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Abstract
One of the ongoing issues with time fractional diffusion models is the design of efficient high-order numerical schemes for 
the solutions of limited regularity. We construct in this paper two efficient Galerkin spectral algorithms for solving multi-
dimensional time fractional advection–diffusion–reaction equations with constant and variable coefficients. The model 
solution is discretized in time with a spectral expansion of fractional-order Jacobi orthogonal functions. For the space dis-
cretization, the proposed schemes accommodate high-order Jacobi Galerkin spectral discretization. The numerical schemes 
do not require imposition of artificial smoothness assumptions in time direction as is required for most methods based on 
polynomial interpolation. We illustrate the flexibility of the algorithms by comparing the standard Jacobi and the fractional 
Jacobi spectral methods for three numerical examples. The numerical results indicate that the global character of the frac-
tional Jacobi functions makes them well-suited to time fractional diffusion equations because they naturally take the irregular 
behavior of the solution into account and thus preserve the singularity of the solution.

Keywords Fractional Jacobi functions · Time fractional diffusion equations · Galerkin spectral method · Caputo derivative

1 Introduction

Many mathematical models for scientific and engineer-
ing applications involve fractional-order derivatives. The 
time fractional partial differential equations are proposed 
to improve the modeling accuracy in depicting the anoma-
lous diffusion process, successfully capturing power-law 
frequency dependence [30], adequately modeling various 
types of viscoelastic damping [13], properly simulating 
the unsteady flow of a fractional Maxwell fluid [41] and 
Oldroyd-B fluid [18]. These models rely on fractional-order 
derivatives to represent the observed sublinear or superlinear 
growth of the variance of the variable of interest. The former 

corresponds to subdiffusion and the latter to superdiffusion. 
Subdiffusion is modeled by a fractional time derivative and 
characterized by temporally non-local transport (i.e. memory 
effects). Superdiffusion is modeled by a fractional diffu-
sion term and typically characterized by spatially non-local 
transport (i.e. large displacements). As such, they can be 
used to represent memory effects and long-range dispersion 
processes.

The application of time fractional diffusion models 
to realistic problems strongly depends on the numerical 
methods available to solve the model equation. Hendy and 
Zaky [26] developed an efficient finite difference/Legendre 
Galerkin method to solve a coupled system of nonlinear 
multi-term time-space fractional diffusion equations. They 
obtained optimal error estimates introducing a new gener-
alized discrete form of the fractional Grönwall inequality 
which enabled them to overcome the difficulties caused 
by the sum of Caputo time-fractional derivatives and the 
positivity of the reaction term over the nonuniform time 
mesh. Gao and Sun [19] constructed a compact difference 
scheme to solve the fractional sub-diffusion equations using 
the L1 scheme for the time-fractional derivative and fourth-
order accuracy compact approximation for spatial direction. 
Zhao et al. [52] established two fully-discrete approximate 
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schemes with unconditional stability for the time-fractional 
diffusion equation based on spatial conforming and noncon-
forming mixed finite element methods combined with clas-
sical L1 time stepping method. For the first time in literature, 
Zaky et al. [50] proposed semi-implicit spectral approxima-
tions for nonlinear Caputo time- and Riesz space-fractional 
diffusion equations with both smooth and non-smooth solu-
tions. Mustapha and Mclean [36] developed and analysed 
the discontinuous Galerkin method to solve the fractional 
diffusion and wave equations, and obtained superconver-
gence results. Sousa [40] proposed a high order explicit 
finite difference method for fractional advection diffusion 
equations. Hendy [24] constructed a fully implicit differ-
ence method for the numerical solution of those equations. 
The scheme was built on the idea of separating the current 
state and the prehistory function such that the prehistory 
function was approximated by means of an appropriate inter-
polation–extrapolation operator. Abbaszadeh and Dehghan 
[2] developed a numerical scheme based on fast and effi-
cient meshless local Petrov–Galerkin method for solving 
the fractional fourth-order partial differential equation on 
computational domains with complex shape. Abbaszadeh 
and Dehghan [1] proposed meshless upwind local radial 
basis function-finite difference technique to simulate the 
time– fractional distributed–order advection–diffusion 
equation. Li et al. [31] presented two-grid algorithms based 
on expanded mixed finite element method for solving two-
dimensional semilinear time fractional reaction–diffusion 
equations. Gu and Sun [20] constructed a meshless method 
for solving three-dimensional time fractional diffusion equa-
tion with variable-order derivatives. Jin [28] considered a 
finite element method to solve time fractional diffusion equa-
tion with non-smooth initial data, and established optimal 
error estimates. Most of the aforementioned methods relied 
on the finite difference method to discretize the time frac-
tional derivative. Moreover, most of the known methods 
work well on fractional differential equations with smooth 
solutions or solutions with relatively good regularities.

Another approach to design an accurate numerical 
scheme is to discretize these non-local differential opera-
tors with global numerical methods [3, 17, 23, 46–48]. 
Hence, the non-local behaviour of the solution can be taken 
into account and the computational cost is not substantially 
increased when moving from a first-order to a fractional-
order diffusion model [4, 5, 15, 44, 45]. In a series of papers 
Bhrawy et al. developed spectral tau [7, 8, 43] and collo-
cation methods [9, 12] for solving various types of frac-
tional differential equations. Unlike the classical differential 
equations, solutions to time-fractional partial differential are 
generally non-smooth. Up to now, few numerical methods 
have been proposed for fractional differential equations with 

non-smooth solutions, such as the use of nonuniform grids 
(see e.g. [25]), the nonpolynomial/singular basis (see e.g. 
[10, 11, 49]), and Lubich’s correction method (see e.g. [51]). 
It was pointed out by Diethelm et al. [14] that the approxi-
mation of the function f (t) = t� on [0, h] by any linear poly-
nomial is at best O(h�) . But the order of approximation O(h�) 
of t� on [0, h] is also achieved by the constant polynomial 0. 
That is: using a linear polynomial to approximate t� on [0, h] 
does not give an essentially better result than using a con-
stant polynomial. In a similar way one can show that using 
polynomials of higher degree does not improve the situation: 
the order of approximation of t� on [0, h] is still only O(h�) . 
The purpose of this paper is to extend our approaches in 
[21, 22] introducing two efficient fractional Galerkin spec-
tral algorithms for solving multi-dimensional time fractional 
advection–diffusion–reaction equations with constant and 
variable coefficients with non smooth solutions. The model 
solution is discretized in time with a spectral expansion of 
fractional Jacobi functions (FJFs). For the space discretiza-
tion, the proposed schemes accommodate high-order Jacobi 
Galerkin spectral discretization. The numerical schemes do 
not require imposition of artificial smoothness assumptions 
in time direction because they naturally take the irregular 
behavior of the solution into account and thus preserve the 
singularity of the solution.

The rest of the paper is organized as follows. In the next 
section, we briefly review some basic properties of frac-
tional integrals and derivatives, and recall relevant properties 
of the Jacobi polynomials. In Sect. 3, the fractional Jacobi 
functions and their fractional differentiation are presented. 
In Sect. 4, a time-space discretization for the time fractional 
advection–diffusion–reaction equations with constant coef-
ficients is constructed. In Sect. 5, we consider the numeri-
cal solution of the one-dimensional time fractional advec-
tion–diffusion–reaction equations with variable coefficients. 
In Sect. 6, we consider the numerical solution of the two-
dimensional case with constant coefficients. In Sect. 7, the 
variable coefficients case is considered. In Sect. 8, various 
numerical tests exhibiting the efficiency of our numerical 
schemes are presented. We end the paper with some con-
cluding remarks in Sect. 9.

2  Preliminaries

In this section, we recall some basic properties of fractional 
integrals and derivatives, and briefly review some relevant 
properties of the Jacobi polynomials. All of these properties 
can be found in [37, 39].

2.1  Fractional integrals and derivatives

For 𝜈 > 0 , the fractional integrals of order � is defined by
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where Γ(x) is the gamma function. Let n be the positive inte-
ger satisfying n − 1 ≤ 𝜈 < n , then the Riemann–Liouville 
and the Caputo fractional derivatives of order � are defined, 
respectively, as

For any absolutely integrable function u(x), an important 
property of Riemann–Liouville fractional derivatives is

where this equation holds in the almost everywhere sense.
The following lemma gives the relation between Rie-

mann–Liouville and Caputo fractional derivatives.

