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Abstract
Honeycomb structures have the geometry of the lattice network to allow the minimization of the amount of used material to 
reach minimal material cost and minimal weight. In this regard, this article deals with the frequency analysis of imperfect 
honeycomb core sandwich disk with multiscale hybrid nanocomposite (MHC) face sheets rested on an elastic foundation. 
The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified 
Halpin–Tsai model are engaged to provide the effective material constant of the composite layers. By employing Hamilton’s 
principle, the governing equations of the structure are derived and solved with the aid of the generalized differential quad‑
rature method (GDQM). Afterward, a parametric study is done to present the effects of the orientation of fibers ( �f∕� ) in 
the epoxy matrix, Winkler–Pasternak constants ( Kw and Kp ), thickness to length ratio of the honeycomb network ( th∕lh ), the 
weight fraction of CNTs, value fraction of carbon fibers, angle of honeycomb networks, and inner to outer radius ratio on the 
frequency of the sandwich disk. The results show that it is true that the roles of Kw and Kp are the same as an enhancement, 
but the impact of Kw could be much more considerable than the effect of Kp on the stability of the structure. Additionally, 
when the angle of the fibers is close to the horizon, the frequency of the system improves.

Keywords Sandwich disk · Honeycomb core · Elastic foundation · GDQM · Imperfection multiscale hybrid laminated 
nanocomposite · Frequency characteristic

List of symbols
h, Ri, and Ro  Thickness, the inner and 

outer radius of the disk, 
respectively

CNTs  Carbon nanotubes
F and NCM  Fiber and nanocomposite 

matrix, respectively
�,E, � and G  The density, Young’s modu‑

lus, Poisson’s ratio, and shear 
parameter, respectively

VNCM, VF  Volume fractions of the 
nanocomposite matrix and 
fiber, respectively

lCNT, tCNT, dCNT, 
ECNT and VCNT  The length, thickness, diam‑

eter, Young’s modulus, and 
volume fraction of carbon 
nanotubes, respectively

V∗
CNT

 , WCNT  Effective volume fraction 
and weight fraction of the 
CNTs, respectively
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Nt, VCNT  Layer number and volume 
fraction of CNTs

E∗
1
 and E∗

2
  Young’s modulus in R and � 

directions, respectively
�∗
12

 and �∗
21

  Poisson’s ratio in R and � 
directions, respectively

G∗
12

  In‑plane shear modulus
ES and �S  Young’s modulus and mass 

density of the base mate‑
rial, which is aluminum 
for the honeycomb core, 
respectively

tm, hH, lm, and �h  The cell wall thickness, the 
sides of the hexagonal cell, 
and the angle of honeycomb 
core, respectively

U, V, W  Displacement fields of a disk
u, v, w,  u1, and v1  The displacements of the 

mid‑surface of the disk
�RR and ���  The corresponding normal 

strains in R and θ directions, 
respectively

�RZ , �R� and ��Z  The shear strain in the R–Z, 
R–� and �–Z plane

U*, T*, and W*  Corresponding strain energy 
of the system, kinetic energy 
of the system, and the work 
done, respectively

Qij and Qij  Stiffness elements, stiffness 
elements related to orienta‑
tion angle, and the orienta‑
tion angle, respectively

�f  The lamination angle con‑
cerning the disk R axis

KW and KP  Winkler and Pasternak foun‑
dation coefficient

Nr and Nθ  The number of grid points 
along the radial and cir‑
cumferential directions, 
respectively

d, b, and �  d As a subscript stands for 
the domain grid points, b as a 
subscript stands for boundary 
grid points and the displace‑
ment vector, respectively

