#### **ORIGINAL ARTICLE**



# Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory

Tarek Merzouki<sup>1</sup> · Mohammed Sid Ahmed Houari<sup>2</sup> · Mohamed Haboussi<sup>3</sup> · Aicha Bessaim<sup>2</sup> · Manickam Ganapathi<sup>4</sup>

Received: 12 May 2020 / Accepted: 23 August 2020 / Published online: 18 September 2020 © Springer-Verlag London Ltd., part of Springer Nature 2020

#### Abstract

In the present paper, a new trigonometric two-variable shear deformation beam nonlocal strain gradient theory is developed and applied to investigate the combined effects of nonlocal stress and strain gradient on the bending, buckling and free vibration analysis of nanobeams. The model introduces a nonlocal stress field parameter and a length scale parameter to capture the size effect. The governing equations derived are solved employing finite element method using a 3-nodes beam element, developed for this purpose. The predictive capability of the proposed model is shown through illustrative examples for bending, buckling and free vibration of nanobeams. Comparisons with other higher-order shear deformation beam theory are also performed to validate its numerical implementation and assess its accuracy within the nonlocal context.

**Keywords** Nonlocal strain gradient theory  $\cdot$  Variational formulation  $\cdot$  Finite element method  $\cdot$  Static analysis  $\cdot$  Free vibration  $\cdot$  Elastic buckling

## 1 Introduction

Nowadays, nanostructures such as nanorods, nanobeams and nanoplates are receiving a great attention in nanoscience and nanotechnology, due to their extraordinary mechanical, thermal, electrical, magnetic, and other properties [1–5]. Examples of applications and devices related to such nanostructures are oscillators [6], clocks [7], sensors [8–10], atomic force microscopy [11, 12], nano/micro electro-mechanical systems (NEMS/MEMS) [13, 14] and nano actuators [15, 16]. In nanostructures, the size effect is no longer negligible and becomes rather important. It is then necessary to take it account into the design of applications, such as

Tarek Merzouki tarek.merzouki@uvsq.fr

- <sup>2</sup> Laboratoire d'Etude des Structures et de Mécanique des Matériaux, University Mustapha Stambouli of Mascara, Mascara, Algeria
- <sup>3</sup> Laboratoire des Sciences des Procédés et des Matériaux (LSPM), CNRS UPR 3407, Université Paris 13, Sorbonne-Paris-Cité, 93430 Villetaneuse, France
- <sup>4</sup> School of Mechanical Engineering, VIT University, Vellore 632 014, India

those mentioned above. There have been many theoretical and experimental investigations for better understanding and designing the mechanical and physical behavior of such small-scaled structures [17, 18]. It is known that classical continuum mechanics is a local theory that is sizeindependent. So, it is not really appropriate for small-scaled structures as it does not allow to capturing the size effect in such small structures. To overcome this limitation, nonclassical continuum theories are developed. Whether being of integral or gradient types, these theories utilize one or several material internal length scale parameters. Examples of such nonlocal theories are the pioneer elasticity theory of [19, 20], the strain gradient theory [21–23], the modified couple stress theory [24], and the nonlocal strain gradient theory [25]. The nonlocal elasticity theory has widely been employed to analyze the bending, vibration, buckling and wave propagation of nanostructures. Among recent works, there are [26-30], and the critical review on the topic of nanobeam and nanoplate modeling [31].

The above-mentioned studies all point out the significant influence that non-local factors can have on the static and dynamic responses of nanobeams. In particular, nonlocal elastic theory can only be used to describe material softening effect, the hardening effect reported in many experimental studies cannot be handled by such theories [32–34]. The strain gradient theory proposed by Mindlin

<sup>&</sup>lt;sup>1</sup> LISV, University of Versailles Saint-Quentin, 10-12 Avenue de l'Europe, 78140 Vélizy-Villacoublay, France

[22] is a microstructure-dependent continuum theory developed to capture the hardening effect by enriching the classical continuum with additional material characteristic length scales. In this theory, the total stress is a function of additional strain gradient terms to consider microstructural deformation contributions at small scale, hence, including higher-order strain gradients [35]. Based on such nonlocal strain gradient elasticity theoretical framework, several works have been devoted to study the mechanical behavior of small scaled structures. In [24, 36–38], the linear and non-linear static, free vibration, and buckling responses of homogeneous or inhomogeneous small scaled structure are studied based on various shear deformation theories. In Li et al. [39], the flexural wave frequency response of small-scaled functionally graded Euler-Bernoulli beams is studied using a nonlocal strain gradient theory. Li et al. [40] studied the vibrational behavior of functionally graded nano/micro-scaled using a nonlocal strain gradient extension of a Timoshenko beam theory. Xu et al. [41] studied the nonlinear bending and buckling of nanobeam by a nonlocal strain gradient extension of Euler-Bernoulli beam model. Li et al. [42] examined bending, buckling and vibration of axially functionally graded beams by a nonlocal strain gradient extension of Euler-Bernoulli beam theory. Sahmani et al. [43] presented analytical solutions for nonlinear bending behavior of functionally graded porous micro/nanobeams reinforced with graphene platelets.

Allam et al. [44] analyzed the bending, buckling and vibration behaviors of viscoelastic FG curved nanobeam embedded in an elastic medium based on nonlocal strain gradient theory. Radwan et al. [45] studied the dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load. All of the previous mentioned studies were based on classical beam theory (CBT), first-order shear deformation beam theory (FSDT) and higher-order shear deformation beam theory (HSDT). The CBT is only applicable for thin beam, ignores shear deformation effects and provides reasonable results for slender beams only. However, it underestimates deflection and overestimates buckling load and frequency of moderately short or short beams [46]. The FSDT accounts for the transverse shear deformation effect and gives acceptable results for moderately short and slender beam [47], but needs a shear correction to compensate for the difference between the actual stress state and the constant stress state due to a constant shear strain assumption through the thickness [48]. In order to include shear deformation effects, several polynomial [49–51] and non polynomial [52–58] higher-order shear deformation theories (HSDTs), which are based on a non-linear variation through the thickness of the in-plane displacements, are developed. These theories provide a better prediction of response of short beam and do not require any shear correction factor and satisfy zero shear stress conditions at top and bottom surfaces of beams.

The aim of this paper is to extend the two variables trigonometric shear deformation theory of Thai [59] within a nonlocal context in order to study the bending, vibration and buckling of nanobeams. The nonlocal extension is based on the use of strain gradient constitutive relations. The most interesting features of this theory is that it accounts for a trigonometric variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using any shear correction factor. It should be noted that the trigonometric function was used in the first time by Levy [60] and assessed by Stein [60], and later widely used by [52] and [61]. These theories are capable of representing the section warping in the deformed configuration and the results obtained from these theories show that this theory is capable to calculate the stresses and natural frequencies more accurately than other theories. The governing equations derived are used to develop a finite element model using a 3-node beam element. Analytical solutions for bending, vibration and buckling loadings are also presented for simply supported beams. These analytical solutions are used to validate the finite element implementation of the nonlocal problem. Comparisons with existing solutions from the literature are used to assess the relevance and the accuracy of the proposed nonlocal theory in describing the mechanical behavior of nanobeam.

## 2 Nonlocal strain gradient theory

When dealing with nanostructures, the effect of size is important and can't be ignored in the analysis and dimensioning of the structure. In the nonlocal strain gradient elasticity, the total stress tensor is expressed as a function of the standard nonlocal stress tensor and the strain gradient stress one:

$$\sigma_{ij} = \sigma_{ij}^{(0)} - \frac{\partial \sigma_{ij}^{(1)}}{\partial x},\tag{1}$$

where the stresses  $\sigma_{ij}^{(0)}$  and  $\sigma_{ij}^{(1)}$  are related to strain  $\varepsilon_{ij}$  and strain gradient  $\varepsilon_{ij,x}$ , respectively, and are defined as follows:

$$\sigma_{ij}^{(0)} = \int_0^L C_{ijkl} \,\alpha_0(x, x', e_0 a) \varepsilon'_{kl}(x') \,\mathrm{d}x,\tag{2}$$

$$\sigma_{ij}^{(1)} = l^2 \int_0^L C_{ijkl} \,\alpha_1(x, x', e_1 a) \varepsilon'_{kl, x}(x') \mathrm{d}x', \tag{3}$$

in which  $C_{ijkl}$  are the elastic constants,  $e_0a$  and  $e_1a$  are nonlocal parameters to consider the significance of the nonlocal stress field, l is a material length scale parameter that introduces the influence of higher-order strain gradient stress field. When the nonlocal functions  $\alpha_0(x, x', e_0a)$  and  $\alpha_1(x, x', e_1a)$  satisfy the developed conditions by Eringen [62–64], the constitutive relation can be stated as:

$$\begin{aligned} & \left(1 - (e_1 a)^2 \nabla^2\right) \left(1 - (e_0 a)^2 \nabla^2\right) \sigma_{ij} \\ &= C_{ijkl} \left( \left(1 - (e_1 a)^2 \nabla^2\right) \varepsilon_{kl} - l^2 \right. \\ & \left. \left(1 - (e_0 a)^2 \nabla^2\right) \nabla^2 \varepsilon_{kl} \right), \end{aligned}$$
(4)

in which  $\nabla^2$  denotes the Laplacian operator. By assuming  $e = e_0 = e_1$ , the general constitutive equation for the size-dependent continuum can be simplified as follows:

$$\left(1 - (ea)^2 \nabla^2\right) \sigma_{ij} = C_{ijkl} \left(1 - l^2 \nabla^2\right) \varepsilon_{kl}.$$
(5)

Thus, the nonlocal constitutive relations for a shear deformable nanobeam can be stated as follows:

$$\sigma_{xx} - \mu \sigma_{xx}'' = C_{11} \left( \varepsilon_{xx} - \lambda \varepsilon_{xx}'' \right) \sigma_{xz} - \mu \sigma_{xz}'' = C_{66} \left( \gamma_{xz} - \lambda \gamma_{xz}'' \right),$$
(6)

where  $\mu = (ea)^2$  and  $\lambda = l^2$ .

It is of interest that (6) can be simplified to some interested cases.

#### 2.1 Nonlocal elasticity theory

The constitutive equation of the nonlocal elasticity theory can be easily obtained by setting  $\lambda = 0$  in the nonlocal strain gradient constitutive (6) as follows:

$$\sigma_{xx} - \mu \sigma_{xx}^{\prime\prime} = C_{11} \epsilon_{xx}$$
  

$$\sigma_{xz} - \mu \sigma_{xz}^{\prime\prime} = C_{66} \gamma_{xz},$$
(7)

which are identical to Eringen [62-64].

#### 2.2 Strain gradient theory

The constitutive equation of the strain gradient theory can be easily obtained by setting  $\mu = 0$  in (6), that is:

$$\sigma_{xx} = C_{11} \left( \varepsilon_{xx} - \lambda \varepsilon_{xx}^{\prime \prime} \right) \sigma_{xz} = C_{66} \left( \gamma_{xz} - \lambda \gamma_{xz}^{\prime \prime} \right), \tag{8}$$

which are identical to Aifantis [65, 66].

It is shown that the general constitutive (6) can reasonably explain size-dependent phenomena and there is a good agreement between the molecular dynamics simulations and the nonlocal strain gradient theory [67, 68].

## 3 Governing equation for size-dependent nanobeams

To write the governing equations, we consider a straight nanobeam of length L, and a rectangular cross section  $b \times h$ . The variable x is taken as the cartesian coordinate along the length of the beam with  $x \in [0.L]$ , whereas z is assumed the coordinate along the thickness direction of the beam, and  $z \in [-h/2, h/2]$ . In this work, the y coordinate associated with the width direction is not considered in the formulation. Here, a wide range of slenderness ratios L/h can be studied by varying the length L and the thickness h of the beam.

## 3.1 Kinematics

A trigonometric shear deformation beam theory considering shear deformations is adopted in this study. The displacement field of the proposed theory is chosen based on the following assumptions: (1) the transverse displacement is partitioned into bending and shear components; (2) the axial displacement consists of extension, bending and shear components; (3) the bending component of axial displacement is similar to that given by the Euler–Bernoulli beam theory; and (4) the shear component of axial displacement gives rise to the trigonometric variation of shear strain and hence to shear stress through the thickness of the beam in such a way that shear stress vanishes on the top and bottom surfaces.