Lemma 1 We have

2.2  Jacobi polynomials and their properties

Let J(�,�)
n

(x) denote the Jacobi polynomial of degree n, which 
is explicitly defined by

where

then we see that J(�,�)
n

(x) are always polynomials in x for 
�, � ∈ ℝ . The classical Jacobi polynomials are correspond 
to the parameters 𝛼, 𝛽 > −1 . Let �(�,�)(x) = (1 − x)�(1 + x)� 
be the Jacobi weight function and let I = (−1, 1) , then we 
define the inner product and the associated norm by

(2.1)0I
�
x
u(x) =

1

Γ(�) ∫
x

0

u(z)

(x − z)1−�
dz,

(2.2)

RL
0
D�

x
u(x) =

dn

dxn 0
In−�
x

u(x)

=
1

Γ(n − �)

dn

dxn ∫
x

0

u(z)

(x − z)�+1−n
dz,

(2.3)

C
0
D�

x
u(x) = 0I

n−�
x

f (n)(x)

=
1

Γ(n − �) ∫
x

0

f (n)(z)

(x − z)�+1−n
dz.

(2.4)RL
0
D�

x
{0I

�
x
u(x)} = u(x),

(2.5)RL
0
D�

x
u(x) = C

0
D�

x
u(x) +

n−1∑

j=0

f (j)(0)

Γ(j + 1 − �)
xj−� .

(2.6)J(�,�)
n

(x) =

n∑

k=0

E
(�,�,n)

k

(
x + 1

2

)k

,

(2.7)E
(�,�,n)

k
=

(−1)n−kΓ(1 + n + �)Γ(k + � + n + � + 1)

Γ(k + � + 1)k!Γ(n + � + � + 1)(n − k)!
,

For notational simplicity, we will drop the subscript �(�,�) 
from (u, v)�(�,�) and ‖u‖�(�,�) when � = � = 0 . Moreover, 
we denote by L2

�(�,�)
(I) the space of functions such that 

‖u‖𝜔(𝛼,𝛽) < ∞ . It is well known that the Jacobi polynomials 
are orthogonal with respect to �(�,�)(x) and

where �n,m is the Kronecker delta and

In practical computations, it is convenient to compute the 
Jacobi polynomials by using the three-term recurrence 
relation

where

with the two initial Jacobi polynomials given by

For bounding some approximation error of Jacobi polynomi-
als, we need the following nonuniformly-weighted Sobolev 
space, namely

equipped with the inner product and the norm

Lemma 2 Let u ∈ Hm

� (�,�),∗
(−1, 1) for some m ≥ 1 and 

� ∈ PN . Then for the Jacobi-Gauss and Jacobi–Gauss–
Radau integration, we have

(2.8)
(u, v)�(�,�) =∫

I

�(�,�)(x)u(x)v(x)dx,

‖u‖�(�,�) = (u, u)
1

2

�(�,�)
.

(2.9)(J(�,�)
n

, J(�,�)
m

)�(�,�) = h(�,�)
n

�mn,

(2.10)h(�,�)
n

=
2�+�+1

2n + � + � + 1

Γ(n + � + 1)Γ(n + � + 1)

Γ(n + � + � + 1)Γ(n + 1)
.

(2.11)J
(�,�)

n+1
(x) =

(
a�,�
n

x + b�,�
n

)
J(�,�)
n

(x) − c�,�
n

J
(�,�)

n−1
(x),

(2.12)

a�,�
n

=
(2n + � + � + 1)(2n + � + � + 2)

2(n + 1)(n + � + � + 1)
, b�,�

n

=
(�2 − �2)(2n + � + � + 1)

2(n + 1)(n + � + � + 1)(2n + � + �)
, c�,�

n

=
(n + �)(n + �)(2n + � + � + 2)

(n + 1)(n + � + � + 1)(2n + � + �)
,

(2.13)J
(�,�)

0
(x) = 1, J

(�,�)

1
(x) =

� + � + 2

2
x +

� − �

2
.

Hm

� (�,�),∗
(−1, 1)

∶=

{

v ∶ �k
x
v ∈ L2

� (�+k,�+k) (−1, 1), 0 ≤ k ≤ m
}

,

(u, v)
m,� (�,�),∗ =

m�

k=0

�
�k
x
u, �k

x
v
�

� (�+k,�+k) ,

‖u‖
m,� (�,�),∗ = (u, u)

1

2

m,� (�,�),∗
.
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and for the Jacobi Gauss–Lobatto integration, we have

In practical computations, it is convenient to compute the 
Jacobi polynomials on the interval [0,L] . Hence, we rescale 
the interval [−1, 1] onto [0,L] by the linear map z = 2x

L
− 1 . 

The set of Jacobi polynomials J(�,�)
L,i

(x) which are defined on 
[0,L] are generated by:

where

The endpoint values of the shifted Jacobi polynomials are 
given as

which will be of important use later. They satisfy the follow-
ing orthogonality relation

where w(�,�)

L
(x) = x�(L − x)� is the weight function, and

The following lemma will be of essential use in establishing 
our main results.

Lemma 3 (see [16]) The q times repeated differentiation 
ofJ(�,�)

L,j
(x) are given explicitly by

where

(2.14)
�
�
�
(u,�)� (�,�) − (u,�)N,� (�,�)

�
�
�

≤ CN−m�
��

m
x
u��� (�+m,�+m)‖�‖� (�,�) ,

(2.15)
�
�
�
(u,�)� (�,�) − (u,�)N,� (�,�)

�
�
�

≤ CN−m�
��

m
x
u��� (�+m−1,�+m−1)‖�‖� (�,�) .

J
(𝛼,𝛽)

L,i+1
(x) =

(

â
𝛼,𝛽

i
x − b̂

𝛼,𝛽

i

)

J
(𝛼,𝛽)

L,i
(x)

− c
𝛼,𝛽

i
J
(𝛼,𝛽)

L,i−1
(x), i ≥ 1,

â
𝛼,𝛽

i
=
(2i + 𝛼 + 𝛽 + 1)(2i + 𝛼 + 𝛽 + 2)

L(i + 1)(i + 𝛼 + 𝛽 + 1)
,

b̂
𝛼,𝛽

i
=
(2i + 𝛼 + 𝛽 + 1)(2i2 + (1 + 𝛽)(𝛼 + 𝛽) + 2i(𝛼 + 𝛽 + 1))

(i + 1)(i + 𝛼 + 𝛽 + 1)(2i + 𝛼 + 𝛽)
.

(2.16)
J
(�,�)

L,i
(0) = (−1)i

Γ(1 + i + �)

Γ(1 + �)i!
, J

(�,�)

L,i
(L)

=
Γ(1 + i + �)

Γ(1 + �)i!
,

(2.17)∫
L

0

J
(�,�)

L,j
(x)J

(�,�)

L,i
(x)w

(�,�)

L
(x)dx = �jih

(�,�)

L,i
,

(2.18)h
(�,�)

L,i
=

L
1+�+�

Γ(i + 1 + �)Γ(i + 1 + �)

(2i + 1 + � + �)i!Γ(i + 1 + � + �)
.

(2.19)DqJ
(�,�)

L,j
(x) =

j−q∑

i=0

Aq(j, i, �, �)J
(�,�)

L,i
(x), q ∈ ℕ

+,

where � = � + � + 1 , (⋅)i is the Pochhammer symbol, and for 
the definition of generalized hypergeometric functions and 
special 3F2 , see [32].

