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Abstract
Making a relation between strains and stresses is an important subject in the rock engineering field. Shear behaviors of rock 
fractures have been extensively investigated by different researchers. Literature mostly consists of constitutive models in 
the form of empirical functions that represent experimental data using mathematical regression techniques. As an alterna-
tive, this study aims to present a new integrated intelligent computing paradigm to form a constitutive model applicable to 
rock fractures. To this end, an RBFNN-GWO model is presented, which integrates the radial basis function neural network 
(RBFNN) with grey wolf optimization (GWO). In the proposed model, the hyperparameters and weights of RBFNN were 
tuned using the GWO algorithm. The efficiency of the designed RBFNN-GWO was examined comparing it with the RBFNN-
GA model (a combination of RBFNN and the Genetic Algorithm). The proposed models were trained based on the results 
of a systematic set of 84 direct shear tests gathered from the literature. The finding of the current study demonstrated the 
efficiency of both the RBFNN-GA and RBFNN-GWO models in predicting the dilation angle, peak shear displacement, 
and stress as the rock fracture properties. Among the two models proposed in this study, the statistical results revealed the 
superiority of RBFNN-GWO over RBFNN-GA in terms of prediction accuracy.

Keywords Rock fracture · Radial basis function neural network · Grey wolf optimization · Genetic algorithm

1 Introduction

Rock mass normally comprises rock material and rock 
discontinuities, and this is characterized by discontinuum 
constitutive models [1]. On the other hand, making a rela-
tion between strains and stresses is an important subject in 
the rock engineering field. Therefore, this study attempts 
to present the constitutive models for predicting rock frac-
tures. Literature is consisted of lots of studies carried out 
into this subject (e.g., Azinfar et al. [2]; Ma et al. [3]; Wang 
and Tian [4]). Though, according to Jing and Stephansson 
[5], only two approaches exist to modeling the rock fracture 
behaviors: (1) the empirical approach, and (2) theoretical 
approach.

The empirical approach tends to develop the models in 
the shape of empirical functions that can best represent the 
experimental data through the use of mathematical regres-
sion techniques. This approach does not contain any restraint 
for respecting the thermodynamics second law. This is worth 
mentioning that in cases where the parameter ranges and 
loading conditions are taken into consideration in a proper 
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way, these models will be capable of delivering desirable 
outputs [1]. On the other hand, the theoretical approach con-
sists of thermodynamic considerations; this feature makes 
assure that the model obeys completely the second law. 
Though, parameters of the models constructed based on this 
approach might possess unclear physical meanings or it can 
be difficult to define the parameters through experiment [5]. 
Many constitutive models proposed in the literature for rock 
fractures encompass the key aspects of shear behaviors of 
rock mass. As a result, there is a need to improve the conven-
tional regression methods and making them more powerful 
modeling techniques to better capture the nonlinearity of 
constitutive responses. The tremendous capacity of modern 
computers together with the high intricacy of shear behav-
iors of rock joints has made it completely sensible to apply 
the computational intelligence to the constitutive models for-
mation process. Singh et al. [6] predicted the strength param-
eters, including uniaxial compressive and shear strength, 
using artificial neural network (ANN). According to their 
results, ANN was an acceptable and reliable method in pre-
dicting uniaxial compressive and shear strength. Babanouri 
and Fattahi [1] employed support vector regression (SVM) 
to present a constitutive model for predicting rock fractures. 
They indicated the effectiveness of SVM in this field. A 
new shear strength criterion was presented by Babanouri 
and Fattahi [7] using a hybrid of teaching–learning-based 
optimization (TLBO) and neuro fuzzy system. They showed 
that their proposed model was capable of predicting rock 
joint shear strength. In another study, Wu et al. [8] offered 
ANN model to predict peak shear strength for discontinui-
ties, and compared the ANN performance with multivariate 
regression method. They confirmed the superiority of ANN 
over regression method in this filed. Furthermore, the use of 
artificial intelligence methods has been confirmed in some 
engineering fields [9–40], which demonstrates the effective-
ness of these methods for predicting aims.

Radial basis function neural network (RBFNN), as one 
of the most widespread types of ANNs, has been widely 
employed in several fields of civil and mining engineering 
[41–43]. Although, the literature lacks studies attempting 

to model the shear behaviors of rock fractures by means of 
RBFNN. The main contribution of this study is to combine 
the Genetic Algorithm (GA) and Grey Wolf Optimization 
(GWO) with the RBFNN model to develop constitutive 
models for predicting rock fractures.