Based on the assumptions made above, the displacement field of the present theory can be obtained as:

$$u(x, z, t) = u_0(x) - z w_b'(x) - f(z) w_s'(x)$$
  

$$w(x, z, t) = w_b(x) + w_s(x),$$
(9)

where  $u_0$  is the axial displacement along the midplane of the nanoscale beam;  $w_b$  and  $w_s$  are the bending, shear components of the transverse displacement along the midplane of the beam. *t* is the time, derivations are denoted ()' =  $\frac{\partial}{\partial x}$ and () =  $\frac{\partial}{\partial t}$  for the time. f(z) is a shape function representing the variation of the transverse shear strains and shear stresses through the thickness of the beam and is given as [69] follows:

$$f(z) = z - z \frac{\left(\pi + 2\cos\left(\frac{\pi z}{h}\right)\right)}{(\pi + 2)}.$$
(10)

The nonzero strains associated with the displacements field in (9) are as follows:

$$\varepsilon_x = \varepsilon_x^0 + z k_x^b + f(z) k_x^s$$
  

$$\gamma_{xz} = g(z) \gamma_{xz}^0,$$
(11)

where

$$\epsilon_x^0 = u_0', \quad k_x^b = -w_b'', \quad k_x^s = -w_s'', \quad \gamma_{xz}^0 = w_s'$$
 (12)

and

$$g(z) = 1 - f'(z).$$
(13)

## 3.2 Variational statements

The governing equations of motion in terms of displacements are derived using Hamilton's Principle.

The variation of strain energy  $\delta U$  is expressed according to the nonlocal strain gradient theory [67]:

$$\begin{split} \delta U &= \int_{0}^{L} \int_{-h/2}^{h/2} \left( \sigma_{xx}^{(0)} \delta \varepsilon_{xx} + \sigma_{xz}^{(0)} \delta \gamma_{xz} + \sigma_{xx}^{(1)} \nabla \delta \varepsilon_{xx} + \sigma_{xz}^{(1)} \nabla \delta \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \\ &= \int_{0}^{L} \int_{-h/2}^{h/2} \left( \left( \sigma_{xx}^{(0)} - \nabla \sigma_{xx}^{(1)} \right) \delta \varepsilon_{xx} + \left( \sigma_{xz}^{(0)} - \nabla \sigma_{xz}^{(1)} \right) \delta \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \\ &+ \left[ \int_{0}^{L} \int_{-h/2}^{h/2} \left( \sigma_{xx}^{(1)} \delta \varepsilon_{xx} + \sigma_{xz}^{(1)} \delta \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \right]_{0}^{L} \\ &= \int_{0}^{L} \int_{-h/2}^{h/2} \left( \sigma_{xx} \delta \gamma_{xx} + \sigma_{xz} \delta \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \\ &+ \left[ \int_{0}^{L} \int_{-h/2}^{h/2} \left( \sigma_{xx}^{(1)} \delta \varepsilon_{xx} + \sigma_{xz}^{(1)} \delta \gamma_{xz} \right) \mathrm{d}z \mathrm{d}x \right]_{0}^{L} \end{split}$$
(14)

$$\left[I_{0}, I_{1}, I_{2}, I_{3}, I_{4}, I_{5}\right] = \int_{-h/2}^{h/2} \rho\left[1, z, z^{2}, f(z), zf(z), f(z)^{2}\right] dz.$$
(18)

The variation potential energy  $\delta W$  of external loads can be written as:

$$\delta W = -\int_0^L \left( q \ \delta w + N_0 \left( w' \ \delta w' \right) \right) \, \mathrm{d}x,\tag{19}$$

where q is the distributed transverse load applied on the upper surface, and  $N_0$  is the axial load acting through the mid plane.

According to Hamilton's principle, we have:

$$0 = \int_0^T (\delta U + \delta W - \delta K) \, \mathrm{d}t.$$
<sup>(20)</sup>

The following governing equations are derived from the variational principle (20) by introducing (16), (17), (19), and proceeding to some integrations by parts:

$$\delta w_b : -M'' - q + N_0 (w_b'' + w_s'') = (I_1 \ddot{u}_0 - I_2 \ddot{w}_b' - I_4 \ddot{w}_s' - I_0 \ddot{w}_b - I_0 \ddot{w}_s)$$
(21)

$$\delta w_s : -\tilde{M}'' - Q' - q + N_0 (w_b'' + w_s'') = (I_3 \ddot{u}_0 - I_4 \ddot{w}_b' - I_5 \ddot{w}_s' - I_0 \ddot{w}_b - I_0 \ddot{w}_s)$$

We define the force and the moment resultants as follow:

 $\delta u_0 : -N' = \left(-I_0 \ddot{u}_0 + I_1 \ddot{w}_b' + I_3 \ddot{w}_s'\right)$ 

$$\begin{bmatrix} N, M, \tilde{M} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} 1, z, f(z) \end{bmatrix} \sigma_{xx} \, \mathrm{d}z, \ Q = \int_{-h/2}^{h/2} \sigma_{xz} \, g(z) \, \mathrm{d}z$$
$$\begin{bmatrix} N^{(1)}, M^{(1)}, \tilde{M}^{(1)} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} 1, z, f(z) \end{bmatrix} \sigma_{xx}^{(1)} \, \mathrm{d}z, \ Q^{(1)} = \int_{-h/2}^{h/2} \sigma_{xz}^{(1)} \, g(z) \, \mathrm{d}z.$$
(15)

Thus, the virtual strain energy can be rewritten as follows:

$$\delta U = \int_0^L \left( N \, \delta u_0' - M \, \delta w_b'' - \tilde{M} \, \delta w_s'' + Q \, \delta w_s' \right) \, \mathrm{d}x \\ + \left[ N^{(1)} \, \delta u_0' - M^{(1)} \, \delta w_b'' - \tilde{M}^{(1)} \, \delta w_s'' + Q^{(1)} \, \delta w_s' \right]_0^L. \tag{16}$$

The variation of the kinetic energy is obtained as follows:

$$\delta K = \int_{0}^{L} \rho(\dot{u}\delta\dot{u} + \dot{w}\delta\dot{w}) \, dx = \int_{0}^{L} \left( \left( -I_{0} \ddot{u}_{0} + I_{1} \ddot{w}_{b}' + I_{3} \ddot{w}_{s}' \right) \delta u_{0} \right. \\ \left. + \left( I_{1} \ddot{u}_{0} - I_{2} \ddot{w}_{b}' - I_{4} \ddot{w}_{s}' \right) \delta w_{b} + \left( I_{3} \ddot{u}_{0} - I_{4} \ddot{w}_{b}' - I_{5} \ddot{w}_{s}' \right) \delta w_{s} \\ \left. + \left( -I_{0} \ddot{w}_{b} - I_{0} \ddot{w}_{s} \right) \delta w_{b} + \left( -I_{0} \ddot{w}_{b} - I_{0} \ddot{w}_{s} \right) \delta w_{s} \right) \, dx,$$

$$(17)$$

#### 3.3 Nonlocal strain gradient equilibrium equations

Substituting (6) into (15), one obtains

$$\begin{bmatrix} (N - \mu N''), (M - \mu M''), (\tilde{M} - \mu \tilde{M}''), (Q - \mu Q'') \end{bmatrix}$$
  
=  $\begin{bmatrix} N^{SG}, M^{SG}, \tilde{M}^{SG}, Q^{SG} \end{bmatrix},$  (22)

with the force/moment resultants in strain gradient theory defined as follows:

$$\begin{bmatrix} N^{SG}, M^{SG}, \tilde{M}^{SG} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} 1, z, f(z) \end{bmatrix} C_{11} \left( \epsilon_{xx} - \lambda \epsilon_{xx}'' \right) dz$$
$$\begin{bmatrix} Q^{SG} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} g(z) \end{bmatrix} C_{66} \left( \gamma_{xz} - \lambda \gamma_{xx}'' \right) dz.$$
(23)

Substituting the expressions of stress and moment resultants  $[N, M, \tilde{M}, Q]$  from (22) into (21) and then simplifying the resulting equations, we obtain the following nonlocal strain gradient equations of motion as:

$$\begin{split} \delta u_0 &: -N^{SG\prime} = \left(1 - \mu \frac{d^2}{dx^2}\right) \left(-I_0 \ddot{u}_0 + I_1 \ddot{w}_b' + I_3 \ddot{w}_s'\right) \\ \delta w_b &: -M^{SG\prime\prime} = \left(1 - \mu \frac{d^2}{dx^2}\right) \left(q - N_0 (w_b^{\prime\prime} + w_s^{\prime\prime}) \right. \\ &+ I_1 \ddot{u}_0 - I_2 \ddot{w}_b' - I_4 \ddot{w}_s' - I_0 \ddot{w}_b - I_0 \ddot{w}_s\right) \\ \delta w_s &: -\tilde{M}^{SG\prime\prime} - Q' = \left(1 - \mu \frac{d^2}{dx^2}\right) \left(q - N_0 (w_b^{\prime\prime} + w_s^{\prime\prime}) \right. \\ &+ I_3 \ddot{u}_0 - I_4 \ddot{w}_b' - I_5 \ddot{w}_s' - I_0 \ddot{w}_b - I_0 \ddot{w}_s\right). \end{split}$$

## 4 Matrix formulation of the nonlocal strain gradient variational problem

From (16), (17) and (19) and introducing nonlocal strain gradient equilibrium equations (24), a finite element formulation is applied considering static, free vibration and buckling problems. After simplification, the equation is expressed in matrix form as follows:

$$\int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{\epsilon} \right\}^{T} [k_{\epsilon\epsilon}] \left\{ \mathcal{E}_{\epsilon} \right\} - \lambda \frac{d^{2}}{dx^{2}} \left\{ \delta \mathcal{E}_{\epsilon} \right\}^{T} [k_{\epsilon\epsilon}] \left\{ \mathcal{E}_{\epsilon} \right\} \right) dx$$

$$= \int_{0}^{L} \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) q \delta w \, dx$$

$$+ \int_{0}^{L} \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) \left\{ \delta \mathcal{E}_{u} \right\}^{T} [m_{uu}] \left\{ \ddot{\mathcal{E}}_{u} \right\} \, dx$$

$$+ \int_{0}^{L} \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) \left\{ \delta \mathcal{E}_{u} \right\}^{T} [k_{gg}] \left\{ \mathcal{E}_{u} \right\} \, dx,$$
(30)

where

,

$$[k_{\varepsilon\varepsilon}] = \int_{-h/2}^{h/2} [\mathbb{N}_{\varepsilon}(z)]^T [D] [\mathbb{F}_{\varepsilon}(z)] dz, \qquad (31)$$

$$[m_{uu}] = \int_{-h/2}^{h/2} \rho[\mathbb{N}_u(z)]^T [\mathbb{N}_u(z)] dz.$$
(32)

 $\int_{0}^{L} \int_{-h/2}^{h/2} \left( \{\delta \varepsilon\}^{T} [D] \{\varepsilon\} - \lambda \frac{d^{2}}{dx^{2}} \{\delta \varepsilon\}^{T} [D] \{\varepsilon\} \right) \\
= \int_{0}^{L} \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) q \delta w dx + \int_{0}^{L} \int_{-h/2}^{h/2} \left[ \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) \{\delta u\}^{T} \right] \rho \{\ddot{u}\} dz dx \\
+ \int_{0}^{L} \left[ \left( 1 - \mu \frac{d^{2}}{dx^{2}} \right) \{\delta \varepsilon_{u}\}^{T} \right] [k_{gg}] \{\delta \varepsilon_{u}\} dx,$ (25)

[D] denotes the elastic moduli matrix. The displacement u of (9) and the strain  $\varepsilon$  functions of (11) can be redefined as follows:

$$\{u\}^{T} = [\mathbb{N}_{u}(z)]\{\mathcal{E}_{u}\} \text{ with} \\ \{\mathcal{E}_{u}\}^{T} = [u_{0} \ w_{b} \ w_{s} \ w_{b}' \ w_{s}'],$$

$$(26)$$

$$\{\varepsilon\}^{T} = [\mathbb{N}_{\varepsilon}(z)]\{\mathcal{E}_{\varepsilon}\} \quad with$$
  
$$\{\mathcal{E}_{\varepsilon}\}^{T} = [u_{0}' \ w_{b}' \ w_{s}' \ w_{b}'' \ w_{s}'',],$$
(27)

where  $[\mathbb{N}_u(z)]$  and  $[\mathbb{N}_{\varepsilon}(z)]$  depend only on the normal coordinate *z*, and are defined as follows:

$$\left[\mathbb{N}_{u}(z)\right] = \begin{bmatrix} 1 & 0 & 0 & -z & f(z) \\ 0 & 1 & 1 & 0 & 0, \end{bmatrix}$$
(28)

$$[\mathbb{N}_{\varepsilon}(z)] = \begin{bmatrix} 1 & 0 & 0 & -z & f(z) \\ 0 & 0 & 1 + f(z)' & 0 & 0. \end{bmatrix}$$
(29)

Equation (25) can be expanded as follows:

 $[k_{\varepsilon\varepsilon}]$  is the stiffness matrix,  $[m_{uu}]$  is the masse matrix.  $[k_{gg}]$  is the geometric stiffness matrix of 5 × 5 dimensions, is symmetric and the non zero terms are as follows:

$$k_{gg}(4,4) = 1, \ k_{gg}(4,5) = 1, \ k_{gg}(5,4) = 1, \ k_{gg}(5,5) = 1.$$
(33)

The weak forme is then applied considering static problems, and the equation is simplified after integration by parts on RHS:

$$\int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{\varepsilon} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon} \right\} - \lambda \left\{ \delta \mathcal{E}_{\varepsilon}^{"} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon}^{"} \right\} \right) dx$$

$$= \int_{0}^{L} \left( \delta w - \mu w^{"} \right) q \delta dx.$$
(34)

For free vibration analysis, after performing integration by parts, a weak form is derived for the following dynamic equation:

$$\int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{\varepsilon} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon} \right\} - \lambda \left\{ \delta \mathcal{E}_{\varepsilon}^{"} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon}^{"} \right\} \right) dx$$
$$= \int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{u} \right\}^{T} [m_{uu}] \left\{ \ddot{\mathcal{E}}_{u} \right\} + \mu \left\{ \delta \mathcal{E}_{u}^{"} \right\}^{T} [m_{uu}] \left\{ \ddot{\mathcal{E}}_{u}^{"} \right\} \right).$$
(35)

Deringer



Fig. 1 Beam element with the degrees of freedom per node

with  $[N_u]$  and  $[N_w]$  being the Hermite interpolation functions,  $q_{u_0}$  and  $q_w$  are the nodal degrees of freedom (dof) vectors of each elementary element (Fig. 1) while subscripts 1–2–3 are the node numbers ( $\xi = -1, 0, +1$ ) (Fig. 1).