Mij and Kij  Components of mass 
and stiffness matrices, 
respectively

Mij
* and Kij

*  Components of mass and 
stiffness matrices in the 
GDQ method, respectively

�n and �n  Dimensional and non‑
dimensional value of natural 
frequency

1 Introduction

As a matter of fact, as well as improving the properties of 
the applicable structures [1, 2] in the different engineer‑
ing fields [3–5] by employing the various methods in the 
last decades, researchers have found a novel and excellent 
method for enhancing the static and dynamic responses of 
the low‑density plate, beam, shell, and disk [6–12]. Based on 
this matter, honeycombed structures are presented for use in 
the related industry. Mukhopadhyay et al. [13]. investigated 
the vibrational characteristics of the sandwich panel with 
honeycomb core with the aid of Hamilton’s principle. They 
reported that the honeycomb core could improve the natural 
frequency and, finally, the stiffness of the sandwich panel. 
Ref. [14] studied the effects of various defects that occur 
for building honeycomb composite beams and obtained the 
mechanical performance of honeycomb beams in different 
vibration modes using finite element analysis and fast Fourier 
transform analyzer. Significant results of this study showed 
that the natural frequency of the structure decreases with 
increasing defect percentage. Mozafari et al. [15] studied the 
vibrational frequencies of honeycomb sandwich panels with 
different cores. Using experimental testing, they determined 
the mechanical properties of polyurethane foams. They exam‑
ined the effect of the first resonant frequency, the shape of the 
state, and the impact of the foams on the vibrational response 
of the core. The free vibration of the graded corrugated lat‑
tice core structure and the analytical method to solve the 
governing equations were examined by Ref. [16]. They ana‑
lyzed the effect of beam length, graded parameters, and facial 
leaf thickness on the frequency responses of the mentioned 
structure. Amini et al. [17] controlled the amplitude of the 
vibrations of a solar panel that is made of a honeycomb core 
and smart layers. With Hamilton’s principle and thin plate 
theory, they developed the motion equations and boundary 
conditions. Finally, they found that the elastoelectric effects 
have an essential role in the frequency responses of the solar 
panel. Ref [18]. evaluated the post‑buckling behavior of 
panels with honeycomb cores and reinforced by graphene 
particles. The researchers’ findings show that core thickness, 
GPL weight fraction, and geometric parameters related to the 
panel have an essential role in the post‑buckling behavior 
of the sandwich panel. The bending behavior of a curved 
beam with graphene nanoplatelets and honeycomb core was 
studied by Sobhy [19]. Using DQM, they solved the complex 
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motion equations and associated boundary conditions. Wang 
et al. [20] conducted research about frequency responses of a 
sandwich panel with honeycomb core using experimental and 
finite element outcomes. Finally, their essential work found 
that the thickness ratio of the face sheet and filling foam den‑
sity had a vital role in the frequency of the sandwich panel 
with a honeycomb core. Ref [21]. presented a frequency 
analysis of a sandwich beam with honeycomb hybrid core 
with the aid of finite element and experimental techniques. 
Nonlinear frequency responses of a honeycomb sandwich 
shell were presented by Zhang et al. [22]. They solved the 
governing equations of the structure with simply supported 
boundary conditions via the homotopy perturbation method. 
In recent years, the use of CNTs as reinforcement has got a 
lot of attention. For this issue, Keleshteri et al. [23] analyzed 
major bending responses of an FG annular plate, which is 
enhanced through employing CNTs and surrounded by an 
elastic foundation. They believe that in their mathematical 
approach, the von Karman and thick shear deformation mod‑
els are utilized for reporting more accuracy when it comes 
to presenting results. Furthermore, to solve the equations 
obtained via energy methods, they employed the GDQ model 
along with Newton–Raphson. Their emphasized outcome is 
that the thickness and the value fraction of CNT may play 
a prominent role when it comes to the investigation of the 
annular disk’s nonlinear frequency. Ansari and Torabi [24] 
analyzed nonlinear forced and free dynamics of an FG disk 
by using the von Kármán method as well as thin SDT. They 
mainly emphasized the modified GDQ model to solve the 
FG disk’s governing equation and reported a structure’s large 
amplitude vibration. Keleshteri et al. [25, 26] conducted a 
study on the frequency of the CNT‑reinforced circular sector 
plate considering a piezoelectric layer utilizing GDQM and 
FSDT. By taking into account the same process, Keleshtary 
et al. [27] investigated the FG‑CNT reinforced circular plate’s 
amplitude performance covered by the piezoelectric layer and 
sitting on an elastic medium. Torabi and Ansari [28] reported 
that it is essential to extend motion equations of the FG‑CNT 
reinforced circular plate’s large amplitude vibration based 
on the relations of general asymmetry in the existence of 
primary thermal stress for achieving accurate results. Also, 
many studies reported the application of applied soft com‑
puting method for prediction of the behavior of the complex 
system [29–36].

Vinyas and Harursampath [37] performed geometrically 
nonlinear free vibration behaviour of higher‑order shear 
deformable carbon nanotube‑reinforced magneto‑electro‑
elastic doubly curved shells. Dat et al. [38] presented an 
analytical approach on the nonlinear magneto‑electro‑elastic 
vibration of a smart sandwich plate. They modeled the sand‑
wich plate consisting of a carbon nanotube‑reinforced nano‑
composite core integrated with two magneto‑electro‑elastic 
face sheets. Mahesh and Harursampath [39, 40] investigated 
the nonlinear deflection problem of magneto‑electro‑elastic 
shells reinforced with carbon nanotubes subjected to mul‑
tiphysics loads such as mechanical, electric and magnetic 
loads. In this regard, they derived a mathematical model 
based on higher‑order shell theory, von Karman’s nonlinear‑
ity using finite element platform. Vinyas [41] explored the 
vibrational behavior of porous functionally graded magneto‑
electro‑elastic circular and annular plates through finite ele‑
ment procedures.

Based on the extremely detailed exploration in the lit‑
erature by the authors, no one can claim there is a research 
on the frequency analysis of the sandwich disk with a hon‑
eycomb core and imperfect MHLC face sheets rested on 
an elastic foundation. First‑order shear deformation theory 
(FSDT) is applied to formulate the stresses–strains relation. 
Rule of the mixture and modified Halpin–Tsai model are 
engaged to provide the effective material constant of the 
MHC disk. By employing Hamilton’s principle, the gov‑
erning equations of the structure are derived. Finally, the 
outcomes of the presented study show that some geometrical 
and physical parameters have an important role in the fre‑
quency responses of the sandwich disk.

2  Mathematical modeling

2.1  The homogenization process of MHC

The procedure of homogenization is made of two main steps 
based upon the Halpin–Tsai model, together with a micro‑
mechanical theory [6–12, 42]. The first stage is engaged 
with computing the effective characteristics of the composite 
reinforced with CF as follows [43]:

(1)E11 = VFE
F
11
+ VNCME

NCM,

(2)1

E22

=
Vf

EF
22

+
VNCM

ENCM
− VFVNCM ×

(
�F
)2 ENCM

EF
22

+
(
�NCM

)2 EF
22

EM
− 2�F�NCM

VFE
F
22
+ VNCME

NCM
,
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The volume fraction of the fiber and nanocomposite 
matrixes can be given by [43]:

The second step is organized to obtain the effective char‑
acteristics of the nanocomposite matrix reinforced with 
CNTs with the aid of the extended Halpin–Tsai microme‑
chanics as follows:

E
NCM

= E
M

(
5

8

(
1 + 2�

dd
V
CNT

1 − �
dd
V
CNT

)
+

3

8

(
1 + 2

(
l
CNT∕dCNT

)
�
dl
V
CNT

1 − �
dl
V
CNT

))
.