The rest of this study is organized as follows. In Sect. 2, 
we mention the research significance. Then, more details 
regarding the used datasets are stated in Sect. 3. After that, 
Sects. 4 and 5 explain the implementation of proposed 
models to predicting rock fractures. Finally, in the sixth and 
last section, the results of this study and conclusions are 
provided.

2  Research significance

Determining and predicting the rock fractures is one of the 
most important issues in rock engineering field. To this 
end, this study proposes two integrated intelligent comput-
ing paradigms for predicting rock fractures. In the proposed 
models, two optimization algorithms, i.e., GWO and GA are 
used to improve the performance of RBFNN. To the best of 
our knowledge, this is the first study that uses the RBFNN-
GA and RBFNN-GWO models in the field of rock fractures.

3  Dataset source

The proposed RBFNN-GA and RBFNN-GWO constitutive 
models were developed based on an experimental database 
presented in an open source [1]. In this regard, 84 direct 
shear tests were carried out upon the concrete and plaster 
replicas of natural rock fractures under various levels of nor-
mal stress. The values of joint roughness coefficient (JRC), 
joint wall compressive strength (JCS), Young’s modulus (E), 
normal stress ( �n ), basic friction angle ( �b ), dilation angle 
(d), peak shear displacement ( �peak) and peak shear stress (
�p
)
 were measured for all tests. More details regarding the 

collection of datasets can be found in Babanouri and Fattahi 
[1]. Table 1 shows the descriptive statistics related to used 

Table 1  Descriptive statistics for the used datasets

Descriptive statistics Parameters

JRC �n (MPa) JCS (MPa) E (GPa) �b (°) �p(MPa) �peak (mm) d (°)

Standard error 0.607 0.073 1.807 0.356 0.323 0.055 0.018 0.449
Median 12.4 1.3 37.37 7.54 28 1.08 0.56 4.9
Standard deviation 5.567 0.670 16.562 3.270 2.962 0.506 0.170 4.115
Kurtosis − 1.391 − 1.310 − 1.592 − 1.483 − 1.889 − 0.262 0.252 − 0.038
Skewness 0.229 0.035 − 0.209 − 0.014 0.395 0.511 0.729 0.638
Minimum 4.1 0.57 8 2.88 28 0.37 0.29 0
Maximum 18.9 2.5 52.505 11.91 34 2.54 1.11 18.2
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datasets. Furthermore, a part of datasets used in this study 
is given in Table 2. To train the RBFNN-GA and RBFNN-
GWO models, JRC, JCS, E, �n and �b were used as input 
parameters, whereas d, �peak and �p were used as output 
parameters. About 80% of the gathered data were employed 
for constructing the models, while the remaining 20% were 
used for testing the constructed models.

4  Models

The present study proposes two optimized RBFNN mod-
els for predicting rock fractures using GWO and GA algo-
rithms. In this section, the background of proposed models 
are briefly explained. In the first subsection, the background 
of RBFNN is mentioned, and then in the second subsection, 
the GWO and GA algorithms are briefly explained.

4.1  Radial basis function neural network

A literature survey reveals that radial basis function neu-
ral network (RBFNN) is one of the most widespread types 
of ANNs [44, 45]. ANNs represent a computational intel-
ligence method that can be used for prediction, patterns rec-
ognition, and modeling inputs-outputs relationships with-
out putting on any assumption. They are designed based 
on nervous system of the human brain. The ANN system 
is constructed of neurons with the aim of processing the 
information.

Recently, RBFNN has been largely used in several 
research areas due to its capacity in obtaining adequate 

results [46–48]. A typical RBFNN model consists of three 
kinds of layers: input, hidden, and output layers. The input 
data enter from the input layer. Thereafter, this informa-
tion is directly transmitted to the hidden layer. This lat-
ter represents the principal part of RBFNN; it comprises 
nodes (nh) and biases (bh). Moreover, each (nh) has a spe-
cific radial basis function (RBF) that can be figured with 
two parameters, the center and the width.