Let us consider the following vector  $q_e$  of total nodal dof for a generic elementary domain  $\Omega_e$ :

$$\left\{q_{e}\right\}^{T} = \left[u_{0}^{(1)} u_{0}^{\prime(1)} w_{b}^{(1)} w_{b}^{\prime(1)} w_{b}^{\prime\prime(1)} w_{s}^{\prime(1)} w_{s}^{\prime(1)} w_{s}^{\prime\prime(1)} u_{0}^{\prime(3)} u_{0}^{\prime(3)} u_{0}^{\prime(2)} u_{0}^{\prime(2)} w_{b}^{\prime(2)} w_{b}^{\prime\prime(2)} w_{s}^{\prime\prime(2)} w_{s}^{\prime\prime(2)} w_{s}^{\prime\prime(2)} w_{s}^{\prime\prime(2)}\right].$$

$$(40)$$

Considering buckling problem subjected to axial force  $N_0$  applied in the mid plane, the weak form is given after integration by parts on RHS as follows:

$$\int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{\varepsilon} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon} \right\} - \lambda \left\{ \delta \mathcal{E}_{\varepsilon}^{"} \right\}^{T} [k_{\varepsilon \varepsilon}] \left\{ \mathcal{E}_{\varepsilon}^{"} \right\} \right) dx$$
$$= \int_{0}^{L} \left( \left\{ \delta \mathcal{E}_{u} \right\}^{T} [k_{gg}] \left\{ \ddot{\mathcal{E}}_{u} \right\} + \mu \left\{ \delta \mathcal{E}_{u}^{"} \right\}^{T} [k_{gg}] \left\{ \ddot{\mathcal{E}}_{u}^{"} \right\} \right).$$
(36)

The above equations are used for FE modelenig, and this will be described in the next section.

## 5 Finite element approximations

To develop the finite element model, the beam is discretized into a set of elements of length  $l_e$ . The beam element given in Fig. 1 is defined by three nodes along the element local x-axis. The nodal coordinates x is approximated based on the reference length with respect to the reduced coordinate  $\xi$  by the following:

$$x(\xi) = \frac{1+\xi}{2} l_e.$$
 (37)

The generalized displacements and strain are given in (9) and (11) and have to be approximated by finite element method. In the present work, the Hermite interpolation is employed to satisfy  $C^1$  and  $C^2$  continuity requirement for the axial and transversal displacements, respectively. The displacements  $u_0(\xi)$  and  $w_i(\xi)$  are defined as follows:

where

From (26) and (27), the vectors  $\{\varepsilon_u\}$  and  $\{\varepsilon_{\varepsilon}\}$  are expressed from the dof vector  $\{q_e\}$  using (38) and (39):

$$\{\varepsilon_u\} = [B_u] \{q_e\}$$

$$\{\varepsilon_\varepsilon\} = [B_\varepsilon] \{q_e\}$$

$$\{w_i''\} = [N_w'']^T \{q_{w_i}\}, \quad i = b, s$$

$$\{\varepsilon_u'\} = [B_u'] \{q_e\}$$

$$\{\varepsilon_\varepsilon'\} = [B_\varepsilon'] \{q_e\},$$

$$(41)$$

where  $[B_u]$  and  $[B_{\epsilon}]$  are 5 × 18 and 2 × 18 matrices, respectively, containing the shape function  $N_u$ ,  $N_w$  and their derivative terms.

The final expressions of the system could be written as follows:

• Static analysis: a transversal load q is applied on the top surface of the beam, and we have the following system to solve:

$$[K]\{q\} = \{F\}.$$
(42)

• Free vibration analysis:

$$([K] - \omega^2[M])\{q\} = \{0\}.$$
(43)

 Buckling analysis: a constant axial force is acting through the mid-line and the deduce system is given by

$$([K] - N_0[K_g]) \{q\} = \{0\}, \tag{44}$$

where  $\{q\}$  is the global dof vector of the beam.

[K], [M] and  $[K_g]$ , are the stiffness, mass and geometric stiffness matrices, respectively, and  $\{F\}$  is the load vector. They are obtained by assembling the individual element contributions using the elementary matrices given as follows:

Where  $\{q\}$  is the global dof vector of the beam. [K] is global the stiffness matrix, [M] is the mass matrix,  $[K_g]$  is the geometric stiffness matrix and  $\{F\}$  is the load vector. They are obtained by assembling the individual element contributions using the elementary matrices given as follows:

$$[K_{e}] = \int_{0}^{l} \left( [B_{e}]^{T} [k_{ee}] [B_{e}] + \lambda [B_{e}']^{T} [k_{ee}] [B_{e}'] \right) dx$$
  

$$[M_{e}] = \int_{0}^{l} \left( [B_{u}]^{T} [m_{uu}] [B_{u}] + \mu [B_{u}']^{T} [m_{uu}] [B_{u}'] \right) dx$$
  

$$[K_{ge}] = \int_{0}^{l} \left( [B_{u}]^{T} [k_{gg}] [B_{u}] + \mu [B_{u}']^{T} [k_{gg}] [B_{u}'] \right) dx$$
  

$$\{F_{e}\} = q \int_{0}^{l} \left( \{N_{w}\}^{T} - \mu \{N_{w}''\}^{T} \right) dx.$$
  
(45)

## 6 Results and discussion

The first results are presented to test the robustness of the developed finite element model by considering problems for which analytical solutions are available. The study is carried out by varying parameters such as slenderness ratio S = L/h, nonlocal and strain gradient parameters ( $\mu = ea^2$ ,  $\lambda = l^2$ ). The results are presented to show the size dependency in the nonlocal response of the nanobeams.

The considered problem is presented as a straight nanobeams with fixed thickness h = 10 nm, and the length L (nm) is considered to be a variable. Different values of the slenderness ratio are considered allowing to study thick to thin beams  $S = \{5, 10, 20, 50\}$ . The values for nonlocal parameter  $\mu$  (nm<sup>2</sup>) = (*ea*)<sup>2</sup> for the detailedd analysis are assumed to belong to  $\{0, 1, 2, 3, 4\}$ . The strain gradient parameter  $\lambda$  (nm<sup>2</sup>) =  $l^2$  is considered to belong to  $\{0, 1, 2, 3, 4\}$ . Different Boundary conditions are considered, simply supported beam, clamped-simply supported, clamped–clamped, cantilever beam. The considered material is an isotropic with Young modulus *E* and Poisson's ratio *v*. In the present paper, the following dimensionless quantities are introduced:

$$\begin{split} \bar{w} &= w \frac{100E}{qhS^4} \\ \bar{\omega} &= \omega L^2 \sqrt{\frac{m}{EI}}, \ m = \rho h, \ I = \frac{h^3}{12} \\ \bar{N} &= N_0 \frac{L^2}{EI} \end{split}$$

#### 6.1 Assessment of the present formulation

To verify the reliability of the present formulation, an assessment of the present formulation is carried out on a simply supported nanobeams subjected to uniform load. Before proceeding to the analysis, a convergence study is considered by varying the number of elements for both local and nonlocal nanobeams. The results are presented in Tables 1, 2 and 3 along with those of analytical solutions obtained using Navier approach. The tables present the dimensionless maximum deflection, dimensionless buckling loads and dimensionless fundamental frequency, respectively, for different values of slenderness ratio (L/h), nonlocal parameter (ea) and strain gradient parameter (l). It is seen from these tables that four elements' idealization is sufficient in obtaining converged results.

It can be seen that the nonlocal parameter and the strain gradient parameter have significant effects on the response of the nanobeam. With increasing in nonlocal parameter value, the dimensionless deflection value increases and the dimensionless critical buckling load and the frequency value decrease. Nonlocal parameter  $\mu$  and strain gradient parameter l have the opposite effect. The results are compared to the analytical ones obtained using Navier approach and with those available in the literature [17, 18]. It is seen that from tables, the results obtained using the present formulation are found to be in good agreement with the analytical ones and with those in the literature.

Figures 2, 3 and 4 illustrate the influence of slenderness ratio of the simply supported nanobeam for different values of nonlocal and strain gradient parameters. It is clearly seen that when the nonlocal effect dominates ea > l, the dimensionless deflection is larger than those obtained by classical continuum theory l = ea, and the nanobeam is softened and becomes easy to deform. Also, the dimensionless buckling loads and the dimensionless fundamental frequency are lower than those of classical theory. However, when the strain gradient effect dominates l > ea, the deflection is lower than those of classical continuum theory l = ea, and the nanobeam is hardened and becomes difficult to deform. This is opposite to the case of buckling and vibration response. In addition, with the increasing slenderness ratio, the dimensionless deflection decreases when ea > land increases when l > ea, which is also counter to the situation of buckling and vibration response. Also, it can be seen that the differences between results predicted by classical theory and nonlocal strain gradient are significant for lower values of slenderness ratio but they are diminishing as the increase of slenderness ratio. Similar conclusions have also been observed about dynamic response based on the nonlocal strain gradient theory [17, 18, 40, 70].

## 6.2 Bending, vibration and buckling analysis of nanobeams

The second result is a nanobeam with one end fixed and the other simply supported. Tables 4, 5 and 6 depict the dimensionless maximum deflection, dimensionless buckling loads and dimensionless fundamental frequency for different values of nonlocal parameter (*ea*), strain gradient parameter (*l*) and slenderness ratio (*L/h*). From the tables, the deflection decreases with increase in nonlocal parameter value, the dimensionless critical buckling load and the dimensionless frequency decreases. The strain gradient parameter *l* has a

 Table 1
 Comparison of dimensionless maximum deflections of simply supported nanobeam

