10b)�xx ≡ (
�B(x, z) + 2�B(x, z)

)[�u(x, t)
�x

− zn
�2w(x, t)

�x2

]
,

(11a)�y = −
�w(x, t)

�x
,

(11b)�xy = −
1

2

�2w(x, t)

�x2
,

2.3  Surface elasticity theory

In this study, Gurtin–Murdoch theory of surface elastic-
ity is employed to model the interactions between the bulk 
material and elastic surface of nanoscale structures, Gurtin 
and Murdoch [33, 34]. In this theory, the surface layer of 
a bulk elastic material satisfies distinct constitutive equa-
tions involving surface elastic constants and surface residual 
stress. According to the Gurtin–Murdoch surface elasticity 
theory, the strain energy in the surface layers continuum 
of deformed micro/nanobeam made of an isotropic linear 
elastic BDFG can be obtained as [113–115, 117]

In accordance with the Gurtin–Murdoch theory of surface 
elasticity, the surface stress–strain constitutive equations for 
the surface layers can be introduced as follows [33, 34]:

where �s and �s are the surface elastic Lame’s constants and 
�s is the residual surface stress under unstrained conditions 
(i.e., the surface stress at zero strain). �s

n�
 is the out-of-plane 

components of the surface stress tensor. Signs ( + ) and ( − ) 
stand for the upper and lower surface layers at z = h(x)∕2 
and z = −h(x)∕2 , respectively, of the BDFG nanobeam. Fol-
lowing Eqs. (6) and (10a), the nonvanishing components of 
the surface stresses in terms of the displacement field can 
be obtained as

(11c)myx = mxy(x, t) = l(x, z)2�B(x, z)

[
−
�2w(x, t)

�x2

]
.

(12)Πs =
1

2∫
L

0
∮

�A

�s
ij
(x, t)�ij(x, t)dSdx.

(13a)

�s±
��

=�s±(x, z)��� + 2
(
�s±(x, z) − �s±(x, z)

)
�±
��

+
(
�s±(x, z) + �s±(x, z)

)
�±
��
��� + �s±(x, z)u±

�,�
,

(13b)�s±
n�

= �s±(x, z)u±
n,�
;(�, � = x, y),

(14a)

�s
xx
= �s±(x, z) +

(
�s±(x, z) + 2�s±(x, z)

)(�u(x, t)

�x
− zn

�2w(x, t)

�x2

)
,

(14b)�s
nx
= �s±(x, z)us

n,x
= �s±(x, z)

�w

�x
nz.
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where nz is the z-component of the unit outward normal vec-
tor to the beam lateral surface.

2.4  The equations of motion of BDFG nanobeam 
based on the surface elasticity

Hamilton’s principle is used to obtain the nonclassical equa-
tions of the motion of BDFG tapered nanobeam considering 
the simultaneous effect of modified couple stress and surface 
elasticity. Unlike the existing BDFG beam models, the pre-
sent model accounts for both axial and transverse deforma-
tions and the Poisson’s effect is incorporated.

According to Gurtin–Murdoch surface continuum theory 
of elasticity and modified couple stress theory, the first varia-
tion of the total strain energy, including the bulk and surface 
continuums of a BDFG tapered nanobeam can be given as

where �nx =
1

2

�w

�x
nz . Substitution of Eqs. (10a, 10b), (11a, 

11b, 11c), and (14a, 14b), Eq. (15) can be obtained in terms 
of the stress resultants as follows:

in which,

(15)

�Πt ≡ �ΠB + �Πs =
1

2
��

L

0

{
� A

(
�xx�xx + 2mxy�xy

)
dA

+�
�A

(
�s
xx
�xx + 2�s

nx
�nx

)
dS

}
dx,

(16)

�Πt = ∫
L

0

[
ℕ(x)

��u

�x
−𝕄(x)

�2�w

�x2
+
(
C
s
n
(x)

�w

�x

)
��w

�x

]
dx

The stress and couple-stress resultants of the bulk con-
tinuum are given by

(17a)ℕ(x) = NB(x) + Ns(x) −
1

2
C
s
0
(x),

(17b)�(x) = MB(x) +Ms(x) + Y
B(x) −

1

2
C
s
1
(x),

(18)

⎧⎪⎨⎪⎩

NB(x)

MB(x)

Y
B(x)

⎫⎪⎬⎪⎭
≡ � A

⎧⎪⎨⎪⎩

�xx
zn�xx
mxy

⎫⎪⎬⎪⎭
dA =

⎧⎪⎨⎪⎩

Axx(x)
�u

�x
− Bxx(x)

�2w

�x2

Bxx(x)
�u

�x
− Dxx(x)

�2w

�x2

−Axz(x)
�2w

�x2

⎫⎪⎬⎪⎭
,

where

The stress resultants of the surface continuum are given 
by

where

In Eqs. (18) and (21a, 21b), dA and dS are the differential 
area and line elements, respectively.

Performing the partial integration over the time interval 
[t0, tf  ] and after some mathematical manipulations, the first 
variation of the strain energy can be obtained as

The first variation of the kinetic energy of the BDFG 
nanobeam incorporating the effect of surface mass density 
can be obtained as

Proceeding the above integration by parts over the time 
interval [t0, tf  ], one can obtain the following:

(19a)

⎧
⎪⎨⎪⎩

Axx(x)

Bxx(x)

Dxx(x)

⎫
⎪⎬⎪⎭
≡ �

b2(x)

b1(x)
�

h2(x)

h1(x)

�
�B(x, z) + 2�B(x, z)

�⎧⎪⎨⎪⎩

1

zn
zn

2

⎫
⎪⎬⎪⎭
dzdy,

(19b)Axz(x) ≡ �
b2(x)

b1(x)
�

h2(x)

h1(x)

�(x, z)l2(x, z)dzdy.

(20)

{
N

s(x)

M
s(x)

}
= ∮

�A

{
�s

xx

z
n
�s

xx

}
dS =

{
A
s

xx
(x)

�u

�x
− B

s

xx
(x)

�2w

�x2
+ C

s

0
(x)

B
s

xx
(x)

�u

�x
− D

s

xx
(x)

�2w

�x2
+ C

s

1
(x)

}
,

(21a)

⎧⎪⎨⎪⎩

As
xx
(x)

Bs
xx
(x)

Ds
xx
(x)

⎫⎪⎬⎪⎭
≡ �

�A

�
�s±(x, z) + 2�s±(x, z)

�⎧⎪⎨⎪⎩

1

zn
zn

2

⎫⎪⎬⎪⎭
dS,

(21b)

⎧⎪⎨⎪⎩

C
s
0
(x)

C
s
1
(x)

C
s
n
(x)

⎫⎪⎬⎪⎭
≡ �

�A

�s(x, z)

⎧⎪⎨⎪⎩

1

zn
n2
z

⎫⎪⎬⎪⎭
dS.

(22)�∫
t
f

t0

Πt = ∫
t
f

t0

{
−∫

L

0

[
�ℕ(x)

�x
�u +

(
�2𝕄(x)

�x2
+

�

�x

(
C
s

n
(x)

�w

�x

))
�w

]
dx +

[
ℕ(x)�u +

(
C
s

n
(x)

�w

�x
+

�𝕄(x)

�x

)
�w −𝕄(x)

��w

�x

]
L

0

}
dt.

(23)

�Πk ≡ ��
L

0

1

2

{
�

A

{
�B(x, z)

((
�U

�t

)2

+
(
�W

�t

)2
)}

dA

+� �A

[
�s(x, z)

((
�U

�t

)2

+
(
�W

�t

)2
)]

dS

}
dx

= ��
L

0

1

2

{
�

A

{
�B(x, z)

((
�u

�t
− z

n

�2w

�x�t

)2

+
(
�w

�t

)2

)}
dA

+� �A

[
�s(x, z)

((
�u

�t
− z

n

�2w

�x�t

)2

+
(
�w

�t

)2

)]
dS

}
dx.
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where the effective mass moments of inertia are given by

From the general expression of the work done by external 
forces in the modified couple stress theory and in the surface 
elasticity theory, the virtual work done by the forces applied 
on the current beam can be written as [46, 113–115, 132]

where � and �nc are, respectively, the body force resultant per 
unit volume and body couple resultant per unit volume, and 
�̄ and �̄ are, respectively, the traction resultant per unit area 
and surface couple resultant per unit area, and S represents 
the surface of domain Ω . The first variation of work done 
by the external applied forces on the time interval [t0, tf  ] can 
be obtained as

in which, f  and q are the distributed axial and transverse 
loads per unit length along the x-axis; P is the applied exter-
nal compressive axial; and fnc is the y - component of the 
body couple per unit length along the x-axis. N̄ and V̄  are 
the applied axial force and transverse force at the two ends of 
the beam, respectively; and M̄c and M̄nc denote the classical 

(24)

�∫
t
f

t0

Πk
dt = −∫

t
f

t0
∫

L

0

{[
I
A
(x)

�2u

�t2
− I

B
(x)

�3w

�x�t2

]
�u

+

[
I
A
(x)

�2w

�t2
+ I

B
(x)

�3u

�x�t2
+

�I
B
(x)

�x

�2u

�t2

−I
D
(x)

�4w

�x2�t2
−

�I
D
(x)

�x

�3w

�x�t2

]
�w

}
dxdt

+ ∫
t
f

t0

{[
I
B
(x)

�2u

�t2
− I

D
(x)

�3w

�x�t2

]
�w

}
L

0

dt

+ ∫
L

0

{[
I
A
(x)

�u

�t
− I

B
(x)

�2w

�x�t

]
�u +

[
I
A
(x)

�w

�t

]
�w

−

[
I
B
(x)

�u

�t
− I

D
(x)

�2w

�x�t

]
�
�w

�x

}
t
f

t0

dx,

(25)

⎧⎪⎨⎪⎩

IA(x)

IB(x)

ID(x)

⎫⎪⎬⎪⎭
= ∫

b2(x)

b1(x)
∫

h2(x)

h1(x)

�b(x, z)

⎧⎪⎨⎪⎩

1

zn
zn

2

⎫⎪⎬⎪⎭
dzdy + ∮

�A

�s(x, z)

⎧⎪⎨⎪⎩

1

zn
zn

2

⎫⎪⎬⎪⎭
dS.

(26)

𝛿Πw =∫ Ω

(
� ∙ 𝛿u + �

nc
∙ 𝛿�

)
dΩ + ∮

𝜕A

(
�̄.𝛿� + �̄.𝛿�

)
dS

+ ∫
L

P

(
𝜕𝛿u

𝜕x
+

𝜕w

𝜕x

𝜕𝛿w

𝜕x

)
dx,

(27)

𝛿∫
tf

t0

Πw = ∫
tf

t0
∫

L

0

{(
f −

𝜕P

𝜕x

)
𝛿u

+

(
q − P

𝜕2w

𝜕x2
−

𝜕P

𝜕x

𝜕w

𝜕x
+

𝜕fnc

𝜕x

)
𝛿w

}
dxdt

+ ∫
tf

t0

{(
N̄ + P

)
𝛿u +

(
V̄ + P

𝜕w

𝜕x
− fnc

)
𝛿w −

(
M̄c + M̄nc

) 𝜕𝛿w
𝜕x

}L

0
dt,

and non-classical bending moments due to, respectively, the 
normal stress component �xx and the couple stress compo-
nent mxy at the two ends of the microbeam.

To this end, the Hamilton’s principle states that

Substituting Eqs. (22), (24) and (27) into Eq. (28), apply-
ing the fundamental lemma of calculus of variation and 
invoking the condition of zero variation at times t = t0 and 
t = tf  , the governing equations of the nonuniform BDFG 
nanobeam are obtained as the follows:

with the following boundary conditions:

2.5  The equations of motion of BDFG nanobeam 
in terms of the displacement field

Substitution of  Eqs. (17a, 17b), (18) and (20) into Eq. (29a, 
29b) gives the following size-dependent governing differen-
tial equations in terms of the displacement field:

(28)�∫
tf

t0

[
Πk −

(
Πt − Πw

)]
dt = 0.

