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Abstract
This paper presents the free vibration and buckling analyses of functionally graded carbon nanotube-reinforced (FG-CNTR) 
laminated non-rectangular plates, i.e., quadrilateral and skew plates, using a four-nodded straight-sided transformation 
method. At first, the related equations of motion and buckling of quadrilateral plate have been given, and then, these equations 
are transformed from the irregular physical domain into a square computational domain using the geometric transformation 
formulation via discrete singular convolution (DSC). The discretization of these equations is obtained via two-different 
regularized kernel, i.e., regularized Shannon’s delta (RSD) and Lagrange-delta sequence (LDS) kernels in conjunctions with 
the discrete singular convolution numerical integration. Convergence and accuracy of the present DSC transformation are 
verified via existing literature results for different cases. Detailed numerical solutions are performed, and obtained parametric 
results are presented to show the effects of carbon nanotube (CNT) volume fraction, CNT distribution pattern, geometry of 
skew and quadrilateral plate, lamination layup, skew and corner angle, thickness-to-length ratio on the vibration, and buck-
ling analyses of FG-CNTR-laminated composite non-rectangular plates with different boundary conditions. Some detailed 
results related to critical buckling and frequency of FG-CNTR non-rectangular plates have been reported which can serve 
as benchmark solutions for future investigations.

Keywords Geometric transformation · Discrete singular convolution · Carbon nanotube reinforced · Four-nodded element · 
Quadrilateral plates

1 Introduction

In modern engineering applications, structural components 
with different shapes are subjected to diverse mechanical 
conditions. Therefore, different behaviors such as stress, 
static, or dynamic buckling and free vibrations of structural 
elements have been largely studied till now [1–20]. Among 
these structural components, plates with different shapes, 
i.e., circular, annular, sector, trapezoidal, rectangular, tri-
angular, and skew types for different purposes, find many 
uses in different engineering designs such as aerospace and 
aeronautics, automobile, mechanical, and ship industries. 
Therefore, examining the buckling and vibrational behaviors 

of plates with different geometries gains importance. Hence, 
many studies have been presented to examine the mechani-
cal behaviors of various kinds of plates using different ana-
lytical and numerical approaches. Kitipornchai et al. [21] 
considered the elastic buckling of thick skew plate Ray-
leigh–Ritz method as a solution procedure. Liew et al. [22] 
used the shear deformation theory of Mindlin’s for modeling 
of the free vibration behavior of laminated plates with dif-
ferent geometry. Wang et al. [23] proposed a kind of Ray-
leigh–Ritz method for buckling analysis of thick plates as 
well as presented some detailed results supplied for Mindlin 
plates. Xiang et al. [24] examined the elastic buckling of 
skew Mindlin plates under shear loads using Rayleigh–Ritz 
method. Liew and Han [25] introduced a mapping technique 
to apply the differential quadrature method for bending 
analysis of plates in conjunction with the Reissner–Mindlin 
thick plate theory. Some detailed results on buckling and 
free vibration of skew fiber-reinforced composite laminates 
based on thin and thick plate theories have been investi-
gated by Wang [26–28] and detailed results are reported. 
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Anlas and Goker [29] studied the vibration of skew lami-
nated composite plates with simply supported and clamped 
edges using orthogonal polynomials and the Ritz method. 
Ferreira [30] analyzed the stability and bending of laminated 
composite plates using the multiquadric radial basis func-
tion in conjunctions with the meshless method. Meshless 
based radial basis functions and finite point formulation are 
discussed for static, stability, and vibration analysis of com-
posite plates with different geometries by Ferreira et al. [31, 
32]. Karami and Malekzadeh [33] applied the differential 
quadrature transformation to the vibration problem of plates. 
Civalek [34] proposed the differential quadrature and har-
monic differential quadrature methods for buckling analysis 
of plates with different shapes. Huang and Li [35] gave some 
detailed results about bending and buckling of anti-sym-
metric laminated plates via the first-order shear deforma-
tion theory and moving least square differential quadrature 
method. Liew et al. [36] employed a mesh-free radial basis 
function method for the buckling analysis of non-uniformly 
loaded thick plates. Leung et al. [37] proposed a trapezoidal 
p-element for vibration analysis of plates with quadrilateral 
shapes. Free vibration response of skew fiber-reinforced 
composite and laminates using a shear deformable finite-
element model is present by Garg et al. [38]. Civalek and 
Acar [39] analyzed the bending of Mindlin plates resting 
on two-parameter elastic foundations using the discrete sin-
gular convolution method. Free vibration analysis of plates 
with different shapes is presented by Civalek [40] using the 
harmonic and polynomial differential quadrature methods. 
Nguyen et al. [41] presented an iso-geometric finite-element 
formulation based on Bézier extraction of the non-uniform 
rational B-splines in combination with a generalized uncon-
strained higher order shear deformation theory for laminated 
composite plates. Kalita et al. [42] developed a structural 
optimization framework for frequencies of skew laminated 
plates with different boundary conditions and the number 
of layers by combining the high accuracy of finite-element 
method with iterative improvement capability of metaheuris-
tic algorithms. Mishra and Barik [43] gave the non-uniform 
rational B-spline augmented finite-element method for 
stability analysis of arbitrary thin plates. Alihemmati and 
Tadi Beni [44] developed the three-dimensional mesh-free 
Galerkin method for structural analysis of general polygonal 
geometries and the capability of the method is shown with 
the free vibration analysis of a general pentagon plate.

In engineering applications, the desired characteristics of 
structural members are being safety, functional, aesthetic, 
and affordability. The use of non-uniform, non-homogene-
ous, and reinforced elements is beneficial to ensure the said 
conditions, as well as the strength and structural efficiency, 
is increased, while the total cost and weight are reduced. 
Therefore, structural elements composed of composite 
materials have a wide range of utilizations, in the recent 

engineering applications. Fiber-reinforced composites are 
one of the composite materials that consist of fibers in a 
matrix and have major advantages over the conventional 
structural materials. They have a comprehensive range of 
applications as aircraft, wind turbines, racing bicycles, 
radar bonnets, rackets, cooling towers, and the automotive 
industry. To produce high performance structural and mul-
tifunctional composites for various potential applications, 
CNTs can be used as reinforcing constituents instead of con-
ventional fibers because of their superior properties such as 
high elastic modulus, tensile strength, and low density. The 
discovery of CNTs in 1991 Iijima [45] gave rise to accelerate 
the developments in nanotechnology. CNTs have received 
a great deal of attention due to the extraordinary mechani-
cal, chemical, thermal, physical, and electrical properties 
[46–54].

However, the applications of CNTs to the composites 
can be delayed because of the weak interfacial bonding 
between CNTs and matrix. This problem can be abolished 
using a new type of composites called functionally graded 
materials (FGMs), which are characterized with smooth and 
continuous variations in both compositional profiles. FGMs 
are inhomogeneous composite materials that occurring of 
two or more materials with different properties (as ceramic 
and metal) that the properties are changed gradually and 
continuously throughout one or more directions, i.e., height 
(traditional FGM), length (axially FGM), and both of them 
(bi-directional FGM) unlike in laminated composites. The 
concept of FGMs was first presented during a spacecraft pro-
ject as a thermal barrier material for propulsion and airframe 
structural systems of the spacecraft in 1984 by Japanese 
scientists [55]. Since then, structures made of FGMs in a 
variety of geometries like the rectangular, circular, ring, and 
annular sectors have been used extensively in space trans-
portation, nuclear reactors, defense industries, biomedicine, 
and chemical plants. For this reason, it is crucial to deter-
mine the mechanical behaviors of structures made of FGMs. 
Consequently, a number of studies have been performed on 
this topic by different researchers [56–91].

With the development of modern industries and different 
engineering applications, FGMs and CNTs are started to 
use together for creating a novel type of composites named 
functionally graded carbon nanotube-reinforced composites 
(FG-CNTRC) which has superiorities of both materials. 
Then, several studies have been performed to examine the 
mechanical responses of FG-CNTRCs. Some fundamen-
tal formulation and benchmark results have been given by 
Shen [92, 93] and Shen and Zhang [94]. Aragh et al. [95] 
developed Eshelby–Mori–Tanaka approach for vibration 
analysis of continuously graded CNTR cylindrical panels. 
Malekzadeh et al. [96] presented the buckling analysis of 
FG arbitrary straight-sided quadrilateral plates rested on 
the two-parameter elastic foundation under in-plane loads. 
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Static and free vibration modeling of CNTRC plates with the 
first-order shear deformation plate theory is studied using 
FEM by Zhu et al. [97]. Alibeigloo and Liew [98] exam-
ined the bending behavior of the FG-CNTRC plate using 
the theory of elasticity by the three-dimensional theory of 
elasticity and state-space method under thermal loading. 
Lei et al. [99–102] studied on the dynamic analysis of FG-
CNTRC plates via kp-Ritz method, in detail. Malekzadeh 
and Heydarpour [103] applied the Navier-layerwise differen-
tial quadrature method for three-dimensional static and free 
vibration analysis of FG-CNTRC laminated plates. Some 
detailed parametric results are presented also for CNTR 
plates and panels by Zhang et al. [104, 105]. Malekzadeh 
and Shojaee [106] performed the buckling analysis of quad-
rilateral laminated plates with CNTRC. Tounsi et al. [107] 
analyzed the thermal buckling of double-walled CNTR 
beams. Malekzadeh and Zarei [108] gave some benchmark 
results on free vibration of FG composites and CNTRC 
plates. Lei et al. [109] applied the element-free meshless 
method for buckling analysis of functionally graded CNTRC 
skew plates on elastic foundations. Previous studies on FGM 
composites and CNTRC plates and shells are reviewed by 
Liew et al. [110]. Zhang et al. [111–116] performed the 
buckling, post-buckling vibration analyses of CNTRC plates 
with diverse shapes. Free vibration analysis of thick FG-
CNTRC plates with arbitrary geometry based on the HSDT 
and FSDT is presented by Ansari et al. [117, 118] using the 
differential quadrature method. Garcia-Madias et al. [119] 
gave an efficient finite-element method in conjunctions with 
the Hu–Washizu principle for static and dynamic analysis of 
skew plates for CNTRC material. Kiani [120–122] examined 
the free vibration of functionally graded CNTR several types 
of composite plates under different loadings. Lei et al. [123] 
discussed the effects of foundation parameters on vibrational 
behavior CNTRC thick quadrilateral Plplates. Free vibration 
and buckling responses of a pressurized FG-CNTR conical 
shell under axial compression are analyzed using harmonic 
differential quadrature method by Mehri et al. [124]. Mirzaei 
and Kiani [125] used the Ritz method with Chebyshev basis 
polynomials for vibration analysis of FGCNTRC plates with 
cutout. Setoodeh and Shojaee [126] employed a transformer 
weighting differential quadrature method to the nonlinear 
free vibration problem of CNTRC quadrilateral plates. Tor-
nabene et al. [127] examined the effect of agglomeration on 
the natural frequencies of FG-CNTR laminated composite 
shells. Kiani [128] examined the shear buckling response 
of CNTRC rectangular plates in the thermal environment. 
Wu and Li [129] proposed a general three-dimensional 
model for frequencies of FGM CNTRC plates with various 
boundary conditions. Thermo-mechanical buckling analysis 
of embedded FG-CNTRC truncated conical shells is per-
formed by Duc et al. [130]. Fantuzzi et al. [131] discussed 
bending analysis for laminated nanocomposite plates via 

