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Abstract
In this article, we introduced for the first time the two-step Adomian decomposition method (TSADM) for solving the 
multi-dimensional Riesz space distributed-order advection–diffusion (RSDOAD) equation. The TSADM was successfully 
applied to obtain the analytical solution of the multi-dimensional (RSDOAD) equation. The analytical solution has been 
obtained without approximation/discretization of the Riesz fractional operator. Furthermore, new results for the existence 
are obtained with the help of some fixed point theorems, while the uniqueness of the solution was investigated employing 
the Banach contraction principle. Finally, we included a generalized example to demonstrate the validity and application of 
the proposed method. The obtained results conclude that the proposed method is powerful and efficient for the considered 
problem compared to the other existing methods.

Keywords Fractional derivatives · Riesz space distributed-order advection–diffusion equation · Riesz derivative, Two-step 
Adomian decomposition method · Fixed point theorem
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1 Introduction

The theory of fractional calculus has been more focused 
and getting attention of the researches in the different areas 
of science and engineering [1–3]. Fractional calculus is an 
updated version of the standard calculus, in which the the 
operators (derivative/integral) are of fractional order. Nowa-
days, studies of fractional calculus have received consider-
able attention [4–8]. The authors proposed a unified method 
to solve time fractional Burgers’ equation with the Caputo 
derivative. Using numerical methods, the authors obtained 

approximate solution and compared the obtained results with 
the exact [9, 10].

Furthermore, the analytical solution of fractional differ-
ential equations are difficult to find and has not been the 
focus of much attention. Therefore, a numerical approach is 
needed for solving fractional differential equations (FDEs) 
[11, 12]. The most developed methods for the numerical 
approximation of FDEs are spectral methods, spectral col-
location method, Adomian decompostion method (ADM), 
improved collection method, Sinc collocation methods, and 
so on. Many works have done on the existence and unique-
ness of the FDEs. The most urgent problems listed are how 
to confirm the existence and uniqueness of the FDEs for the 
solution and find the existence of the method which provides 
the analytical solution of the FDEs [13–15].

For the first time, Caputo investigated the use of differen-
tial equations with distributed-order derivatives for general-
izing stress–strain relations of unelastic media. Further, He 
discussed distributed-order time/space fractional differen-
tial equations and obtained the solutions with closed-form 
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formulae of the standard problems. The difference between 
these two problems is also significant, according to the 
results funded by the Caputo. There are several numerical 
methods developed for obtaining the approximate solution 
of these equations, but such a method does not discuss which 
gives the accurate solution without the use of the discre-
tization, linearization, and other approximations process 
for the operators. In [16], the author uses the second-order 
accurate implicit scheme for the one/two-dimension Riesz 
space distributed-order advection–dispersion equations in 
which the Riesz space distributed-order advection–disper-
sion equations are converted into multi-terms Riesz space 
distributed-order advection–dispersion equations with the 
help of discretization by using the midpoint quadrature rule 
of the operators. Additionally, we discuss the stability and 
convergency of the method and also analyze the obtained 
results. Hui Zhang et al. [17] investigated the approximate 
solution of the two-dimensional Riesz space distributed-
order advection–diffusion equation by using a Crank–Nicol-
son alternating direction implicit (ADI) Galerkin–Legendre 
spectral scheme, in which they have used approximation for 
the distributed-order Riesz space derivative to convert the 
considered problem into a multi-term fractional equation. 
The obtained solution has higher computational accuracy 
compared to other numerical methods. Moreover, discussion 
on the solution of the Riesz space distributed-order advec-
tion–dispersion equations was done in literature for one/two 
dimensions, not more than two dimensions, and the approxi-
mate solution w as obtained by using numerical techniques 
with high computation.

The Adomian decomposition method (ADM) was used 
to obtain the approximate solution of FDEs and is very reli-
able for these problems. Further modification was done to 
improve the method. Namely, the modified ADM [18], the 
new improved ADM [19], the new modification ADM [20] 
and also many improved versions of the ADM have been 
presented in previous works. All improved versions of the 
ADM always gives the approximate solution for non-linear 
FDEs. In this article, we consider the method, which is also 
an improved version of standard ADM, but reduces the com-
putation and provides an analytical solution for non-linear 
FDEs in just one iteration called the two-step Adomain 
decomposition method (TSADM) [21–24]. If the TSADM 
applies to the problem, then the method always provides the 
analytical solution; applicability means the zeroth term of 
the series has included the term, which satisfies the problem 
and associated initial/boundary conditions.

We consider the multi-dimensional Riesz space distrib-
uted-order advection–diffusion (RSDOAD) equation and tar-
get to find the analytical solution of the RSDOAD with the 
help of the TSADM. The target was achieved without con-
verting the operators into multi-operators, which reduces the 
difficulties of the problem. If we choose any approximation 

technique, the problem becomes more and more complicated 
by increasing the dimensions of the problem. All numerical 
methods can be used to solve these types of equations with 
some drawbacks for one/two dimensions, but after increas-
ing the dimension finding an approximate solution becomes 
highly complicated. The proposed method in this paper is 
highly efficient than other numerical methods for the solu-
tion of the Riesz space distributed-order advection–diffu-
sion equation for multi-dimension and gives the accurate 
solution without the use of the approximation/discretization 
such as numerical methods. The applicability of the pro-
posed method can be proved by taking arbitrary dimensions 
of the equation and the analytical solution is obtained in just 
one iteration.

The primary objective of the present work is to find the 
analytical solution for the multi-dimensional RSDOAD 
equation by using the TSADM. Moreover, we have obtained 
new results for the existence and uniqueness of a solution. 
To prove the efficiency of the TSADM, we have consid-
ered a generalized example with a generalized source term, 
compared them with other numerical methods and then 
concluded the analysis of the result. The TSADM gives the 
analytical solution in just one iteration, and this is one of the 
main advantages of the proposed method.