(29a)

�u ⇒ −IA(x)
�2u

�t2
+ IB(x)

�3w

�x�t2
+

�ℕ(x)

�x
+ f −

�P

�x
= 0,

(29b)

�w ⇒ − IA(x)
�2w

�t2
− IB(x)

�3u

�x�t2
−

�IB(x)

�x

�2u

�t2

+ ID(x)
�4w

�x2�t2
+

�ID(x)

�x

�3w

�x�t2
+

�2�(x)

�x2

+
(
Cn1(x) − P

)�2w
�x2

+

(
�Cn1(x)

�x
−

�P

�x

)
�w

�x

+
�fnc

�x
+ q = 0,

(30a)𝛿u ∶ Eitheru =
∼
u or − ℕ(x) +

(
N̄ + P

)
= 0,

(30b)

𝛿w ∶ Either w =
∼
w or

𝜕�(x)

𝜕x
+ C

s

n
(x)

𝜕w

𝜕x
− P

𝜕w

𝜕x

− I
B
(x)

𝜕2u

𝜕t2
+ I

D
(x)

𝜕3w

𝜕x𝜕t2
+ f

nc
− V̄ = 0orw =

∼
w,

(30c)𝛿
𝜕w

𝜕x
∶ Either

𝜕w

𝜕x
=

∼

𝜕w

𝜕x
or�(x) −

(
M̄c + M̄nc

)
= 0.
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Moreover, the corresponding boundary conditions at 
x = 0  and x = L are as follows:

with

When the material gradation is assumed in thickness 
direction only and by neglecting the axial displacement 

(31a)

�u ⇒ −I
A
(x)

�2u

�t2
+ I

B
(x)

�3w

�x�t2

+A11(x)
�2u

�x2
+

�A11(x)

�x

�u

�x

− B11(x)
�3w

�x3
−

�B11(x)

�x

�2w

�x2

+
1

2

�Cs
0
(x)

�x
+ f

u
−

�P

�x
= 0,

(31b)

�w ⇒ −IA(x)
�2w

�t2
− IB(x)

�3u

�x�t2
−

�IB(x)

�x

�2u

�t2

+ ID(x)
�4w

�x2�t2
+

�ID(x)

�x

�3w

�x�t2
+ B

11
(x)

�3u

�x3

+ 2
�B

11
(x)

�x

�2u

�x2
+

�2B
11
(x)

�x2
�u

�x
−D

11
(x)

�4w

�x4

− 2
�D

11
(x)

�x

�3w

�x3
+

(
C
s

n
(x) − P −

�2D
11
(x)

�x2

)
�2w

�x2

+

(
�Cs

n
(x)

�x
−

�P

�x

)
�w

�x
+

1

2

�2Cs
1
(x)

�x2
+

�fnc

�x
+ q = 0.

(32a)
𝛿u ∶ Either u =

∼
u or A11(x)

𝜕u

𝜕x
− B11(x)

𝜕2w

𝜕x2
+

1

2
C
s
0
(x) −

(
N̄ + P

)
= 0,

(32b)

𝛿w ∶ Eitherw =
∼
w or − I

B
(x)

𝜕2u

𝜕t2
+ I

D
(x)

𝜕3w

𝜕x𝜕t2

+
(
C
s

n
(x) − P

)𝜕w
𝜕x

+ B11(x)
𝜕2u

𝜕x2
+

𝜕B11(x)

𝜕x

𝜕u

𝜕x

−D11(x)
𝜕3w

𝜕x3
−

𝜕D11(x)

𝜕x

𝜕2w

𝜕x2

+
1

2

𝜕Cs
1
(x)

𝜕x
+ f

nc
− V̄ = 0,

(32c)

𝜕𝛿w

𝜕x
∶ Either

𝜕w

𝜕x
=

∼

𝜕w

𝜕x
orB11(x)

𝜕u

𝜕x

−D11(x)
𝜕2w

𝜕x2
+

1

2
C
s

1
(x) −

(
M̄

c
+ M̄

nc

)
= 0,

(33)

⎧⎪⎨⎪⎩

A11(x)

B11(x)

D11(x)

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

Axx(x) + As
xx
(x)

Bxx(x) + Bs
xx
(x)

Dxx(x) + Ds
xx
(x) + Axz(x)

⎫⎪⎬⎪⎭
.

component, the obtained equation of motion and boundary 
conditions for the transverse displacement are identical with 
those reported in [120, 121]. Moreover, without consider-
ing surface energy and the material gradation in the axial 
direction, the obtained governing equations and associated 
boundary conditions of a uniform transverse functionally 
graded (TFG) microbeam are the same as those presented 
in [46].

3  Solution procedure

In general, deriving an analytical solution of the equations 
of motion (Eqs. 31a, 31b) is quite difficult because of their 
variable coefficients attributed to the nature of bi-directional 
material nonhomogeneity and the nonuniform cross sec-
tion. In addition, accounting for the physical neutral axis 
as a function of axial direction of the beam and considering 
the gradation of all the material properties of both the bulk 
and surface continuums makes the problem more complex. 
However, obtaining closed form formulas for the governing 
equations coefficients is quite difficult. To solve this issue, 
these coefficients are numerically calculated in an accurate 
way using quadrature method at each point of coordinate x . 
In this circumstance, the generalized differential quadrature 
method (GDQM) is employed to translate Eqs. (31a, 31b) 
into a set of coupled fourth-order ordinary differential equa-
tions. Besides, with the help of GDQM, the derivative of the 
discretized calculated coefficients with respect to coordinate 
x is easily obtained. First, the procedure of GDQM is briefly 
reviewed.

3.1  Generalized differential quadrature method

The generalized differential quadrature method (GDQM), as 
an efficient and effective method in differentiating smooth 
functions, is employed to obtain the derivatives of the coef-
ficients with respect to coordinate x  arise in the governing 
equations, i.e., �B11(x)∕�x , �2B11(x)∕�x

2,…etc. For this pur-
pose, let the nanobeam length ( 0 ≤ x ≤ L ) is discretized to 
N sampling points along the axial direction according to the 
Chebyshev–Gauss–Lobatto formula as

where the inner sampling points xi are not equally spread in 
the domain.

(34)xi =
1

2

[
1 − cos

(
i − 1

N − 1
�

)]
, i = 1,2,… ,N,
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In the framework of the GDQM, the r th-order deriva-
tive vector of any continuously function (coefficient) can be 
expressed as follows:

with

where Dr is the r th-order derivative weighting coefficient 
matrix of dimension N × N. If r = 1 , the first-order derivative 
weighting coefficient matrix 

(
D

1
)
 is computed as follows 

[133, 134]:

and Dr = D
1
D

r−1 for r ≥ 2.
For simplicity, in the following subsections, the notation 

of the discretized calculated coefficients at each node will be 
unchangeable, just dropping (x) . The corresponding vector 
of the first and second derivates of any coefficient will be 
noted by subscripts d and dd , respectively.

3.2  Semi‑analytical solutions

After evaluating the nodal values of the coefficients as 
well as their derivatives accurately, the Navier-type solu-
tion is developed for nonuniform BDFG simply supported 
nanobeam in the form of power series with M terms. Equa-
tions (31a, b) are analytically solved to obtain the static 
bending, buckling, and free vibration of BDFG nanobeam. 
The displacement field is assumed as follows:

where i =
√
−1, �n = n�∕L , ω is the fundamental linear fre-

quency, and Un and Wn are the unknown Fourier coefficients 
to be determined.

Substituting Eqs. (37) into Eqs. (31a, 31b) yields

(35a)F(r) = D
rF,

(35b)F(r) =
[
f
(r)

1
, f

(r)

2
,… , f (r)

n

]T
and f

(r)

i
=

drf

dxr

||||xi
,

(36)D
1

ij
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

xi−xj

N∏
m = 1

m ≠ i,m ≠ j

xi−xm

xj−xm
i ≠ j

N∑
m≠i,m=1

1

xm−xi
i = j

,

(37)

u(x, t) =

M∑
n=1

Uncos
(
�nx

)
eiωtandw(x, t) =

M∑
n=1

Wn sin
(
�nx

)
eiωt,

(38a)

e
iωt

M∑
n=1

−
[
A11�

2

n
cos

(
�
n
x

)
+A11d�nsin

(
�
n
x

)
− ω2I

A
cos

(
�
n
x

)]
U

n

+
[
B11�

3

n
cos

(
�
n
x

)
+ B11d�

2

n
sin

(
�
n
x

)
− ω2

[
I
B
�
n
cos

(
�
n
x

)]]
W

n

+ C
s

0d
+ f

u
−

�P

�x
= 0,

For simplicity, the terms Cs
0d

 and Cs
1dd

(x) are dropped from 
Eqs. (38a) and (38b), respectively.

3.2.1  Semi‑analytical solution for static bending

The static bending problem of simply supported nanobeam 
is obtained from Eqs. (38a) and (38b) by setting ω to zero 
and the external forces P and f  body couple fnc are also set 
to zero. The applied transverse load q is expanded in Fourier 
series as follows:

where the coefficient Qn is determined according to the 
applied load, i.e., for a uniform load with load intensity q0 , 
Qn = 4q0∕n� , (n = 1,3, 5,…).

Multiplying Eq. (38a) and (38b) by cos
(
�mx

)
 andsin

(
�mx

)
 , 

respectively,m = 1, 2, 3,…M , and integrating the resulting 
equations with respect to x from 0 toL , the following system 
of linear algebraic equations of the unknown vectors of coef-
ficients Wn and Un is obtained:

Then, by solving the above algebraic system, the displace-
ment field amplitudes can be obtained as

in which,

(38b)

eiωt
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(
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(
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)]]
Un
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s
1dd

+ q +
�fnc

�x
= 0.

(39a)q(x) =

∞∑
n=1

Qn sin
(
�nx

)
,

(39b)Qn = 2∫
L

0

q(x) sin
(
�nx

)
dx,

(40)
[ [

𝕂11

] [
𝕂12

]
[
𝕂21

] [
𝕂22

]
]{

Wn

Un

}
=

{
0[
ℚ2

]
}
.

(41)
{

Wn

Un

}
= [𝕂]−1ℚ,
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3.2.2  Semi‑analytical solution for buckling

The critical buckling load can be obtained from Eqs. (38a) 
and (38b) after setting all the external loads except P to zero 
and  ω is also set to zero. With some mathematical opera-
tions, one gets the following matrix form of coupled system 
of equations

with

where the elements of [�] are pre-defined in Eqs. (42). Equa-
tion (44) represents a standard eigenvalue problem and has 
nontrivial solution only for a critical axial load Pcr(n) , by 
setting the determinant of its coefficient matrix to zero.

3.2.3  Semi‑analytical solution for free vibration

For free vibration analysis, setting all the external forces in 
Eqs. (38a) and (38b) to zero leads to

where

Equation (47) represents a polynomial eigenvalue prob-
lem in the form

which is numerically solved to obtain the fundamental fre-
quency ω.

(42)
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(48)
(
[�] + [�]ω2

)
X = 0,

To this end, the integrals in Eqs. (42, 43, 45, 47) are 
implemented via numerical differential integral quadrature 
method (DIQM) [133, 134].

4  Model verification

Before performing the parametric study, this section is 
devoted to the validation and accuracy assessment of the 
developed nonclassical model and the proposed solution pro-
cedure. Since there are no published data for BDFG micro/
nanobeams including the simultaneous effects of surface 
energy and modified couple stress, we compared the present 
Euler–Bernoulli model results for bending, buckling, and 
free vibration behaviors with those available in the literature 
for simply supported micro/nanobeams.

The dimensionless center deflection of a simply supported 
homogeneous microbeam under a uniformly distributed load 
is presented in Table 1, based on MCST and compared with 
references [38, 45]. Table 2 shows the validation of the present 
model by comparing the dimensionless center deflection based 
on the classical and integrated modified couple stress–surface 
energy formulations with the reported results in [114, 125].

To check the accuracy of the present buckling analysis, 
different numerical examples are solved and compared with 
the available literatures [60, 135, 136]. A comparison of 
the critical buckling load of a homogeneous microbeam 
based on surface energy formulation is provided in Table 3, 
whereas Table 4 validates the predicted critical buckling 
load of a BDFG uniform beam based on the classical elas-
ticity theory at various gradient indices. Table 5 compares 
the present classical dimensionless critical buckling load of 
AFG tapered beam and that reported by Shahba et al. [135].