shear deformable plate theory. Thermo-mechanical stability 
response of sandwich nanocomposite plates with FG-CNTR 
layers surrounded by an elastic matrix subjected to the mag-
netic field is investigated based on the parabolic shear defor-
mation plate theory by Shokravi [132]. In another study, 
the mechanical response of CNTRC skew laminated plates 
under a transverse dynamic load is perused by Zhang and 
Xiao [133]. Mehar and his coauthors [134–137] examined 
the large amplitude–frequency, bending, and free vibration 
responses of CNTRC structures in the thermal environment 
are examined by the finite-element method. The effective 
material properties of the structure are estimated accord-
ing to the Mori–Tanaka approach. Kiani and Mirzaei [138] 
investigated the shear buckling behavior of FG-CNTRC 
plates with the aid of the Ritz method. Nguyen-Quang et al. 
[139] proposed an extension of the iso-geometric approach 
for the dynamic response of laminated carbon CNTRC plates 
integrated with piezoelectric layers. Zghal et al. [140] ana-
lyzed the free vibration of FG-CNTRC shell structures. 
Ebrahimi et al. [141] investigated the free vibration response 
of sandwich plates with porous electro-magneto-elastic func-
tionally graded materials as face sheets and FG-CNTRC as 
the core. Mallek et al. [142] presented a geometrically non-
linear finite shell element to predict the nonlinear dynamic 
behavior of piezolaminated FG-CNTRC shell, to enrich the 
existing research results on FG-CNTRC structures. Tor-
nabene et al. [143] proposed a multiscale approach for the 
analysis of three-phase CNT/polymer/fiber laminates. Free 
vibration analysis of CNTR magneto-electro-elastic plates 
is examined by Vinyas [144] via the finite-element method.

In this paper, the free vibration and buckling analyses 
of FG-CNTR laminated non-rectangular plates, i.e., quad-
rilateral and skew plates, are performed using a four-nod-
ded straight-sided transformation method. The geometric 
transformation of the DSC method is used to coordinate 
transformation from the physical domain to the computa-
tional domain. Besides, two-different singular kernels are 
used to the discretization of a singular convolution. After 
convergence and comparative studies, some detailed para-
metric results have been obtained for frequencies and buck-
ling loads of non-rectangular plates for various lamination 
schemes, CNT distributions, geometric parameters of plates, 
CNT volume fraction numbers, skew angles, loading, and 
different plate edge conditions. To the best knowledge of 
authors, this is the first attempt in which the DSC coordi-
nate transformation has been applied for free vibration and 
buckling analysis of functionally graded composites and 
CNTR laminated composite plates with the non-rectangular 
domain.
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2  Material properties of FG‑CNTR laminated 
composite plates

Figure 1 shows arbitrary straight-sided laminated non-rec-
tangular plates made of perfectly bonded FG-CNTR. It is 
assumed that the material properties vary along the thick-
ness direction. To estimate the material properties of FG 
structures, several rules of the mixture are developed like 
power-law, exponential, sigmoid, and Mori–Tanaka homog-
enization scheme as [145–147]:

Exponential:

Mori–Tanaka scheme:

In view of Eqs. (4a) and (4b), Young’s modulus and Pois-
son’s ratio can be given as:

where Pm and Pc are the volume fraction of constituents 
at the upper ( z = −h∕2 ) and the lower ( z = h∕2) surfaces 
of the structure, respectively. K(z) and �(z) are, respectively, 
the effective bulk and shear modulus. Also, k represents the 
material property gradient index and the subscripts c and m 
stand the ceramic and metal phase, respectively. The dis-
tributions of CNTs through the thickness direction of FG-
CNTR laminated non-rectangular plates are defined with 

(3)P(z) = Pm exp
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Fig. 1  The geometry of arbitrary straight-sided FG-CNTR laminated 
non-rectangular plates

Fig. 2  The distributions of CNTs through the thickness direction of 
FG-CNTR laminated non-rectangular plates
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uniform distribution (UD) and three types of FG distribu-
tions (FG-O, FG-V, and FG-X), as shown in Fig. 2. The 
volume fractions of said distributions are as follows [92, 93]:

V∗
CNT

   is the volume fraction of CNT which can be 
described as:

Here, mCNT, ρCNT and ρm denote the mass fraction of 
CNTs, and the densities of CNTs and matrix, respectively; 
and Vm is the volume fraction of the matrix. Additionally, the 
properties of FG-CNTRC can be described as:

where E11, E22, G12 and v12 are the effective Young’s modu-
lus, shear modulus, and Poisson’s ratio of FG-CNTR layer, 
respectively; ECNT

11
,ECNT

22
,GCNT

12
 , and �CNT

12
 are Young’s modu-

lus, shear modulus, and Poisson’s ratio of CNTs, respec-
tively; �1, �2 and �3 are the efficiency parameters of CNTs; 
Em and vmare Young’s modulus and Poisson’s ratio of matrix, 
respectively.

3  The method of discrete singular 
convolution

Effective and fast numerical solution of mathematical phys-
ics and engineering problems is of significant interest and 
important for numerical discretization of physical problems 
modeling. The method of DSC has become a preferred 
method by many researchers in recent 10 years due to its 
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simplicity and fast convergence characteristics for different 
applications. Furthermore, the mathematical basis of the 
method of discrete singular convolution is older and based 
on the theory of distributions and the theory of wavelets 
[148, 149]. In different DSC applications, many DSC ker-
nels such as regularized Shannon’s delta (RSD), regular-
ized Dirichlet, regularized Lagrange, and regularized de 
la Vall´ee Poussin kernels were used in different applica-
tions in area of mathematical physics, computational fluid 
dynamics, and vibration problems in solid mechanics. The 
method of discrete singular convolution first used at the end 
of the 90 s by Wei and his coauthors [150–153], in which 
they have proposed some singular kernels, namely, Hilbert, 
Abel, and delta types, in some mathematical physics and 
computational mechanics problems. Then, the method of 
DSC has been utilized in different problems in the area of 
mathematical physics and computational solid and fluid 
mechanics [154–170]. It was completely shown and proven 
by many scientists in different areas via different examples 
that the method of discrete singular convolution (DSC) has 
good accuracy, easy for applications, efficiency, and rapid 
convergence. For a general definition of the method, let be 
consider a singular convolution as below [150]:

where T(t − x) is a singular kernel and η(t) as an element of 
the space of the test function. In application, singular kernels 
of delta type are generally used [152]:

Kernel T(x) = �(x) is important for the interpolation of 
surfaces and curves. With a sufficiently smooth approxima-
tion, it is more effective to consider a DSC [153]:

where F(t) is an approximation to F(t) and {xk}is a proper 
set of discrete points on which the Eq. (12) is well defined. 
During the regularization, two different kernels have been 
used in this study. These are Regularized Shannon’s Delta 
(RSD) kernel and Lagrange-delta sequence (LDS) kernel. 
Shannon’s kernel is regularized via below function:

Equation (13) can also be used to supply discrete approxi-
mations to the singular convolution kernels of the delta type:
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∫
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]
; 𝜎 > 0



S494 Engineering with Computers (2022) 38 (Suppl 1):S489–S521

1 3

where �Δ(x − xk) = Δ ��(x − xk) and superscript (n) denotes 
the nth-order derivative, and 2M + 1 is the computational 
bandwidth which is centered around x and is usually smaller 
than the whole computational domain. The essence of the 
DSC is that the partial derivative of a function f(x) and its 
derivatives with respect to the x coordinate at a grid point xi 
is approximated by a linear sum of discrete values f (xk) in 
a narrow bandwidth [x − xM, x + xM]. This can be expressed 
as [151]:

Second-order derivative at x = xi of the DSC kernels for 
directly is given as:

The discretized forms of Eq. (7) can then be expressed as:

When the regularized Shannon’s kernel (RSK) is used, 
the detailed expressions for �Δ,�(x) , �
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(x),�(3)Δ,�
(x) 

and �(4)Δ,�
(x) can be easily obtained for xxk. For example, the 

first- and second-order derivatives are given as [164]:
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Lagrange-delta sequence (LDS) kernel is defined for 
i = 0,1,…, N−1 and j = −M,…,M and given via below func-
tion [151, 153, 164, 167, 168]:

Here, W (n)

i,j
 are the weighting coefficients and these coef-

ficients for the first derivative can be given as:

The weighting coefficients for higher order derivatives 
are also defined as:

for i = 0,1,…, N−1 and j  = −M ,…,M, j ≠ 0, and 
n = 2,3,…,2 M:
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Using uniform N grid points for the computational 
domain x0 < …. < xN−1, with a total of 2 M fictitious grid 
points, x−M < …. < x−1 and xN < …. < xN−1+M, that is:

When Lagrange kernel is used, related derivatives can 
also be given as:

4  Four‑nodded transformation

The field of arbitrary straight-sided FG-CNTR laminated 
non-rectangular plate in the Cartesian x–y-coordinate can be 
mapped into that for the natural— plane, as shown in Fig. 3. 
Using the transformation equations, the physical domain can 
be mapped into the computational domain as:

where xi and yi are the coordinates of node i in the physi-
cal domain, N is the number of grid points, and Φi(�, �) ; 
i = 1,2,3,…,N are the interpolation or shape functions. Inter-
polation function can be defined as:

After the well-known chain rule, related differential 
derivatives of this function can be written as:

(25)xi = x0 +iΔx, i = −M,… ,N − 1 +M

(26)�
(1)

Δ,�
(x) =

M∑
i=−M;i≠k

(
1

xk − xi

) i+M∏
i=−M,k≠i

x − xi

xk − xi

(27)

�
(2)

Δ,�
(x) =

M∑

i,m = −M;i ≠ k

m ≠ k, i ≠ m

(
1

(x − xi)(x − xm)

) i+M∏
i=−M,k≠i

x − xi

xk − xi
.

(28)x =

N∑
i=1

xi Φi(�, �) and y =

N∑
i=1

y
i Φi(�, �),

(29)Φi(�, �) =
1

4
(1 + � �i)(1 + � �i).

where ξi and ηi are the coordinates of node i in the ξ−η 
plane, and Jij are the elements of the Jacobian matrix. These 
are expressed as follows:

Using this transformation, related derivatives with respect 
to the –x and y-coordinate can be written, respectively, as:

or

(30a)
{

ux
uy

}
= [J11]

−1

{
u�
u�

}

(30b)

⎧
⎪⎨⎪⎩

uxx
uyy
2 uyx

⎫
⎪⎬⎪⎭
= [J22]

−1

⎧
⎪⎨⎪⎩

u��
u��
2 u��

⎫
⎪⎬⎪⎭
− [J22]

−1[J21][J11]
−1

�
u�
u�

�
,

(31)[J11] =

�
x� y

�

x� y
�

�
, [J21] =

⎡
⎢⎢⎣

x�� y
��

x�� y
��

x�� y
��

⎤
⎥⎥⎦

(32)[J22] =

⎡⎢⎢⎣

x�
2 y

�
2 x� y�

x�
2 y

�
2 x� y�

x� x� y
�
y
�

1

2
(x� y� + x� y�)

⎤⎥⎥⎦
.