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ea (nm) | Beam theory      | L/h = 10  |           |           | L/h = 20  |           |           | L/h = 50  |                     |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-----------|
| O         Present (FEM)<br>No of elements           2         1.3345         1.2168         0.9598         1.3102         1.2794         1.1945         1.304         1.2984         1.2836           4         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           16         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           32         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           BET [18]         1.3345         1.2169         0.9598         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           SSDBT [18]         1.3345         1.2169         0.9598         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           ISDBT [18]         1.3345         1.2167         0.9596         1.3102         1.2794         1.1944         1.3044         1.2844         1.2836           MO of elements         2         1.4623         1.3344         1.2676         1.3102                                                                                                                                                                                        |         |                  | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm |
| No of elements         -           2         1.345         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           8         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           16         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           32         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3044         1.2984         1.2836           BTSIT[18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT[18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT[18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT[18]         1.3344         1.2167         0.9596         1.3102         1.2234         1.3                                                                                                                                                                                              | 0       | Present (FEM)    |           |           |           |           |           |           |           |                     |           |
| 2         1.3345         1.2168         0.9598         1.3102         1.2794         1.1944         1.3034         1.2886           4         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2884         1.2836           16         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2884         1.2836           32         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           FBF [18]         1.3021         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2823           TBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDET [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2844         1.2836           HSDET [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.304         1.2844         1.2836                                                                                                                                                                                                |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 4         1,3344         1,2167         0.9597         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           8         1,3344         1,2167         0.9597         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           32         1,3344         1,2167         0.9597         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           BTS         1,3344         1,2167         0.9597         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           BTS         1,3346         1,2169         0.9598         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           SDBT [18]         1,3346         1,2169         0.9598         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           ESDBT [18]         1,3344         1,2167         0.9596         1,3102         1,2794         1,1944         1,3034         1,2984         1,2836           ESDBT [18]         1,3344         1,2167         0.9596         1,3102         1,2234         1,3084         1,3034         1,2886      <                                                                                                                                                                                           |         | 2                | 1.3345    | 1.2168    | 0.9598    | 1.3102    | 1.2794    | 1.1945    | 1.3034    | 1.2984              | 1.2836    |
| 8         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           16         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           21         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           EBT [18]         1.3021         1.1870         0.9959         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           TSDBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT [18]         1.3346         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           BYDET [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SDBT [18]         1.3344         1.0533         1.3102         1.2794         1.1944         1.3034         1.2836                                                                                                                                                                                                    |         | 4                | 1.3344    | 1.2167    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| 16         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           32         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           EBFT[18]         1.3346         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           TBFT[18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBTT[18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           BSDBT[18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT[18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2848         1.2836           ASDBT[18]         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886 <td></td> <td>8</td> <td>1.3344</td> <td>1.2167</td> <td>0.9597</td> <td>1.3102</td> <td>1.2794</td> <td>1.1944</td> <td>1.3034</td> <td>1.2984</td> <td>1.2836</td>           |         | 8                | 1.3344    | 1.2167    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| 32         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           EBT [18]         1.3041         1.2167         0.9597         1.3102         1.2715         1.1870         1.3034         1.2823           TBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT [18]         1.3346         1.2168         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           MSDBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2234         1.3034         1.2886           ASDBT [18]         1.3414         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           16         1.4620<                                                                                                                                                                                     |         | 16               | 1.3344    | 1.2167    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| Present (Navier)         1.3344         1.2167         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           EBT [18]         1.3021         1.1870         0.9360         1.3021         1.2715         1.1870         1.3021         1.2974         1.1944         1.3034         1.2984         1.2836           TSDBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT [18]         1.3346         1.2169         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ESDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2234         1.3084         1.2034         1.2886           ASDBT [18]         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           A         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234                                                                                                                                                                             |         | 32               | 1.3344    | 1.2167    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| EBT [18]         1.321         1.1870         0.9360         1.3021         1.2715         1.1870         1.3021         1.2971         1.2823           TBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT [18]         1.3345         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           BSDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2233         1.3084         1.3034         1.2886           ASDBT [18]         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           A         1.4620         1.3444         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886                                                                                                                                                                                      |         | Present (Navier) | 1.3344    | 1.2167    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| TBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           SSDBT [18]         1.3345         1.2168         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           HSDBT [18]         1.3345         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ESDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2233         1.3084         1.3034         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           16         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.288                                                                                                                                                                             |         | EBT [18]         | 1.3021    | 1.1870    | 0.9360    | 1.3021    | 1.2715    | 1.1870    | 1.3021    | 1.2971              | 1.2823    |
| TSDBT [18]       1.3346       1.2169       0.9598       1.3102       1.2794       1.1944       1.3034       1.2984       1.2836         SSDBT [18]       1.3345       1.2168       0.9597       1.3102       1.2794       1.1944       1.3034       1.2984       1.2836         ESDBT [18]       1.3344       1.2167       0.9596       1.3102       1.2794       1.1944       1.3034       1.2984       1.2836         ASDBT [18]       1.3344       1.2167       0.9596       1.3102       1.2794       1.1944       1.3034       1.2984       1.2836         Present (FEM)       No of elements        1.2234       1.3084       1.3034       1.2886         4       1.4619       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         8       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         16       1.4620       1.3344       1.0533       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         EBT [18]       1.4621       1.3344       1.0533       1.3416       1.3102       1.2234       1.                                                                                                                                                                                                                                                                  |         | TBT [18]         | 1.3346    | 1.2169    | 0.9598    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| SSDBT [18]         1.3345         1.2168         0.9597         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           HSDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2234         1.3084         1.3034         1.2886           1         Present (FEM)         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           16         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           EBT [18]         1.4621         1.3344         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886                                                                                                                                                                             |         | TSDBT [18]       | 1.3346    | 1.2169    | 0.9598    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| HSDBT [18]         1.3346         1.2169         0.9598         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2234         1.3044         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           4         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           BEBT [18]         1.4621         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.2034         1.2886                                                                                                                                                                                                   |         | SSDBT [18]       | 1.3345    | 1.2168    | 0.9597    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| ESDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           Present (FEM)                   2         1.4623         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           8         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           97         Present (Navier)         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           BT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886                                                                                                                                                                                                                                                                                   |         | HSDBT [18]       | 1.3346    | 1.2169    | 0.9598    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| ASDBT [18]         1.3344         1.2167         0.9596         1.3102         1.2794         1.1944         1.3034         1.2984         1.2836           1         Present (FEM)<br>No of elements         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>ESDBT [18]</td> <td>1.3344</td> <td>1.2167</td> <td>0.9596</td> <td>1.3102</td> <td>1.2794</td> <td>1.1944</td> <td>1.3034</td> <td>1.2984</td> <td>1.2836</td>                                                                                                        |         | ESDBT [18]       | 1.3344    | 1.2167    | 0.9596    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| Present (FEM)           No of elements           2         1.4623         1.3344         1.0534         1.3102         1.2234         1.3084         1.3034         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           8         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           BTE [18]         1.4621         1.3346         1.0555         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3344         1.0533         1.3416         1.3102         1.                                                                                                                                                                                                      |         | ASDBT [18]       | 1.3344    | 1.2167    | 0.9596    | 1.3102    | 1.2794    | 1.1944    | 1.3034    | 1.2984              | 1.2836    |
| No of elements         2         1.4623         1.3344         1.0534         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           8         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3024         1.2886           EBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3345         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084 <td< td=""><td>1</td><td>Present (FEM)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                           | 1       | Present (FEM)    |           |           |           |           |           |           |           |                     |           |
| 2         1.4623         1.3344         1.0534         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           4         1.4619         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           8         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           16         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           22         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           EBT [18]         1.4271         1.3021         1.0275         1.3333         1.3021         1.2157         1.3071         1.3021         1.2886           SDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886 <td></td> <td>No of elements</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                             |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 4       1.4619       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         8       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         16       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         32       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         BT       1.4620       1.3344       1.0533       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         EBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4621       1.3345       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4621       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1                                                                                                                                                                                                                                                                     |         | 2                | 1.4623    | 1.3344    | 1.0534    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| 8         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           16         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           BT         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3031         1.2886           EBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3345         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           ESDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3034         1.2886                                                                                                                                                                                            |         | 4                | 1.4619    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| 16       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         32       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         Present (Navier)       1.4620       1.3344       1.0533       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         EBT [18]       1.4271       1.3021       1.0275       1.3333       1.3021       1.2157       1.3071       1.3021       1.2873         TBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         10       Present (FEM)       1.6875       1.3344                                                                                                                                                                                                                                                             |         | 8                | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| 32         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           Present (Navier)         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           EBT [18]         1.4271         1.3021         1.0275         1.3333         1.3021         1.2157         1.3071         1.3021         1.2873           TBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           ESDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           ESDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3081                                                                                                                                                                              |         | 16               | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| Present (Navier)         1.4620         1.3344         1.0533         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           EBT [18]         1.4271         1.3021         1.0275         1.3333         1.3021         1.2157         1.3071         1.3021         1.2873           TBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3345         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3345         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           BSDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           BSDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           BSDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.304 <td></td> <td>32</td> <td>1.4620</td> <td>1.3344</td> <td>1.0533</td> <td>1.3416</td> <td>1.3102</td> <td>1.2233</td> <td>1.3084</td> <td>1.3034</td> <td>1.2886</td> |         | 32               | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| EBT [18]         1.4271         1.3021         1.0275         1.3333         1.3021         1.2157         1.3071         1.3021         1.2873           TBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           TSDBT [18]         1.4622         1.3346         1.0535         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           SSDBT [18]         1.4621         1.3345         1.0534         1.3416         1.3102         1.2234         1.3084         1.3034         1.2886           ESDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           ASDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           ASDBT [18]         1.4620         1.3344         1.0533         1.3416         1.3102         1.2233         1.3084         1.3034         1.2886           ASDBT [18]         1.4620         1.3344         1.4359         1.4024         1.3102         1.3234         1.3183                                                                                                                                                                            |         | Present (Navier) | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| TBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         TSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4621       1.3345       1.0534       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         HSDBT [18]       1.4620       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.6353       1.3414       1.4359       1.4024       1.3102       1.3234       1.3183       1.3034         1.8       1.8447       1.6875 <td></td> <td>EBT [18]</td> <td>1.4271</td> <td>1.3021</td> <td>1.0275</td> <td>1.3333</td> <td>1.3021</td> <td>1.2157</td> <td>1.3071</td> <td>1.3021</td> <td>1.2873</td>                                                                           |         | EBT [18]         | 1.4271    | 1.3021    | 1.0275    | 1.3333    | 1.3021    | 1.2157    | 1.3071    | 1.3021              | 1.2873    |
| TSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         SSDBT [18]       1.4621       1.3345       1.0534       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         HSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         ASDBT [18]       1.8447       1.6875       1.3344       1                                                                                                                                                                                                                                                   |         | TBT [18]         | 1.4622    | 1.3346    | 1.0535    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| SSDBT [18]       1.4621       1.3345       1.0534       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         HSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         I       Present (FEM)       No of elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | TSDBT [18]       | 1.4622    | 1.3346    | 1.0535    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| HSDBT [18]       1.4622       1.3346       1.0535       1.3416       1.3102       1.2234       1.3084       1.3034       1.2886         ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         I       Present (FEM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | SSDBT [18]       | 1.4621    | 1.3345    | 1.0534    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| ESDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         Present (FEM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | HSDBT [18]       | 1.4622    | 1.3346    | 1.0535    | 1.3416    | 1.3102    | 1.2234    | 1.3084    | 1.3034              | 1.2886    |
| ASDBT [18]       1.4620       1.3344       1.0533       1.3416       1.3102       1.2233       1.3084       1.3034       1.2886         1       Present (FEM)       No of elements       2       1.8460       1.6872       1.3344       1.4359       1.4024       1.3102       1.3234       1.3183       1.3034         4       1.8445       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         8       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         16       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         32       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         BET [18]       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         BET [18]       1.8447       1.6875       1.3021       1.4026       1.3102       1.3234       1.3184       1.3034         BET [18]       1.8450       1.6877                                                                                                                                                                                                                                                                        |         | ESDBT [18]       | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| Present (FEM)         No of elements         1.3034         1.4359         1.4024         1.3102         1.3234         1.3183         1.3034           4         1.8445         1.6875         1.3344         1.4359         1.4024         1.3102         1.3234         1.3183         1.3034           4         1.8445         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           8         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           16         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           32         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           32         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           BET [18]         1.8447         1.6875         1.3344         1.4359         1.4026         1.3102         1.3224         1.3184         1.3034 <t< td=""><td></td><td>ASDBT [18]</td><td>1.4620</td><td>1.3344</td><td>1.0533</td><td>1.3416</td><td>1.3102</td><td>1.2233</td><td>1.3084</td><td>1.3034</td><td>1.2886</td></t<>                |         | ASDBT [18]       | 1.4620    | 1.3344    | 1.0533    | 1.3416    | 1.3102    | 1.2233    | 1.3084    | 1.3034              | 1.2886    |
| No of elements           2         1.8460         1.6872         1.3344         1.4359         1.4024         1.3102         1.3234         1.3183         1.3034           4         1.8445         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           8         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           16         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           32         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           32         1.8447         1.6875         1.3344         1.4358         1.4025         1.3102         1.3234         1.3183         1.3034           EBT [18]         1.8447         1.6875         1.3344         1.4359         1.4026         1.3102         1.3234         1.3184         1.3034           EBT [18]         1.8021         1.6475         1.3021         1.3221         1.3170         1.3021                                                                                                                                                                                                                     | 1       | Present (FEM)    |           |           |           |           |           |           |           |                     |           |
| 21.84601.68721.33441.43591.40241.31021.32341.31831.303441.84451.68751.33441.43581.40251.31021.32341.31831.303481.84471.68751.33441.43581.40251.31021.32341.31831.3034161.84471.68751.33441.43581.40251.31021.32341.31831.3034321.84471.68751.33441.43581.40251.31021.32341.31831.3034Ber [18]1.84271.68751.33441.43591.40261.31021.32341.31841.3034EBT [18]1.84211.68751.30211.42711.39401.30211.32211.31701.3021TBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034SSDBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034HSDBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034BSDBT [18]1.84471.68741.33461.43591.40261.31021.32341.31841.3034BSDBT [18]1.84471.68741.33441.43581.40261.31021.32341.31841.3034BSDBT [18]1.84471.68741.33441.43581.40261.31021.3234 <td< td=""><td></td><td>No of elements</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 41.84451.68751.33441.43581.40251.31021.32341.31831.303481.84471.68751.33441.43581.40251.31021.32341.31831.3034161.84471.68751.33441.43581.40251.31021.32341.31831.3034321.84471.68751.33441.43581.40251.31021.32341.31831.3034Present (Navier)1.84471.68751.33441.43591.40261.31021.32341.31841.3034EBT [18]1.80211.64751.30211.42711.39401.30211.32211.31701.3021TBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034SSDBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034HSDBT [18]1.84471.68761.33451.43581.40261.31021.32341.31841.3034ESDBT [18]1.84471.68761.33451.43581.40261.31021.32341.31841.3034ESDBT [18]1.84471.68741.33441.43581.40261.31021.32341.31841.3034Stolber [18]1.84471.68741.33441.43581.40261.31021.32341.31841.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 2                | 1.8460    | 1.6872    | 1.3344    | 1.4359    | 1.4024    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| 8       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         16       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         32       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         32       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         Ber [18]       1.8447       1.6875       1.3344       1.4359       1.4026       1.3102       1.3234       1.3183       1.3034         EBT [18]       1.8021       1.6475       1.3021       1.4271       1.3940       1.3021       1.3221       1.3170       1.3021         TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8449       1.6876       1.3345       1.4358                                                                                                                                                                                                                                                                        |         | 4                | 1.8445    | 1.6875    | 1.3344    | 1.4358    | 1.4025    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| 161.84471.68751.33441.43581.40251.31021.81021.81041.8004321.84471.68751.33441.43581.40251.31021.32341.31831.3034Present (Navier)1.84471.68751.33441.43591.40261.31021.32341.31831.3034EBT [18]1.80211.64751.30211.42711.39401.30211.32211.31701.3021TBT [18]1.84501.68771.33461.43591.40261.31021.32341.31841.3034SSDBT [18]1.84491.68761.33451.43581.40261.31021.32341.31841.3034HSDBT [18]1.84491.68761.33451.43581.40261.31021.32341.31841.3034HSDBT [18]1.84471.68741.33461.43591.40261.31021.32341.31841.3034HSDBT [18]1.84471.68741.33461.43591.40261.31021.32341.31841.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | 8                | 1.8447    | 1.6875    | 1.3344    | 1.4358    | 1.4025    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| 32       1.8447       1.6875       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034         Present (Navier)       1.8447       1.6875       1.3344       1.4359       1.4026       1.3102       1.3234       1.3183       1.3034         EBT [18]       1.8021       1.6475       1.3021       1.4271       1.3940       1.3021       1.3221       1.3170       1.3021         TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8447       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8447       1.6874       1.3344<                                                                                                                                                                                                                                                   |         | 16               | 1.8447    | 1.6875    | 1.3344    | 1.4358    | 1.4025    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| Present (Navier)       1.8447       1.6875       1.3344       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         EBT [18]       1.8021       1.6475       1.3021       1.4271       1.3940       1.3021       1.3234       1.3184       1.3034         TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         TSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874 <th< td=""><td></td><td>32</td><td>1.8447</td><td>1.6875</td><td>1.3344</td><td>1.4358</td><td>1.4025</td><td>1.3102</td><td>1.3234</td><td>1.3183</td><td>1.3034</td></th<>                                                                            |         | 32               | 1.8447    | 1.6875    | 1.3344    | 1.4358    | 1.4025    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| EBT [18]       1.8011       1.6475       1.3021       1.4271       1.3940       1.3021       1.3221       1.3170       1.3021         TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3170       1.3021         TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6876       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034                                                                                                                                                                                                                                                                                                              |         | Present (Navier) | 1.8447    | 1.6875    | 1 3344    | 1 4359    | 1 4026    | 1 3102    | 1 3234    | 1 3184              | 1 3034    |
| TBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         TSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8449       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | EBT [18]         | 1.8021    | 1.6675    | 1 3021    | 1 4271    | 1 3940    | 1 3021    | 1 3221    | 1 3170              | 1.3021    |
| TSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         SSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | TBT [18]         | 1.8450    | 1.6877    | 1.3346    | 1.4359    | 1.4026    | 1.3102    | 1.3234    | 1.3184              | 1.3034    |
| SSDBT [18]       1.8449       1.6876       1.3345       1.4358       1.4026       1.3102       1.3234       1.3164       1.3034         HSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         HSDBT [18]       1.8450       1.6877       1.3346       1.4359       1.4026       1.3102       1.3234       1.3184       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         | TSDBT [18]       | 1 8450    | 1 6877    | 1 3346    | 1 4359    | 1 4026    | 1 3102    | 1 3234    | 1 3184              | 1 3034    |
| HSDBT [18]       1.8450       1.6877       1.3346       1.4358       1.4026       1.3102       1.324       1.3164       1.3034         ESDBT [18]       1.8447       1.6874       1.3344       1.4358       1.4025       1.3102       1.3234       1.3183       1.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | SSDBT [18]       | 1.8449    | 1.6876    | 1.3345    | 1.4358    | 1.4026    | 1.3102    | 1.3234    | 1.3184              | 1.3034    |
| ESDBT [18] 1.8447 1.6874 1.3344 1.4358 1.4025 1.3102 1.3234 1.3183 1.3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | HSDBT [18]       | 1.8450    | 1.6877    | 1.3346    | 1.4359    | 1.4026    | 1.3102    | 1.3234    | 1.3184              | 1.3034    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ESDBT [18]       | 1.8447    | 1.6874    | 1.3344    | 1.4358    | 1.4025    | 1.3102    | 1.3234    | 1.3183              | 1.3034    |
| ASDBT [18] 1 8447 1 6874 1 3344 1 4358 1 4025 1 3102 1 3234 1 3183 1 3034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | ASDBT [18]       | 1 8447    | 1 6874    | 1 3344    | 1 4358    | 1 4025    | 1 3102    | 1 3234    | 1 3183              | 1 3034    |