The plan of this paper is listed as follows. In Sect. 2, we 
present some preliminaries from fractional calculus and 
introduce definitions, properties, and lemma of fractional 
operators based on Caputo sense, and also some essential 
theorems and lemmas, which are needed in the proof of the 
main results. In Sect. 3, the main results based on the Banach 
contraction principle and some fixed point theorems have 
shown and proved. In Sect. 4, we describe the TSADM for 
the muti-dimension RSDOAD equation. In Sect. 5, the pro-
posed method was applied to solve the generalized example. 
Finally, conclusions are drawn in Sect. 6.

2  Preliminaries

We describe some basic concepts of fractional integrals 
and derivatives, along with their properties. We adopt the 
Caputo’s definition of fractional derivatives, which is very 
popular in the field of applied mathematics. Furthermore, 
we describe some theorems and lemmas, which are further 
used to prove the existence and uniqueness conditions of the 
considered problems.

Definition 1 ( [22, 23]). A real function g(y), y > 0 , is said 
to be in the space C� , if � ∈ ℝ , there exists a real number 
v(> 𝜃) , such that g(y) = yvg1(y) , where g1(y) ∈ C[0,∞) and 
it is said to be in the space Cn

�
 if gn ∈ C� , n ∈ ℕ ∪ {0}.
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Definition 2 ( [22, 23]). The Riemann–Liouville fractional 
integral operator of order � ≥ 0 , of a function g ∈ C� , 
� ≥ −1 , is defined as

The following properties of the operator J�� can be found in 
[22, 23]. For g ∈ C� , � ≥ −1 , �,� ≥ 0 and 𝜁 > −1,

The Caputo derivative is a modified version of the Riemann–
Liouville derivative, which removes some disadvantages of 
the Riemann–Liouville derivative for fractional derivatives.

Definition 3 ( [22, 23]). The fractional derivative of g(y) in 
the Caputo sense is defined as

for n − 1 < 𝜎 ≤ n, n ∈ ℕ, y > 0, g ∈ Cn
−1
, and

The Caputo’s fractional derivatives are linear operators, as 
we have

where A and B are constants.

Definition 4 ( [22, 23]). For every smallest integer n, which 
exceeds � , we can define the Caputo time-fractional deriva-
tive operator of order 𝜎 > 0 as

Definition 5 ([22]). Consider the function Fr(�) = �r(1 − �)r , 
� ∈ [0, 1] , where r = 1, 2, 3,⋯

(1)
J𝜎yg(y) =

1

Γ(𝜎) ∫
y

0

(y − 𝜉)𝜎−1g(𝜉)d𝜉, 𝜎 > 0, y > 0.

J0yg(y) = g(y).

(2)(i) J�
y
J�
y
g(y) = J�+�

y
g(y).

(3)(ii) J�
y
J�
y
g(y) = J�

y
J�
y
g(y).

(4)(iii) J�
y
y� =

Γ(� + 1)

Γ(� + � + 1)
y�+� .

(5)

D�
y
g(y) = Jn−�

y
Dn

y
g(y) =

1

Γ(n − �) ∫
y

0

(y − �)n−�−1gn(�)d�,

(6)D�
y
A = 0.

(7)D�
y
(As(y) + Bh(y)) = AD�

y
s(y) + BD�

y
h(y),

(8)

D𝜉
𝜎w(y, 𝜉) =

𝜕𝜎w(y, 𝜉)

𝜕𝜉𝜎

=

⎧⎪⎨⎪⎩

1

Γ(n−𝜎)
∫ 𝜉

0
(𝜉 − 𝜏)n−𝜎−1

𝜕nw(y,𝜏)

𝜕𝜏n
d𝜏 ; n − 1 < 𝜎 < n,

𝜕nw(y,𝜉)

𝜕𝜉n
; 𝜎 = n ∈ ℕ.

The analytical expression for the Riesz derivatives of the 
above function is as follows:

where �� =
1

2 cos(
��

2
)
 , � ≠ 1.

The following basic lemma also helps us to obtain the 
solution of some considered problems.

Lemma 1 ( [22–24]). If n − 1 < 𝜎 ≤ n , n ∈ ℕ and g ∈ Cn
�
 , 

� ≥ −1 , then

Definition 6 An operator is called completely continuous, if 
it is continuous and maps bounded sets into precompact sets.

Definition 7 Let (Y , ‖ ⋅ ‖) be a normed space. A contrac-
tion of Y is mapping P ∶ Y → Y  that satisfies, for every 
y1, y2 ∈ Y ,

‖P(y1) − P(y2)‖ ≤ �‖y1 − y2‖,
for some real values 0 ≤ 𝛿 < 1 .
The following lemma was obtained by using the Caputo’s 

derivative definition, which has played a significant role in 
our analysis.

Lemma 2 ( [22–24]). Let 𝜎 > 0 , then a general solution to 
the homogeneous equation

is given by

Lemma 3 ( [22–24]). Let 𝜎 > 0 , then we have

Theorem 1 (Banach fixed point theorem, [22–24]). Every 
contraction mapping on a complete metric space has a 
unique fixed point.

Theorem 2 (Schaefer’s fixed point theorems, [22–24]). 
Let P ∶ Y → Y  be a completely continuous operator. If the 

(9)

��F
r
(�)

�|�|� = − �� ×

r∑
L=0

(−1)Lr!(r + L)!

L!(r − L)!Γ(r + L + 1 − �)

[�r+L−� + (1 − �)r+L−�],

(10)Dy
�J�

y
g(y) = g(y),

(11)J𝜎
y
Dy

𝜎g(y) = g(y) −

n−1∑
q=0

gq(0+)
yq

q!
, y > 0.