(33)�2w

�x2
=

M∑
i=−M

�
(2)

Δ,�
(kΔx)wik

(34)
�2w

�y2
=

M∑
j=−M

�
(2)

Δ,�
(kΔy)wjk

(35)

⎧⎪⎪⎨⎪⎪⎩

�2w

�x2

�2w

�y2

�2w

�x�y

⎫
⎪⎪⎬⎪⎪⎭

=
�
J
22

�−1
⎧
⎪⎪⎨⎪⎪⎩

�2w

��2

�2w

��2

�2w

����

⎫
⎪⎪⎬⎪⎪⎭

−
�
J
22

�−1�
J
21

� �
J
11

�−1
⎧⎪⎨⎪⎩

�w

��

�w

��

⎫⎪⎬⎪⎭
.

Fig. 3  The coordinate transfor-
mation: a physical domain b 
computational domain
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The discrete form of the second-order derivatives with 
respect to the –x and y-coordinate can be written respec-
tively, as:

5  Buckling of FG‑CNTR laminated 
non‑rectangular plates

5.1  Thin isotropic plate

The related governing equation for buckling of thin FG-
CNTR plate is given as:

D is the rigidity of FG-CNTR plate, h is the thickness, Nx 
and Ny are the applied compressive loads in the x and y direc-
tions, respectively, Nxy is the shear forces, w is the deflection, 
and x and y are the mid-plane Cartesian coordinate. We can 
define the below differential operators for brevity:

and

Thus, the fourth-order derivatives can be given in terms 
of the second-order derivatives, that is:

(36)�2w

�x2
= [J22]

−1

M∑
i=−M

�
(2)

Δ,�
(kΔ�)wik − [J22]

−1[J21][J11]
−1

M∑
i=−M

�
(1)

Δ,�
(kΔ�)wik

(37)�2w

�y2
= [J22]

−1

M∑
i=−M

�
(2)

Δ,�
(kΔ�)wjk − [J22]

−1[J21][J11]
−1

M∑
i=−M

�
(1)

Δ,�
(kΔ�)wjk

(38)

�2w

�x�y
= [J22]

−1

M∑
i=−M

�
(1)

Δ,�
(kΔ�)wik

M∑
i=−M

�
(1)

Δ,�
(kΔ�)wjk

−[J22]
−1[J21][J11]

−1

M∑
i=−M

�
(1)

Δ,�
(kΔ�)wjk.

(39)

D

(
�4w

�x4
+ 2

�4w

�x2�y2
+

�4w

�y4

)
− Nx

�2w

�x2
− Ny

�2w

�y2
− 2Nxy

�2w

�x�y
= 0.

(40)ℜ =
�2W

�X2

(41)S =
�2W

�Y2
.

(42)�4W

�X4
=

�2

�X2
ℜ

(43)�4W

�Y4
=

�2

�Y2
S

Consequently, related derivatives in the computational 
domain can be listed for related derivations:

Using the differential operators for fourth-order state-
ments in Eq. (39), the normalized governing equation takes 
the following form:

Employing the transformation rule, the governing 
Eq. (52) then becomes:

(44)
�4W

�X2�Y2
=

�2

�X2

[
�2w

�Y2

]
=

�2

�X2
S.

(45)
�W

�X
= [J11]

−1 �W

��

(46)
�W

�Y
= [J11]

−1 �W

��

(47)
�2W

�X2
= [J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

(48)
�2W

�Y2
= [J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

(49)
�4W

�X4
=

�2ℜ

��2
= [J22]

−1 �
2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

(50)
�4W

�Y4
=

�2S

��2
= [J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��

(51)

�4W

�X2�Y2
=

�2S

�X2
= [J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��
.

(52)

�2ℜ

�X2
+ 2

�2S

�X2
+

�2S

�Y2

−Nx

�2w

�x2
− Ny

�2w

�y2
− 2Nxy

�2w

�x�y
= 0.
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The discretized governing equations are given by:

Now introducing:

where ∇2 is the Laplace operator. Thus, fourth-order equa-
tion takes the following simple form:

Substituting Eqs. (54) into Eq. (56), and using the fourth-
order operator, we find:

(53)

[J22]
−1 �

2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

+2

(
[J22]

−1 �
2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

)

+

(
[J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��

)

−Nx

(
[J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

)

−Ny

(
[J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

)
− 2Nxy

(
[J22]

−1 �
2W

����

)
= 0.

(54)

[J22]
−1

[
M∑

k=−M

�
(2)

Δ,�
(kΔ�)ℜkj +2

M∑
k=−M

�
(2)

Δ,�
(kΔ�)ℜik +

M∑
k=−M

�
(2)

Δ,�
(kΔ�) Sik

]

−[J22]
−1[J21][J11]

−1

(
M∑

k=−M

�
(1)

Δ,�
(kΔ�)ℜkj +2

M∑
k=−M

�
(1)

Δ,�
(kΔ�)ℜik +

M∑
k=−M

�
(2)

Δ,�
(kΔ�) Sik

)

−Nx

(
[J22]

−1

M∑
k=−M

�
(2)

Δ,�
(kΔ�)Wkj −2[J22]

−1[J21][J11]
−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wkj

)

−NY

(
[J22]

−1

M∑
k=−M

�
(2)

Δ,�
(kΔ�)Wik −2[J22]

−1[J21][J11]
−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wik

)

−2Nxy

(
[J22]

−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wik

)
= 0.

(55)∇2(∙) =
�2(∙)

�x2
+

�2(∙)

�y2
,

(56)∇4(W��) = ∇2∇2(W��).

(57)

(
[J22]

−1

[
M∑

k=−M

�
(2)

Δ,�
ℑ

]
− [J22]

−1[J21][J11]
−1

[
M∑

k=−M

�
(1)

Δ,�
Ξ

]

×[J22]
−1

[
M∑

k=−M

�
(2)

Δ,�
ℑ

]
− [J22]

−1[J21][J11]
−1

[
M∑

k=−M

�
(1)

Δ,�
Ξ

])

−Nx(G�) − Ny(G�) − 2Nxy(G��) = 0.

For convenience and simplicity, the following new vari-
ables have been used in the above equations:

in which the G� ,G� and G�� take the following values:

(58)ℑ(W��) = (kΔ�)ℜ2
kj
+2(kΔ�)S2

kj
+ (kΔ�)S2

kj

(59)Ξ(W��) = (kΔ�)ℜkj +2(kΔ�) Skj +(kΔ�) Sik,
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We have the following equation for buckling:

For the computations, simply supported and clamped 
edges are considered.

Simply supported edge (S)

Clamped edge (C)

Here, n and s denote the normal and tangential directions 
of the plate, respectively. It is known that proper boundary 
conditions must be satisfied to obtain a unique solution for 
a differential equation. For this purpose, consider a uniform 
grid having the following form:

Consider a column vector W given as:

w i t h  (Nx + 1)(Ny + 1)  e n t r i e s 
Wi,j = W(Xi, Yj); (i = 0, 1, ...,Nx; j = 0, 1, ...,Ny)  .  L e t 
us define the (Nx + 1)(Ny + 1) differentiation matrices 
Dn

r
(r = X, Y;n = 1, 2, ...) , with their elements are given by:

where �(n)
�,Δ

(ri − rj), (r = x, y) is a DSC kernel of delta type. 
For RSD kernel, the differentiation in Eq. (51) can be given 
by:

(60)

G� =

(
[J22]

−1

M∑
k=−M

�
(2)

Δ,�
(kΔ�)Wkj −2[J22]

−1[J21][J11]
−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wkj

)

G� =

(
[J22]

−1

M∑
k=−M

�
(2)

Δ,�
(kΔ�)Wik −2[J22]

−1[J21][J11]
−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wik

)

G�� =

(
[J22]

−1

M∑
k=−M

�
(1)

Δ,�
(kΔ�)

M∑
k=−M

�
(1)

Δ,�
(kΔ�)Wik

)
.

(61)(D4
𝜉
⊗ I𝜂 + 2D2

𝜉
⊗ D2

𝜂
+ I𝜉 ⊗ D4

𝜂
)W = 𝜆W.

(62)W = 0, −D

(
�2W

�n2
+ �

�2W

�s2

)
= 0.

(63)W = 0,
�W

�n
= 0.

(64)0 = X0 < X1 < ⋯ < XNx
= 1

(65)0 = Y0 < Y1 < ⋯ < YNy
= 1

(66)W = (W0,0, ...W0,N ,W1,0, ...WN,N)
T

(67)[D(n)
x
]i,j = �

(n)

�,Δ
(xi − xj)

(68)[D(n)
y
]i,j = �

(n)

�,Δ
(yi − yj),

In this stage, we consider the following relation between 
the inner nodes and outer nodes on the left boundary:

or

After rearrangement, one obtains:

where parameter ai, (i = 1, 2, ...,M) can be determined by 
the boundary conditions. Thus, the first- and second-order 
derivatives of W  on the left boundary are approximated by:

Similarly, the first- and second-order derivatives of f  on 
the right boundary (at XN−1 ) are approximated by:

or

(69a)[D(n)
x
]i,j = �

(n)

�,Δ
(xi − xj) =

[(
d

dx

)n

�
�,Δ

(x − xj)

]

x=xi

(69b)[D(n)
y
]i,j = �

(n)

�,Δ
(yi − yj) =

[(
d

dy

)n

�
�,Δ

(y − yj)

]

y=yi

.

(70)W(X−i) −W(X0) = ai[W(Xi) −W(X0)],

(71)

W(X−i) −W(X0) = W(X0)

(
J∑
j=0

aiX−i

)
[W(Xi) −W(X0)].

(72)W(X−i) = aiW(Xi) + (1 − ai)W(X0),

(73a)

W �(X0) =

(
�
(1)

�,Δ
(Xi − X0) −

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)

)
W(X0)

+

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)W(Xi)

(73b)

W ��(X0) =

(
�
(2)

�,Δ
(Xi − X0) +

J∑
j=0

(1 − ai)�
(2)

�,Δ
(Xi − Xj)

)
W(X0)

+

J∑
j=0

(1 + ai)�
(2)

�,Δ
(Xi − Xj)W(Xi).