Here, βdd and βdl are computed as the following 
expression:

The volume fraction of CNTs can be formulated as below 
[44–46]:

(3)
1

G12

=
VF

GF
12

+
VNCM

GNCM
,

(4)� = VNCM�
NCM + VF�

F,

(5)�12 = VNCM�
NCM + VF�

F.

(6)VF + VNCM = 1.

(7)

(8)

�dl =
(ECNT

11
∕EM)

(lCNT∕2tCNT) + (ECNT
11

∕EM)
−

(dCNT∕4tCNT)

(lCNT∕2tCNT ) + (ECNT
11

∕EM)
,

�dd =
(ECNT

11
∕EM)

(dCNT∕2tCNT) + (ECNT
11

∕EM)
−

(dCNT∕4tCNT )

(dCNT∕2tCNT) + (ECNT
11

∕EM)
.

Also, various kinds of MHC distribution along with 
thickness direction can be given by (see Fig. 1):

Here, �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h j = 1, 2,… ,Nt.

Furthermore, the sum of VM and VCNT is equal to one as 
follows [6–12, 42]:

Finally, the mechanical properties of the MHC face sheets 
can be given by [44–46]:

In Fig. 2, various kinds of porosity distributions, namely, 
uniform, X, and O, are presented. The Young’s modulus, 
shear modulus, and mass density are as below:

where:

Based on the Gaussian random field scheme, we have:

(9)V∗
CNT

=
WCNT

WCNT +
(

�CNT

�M

)(
1 −WCNT

) .

(10)

VCNT = 4V∗
CNT

����j
���

h
FG − X

VCNT = 2V∗
CNT

⎛
⎜⎜⎝
1 − 2

����j
���

h

⎞
⎟⎟⎠
FG − O

VCNT = V∗
CNT

FG − UD.

(11)VCNT + VM = 1.

(12)�NCM = VCNT�
CNT + VM�

M,

(13)�NCM = �M,

(14)GNCM =
ENCM

2
(
1 + �NCM

) .

(15a)Ẽ11 = E11

(
1 − e0s(z)

)
,

(15b)Ẽ22 = E22

(
1 − e0s(z)

)
,

(15c)G̃12(z) =
Ẽ11

2(1 − v(z))
,

(15d)�̃�(z) = 𝜌(z)
[
1 − ems(z)

]
+ Vncm𝜌ncm,

(16)s =

⎧⎪⎨⎪⎩

so PD − UD

so cos
�

�

4
+

�z

2h

�
PD − X

socos
�

�z

h

�
PD − O

Fig. 1  Distribution of CNT and CF through the thickness of the MHL 
composite
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The Poisson’s ratio of the porous disk corresponding to 
the closed‑cell Gaussian random field can be written as:

Also, when the total masses of the disk with different 
porosity distributions are the same, the value of S0 can be 
formulated as:

(17)em =
1.121

[
1 −

(
1 − e0s(z)

) 1

2.3

]

s(z)
.

(18a)

ṽ12 =0.221

(
1 −

�̃�(z)

𝜌

)

+ v12

[
1 + 0.342

(
1 −

�̃�(z)

𝜌

)2

− 1.21

(
1 −

�̃�(z)

𝜌

)]
,

(18b)ṽ21 = ṽ12
Ẽ11

Ẽ22

.

(19)s0 =
1

e0

⎡
⎢⎢⎢⎢⎣
1 −

⎛⎜⎜⎜⎝

1

h
∫ h

2

−
h

2

�̃�(z)

𝜌
dz + 0.121

1.121

⎞⎟⎟⎟⎠

2.3⎤
⎥⎥⎥⎥⎦
.

2.2  Modeling of honeycomb cores

The hexagonal cell geometry is illustrated in Fig. 3. Accord‑
ing to the Gibson model, we have [47]:

(20‑a)

E∗
11

=
�1

�1
= ES

(
t

l

) cos
(
�h
)

(
h∕1 + sin

(
�h
))

sin2
(
�h
) 1

1 + (t∕1)2 cot2
(
�h
) ,

(20‑b)

E∗
22

=
�2

�2
= ES

(
t

l

)3
(
h∕1 + sin

(
�h
))

cos3
(
�h
) 1

1 + (t∕1)2 cot2
(
�h
) ,

(20‑c)

�∗
12

= −
�2

�1
=

cos2
(
�h
)

(
h∕1 + sin

(
�h
))

sin
(
�h
) 1 − (t∕1)2

1 + cot2
(
�h
)
(t∕1)2

,

(20‑d)

�∗
21

= −
�1

�2

=

(
h∕1 + sin

(
�h
))

sin
(
�h
)

cos2
(
�h
) .