Tables 6, 7, 8 are devoted to comparing the fundamental 
frequency obtained via the current model and those reported 
in the previous studies. The fundamental frequency are pre-
sented and compared in Tables 6, 7, 8 for, respectively, a 
homogeneous uniform nanobeam including both effects of 
the modified couple stress and surface energy, a BDFG uni-
form microbeam based on modified couple stress theory, and 
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Table 1  Comparison of the dimensionless center deflection w̄ = 100
(
wEI∕(qL4)

)
 of a homogeneous microbeam under uniform load based on the 

MCST analysis ( E = 1.44 GPa , � = 0.38, h = 88 μm, L = 20h and b = 2h)

Dimensionless material length parameter ( l∕h)

0.0 0.2 0.4 0.6 0.8 1.0

Present 1.3021 1.1092 0.7679 0.5076 0.3442 0.2435
Reddy [45] 1.3021 1.1092 0.7679 0.5076 0.3442 0.2435
Arbind and Reddy [38] 1.3021 – – 0.5076 – 0.2435

Table 2  Comparison of dimensionless center deflection (w̄ = w∕h) of 
homogeneous nanobeam under midpoint load based on classical and 
integrated couple stress–surface energy analyses ( E = 90 GPa , � = 

2700,� = 0.23, l  =  6.58  μm,�s = 3.4939 N∕m , �s = −5.4251 N∕m , 
�s = 0.5689 N∕m , L = 20h and b = 2h)

Classical elasticity theory Integrated couple stress–surface energy

Thickness-to-material length-scale parameter ratio,h∕l

1 2 4 6 1 2 4 6

Present 0.0221 0.0055 0.0014 0.0006 0.0043 0.0027 0.0011 0.0006
Gao [114] 0.0223 0.0056 0.0014 0.0006 0.0043 0.0027 0.0011 0.0006
Shanab et al. [125] 0.0223 0.0056 0.0014 – 0.0043 0.0027 0.0011 –

Table 3  Comparison of the 
dimensionless critical buckling 
load P̄cr = 10

5 × Pcr∕
(
EL2

)
 of 

homogeneous nanobeam based 
on surface energy formulation 
( E = 210 GPa , � = 0.24 , 
h = 5nm , L = 10 h and b = h)

Surface modulus of elasticity, E
s

Dimensionless surface residual 
stress,𝜏

s
= (𝜏

s
∕EL)

− 7.262 0.0 7.262 − 0.626 0.0 0.626

Present 7.7696 8.2247 8.6797 8.2246 8.2247 8.2248
Hashemian et al. 

[136]
7.8834 8.2247 8.5660 8.2224 8.2247 8.2269

Table 4  Comparison of the 
dimensionless critical buckling 
load P̄cr = Pcr

(
L2∕ELI

)
 for 

BDFG beam based on classical 
analysis ( Er∕EL = 2 and 
L∕h = 50)

Present (EBT) Simsek [60] (TBT)

k
x

k
z
=0.0 k

z
=0.5 k

z
=1 k

z
=2 k

z
=5 k

z
=0.0 k

z
=0.5 k

z
=1 k

z
=2 k

z
=5

0 19.7392 15.7575 14.2561 13.2006 12.3298 19.7099 15.7385 14.2383 13.1845 12.3149
0.5 16.5678 13.9372 12.9591 12.2591 11.6279 16.5451 13.9210 12.9437 12.2448 11.6145
1 14.5113 12.7473 12.0898 11.6090 11.1483 14.4924 12.7328 12.0758 11.5957 11.1357
2 12.3414 11.4478 11.1106 10.8563 10.5954 12.3271 11.4355 11.0985 10.8445 10.5839
5 10.5264 10.2993 10.2131 10.1460 10.0728 10.5157 10.2889 10.2026 10.1356 10.0623

Table 5  Comparison of the 
dimensionless critical buckling 
load P̄cr = Pcr

(
L2∕E0I

)
 for 

AFG tapered beam based 
on classical analysis, with 
E(x) = E0(1 + x∕L)

Present Shahba et al. [135]

�
h

�
b
= 0 0.2 0.4 0.6 �

h
= 0 0.2 0.4 0.6

0 14.5113 13.1398 11.6969 10.1451 14.5113 13.1398 11.6969 10.1451
0.2 10.6860 9.5971 8.4543 7.2285 10.6860 9.5971 8.4543 7.2285
0.4 7.2831 6.4715 5.6228 4.7165 7.2831 6.4715 5.6228 4.7164
0.6 4.3289 3.7894 3.2286 2.6343 4.3287 3.7892 3.2284 2.6338
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an AFG tapered beam based on the classical model. It can 
be noticed from the comparisons in Tables 1, 2, 3, 4, 5, 6, 7, 
8 that the obtained results from the newly developed model 
and solution procedure are in a good accordance with those 
in the literature.

5  Parametric study

The newly developed nonclassical modified couple 
stress–surface energy BDFG model incorporating the effects 
of physical neutral axis and Poisson’s ratio to investigate 
the mechanical response of simply supported graded non-
uniform micro/nanobeams. The effects of various material 
properties, i.e., gradient indices in thickness and length 
directions, dimensionless material length-scale parameter, 
surface residual stress, surface modulus of elasticity, and 
geometrical parameters, i.e., aspect ratio and taperness 

ratios, on the mechanics of BDFG tapered simply supported 
nanobeams are investigated in detail.

In the forthcoming parametric studies, the BDFG beam 
shown in Fig. 1, is made from aluminum (Al) and silicon (Si) 
as metallic and ceramic constituent materials, respectively, 
with the material properties given in Table 9 [105, 109, 114]. 
The values of geometrical parameters are as follows: thick-
ness h(x) = h0

(
1 − �hx∕L

)
 , width b(x) = b0

(
1 − �bx∕L

)
 , 

in which h0 = h(0) and b0 = b(0) with b0 = h0 , taperness 
parameters are −1 ≤ 𝛽h, 𝛽b < 1 , and aspect ratio L∕h0=25, 
unless specifying other material or geometrical parameters. 
However, due to the lack of experimental data for the mate-
rial length-scale parameter for silicon ( lSi ) or bi-directionally 
functionally graded materials l(x, z) in the open literature, a 
range of h∕l can be supposed to investigate the effect of the 
material length-scale parameter on the response of micro-
scale structures [37]. In this study, we avoided the problem 
of the unknown material length-scale parameter of silicon 

Table 6  Comparison of fundamental frequency (MHz) for homogeneous nanobeam based on classical and integrated couple stress–surface 
energy analyses ( E = 90 GPa,� = 2700,� = 0.23, l = 6.58 μm,�s = 3.4939 N∕m,�s = −5.4251 N∕m,�s = 0.5689 N∕m , L = 20h andb = 2h)

Classical elasticity theory Integrated couple stress–surface energy

Thickness-to-material length-scale parameter ratio,h∕l

1 6 11 16 1 6 11 16

Present 6.7222 1.1204 0.6111 0.4201 15.3416 1.1841 0.6217 0.4236
Gao [114] 6.7222 1.1204 0.6111 0.4201 15.3416 1.1841 0.6217 0.4236
Attia et al. [128] 6.7222 1.1204 0.6111 0.4201 15.3425 1.1842 0.6217 0.4236

Table 7  Comparison of the 
dimensionless fundamental 
frequency 
�̄� = 𝜔

�
L2
√
𝜌r∕Er∕h

�
 for 

BDFG uniform microbeam 
based on the classical and 
couple stress analysis ( lL = 15 
μm, lr = 22.5 μm, h = lr
L = 100h, b = h)

Analysis k
z

Present (Euler beam theory) Chen et al. [92] (Reddy beam theory)

k
x
=0.5 k

x
=1.0 k

x
=2 k

x
=5 k

x
=10 k

x
=0.5 k

x
=1.0 k

x
=2 k

x
=5 k

x
=10

CL 0.5 2.0602 1.8499 1.5872 1.3349 1.2610 2.0488 1.8373 1.5753 1.3250 1.2518
1 1.8523 1.7021 1.5103 1.3157 1.2562 1.8408 1.6900 1.4989 1.3059 1.2471
2 1.6840 1.5853 1.4499 1.3004 1.2524 1.6728 1.5737 1.4388 1.2907 1.2433
5 1.5809 1.5069 1.4024 1.2859 1.2486 1.5687 1.4948 1.3912 1.2762 1.2394
10 1.5169 1.4512 1.3645 1.2735 1.2452 1.5041 1.4390 1.3535 1.2638 1.2361

CS 0.5 4.4628 3.7381 2.9819 2.3739 2.2124 4.5013 3.7688 2.9936 2.3659 2.1989
1 3.9697 3.4061 2.8176 2.3331 2.2020 3.9999 3.4289 2.8247 2.3240 2.1882
2 3.4684 3.0679 2.6471 2.2900 2.1912 3.4873 3.0807 2.6484 2.2792 2.1769
5 2.9427 2.7089 2.4597 2.2406 2.1787 2.9462 2.7088 2.4533 2.2277 2.1639
10 2.6631 2.5132 2.3533 2.2115 2.1714 2.6579 2.5061 2.3429 2.1975 2.1563

Table 8  Convergence of the 
dimensionless frequency �
�̄� = 𝜔L2

√
𝜌LA∕ELI

�
 for AFG 

tapered beam based on classical 
analysis, with 
E(x) = E0(1 + (x∕L)) and 
�(x) = �0

(
1 + (x∕L) + (x∕L)2

)

Present Shahba et al. [134]

�
h

�
b
= 0 0.2 0.4 0.6 �

h
= 0 0.2 0.4 0.6

0 9.0239 9.0553 9.0822 9.0951 9.0286 9.0599 9.0867 9.0994
0.2 8.1309 8.1430 8.1466 8.1305 8.1341 8.1462 8.1498 8.1336
0.4 7.1509 7.1434 7.1232 7.0772 7.1531 7.1455 7.1254 7.0794
0.6 6.0343 6.0068 5.9623 5.8853 6.0357 6.0082 5.9638 5.8868



2282 Engineering with Computers (2022) 38:2269–2312

1 3

lSi by assuming lSi as a ratio of that of aluminum lAL , [47, 91, 
92, 129]. The material length-scale parameter-to-thickness 
ratio is taken as ll = 0.5h and lr = (4∕3)ll , unless other values 
are mentioned.

The size-dependent static and dynamic responses of the 
BDFG nanobeam are explored using different formulations; 
“CL” which is based on the classical elasticity theory, “SE” 
incorporating effect of surface energy only ( l = 0 ), “CS” 
which is based on the modified couple stress theory, and 
fully integrated model “CSSER” which is based on the 
modified couple stress and surface elasticity theories. The 
predicted results are presented as figures and tables to serve 
as benchmarks for future analyses of nonuniform BDFG 
micro/nanobeams. For convenience, the results are presented 
in terms of the following dimensionless deflection, critical 
buckling load, and fundamental frequency, respectively:

where Er and �r are, respectively, the Young’s modulus and 
mass density of the bulk material at the upper right corner 
of the beam (metallic phase) and I is the second moment of 
area about the y-axis.

5.1  Effect of the taperness parameters

The effect of the rates of cross-section changes along thick-
ness and width directions, �h and �b , respectively, on the 
bending, buckling, and vibration responses of BDFG is 
investigated using classical (CL) and nonclassical (CSSER) 
analyses. The dimensionless deflection throughout the beam 
length shows asymmetric curve as shown in Fig. 2, which is 
attributed to the tapering effect as well as the material gra-
dation in the axial direction. The predicted deflection with 
positive values of �h and �b is much higher than that with 
negative values, which can be explained in view of Fig. 3. It 

(49)

w̄(x) = 100
Er I

qL4
w(x), P̄cr =

ErL
2

I
Pcr and �̄� = 𝜔

√
𝜌rA

ErI
L2

is depicted from Fig. 3 that the equivalent stiffness D11(x) , 
defined in Eq. (33), of the nanobeam becomes higher when 
�h and �b are negative. Such asymmetric distribution of the 
equivalent stiffness through beam length leads to asymmet-
ric deflection.