During RBFNN training, a transfer of information from 
input layer to hidden layer is carried out, where the main 
goal is to obtain a nonlinear form. Among RBF types, 
the Gaussian function is mostly used. This function is 
described by its center (ci) and spread coefficient (σ2). The 
position of input vector (x) according to the center (ci) is 
calculated using the Euclidian norm:

where d and cki indicate the number of variables and the 
centers, respectively. After that, the obtained distance is 
introduced into the Gaussian function, and the following 
formulation is acquired:

where the parameters � , z and �2 denote the Gaussian equa-
tion, the Euclidian distance, and the spread coefficient, 
respectively.

The output layer operates linearly on the basis of the 
following formula:

(1)zi =

√√√
√

d∑

k=1

(
xk − cki

)2

(2)�(z) = exp

[
z2

2�2

]

Table 2  A part of datasets 
applied to modeling process in 
this study

Input parameters Output parameters

JRC �n JCS E �b �p �peak d

12.4 2.5 17.5 5.32 28 1.42 0.4 4.3
18.9 2.5 17.5 5.32 28 1.69 0.4 4.3
4.1 2 17.2 3.86 34 1.61 0.6 0
18.9 0.57 41.6 8.66 34 0.62 0.58 13.1
12.4 1.3 52.1 11.36 34 1.12 0.46 9.9
7.1 0.57 17.2 3.86 34 0.57 0.87 3.9
12.4 2 37.4 7.54 28 1.08 0.52 6
18.9 2 17.5 5.32 28 1.67 0.37 8.5
7.1 1.3 52.5 11.91 28 1.07 0.5 3.4
18.9 2 52.5 11.91 28 1.67 0.35 11.3
18.9 2 52.12 11.36 34 2.06 0.5 9.6
4.1 1.3 52.1 11.36 34 0.64 0.55 3.1
12.4 0.57 8.0 2.88 28 0.46 0.87 5.6
18.9 1.3 17.2 3.86 34 1.32 0.8 9.2
4.1 0.57 52.1 11.36 34 0.39 0.52 3.9
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where nh and N signify the neurons number in the hidden 
layer and the training samples size, respectively, yj denotes 
the jth output of input vector x, wij is the weight connecting 
the hidden node i to the output layer, and bi is the bias.

The performance of RBFNN is completely related to the 
spread coefficient and the number of neurons in the hidden 
layer. Thus, the optimum values of these two parameters 
should be determined using different metaheuristic algo-
rithms. In the current work, GA and GWO are used for the 
optimization aim.

4.2  Optimization techniques

4.2.1  Genetic algorithm

Genetic algorithm (GA) is a robust optimization approach 
first proposed by Holland [49] and Goldberg and Holland 
[50]. This algorithm was designed to solve different complex 
optimization problems. It utilizes the principles of natural 
genetics and natural selection as key operators when dealing 
with optimizing problems. At the first step of GA, a popula-
tion of individuals that represent the probable solutions is 
generated randomly. Different individuals are pointed out 
in the form of chromosomes. The initialization step is fol-
lowed by genetic operators, i.e., crossover, reproduction, and 
mutation. Through the iterative processing of GA, new indi-
viduals are produced to replace inappropriate ones accord-
ing to a fitness function that specifies the objective function 
to be optimized. The selection operator determines parents 
from among existing individuals. Then, crossover operator 
substitutes randomly information between two individuals. 
The genetic operators are repeated until a stopping criterion 
is met.

4.2.2  Grey wolf optimization

Grey wolf optimization (GWO) is one of the robust popu-
lation-based algorithms, which was presented by Mirjalili 
et al. [51]. The steps followed by GWO during the optimi-
zation process are imitated from the group living style and 
the real behavior of grey wolves. The wolves in a pack are 
ranked based on their importance into �, �, � and � , which 
affects the movements to be made around the prey [51]. 
The quality of the wolves is assessed with respect to a fit-
ness function. Accordingly, the three fittest individuals are 
denoted as �, � and � , while the rest is considered as �.

The algorithm starts by generating an initial population 
of wolves randomly. The positions of these wolves offer 
possible solution for to the problem in hand. Then, prior 

(3)

yj =

nh∑

i=1

wij�i(z) + bi, i = 1,… , nh and j = 1,… , N
investigation is made, which involves circling around the 
prey. The wolves surround the prey “p” based on the follow-
ing equation [51]:

where (t + 1) and t represent the actual and previous itera-
tions, respectively, Xp

t  signifies the position of the prey 
(which is also the position of the best wolf, i.e., � ), and D is 
defined as shown below:

where Xt is the position of the wolf, and A and C are known 
as random relocation terms, and they are formulated as:

where a is frequently decreased linearly from 2 to 0; r1 and 
r2 are random values in the interval of [0, 1].