1 − (t∕1)2

1 +
(
(h∕1) sec2

(
�h
)
+ tan2

(
�h
))
(t∕1)2

,

(20‑e)G∗
12

= ES

(
t

l

)3
(
h∕1 + sin

(
�h
))

(h∕1)2 cos
(
�h
) 1

R

Fig. 2  Patterns of porosity distribution through the thickness of MHC
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Figure 4 is presented for the geometry of the imperfect 
honeycomb core sandwich disk with MHC face sheets.

Based on FSDT, the displacement fields can be defined 
by the below relations [48–50]:

(20‑f)

R =

(
1 + 2

h

l
+
(
t

l

)2 h∕1 + sin
(
�
h

)

(h∕1)2

[(
h∕1 + sin

(
�
h

))
tan

2
(
�
h

)
+ sin

(
�
h

)])
,

(20‑i)
�∗

�S
=

(
t

l

)(
h

l
+ 2

)

2 cos
(
�h
)(

h

l
+ sin

(
�h
)) .

In Eq. (21), η defines the core, top, and bottom layers.

2.3  Strain–stress of the honeycomb core

Based on FSDT, the strain–stress formulation can be written 
as [44–46, 48–57]:

So, the strain components would be written as:

(21)

u� = u
�

0
+ zu

�

1

v� = v
�

0
+ zv

�

1

w� = w
�

0
.

(22)

⎡
⎢⎢⎢⎢⎢⎢⎣

�RR

���

�R�

�Rz

��z

⎤
⎥⎥⎥⎥⎥⎥⎦

c

=

⎡
⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

⎤
⎥⎥⎥⎥⎥⎦

c⎡
⎢⎢⎢⎢⎢⎢⎣

�RR

���

�R�

�Rz

��z

⎤
⎥⎥⎥⎥⎥⎥⎦

c

Qc
11

=
E∗
11

1 − �∗
12
�∗
21

, Qc
22

=
E∗
22

1 − �∗
12
�∗
21

, Qc
12

=
�∗
21
E∗
22

1 − �∗
12
�∗
21

,

Qc
44

= G∗
12
, Qc

55
= G∗

13
, Qc

66
= G∗

23
, G∗

13
= G∗

23
= G∗

12
.

(23a)

⎧⎪⎪⎨⎪⎪⎩

�RR
���
�R�
�Rz
��z

⎫
⎪⎪⎬⎪⎪⎭

�

=

⎧
⎪⎪⎨⎪⎪⎩

�0
RR

�0
��

�0
R�

�0
Rz

�0
�z

⎫
⎪⎪⎬⎪⎪⎭

�

+ z

⎧
⎪⎪⎨⎪⎪⎩

�RR
���
�R�
�Rz
��z

⎫
⎪⎪⎬⎪⎪⎭

�

Fig. 3  The hexagonal cell geometry

Fig. 4  The geometry of honey‑
comb core sandwich disk with 
MHC face sheet
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Stress–strain relations of MHC angle‑ply‑laminated disk 
can be written as follows [58–65]:

The above equation � defines the top and bottom layers, 
where

The terms involved in Eq. (25) would be obtained as [45, 
66–76]

(23b)

⎧⎪⎪⎨⎪⎪⎩
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12

+ cos
4 𝜃

f
Q̃

𝜓

22
+ 2 sin

2 𝜃
f
cos

2 𝜃
f

(
Q̃

𝜓

12
+ 2Q̃

𝜓

66

)
,

(25e)

̂
Q

𝜓

26
= cos

3 𝜃
f
sin 𝜃

f

(
2Q̃

𝜓

12
− 2Q̃

𝜓

22
+ Q̃

𝜓

66

)

+ cos 𝜃
f
sin

3 𝜃
f

(
2Q̃

𝜓

11
− 2Q̃

𝜓

12
− Q̃

𝜓

66

)
,

(25f)̂
Q

𝜓

44
= cos2 𝜃fQ̃

𝜓

44
+ sin2 𝜃fQ̃

𝜓

55
,

(25g)̂
Q

𝜓

45
= cos 𝜃f sin 𝜃f

(
Q̃

𝜓

55
− Q̃

𝜓

44

)
,

(25h)̂
Q

𝜓

55
= cos2 𝜃fQ̃

𝜓

55
+ sin2 𝜃fQ̃

𝜓

44
,

(25i)

̂
Q

𝜓

66
= Q̃

𝜓

66

(
cos2 𝜃f − sin2 𝜃f

)2
+ 4 sin2 𝜃f cos

2 𝜃f
(
Q̃

𝜓

11
+ Q̃

𝜓

22
− 2Q̃

𝜓

12

)
.

So, the strain components would be written as:

Equation (26) can be rewritten as

2.4  Compatibility equations

The compatibility conditions assuming perfect bonding 
between the core and the composite layers can be defined as 
follows [54, 58, 62, 77–84]:

2.5  Extended Hamilton’s principle

Based on energy methods known as the Hamilton principle, 
there are relations between boundary conditions and motion 
equations which can be written as [53–55, 85–90]:

The corresponding kinetic energy of the rotating system 
would be formulated as [91–97]:

Q̃
𝜓

11
=

Ẽ11

1 − �̃�12�̃�21
, Q̃

𝜓

12
=

�̃�12Ẽ22

1 − �̃�12�̃�21
,

Q̃
𝜓

22
=

Ẽ22

1 − �̃�12�̃�21
, Q̃

𝜓

44
= G̃12, Q̃

𝜓

55
= G̃23, Q̃

𝜓

66
= G̃13.