Figures 4, 5, 6 demonstrate the simultaneous effects of 
varying the taperness parameters �b and �h on the dimen-
sionless maximum deflection, critical buckling load, and 
fundamental frequency, respectively, for BDFG nanobeams 
at kx = kz = 1 . Some numerical values of the dimensionless 
maximum deflection, critical buckling load, and fundamen-
tal frequency are tabulated in Tables 10, 11, 12 at different 
values of �b and �h and different gradation schemes; AFG, 
TFG, and BDFG. Generally, it is notable that increasing the 
taperness parameter �h and/or �b from negative to positive 
values significantly increases the dimensionless maximum 
deflection and decreases the dimensionless critical buckling 
load and the dimensionless fundamental frequency. For both 
the static and vibration responses, the influence of varying 
the thickness parameter �h is significantly greater than that 
of the width parameter �b , especially with the classical for-
mulation. As �h changes from negative to positive values, the 
influence of �b rises and vice versa. Generally, the influence 
of changing the rates of cross section in classical analysis 
is higher than that for the nonclassical one for all gradation 
distributions. The mutual contribution of the nonclassical 
parameters, i.e., material length-scale parameter and surface 
properties, on the static and vibration responses is greatly 
increased by increasing �h and slightly affected by increasing 
�b . In addition, it is important to emphasize that the maxi-
mum impact of the taperness parameters is associated with 
the deflection response, followed with the buckling, and 
vibration responses. For both the classical and nonclassical 
formulations, the highest and lowest effects of the taper-
ness parameters are associated with AFG and homogene-
ous nanobeams, respectively. The taperness parameters �h 
and �b have the same effect on the classical response of 
homogeneous and TFG nanobeams. Furthermore, for the 

Table 9  Material properties 
of the constituents of BDFG 
nanobeam

Property Silicon “ l” Aluminum “ r”

Bulk properties
 Young’s modulus (GPa) E

B

l
= 210 E

B

r
= 90

 Poisson’s ratio �
l
= 0.24 �

r
= 0.23

 Bulk density (kg/m3) �B
l
= 2331 �B

r
= 2700

 Material length-scale parameter (µm) – l
r
= 6.58

Surface properties
 Surface density (kg/m2) �s

l
= 3.1688 × 10

−7 �s
r
= 5.46 × 10

−7

 Surface residual stress (N/m) �s
l
= 0.6056 �s

r
= 0.5689

 Surface Lame modulus (N/m) �s

l
= −2.7779 �s

r
= −5.4251

 Surface Lame modulus (N/m) �s
l
= −4.4939 �s

r
= 3.4939

 Surface elastic modulus (N/m) E
s

l
= −10.0497 E

s

r
= −7.3563



2283Engineering with Computers (2022) 38:2269–2312 

1 3

same taperness ratio and material gradation, the predicted 
deflection based on the nonclassical formulation is lower 
than that predicted using classical elasticity theory, whereas 
the predicted nonclassical critical load and fundamental fre-
quency are distinctly higher than their corresponding clas-
sical values.

5.2  Effect of the material gradation

The effect of bi-directional gradient indices along thick-
ness and length directions, kz and kx , respectively, on the 

response of BDFG nanobeams is investigated, considering 
both uniform and tapered cross sections. The dimension-
less deflection versus the beam length is shown in Fig. 7 at 
different gradient indices. It is seen that the axial gradient 
index kx as well as the nonuniform cross section can tend 
the deflection of BDFG nanobeam to asymmetric curves 
for both classical and nonclassical analyses. Uniform and 
nonclassical nanobeams give lower dimensionless deflection 
along the beam length compared with tapered and classi-
cal nanobeams, respectively. It is important to emphasize 
that a homogeneous nanobeam with kx=kz =0 is made from 
pure metal constituent and therefore has the smallest stiff-
ness. The variations of the dimensionless maximum deflec-
tion, dimensionless critical buckling load, and dimension-
less fundamental frequency are plotted in Figs. 8, 9, 10, 
respectively, and are recorded in Tables 13, 14, 15 versus 
the gradation indices kx and kz at different taperness param-
eters ( �b=�h = � ). For the considered material properties, it 
is noticed that inclusion of the microstructure and surface 
energy effects leads to increasing the beam rigidity. There-
fore, the predicted dimensionless deflection using CSSER 
formulation is always lower than that predicted using CL 
one, whereas the obtained dimensionless critical buckling 
load and the dimensionless fundamental frequency based 
on CSSER are larger than those obtained using CL analy-
sis. Such behavior is observed for all values of the gradient 
indices and taperness parameters.

Also, the obtained results reveal that due to the increase 
in the stiffness of the nanobeam, increasing kz and/or kx 
decreases the maximum deflection and increases the dimen-
sionless critical buckling load, and the dimensionless natu-
ral frequencies. Further increasing of the gradient indices 
(almost more than 5), the response converges towards the 
pure ceramic behavior. The influence of the gradation indi-
ces is reduced by incorporating the nonclassical effect and/or 
nonuniform cross section. Considering BDFG nanobeams, 

(a)
(b)

(c)

Fig. 2  The effect of the taperness parameters βℎ and βb on the dimensionless deflection along the length of BDFG nanobeam at kx = kz = 1

Fig. 3  Variation of the equivalent stiffness D11(x) (Eq.  (33)) along 
the length of BDFG nanobeam at different taperness parameters and 
kx = kz = 1
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Fig. 4  The effect of the taperness parameters on the dimensionless maximum deflection of BDFG nanobeam at kx = kz = 1

Fig. 5  The effect of the taperness parameters on the dimensionless critical buckling load of BDFG nanobeam at kx = kz = 1

Fig. 6  The effect of the taperness parameters on the dimensionless fundamental frequency of BDFG nanobeam at kx = kz = 1
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Table 10  Dimensionless 
maximum deflection of FG 
nanobeam at different values 
of taperness parameters and 
gradient indices

(k
x
, k

z
) �

h
Classical analysis Nonclassical CSSER analysis

Width taperness parameter �
b

Width taperness parameter �
b

− 0.5 − 0.25 0.0 0.25 0.5 − 0.5 − 0.25 0.0 0.25 0.5

(0,0) − 0.5 0.4875 0.5345 0.5931 0.6714 0.7811 0.1587 0.1750 0.1959 0.2235 0.2622
− 0.25 0.6451 0.7117 0.7959 0.9067 1.0614 0.1797 0.1988 0.2229 0.2550 0.3002

0.0 0.9029 0.9999 1.1232 1.2868 1.5183 0.2039 0.2259 0.2539 0.2912 0.3441
0.25 1.3538 1.5061 1.7016 1.9650 2.3596 0.2313 0.2567 0.2893 0.3327 0.3956
0.5 2.2931 2.5755 2.9448 3.4528 4.2079 0.2622 0.2916 0.3293 0.3804 0.4577

(1,0) − 0.5 0.2819 0.3115 0.3490 0.3985 0.4682 0.1183 0.1309 0.1468 0.1680 0.1980
− 0.25 0.3815 0.4228 0.4754 0.5455 0.6450 0.1376 0.1525 0.1715 0.1968 0.2328

0.0 0.5429 0.6040 0.6822 0.7874 0.9455 0.1606 0.1783 0.2009 0.2312 0.2752
0.25 0.8350 0.9362 1.0679 1.2483 1.5146 0.1876 0.2086 0.2356 0.2723 0.3274
0.5 1.4774 1.6666 1.9162 2.2634 2.7997 0.2191 0.2442 0.2773 0.3230 0.3902

(0,1) − 0.5 0.3065 0.3360 0.3729 0.4221 0.4911 0.1228 0.1353 0.1513 0.1725 0.2021
− 0.25 0.4056 0.4475 0.5004 0.5700 0.6673 0.1418 0.1568 0.1758 0.2010 0.2365

0.0 0.5677 0.6286 0.7062 0.8090 0.9546 0.1646 0.1823 0.2050 0.2350 0.2777
0.25 0.8512 0.9469 1.0698 1.2354 1.4835 0.1913 0.2124 0.2394 0.2754 0.3277
0.5 1.4417 1.6193 1.8515 2.1708 2.6456 0.2225 0.2476 0.2798 0.3239 0.3899

(1,1) − 0.5 0.2383 0.2621 0.2928 0.3331 0.3893 0.1082 0.1196 0.1339 0.1528 0.1794
− 0.25 0.3195 0.3532 0.3961 0.4527 0.5324 0.1269 0.1404 0.1576 0.1804 0.2127

0.0 0.4507 0.5001 0.5633 0.6475 0.7676 0.1493 0.1655 0.1863 0.2139 0.2532
0.25 0.6827 0.7611 0.8643 1.0063 1.2142 0.1761 0.1956 0.2207 0.2543 0.3042
0.5 1.1819 1.3302 1.5249 1.7940 2.1971 0.2078 0.2314 0.2618 0.3044 0.3671

Table 11  Dimensionless critical buckling load of FG nanobeam at different values of taperness parameters and gradient indices

(k
x
, k

z
) �

h
Classical analysis Nonclassical CSSER analysis

Width taperness parameter �
b

Width taperness parameter �
b

− 0.5 − 0.25 0.0 0.25 0.5 − 0.5 − 0.25 0.0 0.25 0.5

(0,0) − 0.5 25.7440 23.5647 21.3027 18.9256 16.3725 79.5045 72.4374 65.0797 57.3124 48.9086
− 0.25 19.6372 17.8777 16.0553 14.1445 12.0979 70.7177 64.2160 57.4515 50.3156 42.6008

0.0 14.2018 12.8442 11.4417 9.9758 8.4114 62.6900 56.7196 50.5118 43.9682 36.8995
0.25 9.4628 8.4867 7.4819 6.4360 5.3257 55.4008 49.9238 44.2326 38.2374 31.7659
0.5 5.4576 4.8392 4.2058 3.5506 2.8606 48.7890 43.7633 38.5428 33.0455 27.1139

(1,0) − 0.5 45.1491 40.9989 36.6988 32.1879 27.3505 107.6622 97.6468 87.2382 76.2729 64.4368
− 0.25 33.6195 30.3600 26.9916 23.4692 19.7071 92.9605 84.0187 74.7377 64.9757 54.4591

0.0 23.5870 21.1586 18.6571 16.0517 13.2830 79.8197 71.8719 63.6338 54.9827 45.6825
0.25 15.0973 13.4310 11.7216 9.9502 8.0805 68.1928 61.1531 53.8658 46.2257 38.0295
0.5 8.2199 7.2333 6.2265 5.1904 4.1069 57.9622 51.7389 45.3043 38.5679 31.3546

(0,1) − 0.5 40.9464 37.4801 33.8824 30.1016 26.0408 102.7439 93.6503 84.1933 74.2250 63.4640
− 0.25 31.2333 28.4349 25.5363 22.4972 19.2419 89.6289 81.3986 72.8472 63.8425 54.1325

0.0 22.5882 20.4290 18.1983 15.8667 13.3785 77.7246 70.3065 62.6065 54.5074 45.7851
0.25 15.0508 13.4983 11.9001 10.2366 8.4706 67.0230 60.3601 53.4508 46.1919 38.3851
0.5 8.6804 7.6969 6.6894 5.6472 4.5499 57.4656 51.4940 45.3072 38.8142 31.8398

(1,1) − 0.5 52.9768 48.3136 43.4773 38.3987 32.9474 116.9352 106.3910 95.4315 83.8867 71.4317
− 0.25 39.9618 36.2446 32.3983 28.3704 24.0611 100.5506 91.1436 81.3778 71.1046 60.0398

0.0 28.4975 25.6753 22.7637 19.7252 16.4888 85.8493 77.5033 68.8499 59.7608 49.9892
0.25 18.6383 16.6526 14.6116 12.4917 10.2470 72.8191 65.4491 57.8176 49.8144 41.2272
0.5 10.4667 9.2474 8.0007 6.7142 5.3640 61.3840 54.8962 48.1864 41.1602 33.6350
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it is notable that the effect of varying kz decreases as kx 
increases and being very small as kx approach 10. Also, the 
influence of kx is decreased with increasing kz . Using clas-
sical analysis, varying ( kx,kz ) from (0,0) to (2,2) decreases 

the dimensionless maximum deflection by 54.6% ( �=0) and 
53.2% ( �=0.5), increases the dimensionless critical buckling 
load by 119.9% ( �=0) and 109.6% ( �=0.5), and increases 
the dimensionless frequency by 58.5% ( �=0) and 27.2% 
( �=0.5). Introducing the nonclassical microstructure and 

Table 12  Dimensionless fundamental frequency of FG nanobeam at different values of taperness parameters and gradient indices

(k
x
, k

z
) �

h
Classical analysis Nonclassical CSSER analysis

Width taperness parameter �
b

Width taperness parameter �
b

− 0.5 − 0.25 0.0 0.25 0.5 − 0.5 − 0.25 0.0 0.25 0.5

(0,0) − 0.5 12.9861 13.0385 13.0917 13.1409 13.1735 21.2947 21.2822 21.2471 21.1712 21.0138
− 0.25 11.8347 11.8668 11.8959 11.9163 11.9131 21.0006 20.9709 20.9153 20.8141 20.6244

0.0 10.6028 10.6145 10.6196 10.6111 10.5719 20.8251 20.7772 20.6995 20.5708 20.3457
0.25 9.2577 9.2491 9.2304 9.1929 9.1174 20.8106 20.7423 20.6399 20.4803 20.2144
0.5 7.7354 7.7071 7.6648 7.5987 7.4871 21.0159 20.9237 20.7920 20.5951 20.2796