3  Fractional‑order Jacobi functions

In this section, we first introduce some basic properties of frac-
tional-order Jacobi functions [11, 49]. Then, we construct the 
fractional derivative for the fractional-order Jacobi functions. 
The fractional-order Jacobi functions are the eigenfunctions 
of the singular Sturm–Liouville problem

and they are given explicitly by

where

and satisfy the following recurrence relations

(2.20)

Aq(j, i, �, �) =
(j+)q(j + � + q)i(q + i + � + 1)j−i−q Γ(i + �)

L
q
(j − q − i)! Γ(2i + �)

× 3F2

⎛
⎜
⎜
⎝

q − j + i, q + j + i + �, i + � + 1

1

q + i + � + 1, 1 + 2i + �

⎞
⎟
⎟
⎠

,

(3.1)

�t
(
�−1(1 − t�)�+1t��+1�tV(t)

)

+ �n(n + � + � + 1)(1 − t�)�t��+�−1V(t) = 0, t ∈ [0, 1],

(3.2)J
(�,�,�)

i
(t) = J

(�,�)

1,i
(t�) =

i∑

k=0

ai,kt
k�, � ∈ (0, 1],

(3.3)ai,k =(−1)
i−k Γ(i + � + 1)Γ(i + k + � + � + 1)

Γ(k + � + 1)Γ(i + � + � + 1)(i − k)!k!

(3.4)
J
(�,�,�)

i
(0) = (−1)i

Γ(i + � + 1)

Γ(� + 1)i!
, J

(�,�,�)

i
(1)

=
Γ(i + � + 1)

Γ(� + 1)i!
,

(3.5)
(i + � + 1)J

(�,�,�)

i
(t) − (i + 1)J

(�,�,�)

i+1
(t)

= (2i + � + � + 2)(1 − t
�)J

(�+1,�,�)

i
(t).

(3.6)
J
(�,�−1,�)

i
(t) − J

(�−1,�,�)

i
(t)

= J
(�,�,�)

i−1
(t).

(3.7)
(i + � + �)J

(�,�,�)

i
(t) =(i + �)J

(�,�−1,�)

i
(t)

+ (i + �)J
(�−1,�,�)

i
(t).

(3.8)
�tJ

(�,�,�)

i
(t)

= �(i + � + � + 1)t�−1J
(�+1,�+1,�)

i−1
(t).
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where

Let w(�,�,�)(t) = � t(�+1)�−1(1 − t�)� . Thanks to (2.17), then 
the fractional-order Jacobi functions form a complete 
L2
w(�,�,�)

[0, 1]-orthogonal system, that is,

Remark 1 We note that if ti, 1 ≤ i ≤ N are the roots of the 
shifted Jacobi polynomials J(�,�)

L,i
(t) , then t

1

�

i
, 1 ≤ i ≤ N are 

the roots of the shifted fractional-order Jacobi functions 
J
(�,�,�)

i
(t).

Remark 2 The FJFs comprise an unlimited number of 
orthogonal functions, including the shifted fractional-
order Gegenbauer functions C�

�,i
(x) , the shifted fractional-

order Chebyshev functions of the first kind T�,i(x) , the 
shifted fractional-order Legendre functions P�,i(x) [29], the 
shifted Chebyshev functions of the second kind U�,i(x) , the 
shifted fractional-order Chebyshev functions of third and 
fourth kinds V�,i(x) and W�,i(x) . These orthogonal functions 
are interrelated with the FJFs by the following relations:

(3.9)

J
(�,�,�)

i
(t) =

(� + � + 2i − 1){�2 − �2 + (2t� − 1)(� + � + 2i)(� + � + 2i − 2)}

2i(� + � + i)(� + � + 2i − 2)
J
(�,�,�)

i−1
(t)

−
(� + i − 1)(� + i − 1)(� + � + 2i)

i(� + � + i)(� + � + 2i − 2)
J
(�,�,�)

i−2
(t) i = 2, 3,… ,

J
(�,�,�)

0
(t) = 1 and J

(�,�,�)

1
(t) =

� + � + 2

2
(2t� − 1)

+
� − �

2
.

(3.10)∫
1

0

J
(�,�,�)

j
(t)J

(�,�,�)

k
(t)w(�,�,�)(t)dt = �jkh

(�,�)

1,i
.

(3.11)

C
�
�,i
(x) =

i! Γ

(

� +
1

2

)

Γ

(

i + � +
1

2

)J

(

�− 1

2
,�− 1

2
,�
)

i
(x),

T�,i(x) =
i! Γ(

1

2
)

Γ

(

i +
1

2

)J

(

−
1

2
,−

1

2
,�
)

i
(x),

J�,i(x) = J
(0,0,�)

i
(x),

U�,i(x) =
(i + 1)! Γ(

1

2
)

Γ

(

i +
3

2

) J

(
1

2
,
1

2
,�
)

i
(x),

V�,i(x) =
(2i)!!

(2i − 1)!!
J

(
1

2
,−

1

2
,�
)

i
(x),

W�,i(x) =
(2i)!!

(2i − 1)!!
J

(

−
1

2
,
1

2
,�
)

i
(x).

Lemma 4 (see [11]) The fractional derivative of order � , 
0 < 𝜈 < 1 in the Caputo sense for the shifted fractional Jac-
obi polynomials is given by

where

Lemma 5 (see, [49]) Let F(�,�,�)

N
 be the set of fractional-

o r d e r  J a c o b i  f u n c t i o n s  o f  d e g r e e  N , 
u(x) = v((

1+x

2
)
1

� ) ∈ Hm

� (�,�),∗
(−1, 1) for some m ≥ 1 and 

�(x) = �(( 1+x
2
)
1

� ) ∈ F
(�,�,�)

N
 . Then for the fractional Jacobi-

Gauss and the fractional Jacobi-Gauss–Radau integration, 
we have

and for the fractional Jacobi Gauss–Lobatto integration, 
we have

4  Fractional Galerkin method 
for the one‑dimensional case

One of the standard techniques for solving linear time-frac-
tional partial differential equations with constant coefficients 
is the Galerkin method. In this section, we derive a time-space 
discretization for the following time fractional advection–dif-
fusion–reaction equation with constant coefficients based on 
the Galerkin method with fractional Jacobi and Jacobi expan-
sions in both time and space, respectively.

(3.12)C
0
D�

t
J
(�,�,�)

i
(x) =

∞∑

j=0

S�(i, j, �, �)J
(�,�,�)

j
(x),

S�(i, j, �, �) =

i∑

k=1

ai,k
Γ(�k + 1)Γ(� + 1)

hjΓ(�k − � + 1)

×

j∑

s=0

aj,s

Γ(1 + k + s + � −
�

�
)

Γ(2 + k + s + � + � −
�

�
)
.

(3.13)
�
�
�
(v,�� (�,�,�) − (v,�)N,� (�,�,�)

�
�
�

≤ CN−m�
��

m
x
u��� (�+m,�+m)‖�‖� (�,�) ,

(3.14)
�
�
�
(v,�� (�,�,�) − (v,�)N,� (�,�,�)

�
�
�

≤ CN−m�
��

m
x
u��� (�+m−1,�+m−1)‖�‖� (�,�) .
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with the homogeneous initial-boundary conditions

where Λ = (0,L) denotes a bounded domain with its bound-
ary �Λ , and I = (0, 1] is the time interval. We plug in an 
ansatz for the solution into (4.1)–(4.2) and require the resid-
ual of the projection onto the space spanned by the test func-
tions to vanish.

Let F(�,�,�)

M
(I) be the space of fractional functions in time 

and PN(Λ) be the set of polynomials of degree N in space, and 
since we consider u(x, 0) ≡ 0 as well as u(�Λ, t) ≡ 0 , then we 
choose appropriate basis for the time ansatz from

as well as for space

For the sake of convenience, we define

where the multiindex L = (N,M) . Finally, we introduce 
the following notation for the integrals involved in the Jac-
obi–Galerkin spectral formulation of the model equations.

The discrete solution is expressed in terms of a matrix of 
unknown coefficients Uij as follows:

where �(�,�)

L,i
(x) ∈ Ps

N
(Λ) and � (�,�,�)

j
(t) ∈ Pt

M
(I) . Then the 

Galerkin problem is given by finding û ∈ WL such that

(4.1)

C
0
D�

t
u − �0

�2u

�x2
− �1

�u

�x
+ �2u = f (x, t), (x, t) ∈ Ω ∶= Λ × I,

(4.2)
u(x, 0) = 0, in Λ,

u(x, t) = 0, on �Λ × I,

(4.3)Pt
M
(I) =

{

y ∈ F
(�,�,�)

M
(I)|y(0) = 0

}

,

(4.4)Ps
N
(Λ) =

{
y ∈ PN(Λ)|y(0) = y(L) = 0

}
.