The wolves (�) update their positions according to the 
gained information by the fittest wolves, i.e., �, � and � . 
Therefore, the following equation is applied [51]:

where X1,X2andX3 are defined as follow:

where X� , X� , and X� are the positions of α, β, and δ, 
respectively.

After the movement of the wolves, their new positions 
are evaluated according to the fitness function. Therefore, 
the new position of the fittest wolf � is validated only if this 
latter outperforms the previous one.

5  Model development

Before proceeding to the implementation of the proposed 
paradigms, the collected database was subjected to a pre-
processing that involved: (1) normalization of the database 
between − 1 and 1, and (2) splitting the data into training 
and testing sets. The training part covering 80% of the 
points was used for the models building, while the test 

(4)Xt+1 = X
p

t − A.D

(5)D = |
|C.X

p

t − Xt
|
|

(6)A = 2a.r1 − a

(7)C = 2r2

(8)Xt+1 =
X1 + X2 + X3

3

(9)X1 = X�

t
− A1.

||C1.X
�

t
− Xt

||

(10)X2 = X
�

t − A2.
||
|
C2.X

�

t − Xt
||
|

(11)X3 = X�

t
− A3.

||
|
C3.X

�

t
− Xt

||
|
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set encompassing the rest of the points was applied as 
blind data to evaluating the reliability of the models with 
unseen values.

As underlined in the previous sections, GA and GWO 
were implemented for the aim of optimizing the control 
parameters of RBFNN, namely the spread coefficient and 
the number of neurons in the hidden layers. The procedure 
of the proposed hybridizations is illustrated in Fig. 1. The 
obtained models are denoted RBFNN-GA and RBFNN-
GWO. It is worth noting that mean square error (MSE) 
was the considered fitness function for both algorithms. 
This function is defined as shown below:

where n is the number of training data, ti and oi represent the 
real and the predicted values, respectively.

In addition, to gain reliable results using these two 
nature-inspired algorithms, their control parameters should 
be well determined, which was done in this study through 
adopting a tuning procedure. The resultant parameters for 
GA and GWO are given in Table 3.

(12)MSE =

∑n

i=1

�
ti − oi

�2

n

6  Analysis of the results

In this study, RBFNN-GA and RBFNN-GWO models were 
proposed to predict �p , �peak , and d parameters. Table 4 
reports the final RBFNN control parameters obtained after 
the optimization using GA and GWO for the three outputs, 
i.e., �p , �peak , and d . This table reveals that the proposed 
models for the three outputs yielded their reliable results 
when the number of nodes was set to a value between 49 and 

Fig. 1  Workflow of the pro-
posed hybridizations

Table 3  Setting parameters of GA and GWO

Algorithm Parameters Value/setting

GA Population size 50
Crossover’s probability 90%
Mutation’s probability 10%
Type of selection Linear ranking
Max number of generation 50

GWO Number of wolves 50
Max number of iterations 50
a Linearly 

decreased 
from 2 to 0
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63; while moderate values for the spread coefficient were 
noticed in all the models.

To validate and compare the acquired results from the 
RBFNN-GA and RBFNN-GWO models, three statistical 
functions, namely root mean square error (RMSE), coeffi-
cient of determination (R2), and mean absolute error (MAE), 
were used. These statistical functions are expressed by the 
following formula [52–74]:

where n is the number of data, and Pi and Oi represent the 
predicted and observed values of the output parameters, 
respectively. Note that three output parameters were used in 
the modeling processes. The values of R2 , MAE , and RMSE 
obtained from RBFNN-GA and RBFNN-GWO models for 
each output parameter were calculated, as given in Table 5. 
According to this Table, for all output parameters, the per-
formance of RBFNN-GWO was better than RBFNN-GA. 
This clearly indicates the effectiveness of GWO, as an effec-
tive optimization algorithm, in combination with RBFNN. 
Furthermore, Figs. 2, 3, 4, 5, 6 and 7 show the R2 values 
obtained from the RBFNN-GA and RBFNN-GWO mod-
els for all output parameters. Based on these figures, the 

(13)RMSE =

�∑n

i=1
(Oi − Pi)

2

n

(14)R2 =

�∑n

i=1

�
Oi − Ōi

�
(Pi − P̄i)

�2

∑n

i=1

�
Oi − Ōi

�2 ∑n

i=1
(Pi − P̄i)

2

(15)MAE =
1

n

n∑

i=1

|
|Oi − Pi

|
|

RBFNN-GWO model can be introduced as a robust machine 
learning model for the prediction of �p , �peak , and d.