(74)W(XN−1+i) −W(XN−1) = ai[W(XN−1−i) −W(XN−1)],
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Consequently, we obtain the following relation:

Hence, the first- and second-order derivatives of f  on the 
right boundary are given by:

For simply supported boundary conditions, the related 
equations are given by:

As stated by Wei and coauthors [150–153], Eq. (78) is 
satisfied by choosing ai = −1 for i = 1,2,…,M,. This is called 
the anti-symmetric extension. For clamped edge, similar 
statements can be given as:

Also, these equations given by (80) are satisfied by choos-
ing ai = 1 for i = 1,2,…,M,. This is called the symmetric 
extension. Thus, DSC form of the related boundary condi-
tions can be given as below:

i) For simply supported edge (S):

(75)

W(XN−1+i) −W(XN−1) = W(XN−1−i)

(
J∑
j=0

aiX−i

)
[W(Xi) −W(XN)].

(76)W(XN−1+i) = aiW(XN−1−i) +W(XN−1)[1 − ai].

(77)

W �(XN−1) =

(
�
(1)

�,Δ
(Xi − XN−1) −

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)

)
W(XN−1)

+

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)W(Xi)

(78)

W ��(XN−1) =

(
�
(2)

�,Δ
(Xi − XN−1) +

J∑
j=0

(1 − ai)�
(2)

�,Δ
(Xi − Xj)

)
W(XN−1)

+

J∑
j=0

(1 + ai)�
(2)

�,Δ
(Xi − Xj)W(Xi).

(79)W(X0) = 0, W ��(X0) = 0.

(80)W(X0) = 0, W �(X0) = 0.

(81)Wij = 0

(82)

−

(
�
(2)

�,Δ
(Xi − X0) +

J∑
j=0

(1 − ai)�
(2)

�,Δ
(Xi − Xj)

)
W(X0)

+

J∑
j=0

(1 + ai)�
(2)

�,Δ
(Xi − Xj)W(Xi)

+�

{(
�
(2)

�,Δ
(Yi − Y0) +

J∑
j=0

(1 − ai)�
(2)

�,Δ
(Yi − Yj)

)
W(Y0)

+

J∑
j=0

(1 + ai)�
(2)

�,Δ
(Yi − Yj)W(Yi)

}
= 0.

ii) For clamped edge (C):

Thus, Eq. (61) is rewritten as:

Here, I� and I� are the (Nr + 1)2; (r = �, �) unit matrix and 
⊗ denotes the tensor product:

5.2  Thick laminated plate

Based on the first-order shear deformation theory, the gov-
erning equations for buckling of FG-CNTR thick plates are 
given as:

Here, Nx,Nxy and Ny are the in-plane applied forces. Also, 
mass inertias are given as:

(83)Wij = 0

(84)

(
�
(1)

�,Δ
(Xi − XN−1) −

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)

)
W(XN−1)

+

J∑
j=0

(1 − ai)�
(1)

�,Δ
(Xi − Xj)W(Xi).

(85)(D∗4
𝜉
⊗ I𝜂 + 2𝜆2D∗2

𝜉
⊗ D∗2

𝜉
+ 𝜆4I𝜉 ⊗ D∗4

𝜉
)W = 𝜆W.

(86)W = (W1,1, ...W1,N−2,W2,1, ...WN−2,N−2)
T .

(87)

D11

�2�x

�x2
+ D66

�2�x

�y2
+ D16

�2�y

�x2
+ D26

�2�y

�y2
+ 2D16

�2�x

�x�y

(D12 + D66)
�2�y

�x�y
− kA45

(
�y +

�w

�y

)
− kA55

(
�x +

�w

�x

)
= 0,

(88)

D16

�2�x

�x2
+ D26

�2�x

�y2
+ D66

�2�y

�x2
+ D22

�2�y

�y2
+ 2D26

�2�y

�x�y

(D12 + D66)
�2�x

�x�y
− kA44

(
�y +

�w

�y

)
− kA55

(
�x +

�w

�x

)
= 0,

(89)

�

�x

[
kA45

(
�y +

�w

�y

)
+ kA55

(
�x +

�w

�x

)]

+
�

�y

[
kA44

(
�y +

�w

�y

)
+ kA55

(
�x +

�w

�x

)]
+ q(x, y)

+Nx

�2w

�x2
+ 2Nxy

�2w

�x�y
+ Ny

�2w

�y2
= 0.

(90)I0 =

h∕2

∫
−h∕2

�dz, I2 =

h∕2

∫
−h∕2

�z2dz.
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Here, ρ and h denote the density and total thickness of the 
plate, respectively. The bending moments and shear forces 
are given as:

As similar to thin plate, related Eqs. (87–89) have also 
been transformed via DSC method.

6  Free vibration of FG‑CNTR laminated 
non‑rectangular plates

6.1  Thick laminated plate

Using the shear deformation theory, governing equations of 
motion for free vibration of thick plate have been written as:

Related differential terms in Eqs. (96a–96c) can be 
defined as:

(91)Mx = D11

��x

�x
+ D12

��y

�y
+ D16

��y

�x
+ D16

��x

�y
,

(92)My = D12

��x

�x
+ D22

��y

�y
+ D26

��y

�x
+ D16

��x

�y
,

(93)My = D16

��x

�x
+ D26

��y

�y
+ D66

��y

�x
+ D16

��x

�y
,

(94)Qx = kA55

(
�x +

�w

�x

)
+ kA45

(
�y +

�w

�y

)
,

(95)Qy = kA45

(
�x +

�w

�x

)
+ kA44

(
�y +

�w

�y

)
.

(96a)L11(�x) + L12(�y) + L13(w) + L14 = L15(�x)

(96b)L21(�x) + L22(�y) + L23(w) + L24 = L25(�y)

(96c)L31(�x) + L32(�y) + L33(w) + L34 = L35(w).

(97)L11 = D11

�2

�x2
+ D66

�2

�y2
+ 2D16

�2

�x�y

(98)L12 = D16

�2

�x2
+ D26

�2

�y2
+ (D12 + D66)

�2

�x�y

(99)L13 = −kA45

�

�y
− kA55

�

�x

(100)L14 = −kA45�y − kA55�x

in which Aij and Dij are the stretching and bending stiff-
nesses, and k is the shear correction factor. Boundary con-
ditions are as follows:

• Simply supported (S)

(101)L15 = I2
�2

�t2

(102)L21 = D16

�2

�x2
+ D26

�2

�y2
+ (D12 + D66)

�2

�x�y

(103)L22 = D66

�2

�x2
+ D22

�2

�y2
+ 2D26

�2

�x�y

(104)L23 = −kA44

�

�y
− kA45

�

�x

(105)L24 = −kA44�y − kA45�x

(106)L25 = I2
�2

�t2

(107)L31 = kA55

�

�x
+ kA45

�

�y

(108)L32 = kA45

�

�x
+ kA44

�

�y

(109)L33 = kA55

�2

�x2
+ kA44

�2

�y2
+ 2kA45

�2

�x�y

(110)L34 = 0

(111)L35 = I0
�2

�t2
,

(112)w = 0

(113)

Mn = n2
x

[
D11

��x

�x
+ D12

��y

�y
+ D16

(
��x

�y
+

��y

�x

)]

+2nxny

[
D16

��x

�x
+ D26

��y

�y
+ D66

(
��x

�y
+

��y

�x

)]

+n2
y

[
D12

��x

�x
+ D22

��y

�y
+ D26

(
��x

�y
+

��y

�x

)]
= 0
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• Clamped (C)

• Free edge (F)

Following harmonic function is used before derivation:

Substituting Eqs. (119) into Eq. (96), we obtain the fol-
lowing discrete form:

(114)

Mns = (n2
x
− n2

y
)

[
D16

��x

�x
+ D26

��y

�y
+ D66

(
��x

�y
+

��y

�x

)]

+nxny

[
D12

��x

�x
+ D22

��y

�y
+ D26

(
��x

�y
+

��y

�x

)]

−nxny

[
D11

��x

�x
+ D12

��y

�y
+ D16

(
��x

�y
+

��y

�x

)]
= 0

(115)w = 0

(116)�n = nx�x + ny�y = 0

(117)�s = nx�y − ny�x = 0.

(118)Qn = 0

(119)

Mn = n2
x

[
D11

��x

�x
+ D12

��y

�y
+ D16

(
��x

�y
+

��y

�x

)]

+2nxny

[
D16

��x

�x
+ D26

��y

�y
+ D66

(
��x

�y
+

��y

�x

)]

+n2
y

[
D12

��x

�x
+ D22

��y

�y
+ D26

(
��x

�y
+

��y

�x

)]
= 0

(120)

Mns = (n2
x
− n2

y
)

[
D16

��x

�x
+ D26

��y

�y
+ D66

(
��x

�y
+

��y

�x

)]

+nxny

[
D12

��x

�x
+ D22

��y

�y
+ D26

(
��x

�y
+

��y

�x

)]

−nxny

[
D11

��x

�x
+ D12

��y

�y
+ D16

(
��x

�y
+

��y

�x

)]
= 0.

(121a)w(x, y, t) = W(x, y)ei�t

(121b)�x(x, y, t) = Ψx(x, y)e
i�t

(121c)�y(x, y, t) = Ψy(x, y)e
i�t.

(122a)T11(Ψx) + T12(Ψy) + T13(W) + T14 = T15

(122b)T21(Ψx) + T22(Ψy) + T23(W) + T24 = T25

In the above equations, discrete singular convolution-
based new differential operators are also listed below:

In the above coefficient, the discretization derivatives via 
DSC can be given as:

(122c)T31(Ψx) + T32(Ψy) + T33(W) + T34 = T35.

(123)T11 = D11Θ
2
x
+ D66Θ

2
y
+ 2D16Θ

2
xy

(124)T12 = D16Θ
2
x
+ D26Θ

2
y
+ (D12 + D66)Θ

2
xy

(125)T13 = −kA45Θy
− kA55Θx

(126)T14 = −kA45Ψy − kA55Ψx

(127)T15 = −I2�
2Ψx

(128)T21 = D16Θ
2
x
+ D26Θ

2
y
+ (D12 + D66)Θ

2
xy

(129)T22 = D66Θ
2
x
+ D22Θ

2
y
+ 2D26Θ

2
xy

(130)T23 = −kA44Θy
− kA45Θx

(131)T24 = −kA44Ψy − kA45Ψx

(132)T25 = −I2�
2Ψy

(133)T31 = kA55Θx
+ kA45Θy

(134)T32 = kA45Θx
+ kA44Θy

(135)T33 = kA55Θ
2
x
+ kA44Θ

2
y
+ 2kA45Θ

2
xy

(136)T34 = 0

(137)T35 = −I0�
2W.