(26)

⎧
⎪⎪⎨⎪⎪⎩

�RR
���
�R�
�Rz
��z

⎫
⎪⎪⎬⎪⎪⎭

�

=

⎧
⎪⎪⎨⎪⎪⎩

�0
RR

�0
��

�0
R�

�0
Rz

�0
�z

⎫
⎪⎪⎬⎪⎪⎭

�

+ z

⎧
⎪⎪⎨⎪⎪⎩

�RR
���
�R�
�Rz
��z

⎫
⎪⎪⎬⎪⎪⎭

�

(27)

⎧⎪⎪⎨⎪⎪⎩

�0
RR

�0
��

�0
R�

�0
Rz

�0
�z

⎫⎪⎪⎬⎪⎪⎭

�

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�u

�R
u

R
+

�v

R��
�u

R��
+

�v

�R
−

v

R

�R +
�w

�R

�� +
�w

R��

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

�

,

⎧⎪⎪⎨⎪⎪⎩

�RR
���
�R�
�Rz
��z

⎫⎪⎪⎬⎪⎪⎭

�

=

⎧⎪⎪⎨⎪⎪⎩

��R

�R
�R

R
+

���

R��
��R

R��
+

���

�R
−

��

R

0

0

⎫⎪⎪⎬⎪⎪⎭

�

(28)

uc(zc = −hc∕2) = ub(zb = hb∕2),

vc(zc = −hc∕2) = vb(zb = hb∕2),

wc(zc = −hc∕2) = wb(zp = hb∕2),

uc(zc = hc∕2) = ut(zt = −ht∕2),

vc(zc = hc∕2) = vt(zt = −ht∕2),

wc(zc = hc∕2) = wt(zt = −ht∕2).

(29)∫
t2

t1

(�T∗ − �U∗ + �W∗)
�
dt = 0 .

(30)T∗� = ∫
V

1

2
��
[(

�U

�t

)2

+
(
�V

�t

)2

+
(
�W

�t

)2
]�

dV ,
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where:

Also, the strain energy of the current composite structure 
would be obtained as:

where

Furthermore, the first variation of work done due to the 
elastic substrate can be formulated as follows:

(31)

�T∗� = ∫
V

��
�
�U

�t

��U

�t
+

�V

�t

��V

�t
+

�W

�t

��W

�t

��

dV ∶

�T∗� =

R2

∫
R1

�

∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
−I0

�2u

�t2
− I1

�2�R

�t2

�
�u +

�
−I1

�2u

�t2
− I2

�2�R

�t2u1

�
��R

+

�
−I0

�2v

�t2
− I1

�2��

�t2

�
�v +

�
−I1

�2v

�t2
− I2

�2��

�t2

�
���

+

�
−I0

�2w

�t2

�
�w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

RdRd�,

(32)
{
Ii
}
=

h

2

∫
−

h

2

��(z)
{
zi
}
dZ, i = 0 ∶ 6.

(33)

�U∗� =
1

2 ∭
V

�
�

ij
��

�

ij
dV

= ∫
A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
NRR

��u 0

�R
+MRR

��u1

�R

�
+

⎛⎜⎜⎜⎝

N��

��v0

R��
+M��

��v1

R��

+N��

�u0

R
+M��

�u1

R

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝

NR�

��v0

�R
+MR�

��v1

�R
+ NR�

��u0

R��

+MR�

��u1

R��
− NR�

�v0

R
−MR�

�v1

R

⎞⎟⎟⎟⎠
+

�
NRz

�
�u1 +

��w0

�R

��
+

�
N�z

�
�v1 +

��w0

R��

��

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

dA,

(34)

{
NRR,MRR

}�
= ∫z

{
�RR, z�RR

}�
dz;

{
N�� ,M��

}�
= ∫z

{
��� , z���

}�
dz;

{
NRz,MRz

}�
= ∫z

{
�Rz, z�Rz

}�
dz;.

{
NR� ,MR�

}�
= ∫z

{
�R� , z�R�

}�
dz;

{
N�z,M�z

}�
= ∫z

{
��z, z��z

}�
dz.

Eventually, the governing equations and the correspond‑
ing boundary conditions can be derived by substituting Eqs. 
(35), (33), and (31) in Hamilton’s principle (Eq. (29)) that 
can be given by the following equations:

(35)

�W∗�

= ∫
(
−Kww�w + Kp

[(
�w

�R

)(
�

�R
�w

)
+

1

R2

(
�w

��

)(
�

��
�w

)])�

dA.

(36a)

�u
�

0
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�

�R
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�
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−

N
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− N

�
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R
+

�

R��
N

�
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�

0

�2u
�

0

�t2
+ I

�

1

�2u
�

1

�t2
,

(36b)

�v
�

0
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�

R��
N

�

��
+

2N
�

R�

R
+

�

�R
N

�

R�
= I

�

0

�2v
�

0

�t2
+ I

�

1

�2v
�

1

�t2
,

(36c)

�w� ∶
�SRZ

�R
+

1

R

�S�Z

��
− KWw+KP

�2w

�R2
+
KP

R2

�2w

��2
= I0

�2w

�t2
,

(36d)

��
�

R
∶
�MRR

�R
−

M��

R
+

1

R

�MR�

��
− SRZ = I1

�2u0

�t2
+ I2

�2�R

�t2
,

(36e)

��� ∶
�

R��
M�� +

2

R
MR� +

�

�R
MR� −M�z = I

�

1

�2v0

�t2
+ I

�

2

�2v1

�t2
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Also, general associated boundary conditions can be 
given by:

It is noted that, based on the compatibility equations 
(Eq. (28)), the numbers of unknown variables are declined 
from 15 to 9. So, the total number of unknowns in the face 
sheets and core is decreased to 9.