For further investigation of the accuracy of the estab-
lished RBFNN-GWO, Fig. 8 illustrates the relative error 
distribution between the real values of �p , �peak and d , and 
predictions of the RBFNN-GWO model. Moreover, Fig. 9 
shows the cumulative distribution of the absolute relative 

Table 4  Final values of the 
RBFNN control parameters

Control parameters RBFNN-GA RBFNN-GWO

�p �peak d �p �peak d

Number of nodes 54 53 53 63 49 54
Spread coefficient 1.0698 1.4713 0.9313 0.7589 1.0619 1.0803

Table 5  Statistical functions 
values obtained from the 
predictive models

Output Model Statistical functions

R2 RMSE MAE

Train Test Train Test Train Test

d RBFNN-GA 0.995 0.921 0.295 1.468 0.231 1.277
RBFNN-GWO 0.997 0.949 0.212 0.988 0.160 0.850

�p RBFNN-GA 0.999 0.901 0.017 0.223 0.013 0.121
RBFNN-GWO 1 0.960 0.002 0.095 0.001 0.071

�peak RBFNN-GA 0.939 0.904 0.041 0.056 0.030 0.045
RBFNN-GWO 0.950 0.942 0.037 0.054 0.027 0.044

Fig. 2  The measured �peak vs predicted �peak using RBFNN-GA
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Fig. 3  The measured �peak vs predicted �peak using RBFNN-GWO

Fig. 4  The measured �p vs predicted �p using RBFNN-GA

Fig. 5  The measured �p vs predicted �p using RBFNN-GWO

Fig. 6  The measured d vs predicted d using RBFNN-GA



S674 Engineering with Computers (2022) 38 (Suppl 1):S667–S678

1 3

deviation of the model for the three outputs. It is worth men-
tioning that in these two figures, some points having zero 
value of the output, mainly for the case of d , are not exhib-
ited as these points correspond to an infinite value of relative 
error. However, the points with a zero-value output are well 
exhibited in the previous cross plots and are mostly located 
nearby the unit slope line. As it can be seen in Fig. 9, the pre-
dictions of RBFNN-GWO follow a satisfactory distribution 
nearby the zero-error line. In addition, Fig. 9 clearly shows 
that a great part of the points is predicted by the established 
RBFNN-GWO with a low AARD. As a matter of fact, 80% 
of the points are predicted with AARD values of 0.96%, 9%, 
and 9.66% for �p , �peak and d , respectively. These two figures 
confirm the reliability of the proposed RBFNN-GWO in pre-
dicting the three outputs.

As mentioned earlier, the datasets used in this study 
were borrowed from Babanouri and Fattahi [1]. They 
have developed the support vector regression (SVR) 
model in combination with the biogeography-based opti-
mization (BBO) algorithm for the prediction of �p , �peak 
and d . They predicted the �p with R2 values of 0.890 and 
0.902 in training and testing phases, respectively, while, 
the RBFNN-GWO proposed in this study predicted the 
�p with R2 values of 1 and 0.960 in training and testing 
phases, respectively. These results signify superiority 
of RBFNN-GWO over SVR-BBO in prediction of �p in 
terms of performance measures. Moreover, Babanouri and 

Fattahi (2018) predicted the �peak with R2 values of 0.949 
and 0.888 in training and testing phases, respectively, 
while the proposed RBFNN-GWO predicted the same 
parameter with R2 values of 0.950 and 0.942 in training 
and testing phases, respectively. Thus, RBFNN-GWO was 
confirmed superior to SVR-BBO. On the other hand, the d 
parameter was predicted by Babanouri and Fattahi (2018) 
using SVR-BBO model with R2 values of 0.944 and 0.927 
in training and testing phases, respectively, while RBFNN-
GWO predicted it with R2 values of 0.997 and 0.949 in 