(4.5)
SL ∶ = PN(Λ)⊗ F

(𝛼,𝛽,𝜆)

M
(I),

WL ∶ = Ps
N
(Λ)⊗ Pt

M
(I),

(4.6)

⟨⟨⟨⋅⟩⟩⟩ ≡ �
L

0 �
L

0 �
1

0

⋅ w
(�,�)

L
(x) w

(�,�)

L
(y) w(�,�,�)(t) dx dy dt,

⟨⟨⋅⟩⟩ ≡ �
L

0 �
1

0

⋅ w
(�,�)

L
(x) w(�,�,�)(t) dx dt,

⟨⋅⟩x ≡ �
L

0

⋅ w
(�,�)

L
(x) dx,

⟨⋅⟩t ≡ �
1

0

⋅ w(�,�,�)(t) dt.

(4.7)u(x, t) ⋍ û(x, t) =

N−2∑

i=0

M−1∑

j=0

𝜙
(𝛼,𝛽)

L,i
(x)Uij𝜓

(𝛼,𝛽,𝜆)

j
(t),

The linear system obtained from (4.8) depends on the choice 
of the basis functions �(�,�)

L,i
(x) and � (�,�,�)

j
(t) of WL . By care-

fully selecting an appropriate basis for both space and time, 
we can make sure that the resulting system is sparse, that 
allowing us to invert it easily. Therefore, we look for basis 
functions as a linear combination of the shifted Jacobi func-
tions and FJFs, namely,

where the parameters 
{
�i, �i

}
 and 

{
�j
}
 are chosen to satisfy 

the homogeneous initial and Dirichlet boundary conditions. 
Even though this choice of modal basis functions might 
seem arbitrary, it can be verified that these polynomials 
constitute a suitable basis that allows easy evaluation of the 
involved derivatives in combination with (2.19) and (3.12).

Lemma 6 For all i ≥ 0 , there exists a unique set of 
{
�i, �i, �i

}
 such that

verify the boundary conditions in (4.2).

Proof Since �(�,�)

L,i
(0) = �

(�,�)

L,i
(L) = 0 and from (2.16), we 

have the following system

Hence �i and �i can be uniquely determined to give

Also, since � (�,�,�)

j
(0) = 0 and from (3.4), we have that

Hence �j can be uniquely determined to give

(4.8)
��

v̂C
0
D𝜈

t
û
��

− 𝜏0
��

v̂𝜕2
x
û
��

− 𝜏1⟨⟨v̂𝜕xû⟩⟩ + 𝜏2⟨⟨ûv̂⟩⟩

= ⟨⟨f v̂⟩⟩, ∀v̂ ∈ WL,

(4.9)
�
(�,�)

L,i
(x) = J

(�,�)

L,i
(x) + �iJ

(�,�)

L,i+1
(x) + �iJ

(�,�)

L,i+2
(x),

�
(�,�,�)

j
(t) = J

(�,�,�)

j
(t) + �jJ

(�,�,�)

j+1
(t),

(4.10)
�
(�,�)

L,i
(x) = J

(�,�)

L,i
(x) + �iJ

(�,�)

L,i+1
(x) + �iJ

(�,�)

L,i+2
(x),

�
(�,�,�)

i
(t) = J

(�,�,�)

i
(t) + �iJ

(�,�,�)

i+1
(t),

(4.11)−�i
(i + � + 1)

(i + 1)
+ �i

(i + � + 1)(i + � + 2)

(i + 1)(i + 2)
= −1,

(4.12)�i
(i + � + 1)

(i + 1)
+ �i

(i + � + 1)(i + � + 2)

(i + 1)(i + 2)
= −1.

(4.13)
�i = −

(i + 1)(� − �)(2i + � + � + 3)

(i + � + 1)(i + � + 1)(2i + � + � + 4)
,

�i = −
(i + 1)(i + 2)(2i + � + � + 2)

(i + � + 1)(i + � + 1)(2i + � + � + 4)
.

(4.14)�j
(j + � + 1)

(j + 1)
= 1,
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  ◻

It is obvious that the two sets of basis functions 
�
(�,�)

L,i
(x) ∈ Ps

N+2
(Λ) and � (�,�,�)

j
(t) ∈ Pt

M+1
(I) are linearly 

independent. Therefore, by dimension argument, we have

It is clear that the Galerkin formulation of (4.8) is equivalent 
to the following discretization

for 0 ≤ i ≤ N − 2 and 0 ≤ j ≤ M − 1 . To simplify the pres-
entation, we shall always assume that the indices i and r 
vary between 0 and N − 2 and that the indices j and s vary 
between 0 and M − 1 . Further, we assume that a repeated 
index is summed over. The above discretization can be 
expressed in the matrix form:

which can be written compactly in the form

where

(4.15)�j =
(j + 1)

(j + � + 1)
.

(4.16)

Pt
M
(I) = span

{

�
(�,�,�)

j
(t) ∶ j = 0, 1, 2,… , M − 1

}

,

Ps
N
(Λ) = span

{

�
(�,�)

L,j
(x) ∶ j = 0, 1, 2,… , N − 2

}

.

(4.17)

⟨⟨

𝜙
(𝛼,𝛽)

L,i
(x)C

0
D𝜈

t
û(x, t)𝜓

(𝛼,𝛽,𝜆)

j
(t)
⟩⟩

− 𝜏0

⟨⟨

𝜙
(𝛼,𝛽)

L,i
(x)𝜕2

x
û(x, t)𝜓

(𝛼,𝛽,𝜆)

j
(t)
⟩⟩

− 𝜏1

⟨⟨

𝜙
(𝛼,𝛽)

L,i
(x)𝜕xû(x, t)𝜓

(𝛼,𝛽,𝜆)

j
(t)
⟩⟩

+ 𝜏2

⟨⟨

𝜙
(𝛼,𝛽)

L,i
(x)û(x, t)𝜓

(𝛼,𝛽,𝜆)

j
(t)
⟩⟩

=

⟨⟨

𝜙
(𝛼,𝛽)

L,i
(x)f (x, t)𝜓

(𝛼,𝛽,𝜆)

j
(t)
⟩⟩

,

(4.18)

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x
Uij

⟨
C
0
D�

t
�

(�,�,�)

j
� (�,�,�)
s

⟩

t

− �0

⟨

�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x

Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

− �1

⟨

�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x

Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

+ �2

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x
Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

=

⟨⟨

�
(�,�)

L,i
(x)f (x, t)�

(�,�,�)

j
(t)
⟩⟩

,

(4.19)AUD� − �0BUE − �1CUE + �2AUE = F,

U =
(
Uij

)

0⩽i⩽N−2, 0⩽j⩽M−1
 is the matrix of unknown coeffi-

cients, and reaction matrix. To solve (4.19), we recast it in a 
more convenient form using the Kronecker product (repre-
sented by ⊗).

If we consider the matrices � ∈ ℝn,m and � ∈ ℝq,p , then the 
Kronecker product of F  and G is defined as the matrix

Let fi ∈ ℝn denote the columns of F ∈ ℝn,m so that 
F =

[
f1,… , fm

]
 . Then vec(F) is defined to be the nm-vector 

formed by stacking the columns of F  on top of one another, 
i.e.,

The Kronecker product and the vec operator have the fol-
lowing useful property which will be used in the following 
discussions. For any three matrices F  , G and � we define 
the matrix product FG� to be

where T denotes the transpose.
Accordingly the set of discrete equations (4.19) may be put 

in the following matrix form:

Theorem 1 The nonzero elements Air, Bir, Cir, D
�
js
 and Ejs 

are given by

(4.20)

A =
(
Air

)

0⩽i,r⩽N−2
=

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x
,

D� =

(

D
�
js

)

0⩽j,s⩽M−1
=

⟨
C
0
D�

t
�

(�,�,�)

j
� (�,�,�)
s

⟩

t
,

B =
(
Bir

)

0⩽i,r⩽N−2
=

⟨

�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x

,

E =
(
Ejs

)

0⩽j,s⩽M−1
=

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t
,

C =
(
Cir

)

0⩽i,r⩽N−2
=

⟨

�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x

,

F =
(
Fjs

)

0⩽i⩽N−2, 0⩽j⩽M−1

=

⟨⟨

�
(�,�)

L,i
(x)f (x, t)�

(�,�,�)

j
(t)
⟩⟩

,

�⊗� =

⎛
⎜
⎜
⎜
⎝

f11� f12� ⋯ f1m�

f21� f22� ⋯ f2m�

⋮ ⋮ ⋱ ⋮

fn1� fn2� ⋯ fnm�

⎞
⎟
⎟
⎟
⎠

∈ ℝ
nq,mp.

vec(F) =

⎡
⎢
⎢
⎣

f1
⋮

fm

⎤
⎥
⎥
⎦

∈ ℝ
nm.

vec(FG�) =
(
�

� ⊗ F
)
vec(G),

(4.21)

(
D

T
𝜈
⊗A − 𝜏0E

T ⊗ B − 𝜏1E
T ⊗ C + 𝜏2E

T ⊗A
)
vec(U)

= vec(F).
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where

and h(�,�)
L,i

 is given by (2.18).