(1,0) − 0.5 17.5435 17.5925 17.6376 17.6696 17.6656 25.6800 25.6649 25.6218 25.5270 25.3276
− 0.25 15.8732 15.8966 15.9116 15.9076 15.8594 25.0119 24.9765 24.9094 24.7856 24.5501

0.0 14.0937 14.0921 14.0776 14.0384 13.9467 24.4837 24.4271 24.3347 24.1801 23.9058
0.25 12.1617 12.1360 12.0931 12.0197 11.8858 24.1487 24.0691 23.9490 23.7602 23.4421
0.5 9.9925 9.9442 9.8747 9.7694 9.5961 24.0811 23.9748 23.8221 23.5923 23.2205

(0,1) − 0.5 16.9661 17.0346 17.1041 17.1685 17.2110 25.3191 25.3196 25.2970 25.2310 25.0764
− 0.25 15.4621 15.5040 15.5421 15.5688 15.5646 24.7241 24.7022 24.6528 24.5540 24.3578

0.0 13.8528 13.8681 13.8748 13.8637 13.8124 24.2538 24.2083 24.1306 23.9969 23.7558
0.25 12.0955 12.0844 12.0599 12.0109 11.9123 23.9599 23.8887 23.7800 23.6076 23.3162
0.5 10.1067 10.0697 10.0145 9.9280 9.7822 23.9150 23.8144 23.6697 23.4519 23.1005

(1,1) − 0.5 19.5128 19.5806 19.6470 19.7038 19.7288 27.5566 27.5600 27.5386 27.4700 27.3035
− 0.25 17.7231 17.7611 17.7926 17.8074 17.7806 26.7442 26.7232 26.6727 26.5688 26.3581

0.0 15.8119 15.8206 15.8174 15.7905 15.7120 26.0674 26.0210 25.9403 25.7993 25.5414
0.25 13.7306 13.7104 13.6732 13.6052 13.4755 25.5853 25.5117 25.3982 25.2167 24.9067
0.5 11.3837 11.3359 11.2659 11.1582 10.9789 25.3815 25.2771 25.1259 24.8972 24.5253

(b)

(a)

Fig. 7  The effect of the gradient indices kx and kz on the dimensionless deflection along the length of FG nanobeams with uniform and tapered 
cross-sections
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surface energy effects reduces the impact of the gradient 
indices, i.e., based on CSSER formulation, varying ( kx,kz ) 
from (0,0) to (2,2) decreases the dimensionless maximum 
deflection by 29.3% ( �=0) and 21.7% ( �=0.5), increases the 
dimensionless critical buckling load by 41.4% ( �=0) and 
27.2% ( �=0.5), and increases the dimensionless frequency 
by 29.6% ( �=0) and 24.3% ( �=0.5). Therefore, ignoring 
the nonclassical effects leads to a significant error in the 
predicted static and vibration responses of BDFG micro/
nanobeams.

For AFG nanobeams ( kz = 0 ), increasing kx has a more 
significant influence on the static and dynamic responses 
for classical and uniform nanobeams compared with non-
classical and tapered nanobeams, respectively. As kx 

increases from 0 to 2, the dimensionless maximum deflec-
tion decreases by 48.7% ( �=0) and 43.9% ( �=0.5) using CL 
analysis and by 26% ( �=0) and 18.8% ( �=0.5) using CSSER 
analysis. Whereas, increasing kx from 0 to 2, shows an 
increase in the dimensionless critical buckling load by 93% 
( �=0) and 69% ( �=0.5) for CL formulation and by 34.7% 
( �=0) and 21.6% ( �=0.5) for CSSER formulation. Rising 
kx of AFG nanobeam from 0 to 2 leads to an increase in the 
dimensionless fundamental frequency by about 47% ( �=0) 
and 42% ( �=0.5) based on CL analysis and by 24.4% ( �=0) 
and 19.9% ( �=0.5) based on CSSER analysis. Again, the 
highest impact of kx is associated with the buckling response. 
Regarding TFG nanobeams ( kx = 0 ), it is depicted that the 
impact of varying kz on the bending, buckling, and vibration 

Fig. 8  The effect of the gradient indices kx and kz on the dimensionless maximum deflection of BDFG nanobeam at different taperness param-
eters

Fig. 9  The effect of the gradient indices kx and kz on the dimensionless critical buckling load of BDFG nanobeam at different taperness param-
eters
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responses is independent of the taperness parameters when 
the classical formulation is employed, i.e. With the rise of kz 
from 0 to 2 based on CL analysis, the dimensionless maxi-
mum deflection is reduced by 42.5% and the dimensionless 
buckling load and dimensionless fundamental frequency are 
increased by 73.9% and 38.3%, respectively. On the contrary, 
the effect of kz on the nonclassical responses of TFG nano-
beam becomes more pronounced with uniform cross section, 

i.e., as kz changes from 0 to 2 based on CSSER analysis, the 
dimensionless maximum deflection is decreased by 22.3% 
( �=0) and 16.9% ( �=0.5) and the dimensionless buckling 
load and dimensionless fundamental frequency are raised 
by, respectively, 28.7% and 20.4% ( �=0) and 17% ( �=0.5).

In addition, it is observed that the taperness parameters 
have a significant influence on the role of kx in AFG and 
have no influence on the role of kz in TFG nanobeams. 

Fig. 10  The effect of the gradient indices kx and kz on the dimensionless fundamental frequency of BDFG nanobeam at different taperness 
parameters

Table 13  Dimensionless maximum deflection of BDFG nanobeam at different gradient indices and taperness parameters �b and �h

(�
b
 , �

h
) k

z
Classical analysis Nonclassical CSSER analysis

Axial gradient index k
x

Axial gradient index k
x

0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0

(0.0,0.0) 0.0 1.1232 0.8066 0.6822 0.5761 0.4979 0.4790 0.2539 0.2162 0.2009 0.1878 0.1783 0.1759
0.50 0.7810 0.6493 0.5888 0.5326 0.4880 0.4768 0.2144 0.1972 0.1893 0.1822 0.1768 0.1754
1.0 0.7062 0.6093 0.5633 0.5198 0.4850 0.4761 0.2050 0.1922 0.1863 0.1808 0.1765 0.1753
2.0 0.6460 0.5775 0.5431 0.5098 0.4826 0.4756 0.1974 0.1883 0.1839 0.1796 0.1762 0.1753
5.0 0.5789 0.5407 0.5197 0.4982 0.4798 0.4749 0.1893 0.1840 0.1811 0.1783 0.1759 0.1752

10.0 0.5381 0.5162 0.5034 0.4897 0.4777 0.4744 0.1844 0.1810 0.1792 0.1773 0.1757 0.1752
(0.25, 0.25) 0.0 1.9650 1.4637 1.2483 1.0512 0.8895 0.8438 0.3327 0.2899 0.2723 0.2567 0.2455 0.2425

0.50 1.3663 1.1599 1.0573 0.9552 0.8646 0.8376 0.2864 0.2669 0.2579 0.2497 0.2435 0.2419
1.0 1.2354 1.0839 1.0063 0.9277 0.8569 0.8357 0.2754 0.2611 0.2543 0.2480 0.2431 0.2418
2.0 1.1301 1.0234 0.9658 0.9060 0.8509 0.8341 0.2668 0.2566 0.2515 0.2467 0.2428 0.2417
5.0 1.0127 0.9536 0.9188 0.8807 0.8439 0.8324 0.2578 0.2516 0.2484 0.2453 0.2425 0.2416

10.0 0.9415 0.9077 0.8866 0.8627 0.8387 0.8310 0.2523 0.2484 0.2463 0.2441 0.2422 0.2416
(0.5,0.5) 0.0 4.2079 3.2405 2.7997 2.3613 1.9550 1.8262 0.4577 0.4110 0.3902 0.3716 0.3575 0.3537

0.50 2.9258 2.5301 2.3198 2.0977 1.8803 1.8052 0.4026 0.3817 0.3716 0.3621 0.3546 0.3526
1.0 2.6456 2.3558 2.1971 2.0267 1.8576 1.7986 0.3899 0.3746 0.3671 0.3600 0.3542 0.3525
2.0 2.4201 2.2166 2.0997 1.9708 1.8398 1.7934 0.3802 0.3693 0.3637 0.3584 0.3538 0.3524
5.0 2.1687 2.0567 1.9869 1.9058 1.8191 1.7874 0.3704 0.3637 0.3602 0.3567 0.3535 0.3524

10.0 2.0161 1.9523 1.9104 1.8599 1.8039 1.7829 0.3648 0.3602 0.3578 0.3554 0.3532 0.3523
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Table 14  Dimensionless critical buckling load of BDFG tapered nanobeam at different gradient indices and taperness parameters �b and �h

(�
b
 , �

h
) k

z
Classical analysis Nonclassical CSSER analysis

Axial gradient index k
x

Axial gradient index k
x

0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0

(0.0,0.0) 0.0 11.4417 15.8437 18.6571 22.0828 25.6923 26.7950 50.5118 59.1929 63.6338 68.0743 71.8618 72.9334
0.50 16.4553 19.7598 21.7520 24.0311 26.2711 26.9329 59.8323 65.0393 67.6965 70.3174 72.5285 73.1507
1.0 18.1983 21.0706 22.7637 24.6515 26.4535 26.9771 62.6065 66.7377 68.8499 70.9279 72.6842 73.1869
2.0 19.8940 22.2425 23.6287 25.1582 26.5968 27.0115 65.0083 68.1378 69.7712 71.3988 72.8002 73.2136
5.0 22.1999 23.7650 24.7149 25.7699 26.7637 27.0513 67.7831 69.7700 70.8463 71.9490 72.9364 73.2451

10.0 23.8806 24.8955 25.5238 26.2259 26.8889 27.0814 69.6094 70.9161 71.6300 72.3684 73.0461 73.2711
(0.25, 0.25) 0.0 6.4360 8.5387 9.9502 11.7921 14.0566 14.9267 38.2374 43.4716 46.2257 49.0481 51.5701 52.3456

0.50 9.2561 10.8459 11.8632 13.1148 14.5402 15.0626 44.4233 47.4536 49.0474 50.6616 52.0919 52.5305
1.0 10.2366 11.6214 12.4917 13.5373 14.6917 15.1058 46.1919 48.5652 49.8144 51.0778 52.2037 52.5577
2.0 11.1904 12.3228 13.0368 13.8872 14.8115 15.1395 47.6865 49.4654 50.4175 51.3931 52.2845 52.5769
5.0 12.4874 13.2407 13.7289 14.3145 14.9518 15.1785 49.3458 50.4763 51.0982 51.7523 52.3785 52.5996

10.0 13.4329 13.9207 14.2429 14.6322 15.0566 15.2080 50.4065 51.1655 51.5821 52.0224 52.4554 52.6193
(0.5,0.5) 0.0 2.8606 3.5883 4.1069 4.8393 5.9234 6.4837 27.1139 29.8467 31.3546 32.9590 34.4704 34.9681

0.50 4.1141 4.6688 5.0511 5.5642 6.2650 6.6043 30.8382 32.3449 33.1729 34.0411 34.8485 35.1129
1.0 4.5499 5.0343 5.3640 5.7979 6.3720 6.6424 31.8398 33.0005 33.6350 34.2976 34.9185 35.1296
2.0 4.9738 5.3698 5.6410 5.9956 6.4577 6.6723 32.6541 33.5141 33.9867 34.4848 34.9655 35.1398
5.0 5.5503 5.8129 5.9976 6.2413 6.5594 6.7071 33.4978 34.0505 34.3562 34.6839 35.0176 35.1517

10.0 5.9705 6.1402 6.2618 6.4235 6.6350 6.7333 34.0079 34.3949 34.6044 34.8276 35.0610 35.1632

Table 15  Dimensionless fundamental frequency of BDFG tapered nanobeam at different gradient indices and taperness parameters �b and �h

(�
b
 , �

h
) k

z
Classical analysis Nonclassical CSSER analysis

Axial gradient index k
x

Axial gradient index k
x

0.0 0.5 1.0 2.0 5.0 10.0 0.0 0.5 1.0 2.0 5.0 10.0

(0.0,0.0) 0.0 10.6196 12.7854 14.0776 15.5600 17.0280 17.4646 20.6995 23.0455 24.3347 25.7084 26.9738 27.3464
0.50 13.0354 14.5045 15.3680 16.3301 17.2492 17.5177 23.2799 24.7329 25.5430 26.4006 27.1806 27.4077
1.0 13.8748 15.1049 15.8174 16.5969 17.3261 17.5365 24.1306 25.2921 25.9403 26.6232 27.2415 27.4223
2.0 14.6876 15.6541 16.2162 16.8264 17.3905 17.5521 24.9260 25.8046 26.2995 26.8216 27.2951 27.4353
5.0 15.7138 16.3242 16.6901 17.0908 17.4626 17.5695 25.8114 26.3712 26.6931 27.0365 27.3526 27.4491