(12)D�
0+
�(y) = 0

(13)
�(y) = a0 + a1y + a2y

2 + a3y
3 +⋯ + am−1y

m−1,

aj ∈ ℝ, j = 1, 2,⋯ ,m − 1(m = [�] + 1).

(14)

J�
0+
D�

0+
�(y)

= �(y) + a0 + a1y + a2y
2 + a3y

3 +⋯ + am−1y
m−1,

aj ∈ ℝ, j = 1, 2,⋯ ,m − 1(m = [�] + 1).
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set  S(P) = {y ∈ Y ∶ y = c∗P(y) for some c∗ ∈ [0, 1]} is 
bounded, then, P has fixed points in P.

Theorem 3 (Arzelà-Ascoli Theorem, [22–24]). Let Y be a 
compact metric space. Let C(Y ,ℝ) be given the sup norm 
metric. Then a set P ⊂ C(Y) is compact iff P is bounded, 
closed and equicontinuous.

3  Main results for the existence 
and uniqueness of solution

Consider the multi-dimensional Riesz space distributed-
order advection–diffusion (RSDOAD) equation, which is 
described as follows:

with the initial and boundary conditions

w h e r e  I = (0,Θ]  ,  Ω =
∏m

i=0
(0, k) ×

∏n

j = 1

i = j

(0, k)  , 

F(Xi,Xm+j, �) is  the source and sink wi,w
′
i
> 0 , 

i = 0, 1, 2,⋯ ,m  a re  the  d i f fus ion coef f ic ients , 
wm+j,w

�
m+j

> 0 , j = 1, 2,⋯ ,m are the average velocities, and 
Qi(�i) , Qm+j(�m+j) , Q�

i
(��

i
) , Q�

m+j
(��

m+j
) are non-negative and 

bounded weight functions that satisfy the following 
conditions:

(15)

�V(Xi,Xm+j, �)

��
=

m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �), (Xi,Xm+j, �) ∈ Ω × I,

(16)

V(Xi,Xm+j, �) = 0, (Xi,Xm+j, �)

∈ �Ω × I,Xi = (xi)i=0,1,2,⋯m,Xm+j = (xm+j)j=1,2,⋯n ,

V(Xi,Xm+j, 0) = V0(Xi,Xm+j), (Xi,Xm+j) ∈ Ω ,

(17)

Q
i
(𝛼

i
) ≥ 0, Q

i
(𝛼

i
) ≡∕ 0,

𝛼
i
∈ (1, 2), 0 < �

2

1

Q
i
(𝛼

i
)d𝛼

i
< ∞,

The Riesz fractional derivatives [25, 26] on a finite domain 
[0, k] are described as follows:

For c − 1 < 𝛾 ≤ c , c ∈ ℕ , the operators 0D�
xi
 , 0D�

xm+j
 and xiD

�

k
 , 

xm+j
D

�

k
 are defined as follows:

(18)
Q

�
i
(𝛼�

i
) ≥ 0, Q

�
i
(𝛼�

i
) ≡∕ 0, 𝛼�

i
∈ (1, 2),

0 < �
1

0

Q
�
i
(𝛼�

i
)d𝛼�

i
< ∞,

(19)

Qm+j(𝛼m+j) ≥ 0, Qm+j(𝛼m+j) ≡∕ 0, 𝛼m+j ∈ (1, 2),

0 < �
2

1

Qm+j(𝛼m+j)d𝛼m+j < ∞,

(20)

Q�
m+j

(𝛼�
m+j

) ≥ 0, Q�
m+j

(𝛼�
m+j

) ≡∕ 0,

𝛼�
m+j

∈ (1, 2),

0 < �
1

0

Q�
m+j

(𝛼�
m+j

)d𝛼�
m+j

< ∞.

(21)

𝜕𝛼iV

𝜕|xi|𝛼i
= −

1

2 cos(
𝛼i𝜋

2
)
(0D

𝛼i
xi
V + xi

D
𝛼i
k
V),

0 < 𝛼i < 2, 𝛼i ≠ 1, i = 0, 1, 2,⋯m,

(22)

𝜕𝛼m+jV

𝜕|xm+j|𝛼m+j
= −

1

2 cos(
𝛼m+j𝜋

2
)
(0D

𝛼m+j
xm+j

V + xm+j
D

𝛼m+j

k
V), 0 < 𝛼m+j < 2, 𝛼m+j ≠ 1, j = 1, 2,⋯ n.

(23)
0D

�
xi
V =

1

Γ(c − �)

�c

�xc
i
∫

xi

0

(xi − a)c−�−1V(x1, x2,⋯ , xi−1, a, �)da,

(24)
xi
D

�

k
V =

(−1)c

Γ(c − �)

�c

�xc
i
∫

k

xi

(a − xi)
c−�−1V(x1, x2,⋯ , xi−1, a, �)da,

(25)

0D
�
xm+j

V =
1

Γ(c − �)

�c

�xc
m+j

∫
xm+j

0

(xm+j − a)c−�−1V(x1, x2,⋯ , xm+j−1, a, �)da,
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In this section, we demonstrate the existence and uniqueness 
of the solution for the problem given by the Eqs. (15, 16) by 
using a fixed point theorem.

We denote C(� ,ℝ) as the Banach space of all continu-
ous functions from Ω × I = � into ℝ with the norm ‖ ⋅ ‖∞ 
defined by ‖V‖∞ ∶= sup

��V(Xi,Xm+j, �)�;(Xi,Xm+j, �) ∈ �
�
 

( see [22–24]).

Definition 8 A function V(Xi,Xm+j, �) ∈ C(� ,ℝ) is known 
as a solution of the problem (15, 16), if V(Xi,Xm+j, �) sat-
isfies the multi-dimensional Riesz space distributed-order 
advection–diffusion (RSDOAD) equation and the associated 
initial/boundary conditions.

The following assumptions are use to prove the unique-
ness and existence of solution for the problem (15, 16).