(138)Θn
x
( ) =

�(n)( )

�x(n)
=

M∑
k=−M

�
(n)

Δ,�
(kΔx)( )i+k,j

(139)Θn
y
( ) =

�(n)( )

�y(n)
=

M∑
k=−M

�
(n)

Δ,�
(kΔy)( )i,j+k
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6.2  Thin isotropic plate

For free vibration analysis of the isotropic case, the govern-
ing equation can be given by:

The transverse displacement w for free vibration is taken 
as:

Substituting Eq. (143) into Eq. (142), one obtains the 
normalized equation:

where X = x∕a , Y = y∕b , � = a∕b , Ω2 = �ha4�2∕D . Now 
introducing:

where ∇2 is the Laplace operator. Thus, Eq. (144) takes the 
following simple form:

Consider the following differential operators before dis-
cretizing the governing differential equations:

Thus, the fourth-order derivatives can be given in terms 
of the second-order derivatives, that is:

(140)

Θ1
x
Θ(n−1)

y
( ) =

�(n)( )

�x�y(n−1)
=

M∑
k=−M

�
(1)

Δ,�
(kΔx)( )i+k,j

M∑
k=−M

�
(n−1)

Δ,�
(kΔy)( )i,k+j

(141)Θ(n−1)
x

Θ1
y
( ) =

�(n)( )

�x(n−1)�y
=

M∑
k=−M

�
(n−1)

Δ,�
(kΔx)( )i+k,j

M∑
k=−M

�
(1)

Δ,�
(kΔy)( )i,k+j.

(142)D

(
�4w

�x4
+ 2

�4w

�x2�y2
+

�4w

�y4

)
− �h

�2w

�t2
= 0.

(143)w(x, y, t) = W(x, y)eiwt.

(144)�4W

�X4
+ 2�2

�4W

�X2�Y2
+ �4

�4W

�Y4
= Ω2W,

(145)∇2(∙) =
�2(∙)

�X2
+ �2

�2(∙)

�Y2
,

(146)∇2∇2(WXY ) = Ω2W.

(147a)ℜ =
�2W

�X2

(147b)S =
�2W

�Y2
.

(148)�4W

�X4
=

�2

�X2
ℜ

(149)�4W

�Y4
=

�2

�Y2
S

(150)
�4W

�X2�Y2
=

�2

�X2

[
�2w

�Y2

]
=

�2

�X2
S.

After the transformation process, the following form can 
be given for the first-, second-, and the fourth-order deriva-
tives, respectively:

and

Using the differential operators in Eq. (152), the normal-
ized governing equation, i.e., Eq. (146), takes the following 
form:

or

Employing the transformation rule, the governing 
Eq. (154) becomes:

(151a)
�W

�X
= [J11]

−1 �W

��

(151b)
�W

�Y
= [J11]

−1 �W

��

(151c)
�2W

�X2
= [J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

(151d)
�2W

�Y2
= [J22]

−1 �
2W

��2
− [J22]

−1[J21][J11]
−1 �W

��

(152a)

�4W

�X4
=

�2ℜ

��2
= [J22]

−1 �
2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

(152b)
�4W

�Y4
=

�2S

��2
= [J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��

(152c)

�4W

�X2�Y2
=

�2S

�X2
= [J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��
.

(153)�2ℜ

�X2
+ 2�2

�2S

�X2
+ �4

�2S

�Y2
= Ω2W

(154)∇2(W��) = Ω2W.
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Finally, DSC analog of the governing equations as:

For convenience and simplicity, the following new vari-
able is introduced:

Such that the governing equations of plate for free vibra-
tion can be expressed by:

To obtain the discretized form of Eq. (158) in its natural 
coordinate, we apply Eq. (152) to below equation:

On substituting Eq. (158) into Eq. (159), the governing 
equation can now be given by:

(155)

[J22]
−1 �

2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

+2�2
(
[J22]

−1 �
2ℜ

��2
− [J22]

−1[J21][J11]
−1 �ℜ

��

)

+�4
(
[J22]

−1 �
2S

��2
− [J22]

−1[J21][J11]
−1 �S

��

)
= Ω2W.

(156)

[J22]
−1

[
M∑

k=−M

�
(2)

Δ,�
(kΔ�)ℜkj +2�

2

M∑
k=−M

�
(2)

Δ,�
(kΔ�)ℜik +�

4

M∑
k=−M

�
(2)

Δ,�
(kΔ�) Sik

]

−[J22]
−1[J21][J11]

−1

(
M∑

k=−M

�
(1)

Δ,�
(kΔ�)ℜkj +2�

2

M∑
k=−M

�
(1)

Δ,�
(kΔ�)ℜik

+�4
M∑

k=−M

�
(1)

Δ,�
(kΔ�) Sik

)
= Ω2Wij.

(157)ℑ = (kΔ�)ℜkj +2�
2(kΔ�)ℜik +�

4(kΔ�) Sik .

(158)

[J22]
−1

[
M∑

k=−M

�
(2)

Δ,�
ℑ

]
− [J22]

−1[J21][J11]
−1

[
M∑

k=−M

�
(1)

Δ,�
ℑ

]
= Ω2Wij.

(159)∇4(W��) = ∇2∇2(W��) = Ω2W.

(160)

(
[J22]

−1

[
M∑

k=−M

�
(2)

Δ,�
ℑ

]
− [J22]

−1[J21][J11]
−1

[
M∑

k=−M

�
(1)

Δ,�
ℑ

]

×[J22]
−1

[
M∑

k=−M

�
(2)

Δ,�
ℑ

]
− [J22]

−1[J21][J11]
−1

[
M∑

k=−M

�
(1)

Δ,�
ℑ

])
= Ω2Wij.

Therefore, the governing equation for free vibration is 
as follows:

If the obtained results are related to unsymmetrical cases, 
FSDT is used for vibration and buckling. These equations 
are briefly given below.

(161)(�4
𝜉
⊗ �𝜂 + 2𝜆2�2

𝜉
⊗ �

2
𝜂
+ 𝜆4�𝜉 ⊗ �

4
𝜂
)� = Ω2

�.

6.3  Buckling analysis

Based on the first-order shear deformation theory, the govern-
ing equations for buckling of laminated plates are given as:

where u, v and w are displacements in the x-, y-, and z-direc-
tions, respectively. u0 , v0 , and w0 denote displacements of 
mid-plane of the plate. z defines transverse coordinate. Also, 
the strain components of the plate are given as:

(162)

u(x, y, z, t) = u0(x, y, z, t) + z�x(x, y, z, t),

v(x, y, z, t) = v0(x, y, z, t) + z�y(x, y, z, t)

w(x, y, z, t) = w0(x, y, z, t),
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where �xx and �yy are axial strains. �xy , �xz and �yz are angular 
strains.

The second variation of total potential energy is written 
as:

where �xx and �yy are axial stresses. �xy , �xz and �yz are shear 
stresses. Also, �xx and �yy denote axial strains, �xy , �xz and �yz 
explain the shear strains. Resulting equations can be given 
as:

(163)

�xx =
�u0

�x
+ z

��x

�x
,

�yy =
�v0

�y
+ z

��yx

�y
,

�xy =
�u0

�y
+

�v0

�x
+ z

(
��x

�y
+

��y

�x

)
,

�yz =
�w0

�y
+ �y, �xz =

�w0

�x
+ �x,

(164)
𝛿2

∏
=

h∕2

∫
−h∕2

∫
A

[
𝜎xx𝛿𝜀xx + 𝜎yy𝛿𝜀yy + 𝜏xy𝛿𝛾xy + 𝜏xz𝛿𝛾xz + 𝜏yz𝛿𝛾yz +

�̂�xx

2
𝛿

(
𝜕w0

𝜕x

)2

+
�̂�yy

2
𝛿

(
𝜕w0

𝜕y

)2

+ 𝜏xy𝛿
𝜕w0

𝜕x

𝜕w0

𝜕y

]
dAdz,

(165a)A11

�2u0

�x2
+
(
A12 + A66

) �2v0
�x�y

+ A66

�2u0

�y2
+ B11

�2�x

�x2
+
(
B12 + B66

)�2�y

�x�y
+ B66

�2�x

�y2
= 0

(165b)A22

�2v0

�y2
+
(
A12 + A66

) �2u0
�x�y

+ A66

�2v0

�y2
+ B22

�2�y

�y2
+
(
B12 + B66

)�2�x

�x�y
+ B66

�2�y

�x2
= 0

(165c)A44

(
��y

�y
+

�2w0

�y2

)
+ A55

(
��x

�x
+

�2w0

�x2

)
− kWw0 + kP

(
�2w0

�x2
+

�2w0

�y2

)
= 0

(165d)
B11

�2u0

�x2
+
(
B12 + B66

) �2v0
�x�y

+ B66

�2u0

�y2
+ D11

�2�x

�x2
+
(
D12 + D66

)�2�y

�x�y
+ D66

�2�x

�y2

−A55

(
�x +

�w0

�x

)
= 0

(165e)
B22

�2v0

�y2
+
(
B12 + B66

) �2u0
�x�y

+ B66

�2v0

�x2
+ D22

�2�y

�y2
+
(
D12 + D66

)�2�x

�x�y
+ D66

�2�y

�x2

−A44

(
�y +

�w0

�y

)
= 0.

Here,

(166)

(
Aij,Bij,Dij

)
=

h∕2

∫
−h∕2

Cij

(
1, z, z2

)
dz (i, j = 1, 2, 6)

Aij = KS

h∕2

∫
−h∕2

Cijdz (i, j = 4, 5)

N̂ii =

h∕2

∫
−h∕2

�̂�iidz (i = x, y)

N̂ij =

h∕2

∫
−h∕2

𝜏ijdz (i = x, y).
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The in-plane and out-of-plane boundary conditions for 
arbitrary edges of plates:

where nx and ny are unit normal vector of the x- and y-axes, 
respectively.

The resultant forces and moments of FSDT plate can be 
written as follows:

where,

6.4  Vibration analysis

Using the same equations, vibration equations of laminated 
composite plates according to the FSDT are written as 
follows:

where u, v, and w are displacements in the x-, y-, and z- 
directions, respectively. u0 , v0 , and w0 denote displacements 
of mid-plane of the plate. z defines transverse coordinate. 
Also, the strain components of the plate are given as:

(167a)Either un = nxu0 + nyv0 is prescribed or Nnn = n2
x
Nxx + 2nxnyNxy + n2

y
Nyy = 0

(167b)Either us = −nyu0 + nxv0 is prescribed or Nns =
(
n2
x
− n2

y

)
Nxx − nxny

(
Nyy − Nxx

)
= 0

(167c)Either wis prescribed or Vn = Qxnx + Qyny = 0

(167d)Either �n = nx�x + ny�y is prescribed or Mnn = n2
x
Mxx + 2nxnyMxy + n2

y
Myy = 0

(167e)Either �s = −ny�x + nx�y is prescribed or Mns =
(
n2
x
− n2

y

)
Mxx + nxny

(
Myy −Mxx

)
= 0

(170)

⎧⎪⎨⎪⎩

Nxx

Nyy

Nxy

⎫⎪⎬⎪⎭
= A1�0 + B�,

⎧⎪⎨⎪⎩

Mxx

Myy

Mxy

⎫⎪⎬⎪⎭
= B�0 + D�,

�
Qx

Qy

�
= A2�0

(171)�0 =

⎧⎪⎨⎪⎩

�u0
�
�x

�v0
�
�x

�u0
�
�y + �v0

�
�x

⎫⎪⎬⎪⎭
, � =

⎧⎪⎨⎪⎩

��x

�
�x

��y

�
�x

��x

�
�y + ��x

�
�x

⎫⎪⎬⎪⎭
, �0 =

�
�x + �w0

�
�x

�y + �w0

�
�y

�
.