10.0 16.3941 16.7760 17.0103 17.2695 17.5114 17.5813 26.3274 26.7084 26.9293 27.1665 27.3878 27.4577
(0.25, 0.25) 0.0 9.1929 10.9434 12.0197 13.2954 14.6427 15.0836 20.4803 22.5950 23.7602 24.9975 26.1283 26.4601

0.50 11.2842 12.4754 13.1976 14.0290 14.8733 15.1434 22.8421 24.1377 24.8626 25.6280 26.3188 26.5189
1.0 12.0109 13.0084 13.6052 14.2804 14.9519 15.1639 23.6076 24.6391 25.2167 25.8242 26.3714 26.5313
2.0 12.7144 13.4971 13.9676 14.4965 15.0172 15.1809 24.3207 25.0987 25.5374 25.9996 26.4177 26.5422
5.0 13.6028 14.0956 14.4008 14.7475 15.0911 15.1998 25.0962 25.5958 25.8821 26.1866 26.4669 26.5539

10.0 14.1916 14.4994 14.6944 14.9182 15.1418 15.2131 25.5343 25.8823 26.0825 26.2965 26.4964 26.5609
(0.5,0.5) 0.0 7.4871 8.7743 9.5961 10.6125 11.7851 12.2273 20.2796 22.1734 23.2205 24.3266 25.3205 25.6055

0.50 9.1904 10.0705 10.6256 11.2923 12.0291 12.2989 22.4225 23.5715 24.2160 24.8924 25.4915 25.6603
1.0 9.7822 10.5193 10.9789 11.5222 12.1104 12.3228 23.1005 24.0134 24.5253 25.0605 25.5344 25.6699
2.0 10.3552 10.9323 11.2942 11.7201 12.1775 12.3422 23.7302 24.4187 24.8060 25.2112 25.5722 25.6783
5.0 11.0787 11.4406 11.6741 11.9524 12.2542 12.3643 24.3960 24.8450 25.0997 25.3678 25.6115 25.6871

10.0 11.5582 11.7837 11.9324 12.1115 12.3078 12.3800 24.7564 25.0796 25.2626 25.4558 25.6342 25.6923
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Furthermore, as the gradation indices rise for all the grada-
tion distributions, the impact of the taperness parameters 
greatly decreases for the classical analysis and slightly 
increases for the nonclassical analysis.

5.3  Effect of the surface energy

This study is the first attempt to model and investigate the 
response of BDFG nanobeams in the presence of surface 
energy. In this section, the effect of the surface residual 
stress �s(x, z) and surface elasticity modulus Es(x, z) , on the 
static and vibration responses of simply supported nanobe-
ams is explored, considering different gradation schemes. 
For this purpose, the material properties of bulk continuum 
and surface layers provided in Table 9 are used, while the 
microstructure effect is ignored, i.e., ll=lr=0. The nanobeam 
dimensions are b0 = h0 = 5nm with equal thickness and 
width taperness parameters, i.e., �=�h=�b . The effect of the 
surface residual stress �s

r
 (metallic phase) and �s

l
 (ceramic 

phase) of the surface layers on the dimensionless maximum 
deflection, dimensionless critical buckling load, and dimen-
sionless fundamental frequency is depicted in Figs. 11, 
12, 13, respectively, for both uniform and tapered BDFG 
nanobeams and L∕h0=25 and 50. The reference values are 
those given in Table 9 ( �s

r0
=0.5689 N/m, �s

l0
=0.6056 N/m). 

Tables 16, 17, 18 provide, respectively, the dimensionless 
maximum deflection, dimensionless critical buckling load, 
and dimensionless fundamental frequency at different values 
of the residual surface stress, length-to-thickness ratio, and 
taperness parameters for AFG, TFG, and BDFG nanobeams.

For the material properties under consideration, it is 
noticeable that increasing the surface residual stress of 
the metallic ( �s

r
 ) and/or ceramic ( �s

l
 ) constituent materials 

significantly decreases the dimensionless deflection and 
increases both the dimensionless critical buckling load and 
dimensionless fundamental frequency for all the gradation 
distributions. Accounting for the residual surface effect 
induces tension stress in the surface layers, and hence, stiffer 
surface results in lower deflections. The influence of the 
surface residual stresses �s

r
 and �s

l
 becomes more prominent 

with the increase of the aspect ratio ( L∕h ) and may lead 
to an increase or a decrease in the equivalent stiffness of 
nanobeam depending on its material properties. For AFG, 
TFG, and BDFG nanobeams, rising the residual surface 
stress �s

l
 reduces the contribution of �s

r
 , and vice versa. It 

is also depicted that the highest effects of �s
l
 and �s

r
 cor-

respond to BDFG and TFG distributions, respectively. On 
the other hand, the lowest effects of �s

l
 and �s

r
 are associated 

with, respectively, AFG and BDFG distributions. In other 
words, the effect of varying the surface residual stress is 
mainly controlled with the directions of gradation and the 
geometrical parameters of the beam. Increasing the aspect 
ratio noticeably rises the effect of surface residual stress on 
the static and vibration responses, which is attributed to the 
increase of the surface area-to-bulk volume ratio, and there-
fore, an increase in surface energy. It is also worth noting 
that, the impact of the surface residual stress and aspect ratio 
on the response of tapered nanobeams is much greater than 
that of uniform nanobeams.

The effect of surface elasticity moduli Es
r
 and Es

l
 of the 

metallic and ceramic phases, respectively, of the surface lay-
ers is illustrated in Figs. 14, 15, 16 and Tables 19, 20, 21 
at different aspect ratios, taperness parameters, and mate-
rial gradations. The reference values Es

r0
 and Es

l0
 are taken 

− 7.3563 N/m and − 10.0497 N/m, respectively, as given 
in Table 9. It is found that the dimensionless maximum 

Fig. 11  The effect of the surface residual stress ratios �s
l
/�s
l0

 and �s
r
/�s
r0

 on the dimensionless maximum deflection of BDFG nanobeam with 
kx = kz = 1
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deflection for both uniform and tapered nanobeams is 
slightly increased by increasing Es

r
 and Es

l
 individually or 

simultaneously, whereas the both dimensionless critical 
buckling load and dimensionless fundamental frequency are 
decreased. It is observed that the effect of the surface elastic-
ity moduli on the static and vibration responses is reduced 
with increasing the aspect ratio and taperness parameters. 
Unlike the surface residual stress, the contribution of Es

r
 or 

Es
l
 is almost unaffected by varying Es

l
 or Es

r
 , respectively. 

Compared with surface residual stress, the bending, buck-
ling, and vibration responses have less sensitivity to surface 
elasticity modulus.

5.4  Effect of the material length‑scale parameter

Effect of microstructure effect via MCST on the mechanics 
of tapered BDFG micro/nanobeams is explored by consid-
ering different values of the dimensionless material length-
scale parameter ( lr∕h ) and material length-scale parameter 
ratio ( ll∕lr ) for various width and thickness taperness ratios 
and material gradations. When a constant material length-
scale parameter is considered, the ratio ll∕lr is set to unity. 
To extract a clear investigation of the effect of the material 
length-scale parameter, the present results are based on the 
MCST formulation using the material properties in Table 9 
with lr = 6.58 μm. In Figs. 17, 18, 19, the dimensionless 

Fig. 12  The effect of the surface residual stress ratios �s
l
/�s
l0

 and �s
r
/�s
r0

 on the dimensionless critical buckling load of BDFG nanobeam with 
kx = kz = 1

Fig. 13  The effect of the surface residual stress ratios �s
l
/�s
l0

 and �s
r
/�s
r0

 on the dimensionless fundamental frequency of BDFG nanobeam with 
kx = kz = 1
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values of the maximum deflection, critical buckling load, 
and the fundamental frequency are plotted versus lr∕h 
and ll∕lr for uniform and tapered BDFG microbeams with 
kx = kz = 1 . The mutual effects of lr∕h and ll∕lr on the micro-
beam response are recorded in Tables 22, 23, 24, for differ-
ent gradient indices kx and kz and taperness ratios ( �=�h=�b ). 
Based on the obtained results, it is noticeable that introduc-
ing the microstructure effect enhances the microbeam rigid-
ity, and consequently, decreases the dimensionless deflection 
and increases the dimensionless critical buckling load and 
dimensionless frequency.

It is noticeable that as the dimensionless material length-
scale parameter ( lr∕h ) increases, the impact of micro-
structure on the static and vibration responses is distinctly 
enhanced for all material gradations. For a homogeneous 
microbeam, there is no effect of the material length-scale 
parameter by varying lr∕h and ll∕lr on the dimensionless 
values of deflection, critical buckling load, and frequency. It 
is revealed that the impact of lr∕h rises as ll∕lr increases and 
the maximum effect of lr∕h for different gradation distribu-
tions depends mainly on the value of ll∕lr , i.e., the maxi-
mum effect of lr∕h corresponds to AFG when ll∕lr<1 and to 

BDFG when ll∕lr ≥ 1. Also, the predicted responses using 
a spatially constant material length-scale parameter ( ll=lr ) 
are significantly different from those by the spatial-depend-
ent material length-scale parameter ( ll ≠ lr ). For a uniform 
microbeam with lr∕h=0.5, altering the material length-
scale parameter ratio ll∕lr from 0.5 to 2, the dimensionless 
maximum deflection decreases by 49.5, 58.0, and 66.9%, 
the dimensionless critical buckling load increases by 93.0, 
138.2, and 200.9%, and dimensionless frequency increases 
by 40.5, 54.3, and 73.7% for AFG, TFG, and BDFG distri-
butions, respectively. Therefore, assumption of a constant 
material length-scale parameter for graded microbeams is 
unacceptable and leads to distinct error in the predicted 
response. Also, it is depicted that response of BDFG micro-
beam is the most sensitive to ll∕lr , followed with TFG and 
AFG. The effect of ll∕lr is enhanced by increasing lr∕h or 
taperness parameters towards positive values. The obtained 
results agree well with those in the previous sections, as 
rising the taperness parameters, while holding ll∕lr and 
lr∕h fixed, leads to a noticeable decrease in the microbeam 
deflection and an increase in the dimensionless critical buck-
ling load and dimensionless frequency.