2.6  Solution procedure

In this part of the present work, we displayed an FE‑based 
[51, 52] solution procedure which is called GDQM for solv‑
ing the formulation of the current problem. The first assump‑
tion in this is as follows:

Also, Ir
im

 and I�
jn

 are equal to one when i = m and j = n, 
otherwise are equal to zero. Also, Ar

im
 , A�

jn
 , Br

im
 and B�

jn
 are 

(37a)𝛿u𝜂 = 0 or N
𝜂

RR
n̂R +

N
𝜂

R𝜃

R
n̂𝜃 = 0 ,

(37b)𝛿v = 0 or N
𝜂

R𝜃
n̂R +

N
𝜂

𝜃𝜃

R
n̂𝜃 = 0 ,

(37c)

𝛿w𝜂 = 0 or
[
SRZ − Kp

𝜕w

𝜕R

]𝜂
n̂R +

[
S𝜃Z

R
−

Kp

R

𝜕w

𝜕𝜃

]𝜂
n̂𝜃 = 0,

(37d)𝛿𝜙
𝜂

R
= 0 or

[
MRR

]𝜂
n̂R +

[
MR𝜃

R

]𝜂
n̂𝜃 = 0,

(37e)𝛿𝜙
𝜂

𝜃
= 0 or

[
MR𝜃

]𝜂
n̂R +

[
M𝜃𝜃

R

]𝜂
n̂𝜃 = 0.

(38a)
�f

�r

||||r=ri, �=�j
=

Nr∑
m=1

N�∑
n=1

Ar
im
I�
jn
fmn,

(38b)
�f

��

||||r=ri, �=�j
=

Nr∑
m=1

N�∑
n=1

Ir
im
A�
jn
fmn,

(38c)
�

�r

(
�f

��

||||r=ri, �=�j

)
=

Nr∑
m=1

N�∑
n=1

Ar
im
A�
jn
fmn,

(38d)
�2f

�r2

|||||r=ri, �=�j
=

Nr∑
m=1

N�∑
n=1

Br
im
I�
jn
fmn,

(38e)
�2f

��2

|||||r=ri, �=�j
=

Nr∑
m=1

N�∑
n=1

Ir
im
B�
jn
fmn.

weighting coefficients of the first‑ and second‑order deriva‑
tives along with the r and θ directions, respectively, and may 
be considered as

in which

and

Also, using Chebyshev polynomials greed points, the 
seed along with the r‑axis and �‑axis can be distributed as 
[98]:

The following equation can give the GDQ form of the 
structure:

(39a)

Ar
im

=

⎧
⎪⎨⎪⎩

�(ri)
(ri−rm)�(rm)

when i ≠ m

−
Nr∑

k=1,k≠i
Aik when i = m

i,m = 1, 2,… ,Nr,

(39b)

A�
jn
=

⎧
⎪⎨⎪⎩

�(�j)
(�j−�n)�(�n)

when j ≠ n

−
N�∑

k=1,k≠j
Ajk when j = n

j, n = 1, 2,… ,N� ,

(40a)�
(
ri
)
=

Nr∏
k=1,k≠i

(
ri − rk

)
,

(40b)�
(
�j
)
=

N�∏
k=1,k≠j

(
�j − �k

)
,

(41a)
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im

= 2

(
Ar
ii
Ar
im
−

Ar
im(

ri − rm
)
)

i,m = 1, 2,… ,Nr , i ≠ m,

(41b)

B�
jn
= 2

(
A�
jj
A�
jn
−

A�
jn(

�j − �n
)
)

j, n = 1, 2,… ,N� , j ≠ n,

(41c)Br
ii
= −

Nr∑
k=1,k≠i

Br
ik

, i = 1, 2,… ,Nr, i = m,

(41d)B�
jj
= −

N�∑
k=1,k≠j

B�
jk

, j = 1, 2,… ,Nj, j = n.

(42a)

ri =
R0 − Ri

2

(
1 − cos

(
(i − 1)(
Nr − 1

)�
))

+ Ri i = 1, 2, 3,… ,Nr,

(42b)

�j =
�

2

(
1 − cos

(
(j − 1)(
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)�
))

j = 1, 2, 3,… ,N� .
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Finally, with the aid of Eq. (43), the new system is

where the vector of the freedom degrees can be defined as:

By substituting Eq. (45) in Eq. (44b), we have:

So,

and

Also, by substituting Eqs. (45) in (48), we have:

So,

Finally, by solving the below equation, frequency infor‑
mation and displacement fields of the structure can be 
extracted using GDQM.

(43)

{[ [
Mdd

] [
Mdb

]
[
Mbd

] [
Mbb

]
]
�2
n
+

[ [
Kdd

] [
Kdb

]
[
Kbd

] [
Kbb

]
]}{

�d

�b

}
= 0.

(44a)
[
Kdb

]
�b +

[
Kdd

]
�d = 0,

(44b)
[
Kbb

]
�b +

[
Kbd

]
�d = 0,

(45)�b = −

[
Kdd

]
[
Kdb

]�d.

(46)
([
Kbd

]
−
[
Kbb

][
Kdb

]−1[
Kdd

])
�d = 0.