 Table 2
 Comparison of dimensionless buckling loads of simply supported nanobeam

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ea (nm) | Beam theory      | L/h = 10  |           |           | L/h = 20  |           |           | L/h = 50  |                     |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------|-----------|
| Present (FEM)<br>No of elements         Present (FEM)           2         9.6241         10.5740         13.4240         9.8070         10.0490         10.7751         9.8595         9.8985         10.0153           4         9.6240         10.5739         13.4235         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           16         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           32         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           Present (Navier)         9.6227         10.5713         13.4234         9.8070         10.0493         10.7746         9.8595         9.8984         100125           TSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         100152           SDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.7750         9.8595         9.8984         100152           ASDBT [18]         9.6242         10.2116         9.5709                                                                                                                                                                                    |         |                  | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm |
| No of elements         View                                                                                                                                                                                                      | 0       | Present (FEM)    |           |           | ·         |           | ,         |           |           |                     |           |
| 2         9.6241         10.5740         13.4240         9.8070         10.0490         10.7751         9.8395         9.8985         10.0153           4         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           16         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           2         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           EBT [18]         9.6227         10.5721         13.4216         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           TSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0497         10.7746         9.8595         9.8884         10.0152           HSDBT [18]         9.6242         10.571         13.4237         9.8071         10.0491         10.755         9.8295 <td></td> <td>No of elements</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 4         9.6240         10.5739         13.4235         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           16         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           32         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           BT         9.8066         10.8437         13.7660         9.8067         10.0487         10.7746         9.8595         9.8984         10.0125           TSDBT [18]         9.6221         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6222         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.7750         9.8956         9.8985         10.0152           ASDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.7750         9.89                                                                                                                                                                                        |         | 2                | 9.6241    | 10.5740   | 13.4240   | 9.8070    | 10.0491   | 10.7751   | 9.8596    | 9.8985              | 10.0153   |
| 8         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           32         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           Bresent (Navier)         9.6251         10.5751         13.4234         9.8070         10.0490         10.7749         9.8595         9.8985         10.0152           EBT [18]         9.6267         10.5724         13.4216         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6228         10.5724         13.4217         9.8067         10.0487         10.7746         9.8595         9.8985         10.0152           SSDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.750         9.8595         9.8985         10.0152           ASDBT [18]         9.6240         12.2176         9.5709         9.8071         10.5155         9.8208                                                                                                                                                                                    |         | 4                | 9.6240    | 10.5739   | 13.4235   | 9.8070    | 10.0490   | 10.7749   | 9.8595    | 9.8985              | 10.0152   |
| 16         9.6240         10.5739         13.4234         9.8070         10.0490         10.7749         9.8555         9.8985         10.0152           32         9.6240         10.5739         13.4234         9.8070         10.0493         10.7739         9.8595         9.8985         10.0152           EBT [18]         9.6251         10.5721         13.4234         9.8066         10.1131         10.8437         9.8596         9.8984         10.0125           TSDBT [18]         9.6227         10.5724         13.4216         9.8067         10.0487         10.7746         9.8595         9.8984         10.0125           SSDBT [18]         9.6223         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8984         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8984         10.0152           ASDBT [18]         9.6242         10.5741         5.4237         9.8070         10.5155         9.8208                                                                                                                                                                                        |         | 8                | 9.6240    | 10.5739   | 13.4234   | 9.8070    | 10.0490   | 10.7749   | 9.8595    | 9.8985              | 10.0152   |
| 32         9,6240         10,5739         13,4234         9,8073         10,0490         10,7749         9,8595         9,8985         10,0152           EBT [18]         9,6621         10,5751         13,4250         9,8073         10,0493         10,7739         9,8596         9,8085         10,0152           EBT [18]         9,6227         10,5724         13,4216         9,8067         10,0487         10,7746         9,8595         9,8984         10,0152           SDBT [18]         9,6228         10,5725         13,4217         9,8067         10,0487         10,7746         9,8595         9,8984         10,0152           SDBT [18]         9,6228         10,5725         13,4217         9,8067         10,0487         10,7746         9,8595         9,8984         10,0152           ASDBT [18]         9,6242         10,5741         13,4237         9,8071         10,0491         10,7750         9,8595         9,8985         10,0152           ASDBT [18]         9,6242         10,5741         13,4237         9,8071         10,5156         9,8208         9,8596         9,9759           4         8,7595         9,6240         12,2176         9,5709         9,8070         10,5155         9,8208 <t< td=""><td></td><td>16</td><td>9.6240</td><td>10.5739</td><td>13.4234</td><td>9.8070</td><td>10.0490</td><td>10.7749</td><td>9.8595</td><td>9.8985</td><td>10.0152</td></t<>               |         | 16               | 9.6240    | 10.5739   | 13.4234   | 9.8070    | 10.0490   | 10.7749   | 9.8595    | 9.8985              | 10.0152   |
| Present (Navier)         9.6251         10.5751         13.4250         9.8073         10.0493         10.733         9.8596         9.8985         10.0125           EBT [18]         9.6696         10.8437         13.7660         9.8696         10.1131         10.8437         9.8696         10.0255           TBD T [18]         9.6227         10.5724         13.4216         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6228         10.5725         13.4217         9.8071         10.0488         10.7746         9.8595         9.8984         10.0152           ESDBT [18]         9.6242         10.5711         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.5155         9.8208         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           A         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595<                                                                                                                                                                               |         | 32               | 9.6240    | 10.5739   | 13.4234   | 9.8070    | 10.0490   | 10.7749   | 9.8595    | 9.8985              | 10.0152   |
| EBT [18]         9.8696         10.8437         13.7660         9.8696         10.1131         10.8437         9.8696         9.0086         10.0152           TSDBT [18]         9.6227         10.5724         13.4216         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           ESDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0481         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         12.2176         9.5709         9.8071         10.5156         9.8208         9.8595         9.9758           4         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208 <t< td=""><td></td><td>Present (Navier)</td><td>9.6251</td><td>10.5751</td><td>13.4250</td><td>9.8073</td><td>10.0493</td><td>10.7753</td><td>9.8596</td><td>9.8985</td><td>10.0152</td></t<> |         | Present (Navier) | 9.6251    | 10.5751   | 13.4250   | 9.8073    | 10.0493   | 10.7753   | 9.8596    | 9.8985              | 10.0152   |
| TBT [18]         9.6227         10.5724         13.4216         9.807         10.0487         10.7746         9.8595         9.8984         10.0152           SSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           HSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8595         9.8984         10.0152           ISDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         12.2181         9.5709         9.8070         10.5156         9.8208         9.8595         9.9758           16         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8596         9.9758           16         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208 <t< td=""><td></td><td>EBT [18]</td><td>9.8696</td><td>10.8437</td><td>13.7660</td><td>9.8696</td><td>10.1131</td><td>10.8437</td><td>9.8696</td><td>9.9086</td><td>10.0255</td></t<>         |         | EBT [18]         | 9.8696    | 10.8437   | 13.7660   | 9.8696    | 10.1131   | 10.8437   | 9.8696    | 9.9086              | 10.0255   |
| TSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7746         9.8955         9.8984         10.0152           SSDBT [18]         9.6228         10.5725         13.4227         9.8068         10.0488         10.7746         9.8595         9.8984         10.0152           ESDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.750         9.8595         9.9759           ASDBT [18]         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           B         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6251         12.2190         9.5706         9.8071         10.5155         9.8208         9.8595                                                                                                                                                                                                 |         | TBT [18]         | 9.6227    | 10.5724   | 13.4216   | 9.8067    | 10.0487   | 10.7746   | 9.8595    | 9.8984              | 10.0152   |
| SSDBT [18]         9.6231         10.5729         13.4222         9.8068         10.0488         10.7747         9.8595         9.8984         10.0152           HSDBT [18]         9.6242         10.5741         13.4217         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5714         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           No of clements           8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           3         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           BEBT [18]         8.7583         9.6221         12.2160         9.5706         9.8067 <td></td> <td>TSDBT [18]</td> <td>9.6228</td> <td>10.5725</td> <td>13.4217</td> <td>9.8067</td> <td>10.0487</td> <td>10.7746</td> <td>9.8595</td> <td>9.8984</td> <td>10.0152</td>                        |         | TSDBT [18]       | 9.6228    | 10.5725   | 13.4217   | 9.8067    | 10.0487   | 10.7746   | 9.8595    | 9.8984              | 10.0152   |
| HSDBT [18]         9.6228         10.5725         13.4217         9.8067         10.0487         10.7760         9.8955         9.8984         10.0152           LESDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           ASDBT [18]         9.6242         12.2116         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           4         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8596         9.9758           32         8.7595         9.6240         12.2176         9.5712         9.8070         10.515         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2160         9.5712         9.8077         10.515         9.8207         9.8595                                                                                                                                                                                                     |         | SSDBT [18]       | 9.6231    | 10.5729   | 13.4222   | 9.8068    | 10.0488   | 10.7747   | 9.8595    | 9.8984              | 10.0152   |
| ESDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.7750         9.8955         9.8985         10.0152           ASDBT [18]         9.6242         10.5741         13.4237         9.8071         10.0491         10.750         9.8955         9.8985         10.0152           Present (FEM)         No         6         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           8         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           16         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2170         9.5712         9.8071         10.515         9.8208         9.8595         9.9758           BEBT [18]         8.7633         9.6221         12.2159         9.5706         9.8067         10.5151                                                                                                                                                                                                 |         | HSDBT [18]       | 9.6228    | 10.5725   | 13.4217   | 9.8067    | 10.0487   | 10.7746   | 9.8595    | 9.8984              | 10.0152   |
| ASDBT [18]         9.6242         10.571         13.4237         9.8071         10.0491         10.7750         9.8595         9.8985         10.0152           1         Present (FEM)<br>No of elements         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                |         | ESDBT [18]       | 9.6242    | 10.5741   | 13.4237   | 9.8071    | 10.0491   | 10.7750   | 9.8595    | 9.8985              | 10.0152   |
| Present (FEM)         No           No         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                  |         | ASDBT [18]       | 9.6242    | 10.5741   | 13.4237   | 9.8071    | 10.0491   | 10.7750   | 9.8595    | 9.8985              | 10.0152   |
| No of elements         View                                                                                                                                                                                                      | 1       | Present (FEM)    |           |           |           |           |           |           |           |                     |           |
| 2         8.7595         9.6242         12.2181         9.5709         9.8071         10.5156         9.8208         9.8596         9.9759           4         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           8         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5706         9.8071         10.5158         9.8208         9.8595         9.9758           5DBT [18]         8.7583         9.6227         12.2159         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SDBT [18]         8.7587         9.6231         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595 <td< td=""><td></td><td>No of elements</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                               |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 4         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           8         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758 <b>Present (Nave</b> 8.7605         9.6251         12.2190         9.5712         9.8073         10.5155         9.8208         9.8596         9.9758           BEBT [18]         8.7603         9.6227         12.2190         9.5716         9.8067         10.5151         9.8207         9.8595         9.9758           SDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SDBT [18]         8.7597         9.6242         12.2169         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5151         9.8208                                                                                                                                                                                                                  |         | 2                | 8.7595    | 9.6242    | 12.2181   | 9.5709    | 9.8071    | 10.5156   | 9.8208    | 9.8596              | 9.9759    |
| 8         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           16         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           Present (Navier)         8.7605         9.6251         12.2190         9.5712         9.8073         10.5158         9.8208         9.8595         9.9758           EBT [18]         8.7583         9.6227         12.2190         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9758           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208                                                                                                                                                                                                 |         | 4                | 8.7595    | 9.6240    | 12.2176   | 9.5709    | 9.8070    | 10.5155   | 9.8208    | 9.8595              | 9.9758    |
| 16         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           Present (Navier)         8.7605         9.6251         12.2190         9.5712         9.8073         10.5155         9.8208         9.8596         9.9758           EBT [18]         8.9830         9.8696         12.5294         9.6320         9.8666         10.5151         9.8207         9.8595         9.9758           TSDBT [18]         8.7583         9.6228         12.2169         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7587         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           BSDBT [18]         8.7587         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208                                                                                                                                                                                        |         | 8                | 8.7595    | 9.6240    | 12.2176   | 9.5709    | 9.8070    | 10.5155   | 9.8208    | 9.8595              | 9.9758    |