(S1 ) There exist non-negative constants M�i
 , M�i

′ , M�m+j
 

and M��
m+j

 , i = 0, 1, 2,⋯m , j = 1, 2,⋯ n such that

(S2 ) There exist non-negative constants ��i
 , ��i

′ , ��m+j
 and 

���
m+j

 , i = 0, 1, 2,⋯m , j = 1, 2,⋯ n such that

(S3 ) The function F ∶ C(�) → C(�) is continuous and there 
exists B1 > 0 such that

(S4 ) The function V0 ∶ C(Ω) → C(Ω) is continuous and there 
exists B2 > 0 such that

(26)

xm+j
D

�

k
V =

(−1)c

Γ(c − �)

�c

�xc
m+j

∫
k

xm+j

(a − xm+j)
c−�−1V(x1, x2,⋯ , xm+j−1, a, �)da.

||||
��iV1

�|x
i
|�i −

��iV2

�|x
i
|�i

|||| ≤ M�
i

|V1 − V2|,
||||
��i

�

V1

�|x
i
|�i� −

��i
�

V2

�|x
i
|�i�

|||| ≤ M�
i
� |V1 − V2|,

||||
��m+jV1

�|x
m+j|�m+j −

��m+jV2

�|x
m+j|�m+j

||||
≤ M�

m+j
|V1 − V2|,

||||
�
��
m+jV1

�|x
m+j|�

�
m+j

−
�
��
m+jV2

�|x
m+j|�

�
m+j

||||
≤ M��

m+j
|V1 − V2|,∀(Xi

,X
m+j, �) ∈ � .

𝜒𝛼i
=∫

2

1

|Qi(𝛼i)|d𝛼i < ∞,𝜒𝛼�
i
= ∫

1

0

|Q�
i
(𝛼�

i
)|d𝛼�

i
< ∞,

𝜒𝛼m+j
=∫

2

1

|Qm+j(𝛼m+j)|d𝛼m+j

<∞,𝜒𝛼�
m+j

= ∫
1

0

|Q�
m+j

(𝛼�
m+j

)|d𝛼�
m+j

< ∞.

|F(Xi,Xm+j, �)| ≤ B1,∀(Xi,Xm+j, �) ∈ � .

(S5 ) There exist non-negative constants ��i , ��i′ , ��m+j and 
���

m+j
 , i = 0, 1, 2,⋯m , j = 1, 2,⋯ n such that

||||
��i V

�|x
i
|�i

|||| ≤ ��
i

|V|, ||||
��i

�

V

�|x
i
|�i �

|||| ≤ ��
i
� |V|, ||||

��m+jV

�|x
m+j|�m+j

||||
≤ ��

m+j
|V|, ||||

�
��
m+j V

�|x
m+j|�

�
m+j

|||| ≤ ���
m+j
|V|,∀(X

i
,X

m+j, �) ∈ � .

(S6 ) There exist non-negative constants ��i
 , ��i

′ , ��m+j
 and 

���
m+j

 , i = 0, 1, 2,⋯m , j = 1, 2,⋯ n such that

Our first result is based on the Banach fixed point theorem.

Theorem 4 Let the hypotheses (S1) − −(S2) hold. If

then, the problem (15, 16) has a unique solution on C(� ,ℝ).

Proof We will convert the problem (15, 16) into a fixed point 
problem. Consider the operator Σ ∶ C(� ,ℝ) → C(� ,ℝ) 
given by

|V0(Xi,Xm+j)| ≤ B2,∀(Xi,Xm+j) ∈ Ω.

||||
��iV

�|x�
i
|�i

|||| ≤ ��
i

|x�
i
|, ||||

��i
�

V

�|x�
i
|�i�

|||| ≤ ��
i
� |x�

i
|, ||||

��iV

�|x��
i
|�i

||||
≤ ��

i

|x��
i
|, ||||

��i
�

V

�|x��
i
|�i�

|||| ≤ ��
i
� |x��

i
|, ||||

��m+jV

�|x�
m+j

|�m+j
||||

≤ ��
m+j
|x�

m+j
|, ||||

�
��
m+jV

�|x�
m+j

|��m+j
|||| ≤ ���

m+j
|x�

m+j
|,

||||
��m+jV

�|x��
m+j

|�m+j
|||| ≤ ��

m+j
|x��

m+j
|, ||||

�
��
m+jV

�|x��
m+j

|��m+j
||||

≤ ���
m+j
|x��

m+j
|,∀(X

i
,X

m+j, �) ∈ � .

(27)

Θ

( m∑
i=0

|𝜔i|𝜒𝛼i
M𝛼i

+

m∑
i=0

|𝜔�
i
|𝜒𝛼�

i
M𝛼�

i
+

n∑

j = 1

i = j

|𝜔m+j|𝜒𝛼m+j
M𝛼m+j

+

n∑

j = 1

i = j

|𝜔�
m+j

|𝜒𝛼�
m+j
M𝛼�

m+j

)
< 1,
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(28)

Σ(V(Xi,Xm+j, �)) = V0(Xi,Xm+j)

+ J�

( m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

)
.