Proof From (4.10), we have

Using the orthogonality relation (2.17), we obtain

  ◻

(4.22)

Aii = h
(�,�)

L,i
+ �2

i
h
(�,�)

L,i+1
+ �2

i
h
(�,�)

L,i+2
,

Ai+1,i = Ai,i+1 = �ih
(�,�)

L,i+1
+ �i�i+1h

(�,�)

L,i+2
,

Ai+2,i = Ai,i+2 = �ih
(�,�)

L,i+2
,

(4.23)

Bii =�iA2(i + 2, i, �, �)h
(�,�)

L,i
,

Bir =O2(r, i, �, �)h
(�,�)

L,i
+ O2(r, i + 1, �, �)�ih

(�,�)

L,i+1

+ O2(r, i + 2, �, �)�ih
(�,�)

L,i+2
, r = i + n, n ≥ 1,

(4.24)

Ci+1,i =�iA1(i + 2, i + 1, �, �)h
(�,�)

L,i+1
,

Cii =
(
�iA1(i + 1, i, �, �) + �iA1(i + 2, i, �, �)

)
h
(�,�)

L,i

+ �i�iA1(i + 2, i + 1, �, �)h
(�,�)

L,i+1
,

Cir =O1(r, i, �, �)h
(�,�)

L,i
+ O1(r, i + 1, �, �)�ih

(�,�)

L,i+1

+ O1(r, i + 2, �, �)�ih
(�,�)

L,i+2
, r = i + n, n ≥ 1,

(4.25)

D
�
js
=
(
S�(s, j, �, �) + �sS�(s + 1, j, �, �)

)
h
(�,�)

1,j

+ �j
(
S�(s, j + 1, �, � )

+�sS�(s + 1, j + 1, �, �)
)
h
(�,�)

1,j+1
,

(4.26)
Ejj = h

(�,�)

1,j
+ �2

j
h
(�,�)

1,j+1
,

Ej+1,j = Ej,j+1 = �jh
(�,�)

1,j+1
,

(4.27)
O�(r, i, �, �) =A�(r, i, �, �) + �rA�(r + 1, i, �, �)

+ �rA�(r + 2, i, �, �),

(4.28)
Air =

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x

=

⟨(

J
(�,�)

L,i
(x) + �iJ

(�,�)

L,i+1
(x) + �iJ

(�,�)

L,i+2
(x)

)(

J
(�,�)

L,r
(x) + �rJ

(�,�)

L,r+1
(x) + �rJ

(�,�)

L,r+2
(x)

)⟩

x
.

(4.29)

Aii = h
(�,�)

L,i
+ �2

i
h
(�,�)

L,i+1
+ �2

i
h
(�,�)

L,i+2
,

Ai+1,i = Ai,i+1 = �ih
(�,�)

L,i+1
+ �i�i+1h

(�,�)

L,i+2
,

Ai+2,i = Ai,i+2 = �ih
(�,�)

L,i+2
.

Note. It is worthy to be noted here that the nonzero 
entries of the other matrices B, C, D� and E  can be 
obtained similarly.

5  Fractional Galerkin method 
with numerical integration 
for the one‑dimensional case

The pure fractional-order Jacobi–Galerkin method pre-
sented in the previous section lead to efficient spectral 
algorithms for linear time-fractional partial differential 
equation with constant coefficients. However, it is not fea-
sible for problems with variable coefficients for which the 
integration is often not possible. Therefore, for the linear 
time-fractional partial differential equations with variable 
coefficients, we have to resort to numerical integration [6]. 
In this way, we obtain the modified scheme (5.3), which 
we term the fractional Galerkin with numerical integra-
tion scheme.

In this section, we consider the numerical solution of 
the following one-dimensional time-fractional partial dif-
ferential equations with variable coefficients:

with homogeneous initial and Dirichlet boundary conditions. 
The fractional-order Jacobi–Galerkin method for (5.1) is to 
find û ∈ WL such that

with ⟨⟨⋅⟩⟩N,M being the discrete inner product relative to 

the Jacobi–Gauss quadrature and fractional Jacobi–Gauss 
quadrature in both space and time, respectively. Equation 
(5.2) implies

(5.1)

C
0
D�

t
u − �0(x)

�2u

�x2
− �1(x)

�u

�x
+ �2(x)u = f (x, t), (x, t) ∈ Ω,

(5.2)

��
v̂C
0
D𝜈

t
û
��

N,M
−
��

𝜏0(x)v̂𝜕
2
x
û
��

N,M
− ⟨⟨𝜏1(x)v̂𝜕xû⟩⟩N,M

+ ⟨⟨𝜏2(x)ûv̂⟩⟩N,M

= ⟨⟨f v̂⟩⟩N,M , ∀v̂ ∈ WL,
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where ⟨⋅⟩t,M , ⟨⋅⟩x,N and ⟨⟨⋅⟩⟩N,M are the discrete approxi-
mations of the integrals in (4.6) with the fractional Jac-
obi–Gauss quadrature in time, Jacobi–Gauss quadrature in 
space and both of them in both space and time, respectively.

Let us denote

where

then, the linear system (5.3) becomes

6  Fractional Galerkin method 
for the two‑dimensional case

The two-dimensional fractional Galerkin method is significantly 
more complex than the one-dimensional version. In this section, 
we consider the numerical solution of the two-dimensional time 
fractional advection–diffusion–reaction equations in the form:

(5.3)

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N
Uij

⟨
C
0
D�

t
�

(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�0(x)�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x,N

Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�1(x)�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x,N

Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

+

⟨

�2(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N
Uij

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

=

⟨⟨

�
(�,�)

L,i
(x)f (x, t)�

(�,�,�)

j
(t)
⟩⟩

N,M
.

(5.4)B̃ =

(

B̃ir

)

, C̃ =

(

C̃ir

)

, �̃ =

(

�̃ir

)

, F̃ =

(

F̃ij

)

,

(5.5)

B̃ir =

⟨

�0(x)�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x,N

C̃ir

=

⟨

�1(x)�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x,N

,

�̃ir =

⟨

�2(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N
, F̃ij

=

⟨⟨

�
(�,�)

L,i
(x)f (x, t)�

(�,�,�)

j
(t)
⟩⟩

N,M
,

(5.6)

(

D
T
𝜈
⊗A − E

T ⊗ �B + E
T ⊗�C + E

T ⊗ ��
)

vec(U) = vec(�F).

(6.1)
C
0
D�

t
u − �0

�2u

�x2
− �1

�2u

�y2
− �2

�u

�x
− �3

�u

�y
+ �4u

= f (x, y, t), (x, y, t) ∈ Λ2 × I,

with homogeneous initial and Dirichlet boundary conditions, 
where Λ2 = Λ × Λ . The two-dimensional Galerkin approxi-
mation may be written as

Then the fractional-order Jacobi–Galerkin scheme (4.18) in 
the two-dimensional case is equivalent to

Let us denote

and

where Û is the matrix of unknown coefficients and F̂  is the 
r e a c t i o n  m a t r i x  w h o s e  e n t r i e s  a r e 
Fii�j =

⟨⟨⟨

�
(�,�)

L,i
(x)�

(�,�)

L,i�
(y)f (x, y, t)�

(�,�,�)

j
(t)
⟩⟩⟩

 . The frac-
tional-order Jacobi-Galerkin discretization (6.3) is equiva-
lent to the following matrix equation

(6.2)
u(x, y, t) ≃ û(x, y, t) =

N−2∑

i=0

N−2∑

i�=0

M−1∑

j=0

𝜙
(𝛼,𝛽)

L,i
(x)𝜙

(𝛼,𝛽)

L,i�
(y)

�Uii�j𝜓
(𝛼,𝛽,𝜆)

j
(t).