| 32         8.7595         9.6240         12.2176         9.5709         9.8070         10.5155         9.8208         9.8595         9.9758           Present (Navier)         8.7605         9.6251         12.2190         9.5712         9.8073         10.5158         9.8208         9.8596         9.9758           EBT [18]         8.9830         9.8696         12.5294         9.6320         9.8696         10.5826         9.8308         9.8696         9.9860           TBT [18]         8.7583         9.6227         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7587         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           BSDBT [18]         8.7587         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9758           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155                                                                                                                                                                                                 |         | 16               | 8.7595    | 9.6240    | 12.2176   | 9.5709    | 9.8070    | 10.5155   | 9.8208    | 9.8595              | 9.9758    |
| Present (Navier)         8.7605         9.6251         12.2190         9.5712         9.8073         10.5158         9.8208         9.8596         9.9758           EBT [18]         8.9830         9.8696         12.5294         9.6320         9.8696         10.5826         9.8308         9.8696         9.9869           TBT [18]         8.7583         9.6227         12.2159         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7587         9.6242         12.2169         9.5709         9.8067         10.5151         9.8207         9.8595         9.9758           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155                                                                                                                                                                                         |         | 32               | 8.7595    | 9.6240    | 12.2176   | 9.5709    | 9.8070    | 10.5155   | 9.8208    | 9.8595              | 9.9758    |
| EBT [18]         8,9830         9,8696         12.5294         9,6320         9,8696         10.5826         9,8308         9,8696         9,9860           TBT [18]         8,7583         9,6227         12.2159         9,5706         9,8067         10.5151         9,8207         9,8595         9,9758           TSDBT [18]         8,7583         9,6228         12.2160         9,5706         9,8067         10.5151         9,8207         9,8595         9,9758           SSDBT [18]         8,7583         9,6228         12.2160         9,5706         9,8067         10.5151         9,8207         9,8595         9,9758           BSDBT [18]         8,7597         9,6242         12.2179         9,5709         9,8071         10.5155         9,8208         9,8595         9,9759           ASDBT [18]         8,7597         9,6242         12.2179         9,5709         9,8071         10.5155         9,8208         9,8595         9,9759           ASDBT [18]         8,7597         9,6242         12.2179         9,5709         9,8071         10.5155         9,8208         9,8595         9,9759           ASDBT [18]         8,7597         9,6242         12.2179         9,5709         9,8071         10.5155 <t< td=""><td></td><td>Present (Navier)</td><td>8.7605</td><td>9.6251</td><td>12.2190</td><td>9.5712</td><td>9.8073</td><td>10.5158</td><td>9.8208</td><td>9.8596</td><td>9.9758</td></t<>    |         | Present (Navier) | 8.7605    | 9.6251    | 12.2190   | 9.5712    | 9.8073    | 10.5158   | 9.8208    | 9.8596              | 9.9758    |
| TBT [18]         8.7583         9.6227         12.2159         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           TSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7587         9.6231         12.2165         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           HSDBT [18]         8.7587         9.6231         12.2165         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           ESDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           2         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063<                                                                                                                                                                                        |         | EBT [18]         | 8.9830    | 9.8696    | 12.5294   | 9.6320    | 9.8696    | 10.5826   | 9.8308    | 9.8696              | 9.9860    |
| TSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           SSDBT [18]         8.7587         9.6231         12.2165         9.5706         9.8068         10.5152         9.8207         9.8595         9.9758           HSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           ESDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070                                                                                                                                                                                             |         | TBT [18]         | 8.7583    | 9.6227    | 12.2159   | 9.5706    | 9.8067    | 10.5151   | 9.8207    | 9.8595              | 9.9758    |
| SSDBT [18]         8.7587         9.6231         12.2165         9.5706         9.8068         10.5152         9.8207         9.8595         9.9758           HSDBT [18]         8.7583         9.6228         12.2160         9.5706         9.8067         10.5151         9.8207         9.8595         9.9758           ESDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070                                                                                                                                                                                             |         | TSDBT [18]       | 8.7583    | 9.6228    | 12.2160   | 9.5706    | 9.8067    | 10.5151   | 9.8207    | 9.8595              | 9.9758    |
| HSDBT [18]       8.7583       9.6228       12.2160       9.5706       9.8067       10.5151       9.8207       9.8595       9.9758         ESDBT [18]       8.7597       9.6242       12.2179       9.5709       9.8071       10.5155       9.8208       9.8595       9.9759         ASDBT [18]       8.7597       9.6242       12.2179       9.5709       9.8071       10.5155       9.8208       9.8595       9.9759         2       Present (FEM)       No of elements       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                           |         | SSDBT [18]       | 8.7587    | 9.6231    | 12.2165   | 9.5706    | 9.8068    | 10.5152   | 9.8207    | 9.8595              | 9.9758    |
| ESDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           ASDBT [18]         8.7597         9.6242         12.2179         9.5709         9.8071         10.5155         9.8208         9.8595         9.9759           Present (FEM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | HSDBT [18]       | 8.7583    | 9.6228    | 12.2160   | 9.5706    | 9.8067    | 10.5151   | 9.8207    | 9.8595              | 9.9758    |
| ASDBT [18]       8.7597       9.6242       12.2179       9.5709       9.8071       10.5155       9.8208       9.8595       9.9759         2       Present (FEM)<br>No of elements       2       6.9000       7.5811       9.6244       8.9261       9.1464       9.8072       9.7063       9.7446       9.8596         4       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         8       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         16       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         32       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         32       6.9000       7.5810       9.6240       8.9263       9.1467       9.8073       9.7063       9.7446       9.8595         BET [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7545       9.8696         EBT [18]       6.8991       7.5800                                                                                                                                                                                                                                                                                      |         | ESDBT [18]       | 8.7597    | 9.6242    | 12.2179   | 9.5709    | 9.8071    | 10.5155   | 9.8208    | 9.8595              | 9.9759    |
| 2         Present (FEM)<br>No of elements           2         6.9000         7.5811         9.6244         8.9261         9.1464         9.8072         9.7063         9.7446         9.8596           4         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           8         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           16         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           32         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           32         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           Present (Navier)         6.9008         7.5819         9.6251         8.9263         9.1467         9.8073         9.7063         9.7446         9.8596           EBT [18]         7.0761         7.7745         9.8696         8.9230         9.2047         <                                                                                                                                                                                                           |         | ASDBT [18]       | 8.7597    | 9.6242    | 12.2179   | 9.5709    | 9.8071    | 10.5155   | 9.8208    | 9.8595              | 9.9759    |
| No of elements         2         6.9000         7.5811         9.6244         8.9261         9.1464         9.8072         9.7063         9.7446         9.8596           4         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           8         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           16         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           32         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           32         6.9000         7.5810         9.6240         8.9261         9.1463         9.8070         9.7063         9.7446         9.8595           Bresent (Navier)         6.9008         7.5819         9.6251         8.9263         9.1467         9.8073         9.7063         9.7446         9.8596           EBT [18]         7.0761         7.7745         9.8696         8.9238         9.1460         9.8067         9.7062         9                                                                                                                                                                                                          | 2       | Present (FEM)    |           |           |           |           |           |           |           |                     |           |
| 26.90007.58119.62448.92619.14649.80729.70639.74469.859646.90007.58109.62408.92619.14639.80709.70639.74469.859586.90007.58109.62408.92619.14639.80709.70639.74469.8595166.90007.58109.62408.92619.14639.80709.70639.74469.8595326.90007.58109.62408.92619.14639.80709.70639.74469.8595326.90007.58109.62408.92619.14639.80709.70639.74469.8595Present (Navier)6.90087.58199.62518.92639.14679.80739.70639.74469.8596EBT [18]7.07617.77459.86968.98309.20479.86969.71629.75459.8696TBT [18]6.89907.58009.62278.92589.14609.80679.70629.74459.8595SSDBT [18]6.89917.58009.62288.92589.14609.80679.70629.74459.8595SSDBT [18]6.89917.58009.62288.92589.14619.80689.70629.74459.8595HSDBT [18]6.89917.58009.62288.92589.14609.80679.70629.74459.8595ESDBT [18]6.90027.58129.62428.92619.14639.80719.7063 <td< td=""><td></td><td>No of elements</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | No of elements   |           |           |           |           |           |           |           |                     |           |
| 46.90007.58109.62408.92619.14639.80709.70639.74469.859586.90007.58109.62408.92619.14639.80709.70639.74469.8595166.90007.58109.62408.92619.14639.80709.70639.74469.8595326.90007.58109.62408.92619.14639.80709.70639.74469.8595326.90007.58109.62408.92619.14639.80709.70639.74469.8595Present (Navier)6.90087.58199.62518.92639.14679.80739.70639.74469.8596EBT [18]7.07617.77459.86968.98309.20479.86969.71629.74459.8595TSDBT [18]6.89907.58009.62278.92589.14609.80679.70629.74459.8595SSDBT [18]6.89917.58039.62318.92589.14609.80679.70629.74459.8595HSDBT [18]6.89917.58009.62288.92589.14609.80679.70629.74459.8595ESDBT [18]6.90027.58129.62428.92589.14609.80679.70629.74459.8595ESDBT [18]6.90027.58129.62428.92619.14639.80719.70639.74469.8595ASDBT [18]6.90027.58129.62428.92619.14639.8071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | 2                | 6.9000    | 7.5811    | 9.6244    | 8.9261    | 9.1464    | 9.8072    | 9.7063    | 9.7446              | 9.8596    |
| 8       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         16       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         32       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         32       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         Present (Navier)       6.9008       7.5819       9.6251       8.9263       9.1467       9.8073       9.7063       9.7446       9.8596         EBT [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7445       9.8595         TSDBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8991       7.5803       9.6231       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SDBT [18]       6.8991       7.5803       9.6231       8.9258 <td></td> <td>4</td> <td>6.9000</td> <td>7.5810</td> <td>9.6240</td> <td>8.9261</td> <td>9.1463</td> <td>9.8070</td> <td>9.7063</td> <td>9.7446</td> <td>9.8595</td>                                                                                                              |         | 4                | 6.9000    | 7.5810    | 9.6240    | 8.9261    | 9.1463    | 9.8070    | 9.7063    | 9.7446              | 9.8595    |
| 16       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         32       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         Present (Navier)       6.9008       7.5819       9.6251       8.9263       9.1467       9.8073       9.7063       9.7446       9.8596         EBT [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7445       9.8595         TBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8991       7.5803       9.6231       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.8991       7.5800       9.6228                                                                                                                                                                                                                                                                                |         | 8                | 6.9000    | 7.5810    | 9.6240    | 8.9261    | 9.1463    | 9.8070    | 9.7063    | 9.7446              | 9.8595    |
| 32       6.9000       7.5810       9.6240       8.9261       9.1463       9.8070       9.7063       9.7446       9.8595         Present (Navier)       6.9008       7.5819       9.6251       8.9263       9.1467       9.8073       9.7063       9.7446       9.8596         EBT [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7545       9.8696         TBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         TSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8068       9.7062       9.7445       9.8595         SSDBT [18]       6.8991       7.5803       9.6218       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6228<                                                                                                                                                                                                                                                                       |         | 16               | 6.9000    | 7.5810    | 9.6240    | 8.9261    | 9.1463    | 9.8070    | 9.7063    | 9.7446              | 9.8595    |
| Present (Navier)       6.9008       7.5819       9.6251       8.9263       9.1467       9.8073       9.7063       9.7446       9.8596         EBT [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7545       9.8696         TBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         TSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1461       9.8068       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812 <td< td=""><td></td><td>32</td><td>6.9000</td><td>7.5810</td><td>9.6240</td><td>8.9261</td><td>9.1463</td><td>9.8070</td><td>9,7063</td><td>9.7446</td><td>9.8595</td></td<>                                                                                                |         | 32               | 6.9000    | 7.5810    | 9.6240    | 8.9261    | 9.1463    | 9.8070    | 9,7063    | 9.7446              | 9.8595    |
| EBT [18]       7.0761       7.7745       9.8696       8.9830       9.2047       9.8696       9.7162       9.7545       9.8696         TBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         TSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1461       9.8068       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.624                                                                                                                                                                                                                                                                       |         | Present (Navier) | 6.9008    | 7.5819    | 9.6251    | 8.9263    | 9.1467    | 9.8073    | 9.7063    | 9.7446              | 9.8596    |
| TBT [18]       6.8990       7.5800       9.6227       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         TSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1461       9.8068       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595                                                                                                                                                                                                                                                                                                                              |         | EBT [18]         | 7.0761    | 7.7745    | 9.8696    | 8.9830    | 9.2047    | 9.8696    | 9.7162    | 9.7545              | 9.8696    |
| TSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         SSDBT [18]       6.8994       7.5803       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1461       9.8067       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | TBT [18]         | 6.8990    | 7.5800    | 9.6227    | 8.9258    | 9.1460    | 9.8067    | 9.7062    | 9.7445              | 9.8595    |
| SSDBT [18]       6.8994       7.5803       9.6231       8.9258       9.1461       9.8068       9.7062       9.7445       9.8595         HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | TSDBT [18]       | 6.8991    | 7.5800    | 9.6228    | 8.9258    | 9.1460    | 9.8067    | 9.7062    | 9.7445              | 9,8595    |
| HSDBT [18]       6.8991       7.5800       9.6228       8.9258       9.1460       9.8067       9.7062       9.7445       9.8595         ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | SSDBT [18]       | 6.8994    | 7.5803    | 9.6231    | 8.9258    | 9,1461    | 9.8068    | 9,7062    | 9.7445              | 9,8595    |
| ESDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595         ASDBT [18]       6.9002       7.5812       9.6242       8.9261       9.1463       9.8071       9.7063       9.7446       9.8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | HSDBT [18]       | 6.8991    | 7.5800    | 9.6228    | 8.9258    | 9,1460    | 9.8067    | 9.7062    | 9.7445              | 9.8595    |
| ASDBT [18] 6 9002 7 5812 9 6242 8 9261 9 1463 9 8071 9 7063 9 7446 9 8595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | ESDBT [18]       | 6,9002    | 7.5812    | 9.6242    | 8,9261    | 9,1463    | 9.8071    | 9,7063    | 9,7446              | 9,8595    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | ASDBT [18]       | 6.9002    | 7.5812    | 9.6242    | 8.9261    | 9,1463    | 9.8071    | 9.7063    | 9,7446              | 9,8595    |