We observe that the fixed points of the operator Σ are the 
solution of the the problem (15, 16), and with the help of 
the Banach contraction principle, we prove that Σ has a 
fixed point. We shall first prove that Σ is a contraction. Let 
V1,V2 ∈ C(� ,ℝ). Then, for every (Xi,Xm+j, �) ∈ �

(29)

�ΣV1 − ΣV2� =
����
�
V0(Xi,Xm+j) + J�

� m�
i=0

�i �
2

1

Qi(�i)
��iV1

��xi��i d�i +
n�

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV1

��xm+j��m+j d�m+j

+

m�
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V1

��xi���i
d��

i
+

n�

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV1

��xm+j��
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

��

−

�
V0(Xi,Xm+j) + J�

� m�
i=0

�i �
2

1

Qi(�i)
��iV2

��xi��i d�i +
n�

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV2

��xm+j��m+j d�m+j

+

m�
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V2

��xi���i
d��

i
+

n�

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV2

��xm+j��
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

������

≤ J�

� m�
i=0

��i��
2

1

�Qi(�i)�
����
��iV1

��xi��i −
��iV2

��xi��i
����d�i +

n�

j = 1

i = j

��m+j��
2

1

�Qm+j(�m+j)�
����

��m+jV1

��xm+j��m+j −
��m+jV2

��xm+j��m+j
����d�m+j

+

m�
i=0

���
i
��

1

0

�Q�
i
(��

i
)�����

��
�
i V1

��xi���i
−

��
�
i V2

��xi���i
����d�

�
i
+

n�

j = 1

i = j

���
m+j

��
1

0

�Q�
m+j

(��
m+j

)�����
�
��
m+jV1

��xm+j��
�
m+j

−
�
��
m+jV2

��xm+j��
�
m+j

����d�
�
m+j

�

≤ J�

� m�
i=0

��i���i
M�i

+

n�

j = 1

i = j

��m+j���m+j
M�m+j

+

m�
i=0

���
i
����

i
M��

i
+

n�

j = 1

i = j

���
m+j

����
m+j
M��

m+j

�
�V1 − V2�

≤ Θ

� m�
i=0

��i���i
M�i

+

n�

j = 1

i = j

��m+j���m+j
M�m+j

+

m�
i=0

���
i
����

i
M��

i
+

n�

j = 1

i = j

���
m+j

����
m+j
M��

m+j

�
‖V1 − V2‖∞.
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Hence, Σ is the contraction due to the condition (27). By 
Banach contraction principle, we can deduce that Σ has an 
unique fixed point which is the unique solution of the prob-
lem (15, 16).   ◻

Since Σ is continuous, we imply that ‖ΣV� − ΣV‖∞ → 0 as 
� → ∞.

Step 2: The map Σ maps bounded sets into bounded sets 
in C(� ,ℝ).

L e t  𝜋𝜖 ∶=
�
V ∈ C(𝜓 ,ℝ) ∶ ‖V‖∞ ≤ 𝜖, 𝜖 > 0

�
 , 

‖V‖∞ ∶=
�
sup �V�;(Xi,Xm+j, �) ∈ �

�
 . We have, for all 

V ∈ �� ,

Proof We subdivide the proof into several steps.
Step 1: The map Σ is continuous.
Let V� be a sequence such that V� → V  in C(� ,ℝ) . Then 

for each (Xi,Xm+j, �) ∈ � , we have

Our second result is based on the Schaefer’s fixed point 
theorem.

Theorem 5 Assume that (S1) − −(S6) hold. Then, the prob-
lem (15, 16) has at least one solution on C(� ,ℝ).

(30)

�ΣV� − ΣV� = ����
�
V0(Xi,Xm+j) + J�

� m�
i=0

�i �
2

1

Qi(�i)
��iV�

��xi��i d�i

+

n�

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV�

��xm+j��m+j d�m+j +
m�
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V�

��xi���i
d��

i

+

n�

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV�

��xm+j��
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

��

−

�
V0(Xi,Xm+j) + J�

� m�
i=0

�i �
2

1

Qi(�i)
��iV

��xi��i d�i

+

n�

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

��xm+j��m+j d�m+j +
m�
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

��xi���i
d��

i

+

n�

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

��xm+j��
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

������

≤ Θ

� m�
i=0

��i���i
M�i

+

n�

j = 1

i = j

��m+j���m+j
M�m+j

+

m�
i=0

��
i
���

i
M��

i
+

n�

j = 1

i = j

���
m+j

���
m+j
M��

m+j

�
‖V� − V‖∞.



2058 Engineering with Computers (2022) 38:2051–2066

1 3

Hence,

Finally, we observe

(31)

|ΣV(Xi,Xm+j, �)| =
||||V0(Xi,Xm+j) + J�

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j +
m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

)||||

≤ |V0(Xi,Xm+j)| + J�

( m∑
i=0

|�i|�
2

1

|Qi(�i)|
||||
��iV

�|xi|�i
||||d�i

+

n∑

j = 1

i = j

|�m+j|�
2

1

|Qm+j(�m+j)|
||||

��m+jV

�|xm+j|�m+j
||||d�m+j +

m∑
i=0

|��
i
|�

1

0

|Q�
i
(��

i
)|||||

��
�
i V

�|xi|��i
||||d�

�
i

+

n∑

j = 1

i = j

|��
m+j

|�
1

0

|Q�
m+j

(��
m+j

)|||||
�
��
m+jV

�|xm+j|�
�
m+j

||||d�
�
m+j

+ |F(Xi,Xm+j, �)|
)

≤ B2 + +J�

( m∑
i=0

|�i|��i
��i |V| +

n∑

j = 1

i = j

|�m+j|��m+j
��m+j |V| +

m∑
i=0

|��
i
|���

i
���

i
|V| +

n∑

j = 1

i = j

|��
m+j

|���
m+j
���

m+j
|V| + B1

)

≤ B2 + �

( m∑
i=0

|�i|��i
��i +

n∑

j = 1

i = j

|�m+j|��m+j
��m+j +

m∑
i=0

|��
i
|���

i
���

i
+

n∑

j = 1

i = j

|��
m+j

|���
m+j
���

m+j

)
|V| + �B1.

(32)

|ΣV(X
i
,X

m+j, �)| ≤ B2 + Θ

( m∑
i=0

|�
i
|��

i

��
i

+

n∑

j = 1

i = j

|�
m+j|��

m+j
��

m+j
+

m∑
i=0

|��
i
|���

i

���
i

+

n∑

j = 1

i = j

|��
m+j

|���
m+j
���

m+j

)
� + ΘB1 ∶= C.