(6.3)

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y
Ûii�j

⟨
C
0
D�

t
�

(�,�,�)

j
�

(�,�,�)

T,s

⟩

t

− �0

⟨

�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

− �1

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x

⟨

�
(�,�)

L,i�

d2�
(�,�)

L,r�

dy2

⟩

y

Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

− �2

⟨

�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

− �3

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x

⟨

�
(�,�)

L,i�

d�
(�,�)

L,r�

dy

⟩

y

Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

+ �4

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t

=

⟨⟨⟨

�
(�,�)

L,i
(x)�

(�,�)

L,i�
(y)f (x, y, t)�

(�,�,�)

j
(t)
⟩⟩⟩

.

(6.4)

Û = [U0,U1,… ,UM−1],

Ui = [Ui,0,Ui,1,… ,Ui,N−2]
T ,

Ui,i� = [Ûi,i�,0, Ûi,i�,1,… , Ûi,i�,N−2]
T ,

(6.5)

F̂ = [F0,F1,… ,FM−1],

Fi = [Fi,0,Fi,1,… ,Fi,N−2]
T ,

Fi,i� = [F̂i,i�,0, F̂i,i�,1,… , F̂i,i�,N−2]
T ,

(6.6)

(A⊗A)�UD𝜈 − 𝛿0(B⊗A)�UE

− 𝛿1(A⊗ B)�UE − 𝛿2(C⊗A)�UE

− 𝛿3(A⊗ C)�UE

+ 𝛿4(A⊗A)�UE = �F.
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To solve (6.6), we recast it in a more convenient form using 
the Kronecker product. We can express the set of discrete 
equations (6.6) in the following matrix form

This linear system can be solved by using a suitable itera-
tive method to obtain the numerical solution (6.2). In our 
implementation, this system has been solved using the Math-
ematica function FindRoot with zero initial approximation.

7  Fractional Galerkin method 
with numerical integration 
for the two‑dimensional case

Without any lose of generality, we consider the two-dimen-
sional time-fractional partial differential equation with variable 
coefficients supplemented by homogeneous initial and bound-
ary conditions, namely

with the initial condition

and the homogeneous Dirichlet boundary condition

We can always modify the right-hand side to take care of the 
nonhomogeneous initial and boundary conditions. We will 
utilize (6.2) to establish the fractional-order Jacobi-Galer-
kin method with numerical integration for (7.1). Hence the 
fractional-order Jacobi–Galerkin scheme (5.3) in the two-
dimensional case is equivalent to

(6.7)

(
D

T
𝜈
⊗A⊗A − 𝛿0E

T ⊗ B⊗A − 𝛿1

E
T ⊗A⊗ B − 𝛿2E

T ⊗ C⊗A

−𝛿3E
T ⊗A⊗ C + 𝛿4E

T ⊗A⊗A
)
vec(�U)

= vec(�F).

(7.1)

C
0
D�

t
u − �0(x)

�2u

�x2
− �1(x)

�2u

�y2
− �2(x)

�u

�x

− �3(x)
�u

�y
+ �4(x)u = f (x, y, t), (x, y, t) ∈ Λ2 × I,

(7.2)u(x, y, 0) = 0, (x, y) ∈ Λ2,

(7.3)u(x, y, t) = 0, (x, y, t) ∈ �Λ2 × I.

Let us denote

and

where

Then using the same notation introduced in (5.5) and (4.20), 
the fractional-order Jacobi–Galerkin discretization (7.4) is 
equivalent to the following matrix equation

To solve (6.6), we recast it in a more convenient form using 
the Kronecker product. We can express the set of discrete 
equations (6.6) in the following matrix form

(7.4)

⟨

�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y,N
Ûii�j

⟨
C
0
D�

t
�

(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�0(x)�
(�,�)

L,i

d2�
(�,�)

L,r

dx2

⟩

x,N

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y,N
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�1(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N

⟨

�
(�,�)

L,i�

d2�
(�,�)

L,r�

dy2

⟩

y,N

Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�2(x)�
(�,�)

L,i

d�
(�,�)

L,r

dx

⟩

x,N

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y,N
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

−

⟨

�3(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N

⟨

�
(�,�)

L,i�

d�
(�,�)

L,r�

dy

⟩

y,N

Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

+

⟨

�4(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N

⟨

�
(�,�)

L,i�
�
(�,�)

L,r�

⟩

y,N
Ûii�j

⟨

�
(�,�,�)

j
� (�,�,�)
s

⟩

t,M

=

⟨⟨⟨

�
(�,�)

L,i
(x)�

(�,�)

L,i�
(y)f (x, y, t)�

(�,�,�)

j
(t)
⟩⟩⟩

N,N,M
.

(7.5)

G̃ir =

⟨

�0(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N
, �̃ir =

⟨

�1(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N

�̃ir =

⟨

�2(x)�
(�,�)

L,i
�
(�,�)

L,r

⟩

x,N
,

(7.6)

F̃ = [F
0
,F

1
,… ,F

M−1
],

F
i
= [F

i,0
,F

i,1
,… ,F

i,N−2
]T ,

F
i,i�

= [F̃i,i�,0, F̃i,i�,1,… , F̃i,i�,N−2]
T ,

(7.7)

Fii�j =

⟨⟨⟨

�
(�,�)

L,i
(x)�

(�,�)

L,i�
(y)f (x, y, t)�

(�,�,�)

j
(t)
⟩⟩⟩

N,N,M
.

(7.8)

(A⊗A)�UD𝜈−

(
�B⊗A

)
�UE −

(
�G⊗ B

)
�UE +

(
�C⊗A

)
�UE

+

(
��⊗ C

)
�UE +

(
��⊗A

)
�UE = �F.

(7.9)
�� vec(�U) =

(

DT
𝜈
⊗A⊗A − ET ⊗ �B⊗A − ET ⊗ �G⊗ B + ET ⊗�C⊗A

+ET ⊗ ��⊗ C + ET ⊗ ��⊗A

)

vec(�U) = vec(�F).
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This system has the same method of solution like that of 
(6.2). We now describe how problems with nonhomoge-
neous initial-boundary conditions can be efficiently trans-
formed into problems with homogeneous initial-boundary 
conditions. We proceed as follows: Setting

where ũ is an auxiliary unknown function satisfying the 
modified problem

subject to the homogeneous initial-boundary conditions

where

while ue(x, t) is an arbitrary function satisfying the original 
nonhomogeneous boundary conditions.

8  Numerical results and comparisons

In this section, three numerical examples are outlined to 
demonstrate the pertinence and proficiency of the novel 
technique. The calculations are executed by utilizing 
Mathematica of Version 9, and all counts are completed 
in a PC of CPU Intel(R) Core(TM) i3-2350M 2 Duo CPU 
2.30 GHz, 6.00 GB of RAM.