(47)K∗ =
[
Kbd

]
−
[
Kbb

][
Kdb

]−1[
Kdd

]

(48)
[
Mbd

]
�d +

[
Mbb

]
�b = 0.

(49)
([
Mbd

]
−
[
Mbb

][
Kdb

]−1[
Kdd

])
�d = 0.

(50)M∗ =
[
Mbd

]
−
[
Mbb

][
Kdb

]−1[
Kdd

]
.

(51)K∗ +M∗�2 = 0.

3  Results and discussion

The data in Table 1 provide details about the properties of 
the reinforcements and epoxy. The thermomechanical con‑
stants of the used reinforcements are given in Table 1. Also, 
carbon fiber, epoxy, and carbon nanotube are used to make 
a reinforced sandwich disk with honeycomb core and mul‑
tiscale hybrid nanocomposite face sheets and core.

Convergence conditions of the GDQ method for having 
independent outcomes with respect to the three boundary 
conditions are shown in Table 2. Based on Table 2, when 
the number of grid points in the GDQ method is more than 
11, the error for calculating the natural frequency of the 
disk becomes zero, and this matter is a fact for all boundary 
conditions.

The influence of the number of layers ( Nt ) and various 
functionally graded distribution on the frequency of the disk 
with respect to the porosity patterns are depicted in Table 3. 
If we have a glance at the Table 3 can claim that not only 
the structure will have the best dynamic response, which is 
considered the FG‑O and PD‑X patterns, but also the num‑
ber of layers should not be more than nine for all porosity 
and FG patterns, because of that for Nt ≥ 9 we cannot see 
any changes in the frequency of the structure.

They analyze the effects of three types of methods for 
reinforcing the structure on the frequency of the system 
with consideration of three porosity coefficient and bound‑
ary conditions, which are discussed in Table 3. The ends 
of Table 4 show that not only CNTs/HC/CNTs reinforced 
disk has the highest natural frequency in comparison with 
MHC/HC/MHC, but also the imperfection effect is a rea‑
son to increase the frequency of the system. If we have a 
glance at the given information in Table 4, we can conclude 
that employing the honeycomb network as the core of the 
structure will improve the dynamic response of the structure 
impressively.

The provided information in Fig. 5 gives results about the 
frequency behavior of the disk by considering the angle of 
the honeycomb network effect. The more critical conclusion 

Table 1  The properties of MHC 
[99] and core [19]

Carbon (fiber) Epoxy (matrix) Carbon nanotube Core (aluminum)

E
f
11
(GPa) = 233.05 v

m = 0.34 E
cnt(Gpa) = 640 v

s = 0.34

E
f

11
(GPa) = 23.1 �m

(
kg

m3

)
= 1200 d

cnt(m) = 1.4 × 10−9 �s
(

kg

m3

)
= 2700

G
f
11
(GPa) = 8.96 E

m(Gpa) = 3.51 t
cnt(m) = 0.34 × 10−9 E

s(Gpa) = 70

�f = 0.2 l
cnt(m) = 25 × 10−6

�f
(

kg

m3

)
= 1750 �12 = 0.33

�cnt
(
kg∕m3

)
= 1350
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in Fig. 5 is that when the angle of the fibers is close to the 
horizon, the frequency of the system improves.

The provided information in Fig. 6 gives results about 
the frequency behavior of the disk considering Vf effect. The 
more important conclusion in Fig. 6 is that when the sand‑
wich disk is made of the higher value fraction of carbon 
fibers, the frequency of the system could be improved.

The provided information in Fig. 7 gives results about the 
frequency behavior of the disk considering the value fraction 
of CNTs ( WCNT ) effect. The more important conclusion in 
Fig. 7 is that when the sandwich disk is made of a higher 
value fraction of CNTs, the frequency of the system could 
be improved.

The presented diagrams in Fig. 8 give the results about 
the frequency behavior of the disk considering the thickness 

to length ratio of the honeycomb network ( th∕lh ) effect. Con‑
cerning Fig. 8, the thicker the honeycomb core, the better is 
the dynamic provided for the sandwich disk.

Figure 9 presents some information for analyzing the 
impacts of the orientation of fibers ( �f∕� ) in the epoxy 
matrix and thickness to length ratio of the honeycomb net‑
work ( th∕lh ) on the vibrational information of a sandwich 
disk with consideration of three kinds of boundary condi‑
tions. The main point in this part of the presented study is 
that for the structure with C–C and C–S edges and each 
th∕lh , the lowest frequency response is for a disk which is 
reinforced by the carbon fibers with �f∕� = 0.5, and this 
fiber angle is called the critical angle. Also, for S–S bound‑
ary conditions, the critical fiber angles are 0.34 and 0.68. 
Besides, as the th∕lh increases, the frequency of the structure 

Table 2  Convergence number 
of grid points for having 
independent results with respect 
to the three kinds of boundary 
conditions

Boundary conditions N = 5 N = 7 N = 9 N = 11 N = 13 N = 15

Simply–Simply 0.0350 0.0407 0.0412 0.0413 0.0413 0.0413
Clamped–Simply 0.1001 0.0986 0.0988 0.0988 0.0988 0.0988
Clamped–Clamped 0.1371 0.1355 0.1356 0.1356 0.1356 0.1356

Table 3  Convergence number 
of layers in the compositionally 
face sheets and various 
functionally graded distribution 
effects on the frequency of the 
disk with respect to the porosity 
patterns