Therefore, we conclude that the operator Σ maps bounded 
sets into bounded sets in C(� ,ℝ).

Step 3: The map Σ maps bounded sets into equicontinu-
ous sets of C(� ,ℝ).

Let us consider V ∈ �� , (Xi,Xm+j, �) ∈ �  ,  where 
i = 0, 1, 2,⋯ ,m , j = 1, 2,⋯ , n and X′

i
< X′′

i
 , X�

m+j
< X��

m+j
 , 

𝜃′ < 𝜃′′. Then,

(33)
‖‖‖ΣV(Xi,Xm+j, 𝜃)

‖‖‖∞ < ∞,∀(Xi,Xm+j, 𝜃) ∈ 𝜓 .
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(34)

|ΣV(X�
i
,X�

m+j
, ��) − ΣV(X��

i
,X��

m+j
, ���)| = ||||

(
V0(X

�
i
,X�

m+j
)

+ J��

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|x�
i
|�i d�i +

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|x�
m+j

|�m+j d�m+j

+

m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|x�
i
|��i d�

�
i
+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|x�
m+j

|��m+j
d��

m+j
+ F(X�

i
,X�

m+j
, ��)

))

−

(
V0(X

��
i
,X��

m+j
) + J���

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|x��
i
|�i d�i +

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|x��
m+j

|�m+j d�m+j

+

m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|x��
i
|��i d�

�
i
+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|x��
m+j

|��m+j
d��

m+j
+ F(X��

i
,X��

m+j
, ���)

))||||

≤ |V0(X
�
i
,X�

m+j
) − V0(X

��
i
,X��

m+j
)| + ||||J��

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|x�
i
|�i d�i

+

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|x�
m+j

|�m+j d�m+j +
m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|x�
i
|��i d�

�
i

+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|x�
m+j

|��m+j
d��

m+j

)
− J���

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|x��
i
|�i d�i

+

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|x��
m+j

|�m+j d�m+j +
m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|x��
i
|��i d�

�
i

+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|x��
m+j

|��m+j
d��

m+j

)|||| + J�� |F(X�
i
,X�

m+j
, ��)| − J��� |F(X��

i
,X��

m+j
, ���)|

≤ Θ

(( m∑
i=0

|�i|��i
��i

(|x�
i
| − |x��

i
|) +

n∑

j = 1

i = j

|�m+j|��m+j
��m+j

(|x�
m+j

| − |x��
m+j

|)

+

m∑
i=0

|��
i
|���

i
���

i
(|x�

i
| − |x��

i
|) +

n∑

j = 1

i = j

|��
m+j

|���
m+j
���

m+j
(|x�

m+j
| − |x��

m+j
|)
)
.
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This implies that ‖ΣV(X�
i
,X�

m+j
, ��) − ΣV(X��

i
,X��

m+j
, ���)‖∞ → 0  

is as X′
i
→ X′′

i
 , X�

m+j
→ X��

m+j
 , �′ → �′′, the right-hand side of 

the above inequality tends to zero. As a direct consequence 
of the steps mentioned above along with the Arzelà-Ascoli 
Theorem, we conclude that Σ ∶ (� ,ℝ) → C(� ,ℝ) is con-
tinuous and completely continuous.

Step 4: The map Σ is priori bound.
Finally, we show that the set
O ∶=

{
V ∈ C(� ,ℝ) ; V = �Σ(V) for some 0 < 𝜀 < 1

}
is bounded.
Let V ∈ O , then

From the Eq. (32), we obtain the following expression:

Hence, ‖V‖∞ < ∞.
The above proof shows that O is bounded. As a conse-

quence of the Schaefer fixed point theorem, we deduce that 
V has a fixed point which is a solution of the problem on 
C(� ,ℝ) .   ◻

(35)

|V(Xi,Xm+j, �)| = |�Σ(V(Xi,Xm+j, �))|
≤ � ×

||||V0(Xi,Xm+j)

+ J�

( m∑
i=0

�i �
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j �
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i �

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j �

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

)||||.

(36)

|V(X
i
,X

m+j, �)| ≤ � ×

(
B2 + Θ

( m∑
i=0

|�
i
|��

i

��
i

+

n∑

j = 1

i = j

|�
m+j|��

m+j
��

m+j
+

m∑
i=0

|��
i
|��

i
��
i

��
i
��
i

+

n∑

j = 1

i = j

|��
m+j

|���
m+j
���

m+j

)
� + ΘB1

)
.

4  Description of the TSADM

Considering the Eqs. (15, 16), we describe the TSADM as 
follows:

The operator form of the Eq. (15) can be written as

Applying the inverse operator J� of D� into Eq. (37), we 
obtain

The recursion formula for the TSADM from the Eq. (38) 
is given as

and

(37)

D�V(Xi,Xm+j, �) =

m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �).

(38)

V(Xi,Xm+j, �) = V0(Xi,Xm+j)

+ J�

( m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

)
.

(39)

V0(Xi,Xm+j, �) = V0(Xi,Xm+j)

+ J�

(
F(Xi,Xm+j, �)

)
,
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where p = 0, 1, 2,⋯.
The first iteration for the Eq. (39) can be split into several 

components as

where �0 , �1 , �2 , … , �M are the terms obtained from integrat-
ing the source term F and from the given conditions.

If we choose any of the terms from Eq. (41) as V0 and it 
satisfies the main Eq. (15) and the given conditions, then we 
get the exact solution and terminate the process. If V0 does 
not satisfy the Eq. (15), then we choose another term and 
repeat the process until we get the exact solution. If any term 
in the Eq. (41) does not satisfy either the given condition or 
the Eq. (15), then we will go to the next step of applying the 
ADM to obtain the solution by choosing V0 = � . Since this 
method involves two steps, this method is known as the two-
step Adomian decomposition method (TSADM).