The distinction between the measured value of approxi-
mate solution and its actual value (absolute error), is given 
by

(7.10)u(x, t) = ũ(x, t) + ue(x, t),

(7.11)
C
0
D𝜈

t
ũ(x, t) − 𝜏0𝜕

2
x
ũ(x, t) − 𝜏1𝜕xũ(x, t)

+ 𝜏2ũ(x, t) = f ∗(x, t), (x, t) ∈ Ω,

(7.12)
ũ(x, 0) = 0, x ∈ [0,L],

ũ(0, t) = ũ(L, t) = 0, t ∈ [0, 1],

(7.13)
f ∗(x, t) = f (x, t) − C

0
D�

t
ue(x, t) + �0�

2
x
ue(x, t)

+ �1�xue(x, t) − �2ue(x, t),

(8.1)E(x, t) = |u(x, t) − û(x, t)|,

where u(x, t) and û(x, t) are the exact solution and the numer-
ical solution at the point (x, t), respectively. Moreover, the 
maximum absolute error (MAE) is given by

and

also we can denote to the root mean square (RMS) error by

Example 1 We consider the one-dimensional fractional-order 
advection diffusion equation with constant coefficients [33]:

with the initial condition:

and the boundary conditions:

The exact solution of the above problem is 
u(x, t) = t� cos(x) . The source function is given by 
f (x, t) =

Γ(�+1)

Γ(�−�+1)
t�−� cos(x) + t� (10 cos(x) − 4 sin(x))  .  I n 

Tables 1 and 2, we present the L∞, L2 errors and the RMS 
of errors when t = 0.2, 0.4, 0.6, 0.8, 1, � = � = 0 and 
N = M = 16 for two different values of � + 3 = � = 3.2 and 
� + 3 = � = 3.6 ,  respectively.  For � + 3 = � = 3.6 , 
� = 0.6, � = � =

1

2
 and N = M = 16 the space-time graphs 

of the approximate solution and its absolute error function 
are illustrated in Fig. 1. The numerical results show high 

(8.2)
MAEs = Max{E(x, t) ∶ ∀(x, t) ∈ [0,L] × [0, T]} = L∞,

(8.3)L2 =

√
√
√
√

N−2∑

i=0

(u(x
(𝛼,𝛽)

G,L,i
, t) − û(x

(𝛼,𝛽)

G,L,i
, t))2,

(8.4)
RMS =

�
�
�
�
�
�

N−2∑

i=0

(u(x
(𝛼,𝛽)

G,L,i
, t) − û(x

(𝛼,𝛽)

G,L,i
, t))2

(N − 1)
,

(8.5)

C
0
D�

t
u − 10

�2u

�x2
+ 4

�u

�x
= f (x, t), x ∈ (0, 2�), t ∈ (0, 1], � ∈ (0, 1),

(8.6)u(x, 0) = 0, x ∈ (0, 2�),

(8.7)u(0, t) = u(2�, t) = t� , t ∈ (0, 1], � ≥ �.

Table 1  Comparison of the 
errors for Example 1 with 
� = � = 0.2 and � = 3.2

Method [33] (N = 51) Present method (� = � = 0), (N = M = 16)

t L∞-error L2-error RMS L∞-error L2-error RMS

0.2 1.5641 × 10−6 7.1254 × 10−6 8.9772 × 10−7 2.9158 × 10−12 2.1682 × 10−8 1.3995 × 10−9

0.4 2.1092 × 10−5 9.4807 × 10−5 1.1945 × 10−5 7.7525 × 10−12 1.9674 × 10−7 1.2699 × 10−8

0.6 8.4677 × 10−5 4.0029 × 10−4 5.0431 × 10−5 3.0293 × 10−12 7.1015 × 10−7 4.5840 × 10−8

0.8 2.2229 × 10−4 1.0646 × 10−3 1.3412 × 10−4 3.3265 × 10−11 1.7879 × 10−6 1.1541 × 10−7

1 4.6649 × 10−4 2.2425 × 10−3 2.8253 × 10−4 1.8117 × 10−10 3.6504 × 10−6 2.3563 × 10−7
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accuracy of the fractional Jacobi Galerkin method for the 
sufficiently smooth solution. For the non-smooth case, where 
� = � = � =

1

2
 , the L∞ - errors are considered in Table 3. This 

results show also that the method is flexible for the non-
smooth solutions.

Example 2 Consider the one-dimensional fractional diffusion 
equation [27, 34, 35, 38]:

with the initial condition:

and the boundary conditions:

When � = 1 , the exact solution of this problem is

Taking � = � = 0.75, � = � = 0.9, N = M = 4 and 
� = � = −

1

2
 , in Tables 4 and 5, we compare our results 

with those obtained by using the Adomian decomposition 
method (ADM) [35], variational iteration method (VIM) 
[34], Sinc-Legendre collocation method (S-LCM) [38], 

(8.8)C
0
D𝜈

t
u =

1

2
x2
𝜕2u

𝜕x2
, 0 < x ≤ 1, 0 < t ≤ 1, 0 < 𝜈 ≤ 1,

(8.9)u(x, 0) = x2,

(8.10)u(0, t) = 0, u(1, t) = et.

u(x, t) = x2et.

Table 2  Comparison of the 
errors for Example 1 with 
� = � = 0.6 and � = 3.6

Method [33] (N = 51) Present method (� = � = 0), (N = M = 16)

t L∞-error L2-error RMS L∞-error L2-error RMS

0.2 9.1610 × 10−5 2.1343 × 10−4 6.4352 × 10−5 6.7745 × 10−15 1.2161 × 10−8 7.8504 × 10−10

0.4 9.7406 × 10−5 2.2658 × 10−4 6.8316 × 10−5 8.1337 × 10−14 1.4182 × 10−7 9.1549 × 10−9

0.6 9.9803 × 10−5 2.3202 × 10−4 6.9955 × 10−5 1.3961 × 10−14 6.0029 × 10−7 3.8748 × 10−8

0.8 1.0117 × 10−4 2.3512 × 10−4 7.0890 × 10−5 9.9037 × 10−13 1.6743 × 10−6 1.0808 × 10−7

1 1.0207 × 10−4 2.3716 × 10−4 7.1507 × 10−5 1.6908 × 10−13 3.7141 × 10−6 2.3974 × 10−7

Table 3  The L∞ - errors for Example 1 versus N and M at various val-
ues of �, � and � = � = � =

1

2

N = M � = � = −
1

2
� = � = 0 � = � =

1

2

4 2.437 × 10−1 1.287 × 10−1 1.928 × 10−1

8 1.654 × 10−4 1.061 × 10−4 2.134 × 10−4

12 3.356 × 10−8 2.522 × 10−8 5.447 × 10−8

16 2.695 × 10−12 2.029 × 10−12 4.503 × 10−12

Fig. 1  The space-time graphs of the approximate solution (left) and its absolute error function (right) for Example 1 with 
� = � = 0.6, � = � =

1

2
, � = 3.6 and N = M = 16
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Gegenbauer spectral method (GSM) [27], and fractional-
order Jacobi Tau method (F-OJTM) [11]. It should be 
noted that only the fourth-order term of the ADM was used 
in evaluating the approximate solutions for Tables 4 and 5. 
In Table 6, it clearly appears that our method is more accu-
rate than VIM, S-LCM, and GSM, and the obtained results 
are in good agreement with the exact solution. Moreover, 
in Fig. 2, the convergence rate of the fractional Galerkin 
method presented is displayed based on MAEs for different 
values of M and N.

Example 3  We  cons ide r  t he  exac t  so lu t ion 
u(x, y, t) = cos(x) cos(y)t�+2 for the two-dimensional time 
fractional advection–diffusion–reaction equation (6.1)-(7.1) 
on the domain,   0 < x ≤ 𝜋, 0 < y ≤ 𝜋, 0 < t ≤ 1 . The initial 
and boundary conditions can be extracted using the exact 
solution.

Fig. 2  The L∞ - errors for Example 2 versus N = M with � = −� =
1

2
 

and � = � = 1

Table 4  Comparison of the 
numerical solutions with the 
other methods for Example 2 at 
� = � = 0.75 and N = M = 4

ADM VIM S-LCM GSM F-OJTM Present method
t x [35] [34] [38] [27] [11] � = � = −

1

2

0.3 0.1346 0.1294 0.1312 0.1312 0.1315 0.1346
0.25 0.6 0.5385 0.5175 0.4957 0.4966 0.4971 0.5385

0.9 1.2118 1.1645 1.055 1.0591 1.575 1.2118
0.3 0.1795 0.1695 0.1685 0.1689 0.1684 0.1795

0.5 0.6 0.7183 0.6780 0.6303 0.6288 0.6293 0.7183
0.9 1.6162 1.5257 1.352 1.3531 1.3515 1.6162
0.3 0.2313 0.2154 0.2118 0.2132 0.2120 0.2313

0.75 0.6 0.9255 0.8618 0.7962 0.7961 0.7966 0.9255
0.9 2.0823 1.9390 1.733 1.7306 1.7295 2.0823
0.3 0.2909 0.2687 0.2645 0.2668 0.2665 0.2909

1.00 0.6 1.1637 1.0751 0.9745 0.9885 1.0114 1.1637
0.9 2.6183 2.4191 2.014 2.1997 2.2161 2.6184