(172)

u(x, y, z, t) = u0(x, y, z, t) + z�x(x, y, z, t),

v(x, y, z, t) = v0(x, y, z, t) + z�y(x, y, z, t),

w(x, y, z, t) = w0(x, y, z, t),
The following equations are obtained by implementing 

Hamilton’s Principle to the total potential energy of plate:

(174)

�0 =

⎧
⎪⎨⎪⎩

�u0
�
�x

�v0
�
�x

�u0
�
�y + �v0

�
�x

⎫
⎪⎬⎪⎭
, � =

⎧
⎪⎨⎪⎩

��x

�
�x

��y

�
�x

��x

�
�y + ��x

�
�x

⎫
⎪⎬⎪⎭
,

�0 =

�
�x + �w0

�
�x

�y + �w0

�
�y

�
.

(175a)�u0 ∶
�Nxx

�x
+

�Nxy

�y
= I0

�2u0

�t2
+ I1

�2�x

�t2

where �xx and �yy are axial strains. �xy �xz and �yz are angular 
strains. Additionally, � is curvature. On the other hand:

(173)

⎧⎪⎨⎪⎩

�xx
�yy
�xy

⎫⎪⎬⎪⎭
= �0 + z�,

�
�xz
�yz

�
= �0,
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where kW and kP is presented the stiffness of Winkler and 
Pasternak elastic foundations, respectively. Nxx , Nyy and Nxy 
are in-plane forces. Mxx , Myy and Mxy explain the moments. 
Qx and Qy denote the transverse forces. Also, I0 , I1 and I2 
present the mass inertia moments. These expressions are 
defined as follows:

(175b)�v0 ∶
�Nyy

�x
+

�Nxy

�y
= I0

�2v0

�t2
+ I1

�2�y

�t2

(175c)

�w0 ∶
�Qx

�x
+

�Qy

�y
− kWw0 + kP

(
�2w0

�x2
+

�2w0

�y2

)
= I0

�2w0

�t2

(175d)��x ∶
�Mxx

�x
+

�Mxy

�y
− Qx = I1

�2u0

�t2
+ I2

�2�x

�t2

(175e)��y ∶
�Myy

�x
+

�Mxy

�y
− Qy = I1

�2v0

�t2
+ I2

�2�y

�t2
,

Fig. 4  The geometries of non-
rectangular plates: a quadrilat-
eral plate and b skew plate

Table 1  Comparison of frequency ( Ω = �a2∕�2
√
�h∕D ) of CCCC 

quadrilateral plates (b/a = 0.8; c/a = 0.7; h/a = 0.02; γ = 75; β = 70)

Modes Lei et al. [123] Present DSC

n Karunasena 
et al. [171]

11 × 9 11 × 11 13 × 11

1 4.283 4.288 4.2905 4.2903 4.2903
2 6.836 6.891 6.9008 6.9005 6.9004
3 7.309 7.311 7.3120 7.3117 7.3115

Table 2  Convergence of buckling load parameters ( � = Ncrb
2∕D�2 ) 

of thin isotropic skew plate with SSSS edge (a/b = 1; h/b = 0.001) 
under uni-axial compression

Skew 
angles (°)

Malekzadeh 
et al. [96]

9 × 11 11 × 11 11 × 13 13 × 13

DSC–Shannon’s Kernel
90 3.2637 3.2712 3.2708 3.2705 3.2705
75 3.5302 3.5323 3.5319 3.5317 3.5317
60 4.4341 4.4490 4.4486 4.4483 4.4483
45 6.0730 6.1113 6.1105 6.1102 6.1102
DSC–Lagrange-delta Kernel
90 3.2637 3.2725 3.2721 3.2719 3.2719
75 3.5302 3.5338 3.5329 3.5328 3.5328
60 4.4341 4.4523 4.4510 4.4508 4.4506
45 6.0730 6.1142 6.1133 6.1125 6.1125

Table 3  Comparison of critical 
buckling ( � = Nxb

2∕E�2h2 ) of 
laminated (45/−45/45/−45/45) 
FG-CNTR laminated 
quadrilateral plates (b/a = 0.8; 
c/a = 0.7; γ = 75; β = 70; 
VCNT = 0.17; UD-CNT) with 
SSSS edges under bi-axial 
loading

a/h Malekzadeh and Shojae [106] 11 × 11 11 × 13 13 × 13 15 × 13

Present DSC results—Shannon’s Kernel
5 11.3991 11.4271 11.4265 11.4263 11.4263
10 31.7184 32.0489 32.0486 32.0485 32.0485
50 78.5109 79.3703 79.3699 79.3697 79.3697
Present DSC results—Lagrange-delta Kernel
5 11.3991 11.4282 11.4278 11.4275 11.4275
10 31.7184 32.0498 32.0495 32.0492 32.0492
50 78.5109 79.3747 79.3743 79.3738 79.3738
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where Ks is shear correction factor. Resulting equations are 
as follows:

where,

(176)

(
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h∕2

∫
−h∕2

(
�xx, �yy, �xy

)
dz,
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(178)

(
Aij,Bij,Dij

)
=

h∕2

∫
−h∕2

Cij

(
1, z, z2

)
dz (i, j = 1, 2, 6),

(
Aij

)
=Ks

h∕2

∫
−h∕2

Cijdz (i, j = 4, 5).

7  Numerical results and discussion

This section aims to demonstrate the accuracy and conver-
gence of the present DSC transformation through free vibra-
tion and buckling analysis of thin and thick FG-CNTRC 
laminated plates with skew and quadrilateral shapes given 
in Fig. 4. First, convergence and comparative studies are car-
ried out to check the accuracy of the present DSC solutions 
for two kernels, in this section. Many available exact and 
numerical results in the literature are used for comparisons.
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At first, a convergence study has been made for isotropic 
case. In Tables 1 and 2, the convergence and accuracy of the 
first three non-dimensional natural frequencies of CCCC and 
SSSS supported the isotropic quadrilateral plates and buck-
ling of isotropic skew plates which are presented. In these 
tables, the results of two other numerical methods based on 
the differential quadrature (DQ) and finite-element methods 
(FEM) are also listed [123, 171]. The results converge as 
the number of grid points increases in each direction. It is 
also shown that the skew angles and h/a ratio are significant 
effect on the convergence of the results. An excellent con-
vergence trend for vibration and buckling with the increase 
in the number of grid points can be seen. The results have a 
closer agreement with the results of [96, 123, 171].

The numerical results for laminated (45/−45/45/−45/45) 
CNTR quadrilateral plates with clamped and simply sup-
ported edges with different grid numbers in each direction 

and different side-to-thickness ratio are tabulated in Tables 3 
and 4 via DSC methods based on Shannon’s kernel and 
Lagrange-delta kernel. In Table 3, a comparison between 
the critical buckling loads presented DSC results and critical 
buckling values for SSSS quadrilateral plates given by Male-
kzadeh and Shojae [106] have also shown. It is concluded 
from the table that the present numerical results for two dif-
ferent kernels are in close agreement with the literature. It 
is also shown that the convergence of the DSC–Shannon’s 
kernel is much better than the DSC–Lagrange-delta kernel. 
Another comparison study is related to the vibration prob-
lem of laminated (45/−45/45/−45/45) CNTR quadrilateral 
plates with clamped edges with different grid numbers in 
each direction and different modes are listed in Table 4. 
Results reported by Malekzadeh and Zarei [108] are also 
shown in Table 4 for comparison. It can be again observed 
from Table 4 that there is a very good agreement between 

Table 4  Comparison of frequency of ( Ω = �a2
√
�∕E

2
h2 ) of laminated (45/−45/45/−45/45) FG-CNTR laminated skew plates (h/a = 0.1; b/a = 1; 

α = 45; VCNT = 0.17; UD-CNT) with CCCC edges

Present DSC results—Shannon’s Kernel

Modes Malekzadeh and Zarei [108] 11 × 11 11 × 13 13 × 13 15 × 13

1 36.5173 36.5211 36.5203 36.5201 36.5201
2 51.6823 51.7004 51.6991 51.6989 51.6989
3 64.9648 65.0574 65.0567 65.0564 65.0564

Present DSC results—Lagrange-delta Kernel

a/h Malekzadeh and Zarei [108] 11 × 11 11 × 13 13 × 13 15 × 13

1 36.5173 36.5221 36.5212 36.5210 36.5210
2 51.6823 51.6921 51.6915 51.6913 51.6913
3 64.9648 64.9816 64.9808 64.9802 64.9802

Table 5  Frequency ( Ω = �a2∕�2
√
�∕E

2
h2 ) of angle-ply laminated (45/−45/45/−45) skew plates (h/a = 0.1; b/a = 1; α = 75; E1 /E2 = 40; E2 = E3; 

G12 = 0.6 E2; G13 = G23 = 0.5 E2; υ12 = υ13 = υ23 = 0.25)

Boundary conditions Modes Present DSC

9 × 9 11 × 11 13 × 11 13 × 13 15 × 13

SSSS 1 1.9404 1.9404 1.9402 1.9402 1.9402
2 3.4226 3.4225 3.4225 3.4225 3.4225
3 3.8810 3.8808 3.8805 3.8805 3.8805
4 4.4515 4.4513 4.4510 4.4510 4.4510
5 4.9921 4.9919 4.9917 4.9917 4.9917

Modes Present DSC

11 × 11 11 × 11 13 × 11 13 × 13 15 × 13

CCCC 1 2.4130 2.4128 2.4128 2.4128 2.4128
2 3.8623 3.8621 3.8619 3.8619 3.8619
3 4.2213 4.2212 4.2210 4.2210 4.2210
4 5.2814 5.2814 5.2811 5.2811 5.2811
5 5.9549 5.9548 5.9546 5.9546 5.9546
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the results confirming the accuracy of the DSC method. It is 
clearly shown from these tables that the present DSC method 
converges very fast as the number of grid points increases. It 
can also be clear that using Nx = 11 grid points in x-direction 
can convergence all modes for plates. Furthermore, reason-
able exact results have been obtained using the 13 grids in 
y-direction (Ny = 13). From the results shown in Tables 1, 
2, 3, 4, we find that when 13 × 13 grid density is used, the 
present results have a good agreement with the earlier study 
for vibration and buckling. The slight difference between our 
DSC results from the results given by reference approaches 
may result from different plate theories and different calcula-
tion schemes.