Table 16  Dimensionless maximum deflection of uniform and tapered FG nanobeams at different surface residual stresses, aspect ratios, and gra-
dation indices ( �h=�b=�)

� L

h

�s
r

�s
r0

AFG, ( k
x
,k
z
) = (1,0) TFG, ( k

x
,k
z
) = (0,1) BDFG, ( k

x
,k
z
) = (1,1)

�s
l
∕�s

l0
�s
l
∕�s

l0
�s
l
∕�s

l0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

Uniform ( �=0.0) 25 0 0.743 0.585 0.485 0.416 0.365 0.770 0.591 0.479 0.403 0.347 0.607 0.448 0.355 0.294 0.250
0.5 0.575 0.473 0.402 0.352 0.314 0.599 0.484 0.407 0.350 0.307 0.544 0.412 0.332 0.278 0.239
1.0 0.472 0.399 0.347 0.307 0.276 0.490 0.411 0.353 0.310 0.276 0.494 0.382 0.312 0.264 0.228
1.5 0.402 0.346 0.305 0.273 0.248 0.415 0.356 0.312 0.278 0.250 0.452 0.357 0.294 0.251 0.218
2.0 0.350 0.307 0.274 0.247 0.226 0.359 0.314 0.280 0.252 0.229 0.417 0.334 0.279 0.239 0.210

50 0 0.743 0.365 0.247 0.188 0.153 0.770 0.347 0.224 0.165 0.131 0.607 0.250 0.158 0.115 0.091
0.5 0.350 0.226 0.170 0.138 0.117 0.359 0.229 0.168 0.132 0.109 0.417 0.210 0.140 0.105 0.084
1.0 0.235 0.168 0.133 0.111 0.096 0.234 0.170 0.134 0.110 0.094 0.321 0.181 0.126 0.097 0.079
1.5 0.181 0.135 0.111 0.094 0.082 0.173 0.136 0.111 0.095 0.082 0.262 0.160 0.115 0.090 0.074
2.0 0.148 0.115 0.095 0.082 0.073 0.137 0.113 0.095 0.083 0.073 0.223 0.143 0.106 0.085 0.070

Tapered ( �=0.5) 25 0 3.227 1.820 1.285 1.000 0.826 3.007 1.613 1.101 0.835 0.673 2.465 1.211 0.803 0.600 0.479
0.5 1.649 1.143 0.891 0.735 0.628 1.660 1.123 0.848 0.681 0.569 1.816 1.027 0.716 0.549 0.445
1.0 1.136 0.859 0.696 0.590 0.516 1.145 0.861 0.689 0.574 0.492 1.447 0.895 0.648 0.508 0.417
1.5 0.875 0.694 0.580 0.500 0.441 0.874 0.697 0.580 0.496 0.434 1.208 0.795 0.593 0.473 0.393
2.0 0.718 0.586 0.500 0.437 0.390 0.706 0.586 0.501 0.437 0.388 1.040 0.717 0.547 0.443 0.372

50 0 3.227 0.826 0.498 0.361 0.285 3.007 0.673 0.378 0.262 0.201 2.465 0.479 0.265 0.183 0.140
0.5 0.718 0.390 0.279 0.222 0.185 0.706 0.388 0.267 0.204 0.164 1.040 0.372 0.227 0.164 0.128
1.0 0.430 0.272 0.207 0.169 0.146 0.399 0.272 0.207 0.166 0.139 0.679 0.308 0.201 0.149 0.119
1.5 0.310 0.214 0.168 0.141 0.122 0.278 0.210 0.168 0.141 0.121 0.513 0.264 0.180 0.137 0.111
2.0 0.246 0.178 0.143 0.122 0.107 0.213 0.170 0.142 0.122 0.107 0.415 0.233 0.164 0.127 0.104
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5.5  Influence of the slenderness ratio

The effect of the slenderness ratio ( L∕h ) on the dimen-
sionless deflection, buckling and frequency of BDFG 
nanobeam with h=15 nm is illustrated in Figs. 20, 21, 22, 
employing classical “CL” and nonclassical “NC”, i.e., 
CS, SE, and CSSER, theories. In this section, the results 
are obtained for FG nanobeams with the material prop-
erties provided in Table 9 and the material length-scale 
parameters are ll = 10 nm and lr∕ll = 3/4. For convenience 
and better understanding of the effect of slenderness ratio 
and thickness on the role of nonclassical parameters, the 
predicted dimensionless maximum deflection, critical 

buckling load, and free vibration frequency using non-
classical theories are normalized with their correspond-
ing values using the classical theory, i.e., w̄N = w̄NC∕w̄CL, 
P̄N
cr
= P̄NC

cr
∕P̄CL

cr
, and�̄�N = �̄�NC∕�̄�CL , respectively. Based 

on the three different nonclassical theories, Tables 25, 26, 
27 record the dimensionless maximum deflection, critical 
buckling load, and fundamental frequency ratios ( w̄N , P̄N

cr
, 

and �̄�N ), at various values of the slenderness ratio and 
thickness, considering different material gradations of both 
uniform and tapered nanobeams. From these results, it is 
revealed that for a fixed value of the beam thickness, the 
ratios w̄N , P̄N

cr
 , and �̄�N predicted using the MCST theory are 

unchanged by varying the slenderness ratio. Employing the 

Fig. 14  The effect of the surface elasticity moduli Es

l
/Es

l0
 and Es

r
/Es

r0
 on the dimensionless maximum deflection of BDFG nanobeam with 

kx = kz = 1

Fig. 15  The effect of the surface elasticity moduli Es

l
/Es

l0
 and Es

r
/Es

r0
 on the dimensionless critical buckling load of BDFG nanobeam with 

kx = kz = 1
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SE and CSSE theories and with the increase of L∕h , the pre-
dicted dimensionless maximum deflection ratio decreases, 
whereas the predicted dimensionless critical buckling load 
and dimensionless frequency ratios increase. This effect of 

L∕h is observed for different taperness parameters, thick-
nesses, and material gradations. For the studied ranges of 
L∕h and h , the CSSER theory provides the maximum stiffen-
ing effect in comparison with CS and SE theories. For low 

Fig. 16  The effect of the surface elasticity moduli Es

l
/Es

l0
 and Es

r
/Es

r0
 on the dimensionless fundamental frequency of BDFG nanobeam with 

kx = kz = 1

Table 19  Dimensionless maximum deflection of uniform and tapered FG nanobeams at different surface elasticity moduli, aspect ratios, and 
gradation indices ( �h=�b=�)

� L

h

E
s

r

E
s

r0

AFG, ( k
x
,k
z
) = (1,0) TFG, ( k

x
,k
z
) = (0,1) BDFG, ( k

x
,k
z
) = (1,1)

E
s

l
∕Es

l0
E
s

l
∕Es

l0
E
s

l
∕Es

l0

0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0

Uniform ( �=0.0) 25 0 0.333 0.336 0.340 0.344 0.348 0.339 0.342 0.345 0.348 0.352 0.300 0.305 0.309 0.314 0.319
0.5 0.336 0.340 0.343 0.347 0.351 0.343 0.346 0.349 0.352 0.356 0.301 0.306 0.311 0.315 0.320
1.0 0.339 0.343 0.347 0.350 0.354 0.347 0.350 0.353 0.356 0.360 0.303 0.307 0.312 0.317 0.322
1.5 0.342 0.346 0.350 0.354 0.358 0.351 0.354 0.357 0.361 0.364 0.304 0.309 0.313 0.318 0.323
2.0 0.346 0.349 0.353 0.357 0.361 0.355 0.358 0.362 0.365 0.368 0.306 0.310 0.315 0.320 0.325

50 0 0.131 0.131 0.132 0.132 0.133 0.132 0.132 0.133 0.133 0.134 0.124 0.125 0.126 0.127 0.128
0.5 0.131 0.132 0.132 0.133 0.133 0.132 0.133 0.133 0.134 0.134 0.125 0.125 0.126 0.127 0.128
1.0 0.132 0.132 0.133 0.133 0.134 0.133 0.133 0.134 0.134 0.135 0.125 0.126 0.126 0.127 0.128
1.5 0.132 0.133 0.133 0.134 0.134 0.134 0.134 0.134 0.135 0.135 0.125 0.126 0.127 0.127 0.128
2.0 0.133 0.133 0.134 0.134 0.135 0.134 0.135 0.135 0.136 0.136 0.125 0.126 0.127 0.128 0.128

Tapered ( �=0.5) 25 0 0.675 0.680 0.684 0.689 0.693 0.669 0.673 0.678 0.682 0.687 0.628 0.635 0.642 0.649 0.657
0.5 0.681 0.685 0.690 0.694 0.699 0.674 0.679 0.683 0.688 0.693 0.631 0.638 0.645 0.652 0.660
1.0 0.687 0.691 0.696 0.700 0.705 0.680 0.684 0.689 0.694 0.699 0.634 0.641 0.648 0.655 0.663
1.5 0.692 0.697 0.702 0.707 0.711 0.686 0.690 0.695 0.700 0.704 0.637 0.644 0.651 0.658 0.666
2.0 0.698 0.703 0.708 0.713 0.718 0.692 0.697 0.701 0.706 0.711 0.640 0.647 0.654 0.661 0.669

50 0 0.206 0.206 0.206 0.207 0.207 0.205 0.205 0.206 0.206 0.206 0.199 0.200 0.200 0.201 0.202
0.5 0.206 0.206 0.207 0.207 0.208 0.205 0.206 0.206 0.206 0.207 0.199 0.200 0.201 0.201 0.202
1.0 0.206 0.207 0.207 0.208 0.208 0.206 0.206 0.207 0.207 0.207 0.199 0.200 0.201 0.201 0.202
1.5 0.207 0.207 0.208 0.208 0.209 0.206 0.207 0.207 0.207 0.208 0.200 0.200 0.201 0.202 0.202
2.0 0.207 0.208 0.208 0.209 0.209 0.207 0.207 0.208 0.208 0.208 0.200 0.201 0.201 0.202 0.203
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values of L∕h , the microstructure effect is greater than the 
surface energy effect. With the increase of L∕h , the contribu-
tion of surface energy rises and the predicted results from SE 
theory become greater than those from CS theory. For differ-
ent material gradations, with increasing the beam thickness 
or varying the taperness from positive to negative values, 

the effect of the slenderness ratio reduces. Increasing the 
beam thickness decreases the influence of both the material 
length-scale parameter and surface energy on the static and 
vibration behaviors of nanobeams. The effect of the beam 
thickness on the beam response becomes more pronounced 

Fig. 17  The mutual effect of the dimensionless material length scale parameter (lr⁄ℎ) and material length scale parameter ratio (ll⁄lr) on the 
dimensionless maximum deflection of BDFG microbeam with kx = kz = 1

Fig. 18  The mutual effect of the dimensionless material length scale parameter (lr⁄ℎ) and material length scale parameter ratio (ll⁄lr) on the 
dimensionless critical buckling load of BDFG microbeam with kx = kz = 1
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with increasing the slenderness ratio. Amongst the gradation 
distributions, AFG nanobeam shows the highest sensitivity 
to the slenderness ratio and thickness.

6  Conclusion

In this study, a nonclassical integrated modified couple 
stress–surface elasticity model is developed to explore the 
size-dependent static bending, buckling, and free vibration 
responses of BDFG tapered micro/nanobeams, for the first 
time. All the material properties describing the bulk and 
surface continuums, including the material length-scale 
parameter and surface parameters, are assumed to vary along 
the thickness and length directions according to power-law 
distribution. The governing equations and boundary condi-
tions of the proposed Euler–Bernoulli nanobeam are exactly 
derived using Hamilton principle on the basis of the modi-
fied couple stress theory and Gurtin–Murdoch surface elas-
ticity theory. Accounting for the physical neutral surface 
concept, a semi-analytical solution for the static deflection, 
critical buckling load, and natural frequency of simply 
supported BDFG tapered nanobeam are derived using the 
Navier’s method combined with the GDQM. An extensive 
detailed study on the effect of different characteristic mate-
rial and geometrical parameters on the static and vibration 

responses is presented. The main results of this study are 
summarized as follows:

• Both the microstructure via the MCST and surface 
residual stress have distinct influences in stiffness-hard-
ening of FG nanobeams, and thus, the static deflection 
decreases and both the critical buckling load and fun-
damental frequency increase. In contrast, the surface 
elastic modulus has a softening effect leading to higher 
deflection and lower critical buckling load and vibration 
frequency.

• As the cross section of the nanobeam along the length 
direction decreases, i.e. ( �b , �h ) changes from (0, 0) to 
(0.5, 0.5), the predicted deflection increases; whereas, 
both the critical buckling load and vibration frequency 
decrease, for all gradation distributions. On the contrary, 
changing ( �b , �h ) from (0, 0) to (− 0.5, − 0.5) has an 
opposite effect. The effect of �b and �h becomes more 
pronounced for AFG nanobeams. Employing the CSSE 
formulation significantly reduces the influence effect of 
�h , while that of �b may increase or decrease depending 
on the gradation distribution. As �b increases towards 
positive values, the impact of �h increases and vice versa.

• Increasing the surface residual stress of the ceramic ( �s
l
 ) 

and/or metallic ( �s
r
 ) phases shows a distinct reduction in 

the dimensionless bending deflection and a noticeable 

Fig. 19  The mutual effect of the dimensionless material length scale parameter (lr⁄ℎ) and material length scale parameter ratio (ll⁄lr) on the 
dimensionless fundamental frequency of BDFG microbeam with kx = kz = 1
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(a) (b)

Fig. 20  Variation of the dimensionless maximum deflection ratio ( wN ) with the slenderness ratio (L/ℎ) of BDFG nanobeam using SE, CS, and 
CSSER theories (ℎ = 15 nm and kx = kz = 1.0)

(a) (b)

Fig. 21  Variation of the dimensionless critical buckling load ratio ( P
N

cr
 ) with the slenderness ratio (L/ℎ) of BDFG nanobeam using SE, CS, and 

CSSER theories (ℎ = 15 nm and kx = kz = 1.0)

increase in the dimensionless critical buckling load and 
vibration frequency, for all gradation distributions. The 
buckling response is more sensitive to the surface resid-
ual stress than the vibration and bending responses. The 
highest impact of �s

l
 and �s

r
 are, respectively, correspond-

ing to BDFG and TFG nanobeams. Also, the impact of 
�s
l
 is reduced as �s

r
 increases and the opposite is true.