If the present method is applicable to the problem, then 
the obtained solution is an analytical solution of the prob-
lem. The only limitation in this method is that the first term 
(zeroth term) of the series contains verifying the term, 
which satisfies the considered equation and associated with 
the initial and boundary conditions. If there is no such term 
involved in the zeroth term of the series, then we will obtain 
a semi-analytical solution with its next step. For the next 
step, we apply the ADM on the considered problem and 
obtain the approximate solution without use of linearization 
and discrtization. Moreover, the TSADM is a powerful and 
efficient method for such types of the problem in caparison 
with other numerical methods without linearization, discre-
tization and Adomain polynomial.

(40)

Vp+1(Xi,Xm+j, �) = J�

( m∑
i=0

�i ∫
2

1

Qi(�i)
��iVp

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jVp

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i Vp

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jVp

�|xm+j|�
�
m+j

d��
m+j

)
,

(41)V0 = �0 + �1 + �2 +…+ �M = �,

5  Applications

In this section, we consider a generalized example to show 
the efficiency and applicability of the method in the present 
article. We compare the obtained results with the other exist-
ing numerical methods and draw a conclusion on the basis 
of the obtained result.

Example Consider the multi-dimensional Riesz space dis-
tributed-order advection–diffusion equation, described as 
follows:

with the boundary and initial conditions

where I = (0, 1] , Ω =
∏m

i=0
(0, 1) ×

∏n

j = 1

i = j

(0, 1),

Qi(�i) = −2Γ(5 − �i) cos
��i

2
 , Q�

i
(��

i
) = −2Γ(5 − ��

i
) cos

���
i

2
,

Qm+j(�m+j) = −2Γ(5 − �m+j) cos
��m+j

2
 , Q�

m+j
(��

m+j
) = −2Γ

(5 − ��
m+j

) cos
���

m+j

2
.

The source term is given by

(42)

�V(Xi,Xm+j, �)

��
=

m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �), (Xi,Xm+j, �) ∈ Ω × I,

(43)

V(Xi,Xm+j, �) = 0, (Xi,Xm+j, �)

∈ �Ω × I,

V(Xi,Xm+j, 0) =

m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2, (Xi,Xm+j) ∈ Ω ,
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where

and

T h e  ex a c t  s o l u t i o n  o f  t h e  E q .  ( 4 2 )  i s 
e�

∏m

i=0
xi
2(1 − xi)

2 ×
∏n

j = 1

i = j

x2
m+j

(1 − xm+j)
2.

The operator form of the Eq. (42) can be written as

(44)

F(Xi,Xm+j, �) = e�
m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

− e�
n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

[ m∑
i=0

�i

(
G1(xi) + G1(1 − xi)

)

+

m∑
i=0

��
i

(
G2(xi) + G2(1 − xi)

)]
− e�

m∏
i=0

xi
2(1 − xi)

2

[ n∑

j = 1

i = j

�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+

n∑

j = 1

i = j

��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]
,

G1(s) = Γ(5)
s3 − s2

ln s
− 2Γ(4)

[
3s2 − 2s

ln s
−

s2 − s

(ln s)2

]

+
Γ(3)

ln s

[
6s − 2 −

5s

ln s

+
3

ln s
+

2s

(ln s)2
−

2

(ln s)2

]
,

G2(s) = Γ(5)
s4 − s3

ln s
− 2Γ(4)

[
4s3 − 3s2

ln s

−
s3 − s2

(ln s)2

]

+
Γ(3)

ln s

[
12s2 − 6s −

1

ln s

(
7s2 − 5s −

2s2

ln s
+

2s

ln s

)]
.

On applying the inverse operator J� of D� into the Eq. (45), 
we obtain

The recursion formula for the TSADM from Eq. (46) is

and

(45)

D�V(Xi,Xm+j, �)

=

m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �).

(46)

V(Xi,Xm+j, �) = V0(Xi,Xm+j)

+ J�

( m∑
i=0

�i ∫
2

1

Qi(�i)
��iV

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jV

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i V

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jV

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �)

)
.

(47)

V0(Xi,Xm+j, �) = V0(Xi,Xm+j)

+ J�

(
F(Xi,Xm+j, �)

)
,
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where p = 0, 1, 2,⋯.
By solving Eq. (47), we obtain

From the above Eq. (49), the first iteration (zeroth term) of 
the TSADM can be split into two parts as follows:

where

(48)

Vp+1(Xi,Xm+j, �) = J�

( m∑
i=0

�i ∫
2

1

Qi(�i)
��iVp

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jVp

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
i Vp

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jVp

�|xm+j|�
�
m+j

d��
m+j

)
,

(49)

V0 =

m∏
i=0

xi
2(1 − xi)

2 ×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

+ e�
m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

xm+j
2(1 − xm+j)

2

− e�
n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

[ m∑
i=0

�i

(
G1(xi)

+ G1(1 − xi)

)
+

m∑
i=0

��
i

(
G2(xi) + G2(1 − xi)

)]

− e�
m∏
i=0

xi
2(1 − xi)

2

[ n∑

j = 1

i = j

�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+

n∑

j = 1

i = j

��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]
.

(50)V0 = Λ0 + Λ1,

and

Here, we generalize our problem and discover the general 
analytical solution of the multi-dimensional Riesz space 
distributed-order advection–diffusion equation.

According to the TSADM process, we choose the first 
iteration as the term involved in the Eq. (50) and the term 
satisfies the problem and the given conditions, so we termi-
nate the process and we obtain the solution of the problem.

Let us take V0 = Λ0 and check that the assumption of V0 
satisfying the Eq. (42) and also the given conditions. If this 
choice of V0 is approved, then this implies that the chosen 
term is a solution to the problem.

Let us take V0 = Λ0 as a solution of Eq. (42), so that it 
satisfies the Eq. (42).