PD CNT‑distribution Nt = 1 Nt = 3 Nt = 5 Nt = 7 Nt = 9 Nt = 11 Nt = 13 Nt = 15 Nt = ∞

X FG‑X 0.1395 0.1373 0.1380 0.1383 0.1384 0.1384 0.1384 0.1385 0.1385
FG‑O 0.1421 0.1364 0.1359 0.1357 0.1357 0.1356 0.1356 0.1356 0.1356
FG‑UD 0.1411 0.1368 0.1368 0.1368 0.1367 0.1367 0.1367 0.1367 0.1368

O FG‑X 0.1257 0.1370 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373 0.1373
FG‑O 0.1296 0.1354 0.1356 0.1356 0.1356 0.1356 0.1356 0.1356 0.1357
FG‑UD 0.1285 0.1359 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361 0.1361

UD FG‑X 0.1335 0.1362 0.1368 0.1369 0.1370 0.1370 0.1371 0.1371 0.1371
FG‑O 0.1367 0.1352 0.1348 0.1348 0.1347 0.1347 0.1347 0.1347 0.1347
FG‑UD 0.1356 0.1356 0.1356 0.1356 0.1356 0.1356 0.1356 0.1356 0.1356

Table 4  Effects of three types of methods for reinforcing the structure on the frequency of the system with consideration of three porosity coef‑
ficient and boundary conditions

a Multiscale hybrid nanocomposite reinforced disk /honeycomb/multiscale hybrid nanocomposite reinforced disk
b Carbon nanotubes reinforced disk/honeycomb/ carbon nanotubes reinforced disk

Simply–Simply Clamped–Simply Clamped–Clamped

FG‑X FG‑O FG‑UD FG‑X FG‑O FG‑UD FG‑X FG‑O FG‑UD

Without imperfection (e0 = 0)
 MHC/HC/MHCa 0.0398 0.0388 0.0391 0.0952 0.0928 0.0936 0.1306 0.1273 0.1285

CNT/HC/CNTb 0.0499 0.0405 0.0475 0.0835 0.0707 0.0795 0.1200 0.1008 0.1165
With imperfection (e0 = 0.2)
 MHC/HC/MHCa 0.0406 0.0396 0.0400 0.0971 0.0948 0.0956 0.1332 0.1301 0.1312

CNT/HC/CNTb 0.0461 0.0331 0.0417 0.0785 0.0604 0.0712 0.1150 0.0905 0.1052
With imperfection (e0 = 0.4)
 MHC/HC/MHCa 0.0416 0.0406 0.0410 0.0994 0.0973 0.0981 0.1365 0.1335 0.1347

CNT/HC/CNTb 0.0566 0.0417 0.0517 0.0960 0.0742 0.0852 0.1339 0.1052 0.1268
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with critical fiber angles increases. Furthermore, when there 
is an ever increase in �f∕� , before and after critical fiber 
angles, the dynamic response of the disk increases and falls, 
respectively. The last result from Fig. 9 is that employing 
the thicker honeycomb core will enhance the stability of 
the structure.

Figure 10 presents some data for analyzing the impacts 
of the orientation of fibers ( �f∕� ) in the epoxy matrix, Win‑
kler–Pasternak constants ( Kw and Kp ), and three kinds of 
boundary conditions on the vibrational information of a 
sandwich disk. As Kw and Kp increase, the frequency of the 
disk increases. In addition, it is true that the roles of Kw 
and Kp are the same as enhancements, but the impact of Kw 
could be much more considerable than the effect of Kp on 
the stability of the structure.

4  Conclusion

For the first time, the vibrational characteristics of a sand‑
wich disk rested on the elastic foundation is investigated. 
The stresses and strains are obtained using FSDT. Rule of 
the mixture and modified Halpin–Tsai model are engaged to 
provide the effective material constant of the multi‑hybrid 
laminated nanocomposite face sheets of the sandwich disk. 
Finally, the most bolded results of this paper are as follows:

Not only CNTs/HC/CNTs reinforced disk have the high‑
est natural frequency compared with MHC/HC/MHC, but 
also growing the imperfection effect is a reason to decline 
the frequency of the systems.

We can conclude that employing the honeycomb network 
as the core of the structure improves the dynamic response 
of the design impressively.

When the angle of the fibers is close to the horizon, the 
frequency of the system improves.

Fig. 5  Frequency of the clamped–clamped honeycomb reinforced 
disk versus the outer to inner radius ratio for various �h

Fig. 6  Frequency of the clamped–clamped honeycomb reinforced 
disk versus radius ratio for various Vf

Fig. 7  Frequency of the clamped–clamped honeycomb‑reinforced 
disk versus the radius ratio for various WCNT

Fig. 8  Frequency of the clamped–clamped honeycomb‑reinforced 
disk versus the radius ratio for various th∕lh
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For the structure with C–C and C–S edges and each value 
of th∕lh , the lowest frequency response is for a disk which is 
reinforced by the carbon fibers with �f∕� = 0.5, and this fiber 
angle is called the critical fiber angle.

For S–S boundary conditions, the critical fiber angles are 
0.34 and 0.68. Also, as the th∕lh increases, the frequency of 
the structure with critical fiber angles increases.
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Fig. 9  Frequency of the honeycomb‑reinforced disk versus �f∕� for various th∕lh and three kinds of boundary conditions
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