• The surface elasticity moduli Es
l
 and Es

r
 with negative 

values slightly enhances the stiffness-softening behav-
ior of FG nanobeams, and accordingly, the dimension-
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less bending deflection increases and the dimensionless 
critical buckling load and vibration frequency decrease. 
BDFG and TFG nanobeams give the highest effect of the 
surface elasticity moduli Es

l
 and Es

r
 , respectively. It can 

be concluded that the effect of surface elasticity moduli 
is very small compared with that of the surface residual 
stress.

• Increasing the material length-scale parameter-to-thick-
ness ratio ( lr∕h ) and/or the material length-scale param-
eter ratio ( lr∕ll ) improves the stiffness-hardening effect of 
the microbeam compared with the classical beam model. 
Compared to the uniform microbeam, the effects of both 
lr∕h and lr∕ll increase with positive taperness parameters. 
The roles of lr∕h and lr∕ll are significantly influenced by 
the gradation distribution as the maximum effect of lr∕ll 
is obtained for BDFG microbeams, followed by TFG and 
AFG.

• The gradation indices kz and kx have a significant effect 
on the response of BDFG tapered micro/nanobeams. 
Increasing kz and/or kx increases the stiffness-hardening 
of the beam and accordingly, the deflection decreases, 
whereas the critical buckling load and free vibration 

frequency increase. Both the nonclassical formulation 
and positive taperness parameters noticeably reduces the 
effect of kz and kx . Also, the influence of the gradient 
indices on the bending response is much greater than that 
on the buckling and vibration responses.

• Increasing the aspect ratio enhances the influence surface 
energy, whereas the microstructure effect is unchanged. 
With the increase of aspect ratio, the influences of the 
surface residual stress increases; whereas, the influence 
of Es

l
 and Es

r
 significantly decreases. The impact of the 

aspect ratio is reduced by increasing the beam thickness 
or varying the taperness parameters from positive to 
negative values.

The present results could be helpful in reaching the 
desired static and free vibration responses of micro/nano-
beam. As the beam response can be controlled by appro-
priate engaging of the gradient indices in thickness and/or 
length directions and proper selection of the cross section.

(a) (b)

Fig. 22  Variation of the dimensionless natural frequency ratio ( �N ) with the slenderness ratio (L/ℎ) of BDFG nanobeam using SE, CS, and 
CSSER theories (ℎ = 15 nm and kx = kz = 1.0)
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Table 25  Dimensionless 
maximum deflection ratio ( ̄wN ) 
of uniform and tapered FG 
nanobeams at different values 
of the slenderness ratio and 
thickness employing various 
nonclassical theories

L∕h h(nm) AFG, ( k
x
,k
z
) = (1,0) TFG, ( k

x
,k
z
) = (0,1) BDFG, ( k

x
,k
z
) = (1,1)

SE CS CSSER SE CS CSSER SE CS CSSER

Nonuniform nanobeam, ( �
b
 , �

h
) = (0.5,0.5)

 20 15 0.6138 0.2613 0.2247 0.6295 0.2390 0.2096 0.6687 0.2289 0.2057
30 0.7609 0.5831 0.4933 0.7728 0.5524 0.4753 0.8015 0.5394 0.4761
60 0.8643 0.8471 0.7477 0.8719 0.8293 0.7393 0.8898 0.8222 0.7464

 30 15 0.4048 0.2613 0.1893 0.4208 0.2390 0.1799 0.4628 0.2289 0.1811
30 0.5763 0.5831 0.4092 0.5927 0.5524 0.4007 0.6329 0.5394 0.4114
60 0.7314 0.8471 0.6462 0.7444 0.8293 0.6458 0.7753 0.8222 0.6643

 40 15 0.2744 0.2613 0.1551 0.2871 0.2390 0.1502 0.3232 0.2289 0.1551
30 0.4303 0.5831 0.3303 0.4467 0.5524 0.3284 0.4889 0.5394 0.3455
60 0.6017 0.8471 0.5431 0.6179 0.8293 0.5485 0.6568 0.8222 0.5756

 60 15 0.1427 0.2613 0.1022 0.1502 0.2390 0.1019 0.1733 0.2289 0.1099
30 0.2499 0.5831 0.2128 0.2619 0.5524 0.2165 0.2960 0.5394 0.2370
60 0.3997 0.8471 0.3734 0.4156 0.8293 0.3832 0.4571 0.8222 0.4165

Uniform nanobeam, ( �
b
 , �

h
) = (0.0,0.0)

 20 15 0.8358 0.4186 0.3867 0.8314 0.3906 0.3620 0.8599 0.3781 0.3562
30 0.9106 0.7415 0.6911 0.9080 0.7194 0.6705 0.9247 0.7086 0.6699
60 0.9532 0.9197 0.8800 0.9518 0.9112 0.8709 0.9609 0.9068 0.8745

 30 15 0.6773 0.4186 0.3486 0.6706 0.3906 0.3278 0.7160 0.3781 0.3288
30 0.8077 0.7415 0.6301 0.8029 0.7194 0.6115 0.8346 0.7086 0.6213
60 0.8937 0.9197 0.8289 0.8907 0.9112 0.8196 0.9098 0.9068 0.8320

 40 15 0.5352 0.4186 0.3066 0.5275 0.3906 0.2895 0.5799 0.3781 0.2969
30 0.6974 0.7415 0.5608 0.6909 0.7194 0.5443 0.7343 0.7086 0.5640
60 0.8218 0.9197 0.7667 0.8173 0.9112 0.7570 0.8468 0.9068 0.7790

 60 15 0.3343 0.4186 0.2280 0.3273 0.3906 0.2169 0.3754 0.3781 0.2323
30 0.5015 0.7415 0.4266 0.4938 0.7194 0.4142 0.5464 0.7086 0.4462
60 0.6682 0.9197 0.6312 0.6614 0.9112 0.6214 0.7069 0.9068 0.6590

Nonuniform nanobeam, ( �
b
 , �

h
) = (‒0.5, ‒0.5)

 20 15 0.9151 0.5159 0.4924 0.9082 0.4857 0.4629 0.9271 0.4756 0.4584
30 0.9557 0.8075 0.7783 0.9519 0.7897 0.7594 0.9622 0.7814 0.7581
60 0.9773 0.9433 0.9231 0.9754 0.9374 0.9157 0.9807 0.9338 0.9170

 30 15 0.8093 0.5159 0.4600 0.7961 0.4857 0.4319 0.8324 0.4756 0.4340
30 0.8946 0.8075 0.7374 0.8865 0.7897 0.7172 0.9086 0.7814 0.7244
60 0.9444 0.9433 0.8937 0.9399 0.9374 0.8844 0.9521 0.9338 0.8919

 40 15 0.6965 0.5159 0.4211 0.6787 0.4857 0.3948 0.7283 0.4756 0.4040
30 0.8212 0.8075 0.6868 0.8088 0.7897 0.6654 0.8429 0.7814 0.6820
60 0.9019 0.9433 0.8555 0.8943 0.9374 0.8439 0.9148 0.9338 0.8590

 60 15 0.4979 0.5159 0.3393 0.4772 0.4857 0.3170 0.5362 0.4756 0.3371
30 0.6651 0.8075 0.5741 0.6465 0.7897 0.5515 0.6984 0.7814 0.5843
60 0.7990 0.9433 0.7624 0.7854 0.9374 0.7463 0.8225 0.9338 0.7772
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Table 26  Dimensionless 
critical buckling load ratio ( ̄PN

cr
 ) 

of uniform and tapered FG 
nanobeams at different values 
of the slenderness ratio and 
thickness, employing various 
nonclassical theories

L∕h h(nm) AFG, ( k
x
,k
z
) = (1,0) TFG, ( k

x
,k
z
) = (0,1) BDFG, ( k

x
,k
z
) = (1,1)

SE CS CSSER SE CS CSSER SE CS CSSER

Nonuniform nanobeam, ( �
b
 , �

h
) = (0.5, 0.5)

 20 15 1.6112 3.9584 4.5919 1.5759 4.3510 4.9554 1.4851 4.5711 5.0795
30 1.3070 1.7463 2.0591 1.2889 1.8589 2.1560 1.2433 1.9104 2.1604
60 1.1539 1.1880 1.3428 1.1447 1.2195 1.3657 1.1219 1.2317 1.3549

 30 15 2.4228 3.9584 5.4363 2.3389 4.3510 5.7596 2.1325 4.5711 5.7594
30 1.7172 1.7463 2.4766 1.6738 1.8589 2.5513 1.5697 1.9104 2.4952
60 1.3600 1.1880 1.5502 1.3380 1.2195 1.5609 1.2857 1.2317 1.5202

 40 15 3.5401 3.9584 6.6130 3.3917 4.3510 6.8814 3.0271 4.5711 6.7082
30 2.2865 1.7463 3.0582 2.2086 1.8589 3.1026 2.0235 1.9104 2.9621
60 1.6475 1.1880 1.8394 1.6075 1.2195 1.8332 1.5142 1.2317 1.7510

 60 15 6.6319 3.9584 9.9400 6.3142 4.3510 10.0608 5.5169 4.5711 9.4002
30 3.8836 1.7463 4.7010 3.7127 1.8589 4.6633 3.3018 1.9104 4.2856
60 2.4608 1.1880 2.6590 2.3715 1.2195 2.6060 2.1625 1.2317 2.4064

Uniform nanobeam, ( �
b
 , �

h
) = (0.0, 0.0)

 20 15 1.1956 2.3716 2.5664 1.2019 2.5600 2.7619 1.1622 2.6421 2.8042
30 1.0978 1.3444 1.4420 1.1010 1.3900 1.4910 1.0811 1.4107 1.4918
60 1.0489 1.0863 1.1352 1.0505 1.0975 1.1480 1.0405 1.1027 1.1432

 30 15 1.4746 2.3716 2.8451 1.4887 2.5600 3.0487 1.3949 2.6421 3.0369
30 1.2373 1.3444 1.5815 1.2444 1.3900 1.6344 1.1974 1.4107 1.6081
60 1.1187 1.0863 1.2049 1.1222 1.0975 1.2197 1.0987 1.1027 1.2014

 40 15 1.8651 2.3716 3.2352 1.8903 2.5600 3.4503 1.7207 2.6421 3.3627
30 1.4326 1.3444 1.7766 1.4452 1.3900 1.8352 1.3604 1.4107 1.7710
60 1.2163 1.0863 1.3025 1.2226 1.0975 1.3201 1.1802 1.1027 1.2829

 60 15 2.9808 2.3716 4.3498 3.0377 2.5600 4.5977 2.6516 2.6421 4.2935
30 1.9905 1.3444 2.3343 2.0188 1.3900 2.4088 1.8258 1.4107 2.2365
60 1.4953 1.0863 1.5815 1.5094 1.0975 1.6069 1.4129 1.1027 1.5156

Nonuniform nanobeam, ( �
b
 , �

h
) = (‒0.5, ‒0.5)

 20 15 1.0921 1.9546 2.0477 1.1000 2.0734 2.1747 1.0780 2.1261 2.2051
30 1.0461 1.2444 1.2907 1.0500 1.2706 1.3209 1.0390 1.2852 1.3245
60 1.0230 1.0618 1.0849 1.0250 1.0679 1.0930 1.0195 1.0718 1.0913

 30 15 1.2339 1.9546 2.1913 1.2536 2.0734 2.3298 1.1996 2.1261 2.3281
30 1.1170 1.2444 1.3620 1.1269 1.2706 1.3981 1.0999 1.2852 1.3856
60 1.0585 1.0618 1.1204 1.0634 1.0679 1.1315 1.0499 1.0718 1.1218

 40 15 1.4322 1.9546 2.3923 1.4684 2.0734 2.5469 1.3698 2.1261 2.5003
30 1.2162 1.2444 1.4617 1.2344 1.2706 1.5060 1.1850 1.2852 1.4712
60 1.1081 1.0618 1.1701 1.1172 1.0679 1.1853 1.0925 1.0718 1.1645

 60 15 1.9980 1.9546 2.9662 2.0806 2.0734 3.1663 1.8553 2.1261 2.9919
30 1.4996 1.2444 1.7466 1.5412 1.2706 1.8142 1.4282 1.2852 1.7155
60 1.2499 1.0618 1.3121 1.2709 1.0679 1.3391 1.2142 1.0718 1.2863
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