Table 3 Comparison of dimensionless fundamental frequency of simply supported nanobeam

| ea (nm) | Beam theory      | L/h = 10  |             |           | L/h = 50  |             |                     |
|---------|------------------|-----------|-------------|-----------|-----------|-------------|---------------------|
|         |                  | l = 0  nm | l = 0.5  nm | l = 1  nm | l = 0  nm | l = 0.5  nm | $l = 1 \mathrm{nm}$ |
| 0       | Present (FEM)    |           |             |           |           |             |                     |
|         | No of elements   |           |             |           |           |             |                     |
|         | 2                | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | 4                | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | 8                | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | 16               | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | 32               | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | Present (Navier) | 9.7082    | 9.8272      | 10.1760   | 9.8630    | 9.8678      | 9.8824              |
|         | EBT [17]         | 9.8293    | 9.9498      | 10.3029   | 9.8680    | 9.8728      | 9.8874              |
|         | TBT [17]         | 9.7075    | 9.8265      | 10.1753   | 9.8629    | 9.8678      | 9.8824              |
|         | SBT [17]         | 9.7077    | 9.8267      | 10.1755   | 9.8629    | 9.8678      | 9.8824              |
| 1       | Present (FEM)    |           |             |           |           |             |                     |
|         | No of elements   |           |             |           |           |             |                     |
|         | 2                | 9.2619    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | 4                | 9.2618    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | 8                | 9.2618    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | 16               | 9.2618    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | 32               | 9.2618    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | Present (Navier) | 9.2618    | 9.3754      | 9.7082    | 9.8435    | 9.8484      | 9.8630              |
|         | EBT [17]         | 9.3774    | 9.4924      | 9.8293    | 9.8486    | 9.8534      | 9.8680              |
|         | TBT [17]         | 9.2612    | 9.3748      | 9.7075    | 9.8435    | 9.8484      | 9.8629              |
|         | SBT [17]         | 9.2614    | 9.3750      | 9.7077    | 9.8435    | 9.8484      | 9.8629              |
| 0       | Present (FEM)    |           |             |           |           |             |                     |
|         | No of elements   |           |             |           |           |             |                     |
|         | 2                | 8.2202    | 8.3210      | 8.6164    | 9.7860    | 9.7908      | 9.8053              |
|         | 4                | 8.2202    | 8.3210      | 8.6163    | 9.7860    | 9.7908      | 9.8053              |
|         | 8                | 8.2202    | 8.3210      | 8.6163    | 9.7860    | 9.7908      | 9.8053              |
|         | 16               | 8.2202    | 8.3210      | 8.6163    | 9.7860    | 9.7908      | 9.8053              |
|         | 32               | 8.2202    | 8.3210      | 8.6163    | 9.7860    | 9.7908      | 9.8053              |
|         | Present (Navier) | 8.2202    | 8.3210      | 8.6163    | 9.7860    | 9.7908      | 9.8053              |
|         | EBT [17]         | 8.3228    | 8.4248      | 8.7238    | 9.7910    | 9.7958      | 9.8103              |
|         | TBT [17]         | 8.2196    | 8.3204      | 8.6157    | 9.7860    | 9.7908      | 9.8053              |
|         | SBT [17]         | 8.2198    | 8.3206      | 8.6159    | 9.7860    | 9.7908      | 9.8053              |

Fig. 2 Simply supported nanobeam: effect of slenderness ratio (L/h) on the deflections, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 





for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 

Table 4 Clamped-simply nanobeam: dimensionless maximum deflections

| ea (nm) | L/h = 10  |                     |           | L/h = 20  |                     |           | L/h = 50  |                     |           |  |
|---------|-----------|---------------------|-----------|-----------|---------------------|-----------|-----------|---------------------|-----------|--|
|         | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm |  |
| 0       | 0.5478    | 0.3195              | 0.1706    | 0.5240    | 0.4098              | 0.3018    | 0.5174    | 0.4747              | 0.4272    |  |
| 1       | 0.5801    | 0.3411              | 0.1831    | 0.5319    | 0.4164              | 0.3070    | 0.5186    | 0.4759              | 0.4283    |  |
| 2       | 0.6771    | 0.4060              | 0.2203    | 0.5554    | 0.4362              | 0.3226    | 0.5223    | 0.4794              | 0.4316    |  |

tendency to decrease the dimensionless deflection and also to increase the buckling load and the frequency.

The influence of slenderness ratio, the nonlocal parameter and strain gradient parameter is brought in Figs. 5, 6 and 7. According to the figures, it can be observed that the effects of the nonlocal and strain gradient parameters are qualitatively similar to that of simply supported nanobeam. However, with the increasing of slenderness ratio, the dimensionless deflection increases when l > ea or when l < ea. Also, contrary to the simply supported case, the differences between the dimensionless deflection predicted by classical theory and nonlocal strain gradient are weak for lower values of slenderness ratio, and they are diminishing as the increase of slenderness ratio.

The third analysis is performed assuming clamped-clamped straight nanobeams under a uniform load for the bending analysis. The dimensionless maximum deflection, dimensionless buckling loads and dimensionless fundamental frequency are highlighted in Tables 7, 8 and 9 assuming different nonlocal parameter and strain gradient parameter. It can be noted that the dimensionless maximum deflection are not affected by the nonlocal parameter, and the dimensionless maximum deflection decreases with the increase of strain gradient parameter  $\lambda$ . The results are qualitatively similar to that of clamped-simply supported beam with no effect of nonlocal parameter. The influence of slenderness ratio, the nonlocal parameter and strain gradient parameter are brought in Figs. 8, 9 and 10.

| L/h | ea (nm) | First buckli | ing load  |           | Second buc | ckling load |           | Third buckling load |           |           |
|-----|---------|--------------|-----------|-----------|------------|-------------|-----------|---------------------|-----------|-----------|
|     |         | l = 0  nm    | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm   | l = 2  nm | l = 0  nm           | l = 1  nm | l = 2  nm |
| 5   | 0       | 2.4155       | 3.8287    | 5.8249    | 18.1308    | 39.3600     | 87.7649   | 37.9108             | 136.5981  | 404.3530  |
|     | 1       | 2.1977       | 3.4132    | 5.0733    | 9.5836     | 18.3065     | 39.9924   | 10.9021             | 52.7773   | 180.7486  |
|     | 2       | 1.7298       | 2.5469    | 3.5993    | 3.4750     | 11.7276     | 15.4692   | 3.9696              | 15.4980   | 53.2982   |
| 10  | 0       | 2.4616       | 3.0773    | 3.9339    | 21.0819    | 29.9254     | 46.5778   | 53.4035             | 94.7720   | 195.4781  |
|     | 1       | 2.4021       | 2.9959    | 3.8182    | 17.2383    | 23.9431     | 36.2702   | 32.9784             | 55.5343   | 112.3988  |
|     | 2       | 2.2397       | 2.7748    | 3.5059    | 11.1435    | 14.7124     | 21.3196   | 15.3574             | 23.9315   | 49.8174   |
| 20  | 0       | 2.4734       | 2.7442    | 3.0953    | 21.9796    | 25.4217     | 31.3975   | 59.5513             | 74.4738   | 106.6443  |
|     | 1       | 2.4582       | 2.7265    | 3.0744    | 20.8192    | 24.0194     | 29.5614   | 51.5669             | 64.0462   | 90.7834   |
|     | 2       | 2.4136       | 2.6749    | 3.0134    | 17.9724    | 20.5975     | 25.1076   | 36.7749             | 44.9262   | 62.2120   |
| 50  | 0       | 2.4768       | 2.5709    | 2.6863    | 22.2451    | 23.2645     | 24.8194   | 61.5403             | 65.3204   | 72.4764   |
|     | 1       | 2.4743       | 2.5683    | 2.6835    | 22.0485    | 23.0556     | 24.5922   | 60.0525             | 63.7166   | 70.6604   |
|     | 2       | 2.4670       | 2.5606    | 2.6753    | 21.4789    | 22.4507     | 23.9344   | 55.9917             | 59.3429   | 65.7140   |