Fig. 7  The measured d vs predicted d using RBFNN-GWO

Fig. 8  The relative deviation of the predicted outputs using RBFNN-
GWO
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training and testing phases, respectively. These results 
showed the higher accuracy of RBFNN-GWO than SVR-
BBO in predicting d. Accordingly, it can be concluded that 
RBFNN-GWO outperforms SVR-BBO in terms of predic-
tion capacity. Additionally, the Taylor diagrams related 
to three output parameters are shown in Fig. 10. Based 
on this Fig, the RBFNN-GWO model predicted all output 
parameters with a better accuracy. In the present study, 
the sensitivity analysis is also performed using Yang and 
Zang’s [75] method through the following equation:

Fig. 9  Cumulative distribution of the absolute relative deviation of 
RBFNN-GWO

Fig. 10  The obtained Taylor diagrams related to a �p , b �peak and c d 



S676 Engineering with Computers (2022) 38 (Suppl 1):S667–S678

1 3

 
The values of rij are varied in range of zero to one, and 

indicate the impact of each input upon the output. In the 
modeling, five input parameters, i.e., JRC, JCS, E, �n and 
�b were used. Also, three parameters, i.e., d, �peak and �p 
were used as the output parameters. The results of sensitivity 
analysis are listed below.

• Regarding the first output (d), the values of rij for input 
parameters (JRC, JCS, E, �n and �b ) were equal to 0.951, 
0.794, 0.805, 0.676 and 0.824, respectively. Hence, JRC 
was the most effective parameter upon d.

• Regarding the second output ( �peak ), the values of rij for 
input parameters (JRC, JCS, E, �n and �b ) were equal 
to 0.834, 0.817, 0.842, 0.801 and 0.960, respectively. 
Hence, �b was the most effective parameter upon �peak.

• Regarding the third output ( �p ), the values of rij for input 
parameters (JRC, JCS, E, �n and �b ) were equal to 0.874, 
0.839, 0.855, 0.974 and 0.904, respectively. Hence, �n 
was the most effective parameter upon �p.

7  Conclusions

Accurate prediction of �peak , �p , and d is an important chal-
lenge in the field of rock discontinuities. The present study 
proposed two hybrid advanced machine learning models, 
namely RBFNN-GWO and RBFNN-GA, to predict the 
above-noted parameters. In other words, GWO and GA were 
used to optimize RBFNN model to see which one works 
better. To achieve the objective of this study, the required 
datasets were collected from an open source in the literature 
(Babanouri and Fattahi 2018). In this regard, the values of 
JRC, JCS, E, �n , �b , �peak , �p , and d were measured for 84 
direct shear tests. In modeling process, JRC JCS, E, �nand�b 
were considered as inputs, while �peak , �p , and d were set as 
outputs. The behaviors of both RBFNN-GWO and RBFNN-
GA models were evaluated calculating three statistical func-
tions, i.e., RMSE, R2, and MAE.

The conclusions drawn from this study are as follow. (1) 
While both proposed constitutive models, i.e., RBFNN-
GWO and RBFNN-GA, were capable of predicting the �peak , 
�p , and d, it was found that the RBFNN-GWO prediction 
performance was more accurate than that of RBFNN-GA. 
(2) A comparison was made between the performance of 
RBFNN-GWO presented in this study and SVR-BBO pro-
posed by Babanouri and Fattahi (2018), and according to the 
obtained results, the performance of RBFNN-GWO model 
was better than that of SVR-BBO for all output parameters 

(16)rij =

∑n

k=1

�
yik × yok

�

�∑n

k=1
y2
ik

∑n

k=1
y2
ok

.
in both training and testing phases. As an example, the SVR-
BBO model predicted �p with R2 values of 0.890 and 0.902 
in training and testing phases, respectively, while the val-
ues of R2 obtained from RBFNN-GWO model in training 
and testing phases were 1 and 0.960, respectively. (3) The 
RBFNN-GWO model proposed in this study may be applica-
ble to other prediction problems in the rock mechanic fields. 
(4) It can be also recommended to use other optimization 
algorithms such as Gradient Evolution Algorithm, Gravita-
tional Search Algorithm, Interior Search Algorithm, Joint 
Operations Algorithm, Locust Swarm Algorithm, and Sine 
Cosine Algorithm to optimize RBFNN model.
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