To investigate the effects of some parameters on the 
frequency values of angle-ply laminated (45/−45/..) skew 
plates, new analyses are made and presented in this sec-
tion. For this purpose, the following material properties are 
used: E1 /E2 = 40; E2 = E3; G12 = 0.6  E2; G13 = G23 = 0.5 E2; 
υ12 = υ13 = υ23 = 0.25. The effects of skew angles, thickness, 
boundary conditions, and modes are listed in Tables 5, 6, 7 
for laminated skew plates. It is concluded from these tables 
that increase in skew angle results in lower frequency val-
ues for all-type boundary conditions. It is found that the 
frequency parameter increases as the thickness of the plate 
increases. It is also interesting to note that the frequency 

Table 6  Frequency ( Ω = �a2∕�2
√
�∕E

2
h2 ) of angle-ply laminated (45/−45/45/−45/45) skew plates (h/a = 0.2; b/a = 1; E1 /E2 = 40; E2 = E3; 

G12 = 0.6 E2; G13 = G23 = 0.5 E2; υ12 = υ13 = υ23 = 0.25)

Present DSC results
SSSS boundary conditions

α Modes 11 × 11 13 × 13 13 × 15

60 1 2.0019 2.0014 2.0014
2 3.6410 3.6408 3.6408
3 4.2941 4.2937 4.2937
4 5.0838 5.0835 5.0835
5 6.2686 6.2681 6.2681

45 1 2.4898 2.4893 2.4893
2 4.2471 4.2467 4.2467
3 5.6028 5.6024 5.6024
4 5.6036 5.6032 5.6032
5 7.0530 7.0525 7.0525

Present DSC results
CCCC boundary conditions

α Modes 11 × 11 13 × 13 13 × 15

60 1 2.6754 2.6751 2.6751
2 4.1432 4.1428 4.1428
3 4.7465 4.7462 4.7462
4 5.5041 5.5037 5.5037
5 6.5686 6.5683 6.5683

45 1 3.3682 3.3680 3.3680
2 4.8265 4.8264 4.8264
3 6.0851 6.0849 6.0850
4 6.1364 6.1362 6.1362
5 7.4398 7.4395 7.4396
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values increased slowly with the increasing value of number 
of layers.

In Tables 8 and 9, the critical buckling load ratios for 
composite angle-ply laminated (45/−45/..) skew plates 
with different parameters under uni-axial and bi-axial 
loadings are presented for the values of h/a = 0.1; b/a = 1; 
E1 /E2 = 10; E2 = E3; G12 = 0.5 E2; G13 = G23 = 0.5 E2; 
υ12 = υ13 = υ23 = 0.33. It is shown that the critical load 
decreases with increasing the skew angles. It can be also 
seen that the critical buckling loads corresponding to 
clamped boundary conditions are higher than those based 
on the simply supported types of boundary conditions. Fur-
thermore, skew plates under uni-axial loads show the highest 
buckling loads compared to bi-axial loading for all types of 
boundary and ply number.

Variation of the values of the first three frequencies with 
two-different boundary conditions and two different DSC 
kernels for angle ply laminated (45/−45/45/−45/45) skew 
plates with different grid numbers is given in Table 10 for 
UD-CNT composites. It is clearly shown that the frequency 
values increase with the increasing of mode numbers.

To study the effects of CNT distributions,  VCNT num-
bers, skew angles, thickness-to-length ratio, and boundary 
conditions, on the vibration frequency of CNTR skew and 
quadrilateral plates, the frequency values of CNTR plates 
with clamped and simply supported edges are obtained and 
presented in Tables 11, 12, 13, 14, 15 for four types FG-CNT 
distribution. It can be concluded that the increase of volume 
fraction value of FG-CNT increases the frequency param-
eter for all case FG-CNT distribution under study. Among 

Table 7  Frequency ( Ω = �a2∕�2
√
�∕E

2
h2 ) of angle-ply laminated (45/−45/45/−45) skew plates (h/a = 0.2; b/a = 1; E1 /E2 = 40; E2 = E3; 

 G12 = 0.6 E2; G13 = G23 = 0.5 E2; υ12 = υ13 = υ23 = 0.25)

Present DSC results
SSSS boundary conditions

α Modes 11 × 11 13 × 13 13 × 15

60 1 2.1270 2.1263 2.1263
2 3.6281 3.6279 3.6279
3 4.3262 4.3258 4.3258
4 4.5937 4.5934 4.5934
5 5.0572 5.0569 5.0569

45 1 2.6804 2.6802 2.6802
2 3.2898 3.2896 3.2896
3 4.2936 4.2934 4.2934
4 5.6440 5.6438 5.6438
5 5.9210 5.9207 5.9207

CCCC boundary conditions

α Modes 11 × 11 13 × 13 13 × 15

60 1 2.7583 2.7582 2.7582
2 4.1371 4.1368 4.1368
3 4.9256 4.9253 4.9253
4 5.4541 5.4537 5.4537
5 6.6384 6.6382 6.6381

45 1 34,625 34,624 34,624
2 4.8327 4.8325 4.8325
3 6.1005 6.1002 6.1002
4 6.2586 6.2583 6.2583
5 7.3923 7.3922 7.3920
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the four possible cases of distribution patterns of FG-CNT 
across the plate thickness, FG-X CNTR plates always have 
the highest frequency parameters and FG-O CNTR plates 
have the lowest frequency parameters of the skew plate. It 
is also found that the frequency parameter increases as the 
thickness of the plate increases. Also, the frequency val-
ues decrease significantly as the skew angle of skew plate 
increases. Furthermore, the  VCNT distribution pattern plays 
a significant role in the frequency values of the plates. For 
frequency values of higher modes, the regularized Shan-
non’s delta kernel gives better results than the Lagrange-
delta sequence kernel.

Finally, some detailed results have been calculated via 
the DSC method for critical buckling loads of FG-CNTR 
laminated quadrilateral plates in Tables 16, 17, 18. These 
tables show the critical buckling loads of CCCC and SSSS 

laminated (45/−45/45/−45/45) CNTR quadrilateral plates 
under uni-axial and bi-axial loading. The results have been 
obtained for three different for two different VCNT distribu-
tion patterns and four different FG-CNT types. Among the 
different FG patterns of CNTs across the thickness, FG-X 
CNTR plates feature the highest values of buckling loads, 
while FG-O plates feature the lowest buckling loads. As also 
expected, quadrilateral plates under uni-axial loads show the 
highest buckling loads compared to bi-axial loading. As can 
be seen from the results, under the same material, geometric 
and CNT distributions, buckling loads of CCCC edges are 
always higher than SSSS edges. It is worth mentioning that 
an increased enrichment of CNTs within the matrix from 
0.11 to 0.17 yields to an increase of the buckling loads, for 
all loading conditions and CNT distributions.

Table 8  Critical buckling ( � = Nxb
2∕E�2h2 ) of angle-ply laminated skew plates (h/a = 0.1; b/a = 1; E1/E2 = 10; E2 = E3;  G12 = 0.5 E2; 

G13 = G23 = 0.5 E2; υ12 = υ13 = υ23 = 0.33) under uni-axial loading

Present DSC results for uni-axial loading (45/−45/45/−45)

Boundary conditions Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

CCCC 75 3.3623 3.3610 3.3594 3.3594 3.3594
60 3.5641 3.5621 3.5613 3.5612 3.5612
45 4.9632 4.9618 4.9610 4.9610 4.9610

Present DSC results for uni-axial loading (45/−45/45/−45)

Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

SSSS 75 2.0630 2.0628 2.0617 2.0617 2.0617
60 3.3382 3.3380 3.3369 3.3369 3.3369
45 3.8837 3.8835 3.8826 3.8826 3.8826

Present DSC results for uni-axial loading (45/−45)

Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

CCCC 75 2.3084 2.3077 2.3076 2.3074 2.3074
60 2.5852 2.5849 2.5811 2.5811 2.5811
45 3.0813 3.0810 3.0793 3.0793 3.0793

Present DSC results for uni-axial loading (45/−45)

Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

SSSS 75 1.9185 1.9181 1.9175 1.9173 1.9173
60 2.1904 2.1897 2.1892 2.1892 2.1892
45 2.7330 2.7328 2.7319 2.7319 2.7319
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Table 9  Critical buckling ( � = Nxb
2∕E�2h2 ) of angle-ply laminated skew plates (h/a = 0.1; b/a = 1; E1 /E2 = 10; E2 = E3; G12 = 0.5 E2; 

G13 = G23 = 0.5 E2; υ12 = υ13 = υ23 = 0.33) under bi-axial loading

Present DSC results for bi-axial loading (45/−45/45/−45)

Boundary conditions Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

CCCC 75 2.3382 2.3380 2.3371 2.3371 2.3371
60 2.5715 2.5713 2.5714 2.5703 2.5703
45 2.9298 2.9296 2.9283 2.9283 2.9283

Present DSC results for bi-axial loading (45/−45/45/−45)

Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

SSSS 75 1.7210 1.7208 1.7194 1.7194 1.7194
60 1.7221 1.7217 1.7211 1.7209 1.7209
45 1.9449 1.9446 1.9434 1.9435 1.9435

Present DSC results for bi-axial loading (45/−45)

Boundary conditions Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

CCCC 75 1.4283 1.4279 1.4276 1.4276 1.4276
60 1.6396 1.6390 1.6388 1.6384 1.6384
45 1.9934 1.9927 1.9920 1.9918 1.9918

Present DSC results for bi-axial loading (45/−45)

Boundary conditions Skew angles 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

SSSS 75 1.0750 1.0748 1.0738 1.0736 1.0736
60 1.0130 1.0126 1.0112 1.0112 1.0112
45 1.1342 1.1339 1.1326 1.1327 1.1327

Table 10  Frequency ( Ω = �a2
√
�∕Eh2 ) values of CNTR laminated (45/−45/45/−45/45) skew plates (h/a = 0.1; b/a = 1; VCNT = 0.17; α = 75)

Present DSC–Shannon’s Kernel

Boundary conditions Modes 9 × 11 11 × 11 11 × 13 13 × 13

CCCC 1 27.3592 27.3590 27.3586 27.3585
2 43.7277 43.7274 43.7270 43.7268
3 45.5615 45.5612 45.5604 45.5603

Present DSC–Lagrange-delta Kernel

Modes 9 × 9 11 × 9 11 × 13 13 × 13

CCCC 1 27.3616 27.3611 27.3608 27.3608
2 43.7298 43.7292 43.7284 43.7284
3 45.5623 45.5618 45.5612 45.5612

Present DSC—Shannon’s Kernel

Modes 9 × 9 11 × 9 11 × 13 13 × 13

SSSS 1 22.5748 22.5740 22.5736 22.5736
2 40.0029 40.0024 40.0023 40.0021
3 42.9114 42.9109 42.9107 42.9105

Present DSC—Lagrange-delta Kernel

Modes 9 × 9 11 × 9 11 × 13 13 × 13

SSSS 1 22.5762 22.5758 22.5755 22.5748
2 40.0048 40.0043 40.0041 40.0032
3 42.9129 42.9124 42.9119 42.9112
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Table 11  Frequency ( Ω = �a2
√
�∕Eh2 ) values FG-CNTR quadrilateral plates (b/a = 0.8; c/a = 0.7; γ = 75; β = 70; VCNT = 0.11; h/a = 0.02) with 

SSSS edges

Present DSC results—Shannon’s Kernel

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 UD 30.2841 30.2837 30.2835 30.2835
FG-O 23.6604 23.6596 23.6589 23.6589