To prove V0 = Λ0 is the exact solution of Eq. (42), we 
substitute V0 = Λ0 in the left-hand side of the Eq. (42) and 
hence we obtain

(51)

Λ0 = e�
m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2,

(52)

Λ1 =

m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2 − e�

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

[ m∑
i=0

�i

(
G1(xi) + G1(1 − xi)

)

+

m∑
i=0

��
i

(
G2(xi) + G2(1 − xi)

)]
− e�

m∏
i=0

xi
2(1 − xi)

2

[ n∑

j = 1

i = j

�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+

n∑

j = 1

i = j

��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]
.
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Now, we calculate the terms on the right-hand side of the Eq. 
(42) for Λ0 , by using Definition 5, as follows:

and

Taking summation on the both sides of the above equations, 
we get

and

(53)

�Λ0

��
= e�

m∏
i=0

xi
2(1 − xi)

2

×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2.

(54)

�i ∫
2

1

Qi(�i)
��iΛ0

�|xi|�i d�i

+ ��
i ∫

1

0

Q�
i
(��

i
)
��

�
iΛ0

�|xi|��i
d��

i

= e�x2
m+j

(1 − xm+j)
2

[
�i

(
G1(xi) + G1(1 − xi)

)

+ ��
i

(
G2(xi) + G2(1 − xi)

)]
,

(55)

�m+j ∫
2

1

Qm+j(�m+j)
��m+jΛ0

�|xm+j|�m+j d�m+j

+ ��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jΛ0

�|xm+j|�
�
m+j

d��
m+j

= e�xi
2(1 − xi)

2

[
�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+ ��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]
.

(56)

m∑
i=0

�i ∫
2

1

Qi(�i)
��iΛ0

�|xi|�i d�i

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
iΛ0

�|xi|��i
d��

i

= e�
n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

[ m∑
i=0

�i

(
G1(xi) + G1(1 − xi)

)

+

m∑
i=0

��
i

(
G2(xi) + G2(1 − xi)

)]
,

On adding the above equations, we obtain

(57)

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jΛ0

�|xm+j|�m+j d�m+j

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jΛ0

�|xm+j|�
�
m+j

d��
m+j

= e�
m∏
i=0

xi
2(1 − xi)

2

[ n∑

j = 1

i = j

�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+

n∑

j = 1

i = j

��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]
.

(58)

e�
n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

[ m∑
i=0

�i

(
G1(xi) + G1(1 − xi)

)

+

m∑
i=0

��
i

(
G2(xi) + G2(1 − xi)

)]

+ e�
m∏
i=0

xi
2(1 − xi)

2

[ n∑

j = 1

i = j

�m+j

(
G1(xm+j) + G1(1 − xm+j)

)

+

n∑

j = 1

i = j

��
m+j

(
G2(xm+j) + G2(1 − xm+j)

)]

=

m∑
i=0

�i ∫
2

1

Qi(�i)
��iΛ0

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jΛ0

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
iΛ0

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jΛ0

�|xm+j|�
�
m+j

d��
m+j

.
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By adding the source term F(Xi,Xm+j, �) in the Eq. (58), 
we finally obtain the expression for the right side of the Eq. 
(42) as

As we see that Eqs. (53) and (59) are the same, we con-
clude that the left-hand side of the Eq. (53) is equal to the 
right-hand side of the Eq. (59). The result obtained proves 
that V0 = Λ0 satisfies the Eq. (42) and the given condi-
tions. Hence, the obtained solution is the exact solution of 
the problem by using the TSADM. For the solution of the 
considered problem, using numerical techniques is possi-
ble only on dimensions up to five. For higher dimension, 
we face difficulties because the process of the techniques 
needs approximation and discretization. The Riesz opera-
tor is involved in Eq. (42) with distributed integral, and the 
approximation method firstly deals with this operator by 
converting the multi-term Riesz operator after the solution 
with the help of approximation. All procedures involved in 
these methods increased the computation effort and required 
a large size of memory space with time complexity.

6  Conclusion

The two main objectives achieved in this article are 
described as follows: 

1. Obtained the analytical solution of the multi-dimen-
sional RSDOAD equation.

2. Established the new existence and uniqueness results for 
the multi-dimensional RSDOAD equation.

(59)

e�
m∏
i=0

xi
2(1 − xi)

2 ×

n∏

j = 1

i = j

x2
m+j

(1 − xm+j)
2

=

m∑
i=0

�i ∫
2

1

Qi(�i)
��iΛ0

�|xi|�i d�i

+

n∑

j = 1

i = j

�m+j ∫
2

1

Qm+j(�m+j)
��m+jΛ0

�|xm+j|�m+j d�m+j

+

m∑
i=0

��
i ∫

1

0

Q�
i
(��

i
)
��

�
iΛ0

�|xi|��i
d��

i

+

n∑

j = 1

i = j

��
m+j ∫

1

0

Q�
m+j

(��
m+j

)
�
��
m+jΛ0

�|xm+j|�
�
m+j

d��
m+j

+ F(Xi,Xm+j, �).

To address the applicability of the proposed method, we con-
sidered the generalized example and solved analytically. We 
obtained new results of existence and uniqueness employing 
with the fixed point theorem and the Banach contraction 
principle.

In this work, the proposed method was successfully 
applied to the problem. The obtained results prove that the 
TSADM is highly efficient and convenient for solving such 
types of problems. The TSADM was used for the first time 
to solve the multi-dimensional RSDOAD equation and the 
new condition for the existence and uniqueness for the prob-
lem was developed. If we use the numerical method [17] for 
solving such types of problems, firstly, we have to approxi-
mate/discretize the Riesz fractional operator, and it causes 
the roundoff error in the obtained approximate solution. Fur-
thermore, the adopted method does not use approximation/
discretization and even gives the analytical solution to the 
problem in one iteration.
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