Table 5  Comparison of the 
numerical solutions with the 
other methods for Example 2 at 
� = � = 0.9 and N = M = 4

ADM VIM S-LCM F-OJTM Present method
t x [35] [34] [38] [11] � = � = −

1

2

0.3 0.1218 0.1210 0.1212 0.1213 0.1218
0.25 0.6 0.4872 0.4841 0.4762 0.4765 0.4872

0.9 1.0963 1.0893 1.046 1.0474 1.0963
0.3 0.1588 0.1567 0.1564 0.1654 0.1588

0.5 0.6 0.6355 0.6268 0.6086 0.6085 0.6355
0.9 1.4299 1.4103 1.342 1.3421 1.4299
0.3 0.2041 0.19898 0.1994 0.1995 0.2041

0.75 0.6 0.8165 0.7992 0.7761 0.7764 0.8165
0.9 1.8372 1.7983 1.722 1.7208 1.8372
0.3 0.2588 0.2517 0.2529 0.2539 0.2588

1.00 0.6 1.0353 1.0070 0.9938 0.9920 1.0353
0.9 2.3295 2.2659 2.144 2.2076 2.3295
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Constant coefficients problem: 

where the source term

This problem has been studied in [42]. In [42], the problem 
has been discretized by a fourth-order compact finite dif-
ference approximation in the spatial directions and by an 
alternating direction implicit (ADI) approximation in the 
temporal direction. In Table 7, we compare the MAEs using 
our scheme at � = � =

1

2
 and those achieved using the Com-

pact ADI method [42] for various choices of � . The space 

(8.11)C
0
D𝜈

t
u =

𝜕2u

𝜕x2
+

𝜕2u

𝜕y2
+ f (x, y, t), 0 < x ≤ 𝜋, 0 < y ≤ 𝜋, 0 < t ≤ 1, 0 < 𝜈 ≤ 1,

f (x, y, t) = cos(x) cos(y)

(
Γ(� + 3)

2
t2 + 2t�+2

)

.

graph of absolute errors at � = � = 0 and � = � = 0.9 for 

different values of t with N = M = 10 of the approximate 
solution is displayed in Fig. 3.

Variable coefficients problem: 

where the source term
(8.12)

C
0
D𝜈

t
u − x2

𝜕2u

𝜕x2
+ y2

𝜕2u

𝜕y2
= f (x, y, t), 0 < x ≤ 𝜋, 0 < y ≤ 𝜋, 0

< t ≤ 1, 0 < 𝜈 ≤ 1,

f (x, y, t) =x2t�+2 cos(x) cos(y) − y2t�+2 cos(x) cos(y)

−
�t2 csc(��) cos(x) cos(y)

2Γ(−� − 2)
.

Table 6  The absolute errors 
with � = � = 1 for Example 2

VIM S-LCM GSM Present method (N = M = 12)

t x [34] [38] [27] � = � =
1

2
� = � = 0 � = � = −

1

2

0.3 1.54 × 10−5 9.92 × 10−8 1.04 × 10−9 2.83 × 10−17 2.51 × 10−17 3.09 × 10−17

0.25 0.6 6.16 × 10−5 2.70 × 10−6 1.17 × 10−10 5.17 × 10−17 4.16 × 10−17 4.10 × 10−18

0.9 1.38 × 10−4 1.02 × 10−5 2.57 × 10−9 1.07 × 10−17 5.04 × 10−18 5.34 × 10−19

0.3 2.60 × 10−4 5.56 × 10−7 2.58 × 10−10 2.36 × 10−17 8.52 × 10−17 1.27 × 10−16

0.5 0.6 1.03 × 10−3 4.87 × 10−6 2.67 × 10−10 5.88 × 10−17 8.37 × 10−17 9.26 × 10−18

0.9 2.34 × 10−3 1.30 × 10−5 1.60 × 10−10 8.14 × 10−17 1.01 × 10−16 6.63 × 10−17

0.3 1.39 × 10−3 1.14 × 10−6 1.66 × 10−10 1.40 × 10−17 1.01 × 10−16 1.94 × 10−16

0.75 0.6 5.56 × 10−3 6.90 × 10−6 1.01 × 10−9 1.31 × 10−16 1.50 × 10−16 1.24 × 10−16

0.9 1.25 × 10−2 1.59 × 10−5 3.60 × 10−9 3.28 × 10−17 7.29 × 10−18 4.61 × 10−17

0.3 4.64 × 10−3 9.83 × 10−7 1.31 × 10−8 1.05 × 10−15 5.47 × 10−16 2.33 × 10−16

1.00 0.6 1.85 × 10−2 6.40 × 10−6 2.20 × 10−8 1.37 × 10−15 7.47 × 10−16 1.85 × 10−16

0.9 4.18 × 10−2 2.58 × 10−5 1.58 × 10−7 8.51 × 10−16 5.27 × 10−16 4.43 × 10−16

Table 7  Comparison of our 
scheme with the compact ADI 
method [42] at � =

1

3
,

1

2
 and 

3

4
 for the constant coefficients 

problem of Example 3

Present method (N = M) Compact ADI method [42]

N � = � =
1

3
� = � =

1

2
� = � =

3

4
� � =

1

3
� =

1

2
� =

3

4

4 4.872 × 10−3 2.999 × 10−3 2.044 × 10−3 1/10 1.088 × 10−2 8.173 × 10−3 1.247 × 10−2

6 2.064 × 10−4 2.306 × 10−5 2.343 × 10−5 1/40 2.035 × 10−3 1.212 × 10−3 2.337 × 10−3

8 2.874 × 10−7 2.857 × 10−7 3.123 × 10−7 1/160 3.514 × 10−4 1.069 × 10−4 4.303 × 10−4

10 1.708 × 10−9 1.722 × 10−9 5.093 × 10−9 1/320 1.448 × 10−4 2.094 × 10−5 7.740 × 10−5
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Fig. 3  The space-time graph of the absolute errors at various choices of t with � = � = 0.9, N = M = 10 and � = � = 0 for the constant coef-
ficients problem in Example 3

Table 8  The MAEs for problem 
(8.12) with � = 0.25 and 
different values of t and N = M

N E(x, y, 0.2) E(x, y, 0.4) E(x, y, 0.6) E(x, y, 0.8) E(x, y, 1) MAE

4 1.93 × 10−3 1.72 × 10−3 1.26 × 10−3 1.81 × 10−3 3.28 × 10−3 3.28 × 10−3

6 8.43 × 10−5 6.85 × 10−5 6.41 × 10−5 7.19 × 10−5 7.16 × 10−5 8.62 × 10−5

8 2.40 × 10−7 1.62 × 10−6 1.69 × 10−6 2.31 × 10−7 5.84 × 10−7 3.58 × 10−6

10 4.79 × 10−11 2.33 × 10−10 5.76 × 10−10 1.10 × 10−9 1.83 × 10−9 1.83 × 10−9
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Fig. 4  The space-time graphs of the absolute error functions at various choices of t with � = � = −0.5, N = M = 10 and � = � = −
1

2
 for the 

variable coefficients problem of Example 3
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In Table 8, we present MAEs obtained by our method, with 
� = � = 0 and � = 0.25 at different values of t and N = M . 
The numerical results presented in this table show that the 
results are very accurate for small values of N = M . Figure 4 
demonstrates that the absolute errors of û(x, y, ti) are very 
small for even the small number of grid points taken.

9  Concluding remarks

In this paper, we have introduced a non-polynomial spectral 
Galerkin schemes for certain class of time fractional partial 
differential equations. We have constructed two efficient 
Galerkin spectral algorithms for solving multi-dimensional 
time fractional advection–diffusion–reaction equations with 
constant and variable coefficients. The model solution has 
discretized in time with a spectral expansion of fractional 
Jacobi functions. For the space discretization, the proposed 
schemes have accommodated high-order Jacobi Galerkin 
spectral discretization. We have illustrated the flexibility of 
the algorithms by comparing the fractional Jacobi Galer-
kin schemes with the methods proposed in [27, 34, 35, 38] 
for three numerical examples. The numerical results have 
indicated that the global character of the FJFs makes them 
well-suited to time fractional diffusion equations because 
they naturally take the irregular behavior of the solution into 
account and thus preserve the singularity of the solution.
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