2 UD 44.6740 44.6737 44.6731 44.6731
FG-O 37.4099 37.4096 37.4092 37.4092

3 UD 66.4442 66.4437 66.4432 66.4432
FG-O 60.6647 60.6645 60.6641 60.6641

Present DSC results—Lagrange-delta Kernel

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 UD 30.2852 30.2847 30.2841 30.2841
FG-O 23.6621 23.6603 23.6594 23.6594

2 UD 44.6754 44.6742 44.6738 44.6738
FG-O 37.4107 37.4118 37.4103 37.4103

3 UD 66.4460 66.4451 66.4446 66.4446
FG-O 60.6683 60.6668 60.6654 60.6654

Table 12  Fundamental frequency ( Ω = �a2
√
�∕Eh2 ) values FG-CNTR quadrilateral plates (b/a = 0.8; c/a = 0.7; γ = 75; β = 70; h/a = 0.02) with 

CCCC edges

Present DSC

VCNT CNT distributions 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

0.11 UD 64.0882 64.0880 64.0878 64.0875 64.0875
FG-V 56.9318 56.9316 56.9314 56.9312 56.9312
FG-X 72.1043 72.1042 72.1041 72.1037 72.1037
FG-O 51.6594 51.6594 51.6592 51.6590 51.6590

Present DSC

VCNT CNT distributions 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

0.17 UD 73.1056 73.1056 73.1053 73.1049 73.1049
FG-V 64.6190 64.6188 64.6185 64.6183 64.6183
FG-X 83.0765 83.0763 83.0764 83.0761 83.0761
FG-O 58.2052 58.2049 58.2048 58.2045 58.2045

8  Conclusions

This article is concerned with developing a discrete singular 
convolution formulation to perform the buckling and vibra-
tion analyses of FG-CNTR laminated non-rectangular plates 
within the framework of first-order shear deformation and 
classical plate theories. For this aim, the irregular physical 

domain for plates is transformed into a regular computa-
tional domain via geometric transformation procedure using 
the DSC method. The material properties of FG-CNTR lam-
inated non-rectangular plates are assumed to vary along the 
thickness based on the various FG-CNT distribution patterns 
adopted. A general transformation process in conjunction 
with the second-order transformation is applied to transform 
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Table 13  Frequency ( Ω = �a2
√
�∕Eh2 ) values FG-CNTR quadrilateral plates (b/a = 0.8; c/a = 0.7; γ = 75; β = 70; h/a = 0.1; VCNT = 0.14) with 

CCCC edges

Present DSC results
h/a = 0.1

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 FG-O 18.9176 18.9176 18.9176 18.9176
FG-V 20.5714 20.5713 20.5713 20.5713
UD 21.1045 21.1045 21.1043 21.1043
FG-X 22.3366 22.3369 22.3368 22.3368

2 FG-O 28.9274 28.9274 28.9271 28.9271
FG-V 30.5178 30.5178 30.5173 30.5173
UD 30.4581 30.4582 30.4576 30.4576
FG-X 32.2913 32.2913 32.2909 32.2909

3 FG-O 41.2072 41.2072 41.2070 41.2070
FG-V 42.3513 42.3513 42.3509 42.3509
UD 43.2651 43.2651 43.2648 43.2648
FG-X 44.8157 44.8157 44.8154 44.8154

Present DSC results
h/a = 0.02

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 FG-O 25.9034 25.9034 25.9034 25.9034
FG-V 32.2986 32.2986 32.2986 32.2986
UD 34.8113 34.8112 34.8112 34.8112
FG-X 39.2048 39.2048 39.2048 39.2048

2 FG-O 40.1339 40.1337 40.1337 40.1337
FG-V 47.1652 47.1652 47.1652 47.1652
UD 49.3170 49.3168 49.3168 49.3168
FG-X 57.0550 57.0549 57.0549 57.0549

3 FG-O 62.5137 62.5135 62.5134 62.5134
FG-V 68.3240 68.3232 68.3232 68.3232
UD 70.3583 70.3581 70.3581 70.3581
FG-X 77.1294 77.1290 77.1290 77.1290

the physical real domain into the computational domain. 
The computational efficiency of the present DSC method 
is shown by considering different examples related to buck-
ling and vibration. It is believed that the numerical results 
presented in this study via the DSC method may be useful 
for right design and analysis of FG-CNTR laminated non-
rectangular plates and also may provide a useful technique 

from vibration and buckling behavior. Numerical results 
reveal that the volume fractions of CNTs, distribution types 
of CNTs, boundary conditions, skew angles, thickness-to-
length ratio, number of layers, and geometrical parameters 
have an obvious effect on the vibration and buckling behav-
ior of the FG-CNTR laminated non-rectangular plates.
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Table 14  Frequency ( Ω = �a2
√
�∕Eh2 ) values FG-CNTR laminated quadrilateral plates (b/a = 0.8; c/a = 0.7; γ = 75; β = 70; h/a = 0.1; 

45/−45/45/−45/45) with SSSS edges

Present DSC results (VCNT = 0.11)

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 FG-O 29.1041 29.1035 29.1033 29.1033
FG-V 30.2575 30.2574 30.2572 30.2572
UD 32.0676 32.0673 32.0671 32.0671
FG-X 33.1148 33.1146 33.1145 33.1145

2 FG-O 45.9186 45.9182 45.9182 45.9182
FG-V 46.2381 46.2379 46.2376 46.2376
UD 48.1510 48.1504 48.1502 48.1502
FG-X 49.2642 49.2637 49.2637 49.2637

3 FG-O 48.3534 48.3530 48.3528 48.3528
FG-V 49.1238 49.1233 49.1231 49.1231
UD 51.2744 51.2740 51.2739 51.2739
FG-X 53.1032 53.1026 53.1024 53.1024

Present DSC results (VCNT = 0.17)

Modes CNT types 11 × 11 13 × 11 13 × 13 15 × 13

1 FG-O 37.1835 37.1833 37.1829 37.1829
FG-V 38.2176 38.2175 38.2172 38.2172
UD 39.1040 39.1038 39.1035 39.1035
FG-X 40.0567 40.0564 40.0561 40.0561

2 FG-O 57.8252 57.8250 57.8246 57.8246
FG-V 58.1309 58.1307 58.1305 58.1305
UD 60.0184 60.0182 60.0179 60.0179
FG-X 61.1272 61.1270 61.1263 61.1263

3 FG-O 61.3964 61.3960 61.3954 61.3954
FG-V 62.4774 62.4774 62.4771 62.4771
UD 64.0393 64.0391 64.0388 64.0388
FG-X 65.5843 65.5840 65.5832 65.5832

Table 15  Frequency 
( Ω = �a2

√
�∕Eh2 ) values 

FG-CNTR laminated skew 
plates (b/a = 1; h/a = 0.1; 
45/−45/45/−45/45; VCNT = 0.11) 
with SSSS edges

Present DSC

Skew angles CNT types 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

60 UD 20.8273 20.8271 20.8271 20.8271 20.8271
FG-V 19.2145 19.2144 19.2142 19.2142 19.2142
FG-X 23.0151 23.0148 23.0146 23.0146 23.0147
CNT types 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

45 UD 24.7619 24.7617 24.7616 24.7616 24.7616
FG-V 22.1074 22.1072 22.1071 22.1071 22.1071
FG-X 25.6142 25.6140 25.6139 25.6139 25.6139
CNT types 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

30 UD 37.1241 37.1238 37.1238 37.1238 37.1238
FG-V 35.9324 35.9322 35.9321 35.9321 35.9320
FG-X 38.2678 38.2676 38.2675 38.2675 38.2675
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Table 16  Critical buckling 
loads ( � = Nxya

2∕Eh3 ) of 
laminated (45/−45/45/−45/45) 
FG-CNTR laminated 
quadrilateral plates (b/a = 0.8; 
c/a = 0.7; γ = 75; β = 70; 
h/a = 0.02) with CCCC edges 
under uni-axial loading

Present DSC results

CNT types VCNT 9 × 11 11 × 11 13 × 11 13 × 13 15 × 13

FG-O 0.11 128.1553 128.1549 128.1546 128.1546 128.1546
0.14 156.2035 156.2033 156.2031 156.2031 156.2031
0.17 196.8386 196.8382 196.8379 196.8379 196.8379

FG-V 0.11 142.6405 142.6404 142.6402 142.6402 142.6402
0.14 171.8040 171.80357 171.8035 171.8035 171.8035
0.17 218.4186 218.4184 218.4184 218.4184 218.4184

UD 0.11 182.9637 182.9635 182.9633 182.9633 182.9633
0.14 220.3070 220.3069 220.3067 220.3067 220.3067
0.17 282.1981 282.1978 282.1978 282.1978 282.1978

FG-X 0.11 210.3853 210.3852 210.3851 210.3851 210.3851
0.14 251.7296 251.7294 251.7294 251.7294 251.7294
0.17 327.0216 327.0214 327.0213 327.0213 327.0213

Table 17  Critical buckling 
loads ( � = Nxya

2∕Eh3 ) of 
laminated (45/−45/45/−45/45) 
FG-CNTR laminated 
quadrilateral plates (b/a = 0.8; 
c/a = 0.7; γ = 75; β = 70; 
h/a = 0.02) with CCCC edges 
under bi-axial loading

Present DSC results

VCNT CNT types 11 × 11 11 × 13 13 × 13 13 × 15 15 × 15

0.11 UD 100.3288 100.3286 100.3283 100.3283 100.3283
FG-V 77.1897 77.1894 77.1892 77.1892 77.1892
FG-O 68.7360 68.7352 68.7346 68.7346 68.7346
FG-X 117.0138 117.0134 117.0129 117.0129 117.0129
CNT types 11 × 11 11 × 13 13 × 13 13 × 15 15 × 15

0.14 UD 122.8149 122.8146 122.8140 122.8140 122.8140
FG-V 93.1361 93.1358 93.1354 93.1354 93.1354
FG-O 82.9114 82.9110 82.9103 82.9103 82.9103
FG-X 143.1063 143.1061 143.1056 143.1056 143.1056
CNT types 11 × 11 11 × 13 13 × 13 13 × 15 15 × 15

0.17 UD 155.2292 155.2289 155.2278 155.2278 155.2278
FG-V 117.8923 117.8918 117.8913 117.8913 117.8913
FG-O 104.7657 104.7654 104.7641 104.7641 104.7641
FG-X 183.8549 183.8546 183.8533 183.8533 183.8533

Table 18  Critical buckling loads ( � = Nxya
2∕Eh3 ) of laminated 

(45/−45/45/−45/45) FG-CNTR laminated quadrilateral plates 
(b/a = 0.8; c/a = 0.7; γ = 75; β = 70; h/a = 0.05) with SSSS edges

VCNT CNT types Present DSC 
(13 × 13)
Uni-axial loading

Present 
DSC 
(13 × 13)
Bi-axial 
loading

0.11 FG-O 71.3243 33.8493
FG-V 94.9805 45.1270
UD 112.0376 52.0471
FG-X 134.9167 63.2482

0.17 FG-O 109.3442 50.2810
FG-V 144.1776 69.3275
UD 171.8039 80.4333
FG-X 209.5408 98.2052
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