 Table 5
 Clamped-simply nanobeam: dimensionless buckling loads

 Table 6
 Clamped-simply nanobeam: dimensionless fundamental frequencies

| L/h | ea (nm) | First mode |           |           | Second mo | de        |           | Third mode |           |           |  |
|-----|---------|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|--|
|     |         | l = 0  nm  | l = 1  nm | l = 2  nm | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm | l = 2  nm |  |
| 5   | 0       | 3.4254     | 5.0103    | 6.7106    | 18.5342   | 29.4441   | 43.0438   | 27.2417    | 84.0706   | 43.0438   |  |
|     | 1       | 3.1515     | 4.4874    | 5.8972    | 12.7079   | 18.7541   | 26.9064   | 23.6772    | 42.9708   | 71.6460   |  |
| 10  | 0       | 3.5028     | 4.2674    | 5.1639    | 21.0100   | 26.7584   | 34.4589   | 55.3320    | 76.9570   | 108.9553  |  |
|     | 1       | 3.4244     | 4.1545    | 5.0079    | 18.3362   | 22.8261   | 28.7976   | 42.2444    | 56.7013   | 78.8647   |  |
|     | 2       | 3.2153     | 3.8596    | 4.6080    | 14.0481   | 17.0436   | 21.1093   | 28.6743    | 37.9554   | 53.0279   |  |
| 20  | 0       | 3.5233     | 3.8819    | 4.2973    | 21.8264   | 24.4156   | 27.9957   | 60.0283    | 69.4160   | 84.5772   |  |
|     | 1       | 3.5030     | 3.8574    | 4.2678    | 20.9969   | 23.4030   | 26.7284   | 55.0325    | 63.1483   | 76.2705   |  |
|     | 2       | 3.4438     | 3.7863    | 4.1825    | 18.9742   | 20.9782   | 23.7531   | 45.3876    | 51.4739   | 61.4571   |  |
| 50  | 0       | 3.5292     | 3.6591    | 3.8106    | 22.0758   | 22.9504   | 24.0898   | 61.6279    | 64.4705   | 68.8419   |  |
|     | 1       | 3.5259     | 3.6556    | 3.8067    | 21.9337   | 22.7974   | 23.9228   | 60.6962    | 63.4614   | 67.7211   |  |
|     | 2       | 3.5161     | 3.6450    | 3.7953    | 21.5227   | 22.3554   | 23.4414   | 58.1370    | 60.6985   | 64.6637   |  |

**Fig. 5** Clamped-simply supported nanobeam: effect of slenderness ratio (*L/h*) on the deflections, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 



**Fig. 7** Clamped-simply supported nanobeam: effect of slenderness ratio (*L/h*) on the free vibration, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 



| <b>Table 7</b> Clamped–clamped           nanobeam: dimensionless | ea (nm) | L/h = 10  |                     |           | L/h = 20  |                     |           | L/h = 50  |                     |           |
|------------------------------------------------------------------|---------|-----------|---------------------|-----------|-----------|---------------------|-----------|-----------|---------------------|-----------|
| maximum deflections                                              |         | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm |
|                                                                  | 0       | 0.2873    | 0.1217              | 0.0521    | 0.2641    | 0.1742              | 0.1076    | 0.2575    | 0.2217              | 0.1854    |
|                                                                  | 1       | 0.2873    | 0.1217              | 0.0521    | 0.2641    | 0.1742              | 0.1076    | 0.2575    | 0.2217              | 0.1854    |
|                                                                  | 2       | 0.2873    | 0.1217              | 0.0521    | 0.2641    | 0.1742              | 0.1076    | 0.2575    | 0.2217              | 0.1854    |

 Table 8
 Clamped-clamped nanobeam: dimensionless buckling loads

| L/h | ea (nm) | First buckli | ing load  |           | Second buc | kling load |           | Third buckling load |           |           |  |
|-----|---------|--------------|-----------|-----------|------------|------------|-----------|---------------------|-----------|-----------|--|
|     |         | l = 0  nm    | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm  | l = 2  nm | l = 0  nm           | l = 1  nm | l = 2  nm |  |
| 5   | 0       | 2.4155       | 3.8287    | 5.8249    | 18.1308    | 39.3600    | 87.7649   | 37.9108             | 136.5981  | 404.3530  |  |
|     | 1       | 2.1977       | 3.4132    | 5.0733    | 9.5836     | 18.3065    | 39.9924   | 10.9021             | 52.7773   | 180.7486  |  |
|     | 2       | 1.7298       | 2.5469    | 3.5993    | 3.4750     | 11.7276    | 15.4692   | 3.9696              | 15.4980   | 53.2982   |  |
| 10  | 0       | 2.4616       | 3.0773    | 3.9339    | 21.0819    | 29.9254    | 46.5778   | 53.4035             | 94.7720   | 195.4781  |  |
|     | 1       | 2.4021       | 2.9959    | 3.8182    | 17.2383    | 23.9431    | 36.2702   | 32.9784             | 55.5343   | 112.3988  |  |
|     | 2       | 2.2397       | 2.7748    | 3.5059    | 11.1435    | 14.7124    | 21.3196   | 15.3574             | 23.9315   | 49.8174   |  |
| 20  | 0       | 2.4734       | 2.7442    | 3.0953    | 21.9796    | 25.4217    | 31.3975   | 59.5513             | 74.4738   | 106.6443  |  |
|     | 1       | 2.4582       | 2.7265    | 3.0744    | 20.8192    | 24.0194    | 29.5614   | 51.5669             | 64.0462   | 90.7834   |  |
|     | 2       | 2.4136       | 2.6749    | 3.0134    | 17.9724    | 20.5975    | 25.1076   | 36.7749             | 44.9262   | 62.2120   |  |
| 50  | 0       | 2.4768       | 2.5709    | 2.6863    | 22.2451    | 23.2645    | 24.8194   | 61.5403             | 65.3204   | 72.4764   |  |
|     | 1       | 2.4743       | 2.5683    | 2.6835    | 22.0485    | 23.0556    | 24.5922   | 60.0525             | 63.7166   | 70.6604   |  |
|     | 2       | 2.4670       | 2.5606    | 2.6753    | 21.4789    | 22.4507    | 23.9344   | 55.9917             | 59.3429   | 65.7140   |  |

**Fig. 8** Clamped–clamped nanobeam: effect of slenderness ratio (*L/h*) on the deflections, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 

**Fig. 9** Clamped–clamped nanobeam: effect of slenderness ratio (*L/h*) on the buckling, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 





The last analysis is about cantilevered nano-beams under uniform load and the results are presented in Tables 10, 11 and 12. From these tables, unlike in the case of simply supported or clamped-simply supported beam, the deflection decreases with the increase of the nonlocal parameter *ea* or strain gradient *l*values. However, the decrease in deflection is high compared to those of clamped case. The effect of slenderness ratio on the response of cantilever nanobeams is plotted in Figs. 11, 12 and 13 for different values of nonlocal parameter and strain gradient parameter. The results are qualitatively similar to that of clamped–clamped supported beam.

From the results presented in Tables 4 and 12, we can find an interesting phenomenon is that for clamped–clamped,



**Fig. 12** Cantilever nanobeam: effect of slenderness ratio (*L/h*) on the buckling, **a** for different values of nonlocal parameter with  $l^2 = 2$ , **b** for different values of strain gradient parameter with  $ea^2 = 2$ 

 Table 9
 Clamped-clamped nanobeam: dimensionless fundamental frequencies

| L/h | ea (nm) | First mode |           |           | Second mo | de        |           | Third mode |           |           |  |
|-----|---------|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|--|
|     |         | l = 0  nm  | l = 1  nm | l = 2  nm | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm | l = 2  nm |  |
| 5   | 0       | 3.4254     | 5.0103    | 6.7106    | 18.5342   | 29.4441   | 43.0438   | 27.2417    | 84.0706   | 43.0438   |  |
|     | 1       | 3.1515     | 4.4874    | 5.8972    | 12.7079   | 18.7541   | 26.9064   | 23.6772    | 42.9708   | 71.6460   |  |
|     | 2       | 2.5946     | 3.5313    | 4.5155    | 8.1506    | 11.8915   | 17.2785   | 13.6783    | 25.1129   | 42.3937   |  |
| 10  | 0       | 3.5028     | 4.2674    | 5.1639    | 21.0100   | 26.7584   | 34.4589   | 55.3320    | 76.9570   | 108.9553  |  |
|     | 1       | 3.4244     | 4.1545    | 5.0079    | 18.3362   | 22.8261   | 28.7976   | 42.2444    | 56.7013   | 78.8647   |  |
|     | 2       | 3.2153     | 3.8596    | 4.6080    | 14.0481   | 17.0436   | 21.1093   | 28.6743    | 37.9554   | 53.0279   |  |
| 20  | 0       | 3.5233     | 3.8819    | 4.2973    | 21.8264   | 24.4156   | 27.9957   | 60.0283    | 69.4160   | 84.5772   |  |
|     | 1       | 3.5030     | 3.8574    | 4.2678    | 20.9969   | 23.4030   | 26.7284   | 55.0325    | 63.1483   | 76.2705   |  |
|     | 2       | 3.4438     | 3.7863    | 4.1825    | 18.9742   | 20.9782   | 23.7531   | 45.3876    | 51.4739   | 61.4571   |  |
| 50  | 0       | 3.5292     | 3.6591    | 3.8106    | 22.0758   | 22.9504   | 24.0898   | 61.6279    | 64.4705   | 68.8419   |  |
|     | 1       | 3.5259     | 3.6556    | 3.8067    | 21.9337   | 22.7974   | 23.9228   | 60.6962    | 63.4614   | 67.7211   |  |
|     | 2       | 3.5161     | 3.6450    | 3.7953    | 21.5227   | 22.3554   | 23.4414   | 58.1370    | 60.6985   | 64.6637   |  |

#### Table 10 Cantilever nanobeam: dimensionless maximum deflections

| ea (nm) | L/h = 10  |                     |           | L/h = 20  |                     |           | L/h = 50  |                     |           |  |
|---------|-----------|---------------------|-----------|-----------|---------------------|-----------|-----------|---------------------|-----------|--|
|         | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm | l = 0  nm | $l = 1 \mathrm{nm}$ | l = 2  nm |  |
| 0       | 4.4712    | 2.5784              | 1.5580    | 4.4005    | 3.3485              | 2.5263    | 4.3805    | 3.9553              | 3.5276    |  |
| 1       | 4.3472    | 2.4934              | 1.4961    | 4.3695    | 3.3229              | 2.5050    | 4.3755    | 3.9507              | 3.5233    |  |
| 2       | 3.9752    | 2.2386              | 1.3105    | 4.2765    | 3.2460              | 2.4413    | 4.3606    | 3.9369              | 3.5105    |  |

Engineering with Computers (2022) 38 (Suppl 1):S647-S665

Table 11 Cantilever nanobeam: dimensionless buckling loads

| L/h | ea (nm) | First buckli | ing load  |           | Second bud | kling load |           | Third buckling load |           |           |  |
|-----|---------|--------------|-----------|-----------|------------|------------|-----------|---------------------|-----------|-----------|--|
|     |         | l = 0  nm    | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm  | l = 2  nm | l = 0  nm           | l = 1  nm | l = 2  nm |  |
| 5   | 0       | 2.4155       | 3.8287    | 5.8249    | 18.1308    | 39.3600    | 87.7649   | 37.9108             | 136.5981  | 404.3530  |  |
|     | 1       | 2.1977       | 3.4132    | 5.0733    | 9.5836     | 18.3065    | 39.9924   | 10.9021             | 52.7773   | 180.7486  |  |
|     | 2       | 1.7298       | 2.5469    | 3.5993    | 3.4750     | 11.7276    | 15.4692   | 3.9696              | 15.4980   | 53.2982   |  |
| 10  | 0       | 2.4616       | 3.0773    | 3.9339    | 21.0819    | 29.9254    | 46.5778   | 53.4035             | 94.7720   | 195.4781  |  |
|     | 1       | 2.4021       | 2.9959    | 3.8182    | 17.2383    | 23.9431    | 36.2702   | 32.9784             | 55.5343   | 112.3988  |  |
|     | 2       | 2.2397       | 2.7748    | 3.5059    | 11.1435    | 14.7124    | 21.3196   | 15.3574             | 23.9315   | 49.8174   |  |
| 20  | 0       | 2.4734       | 2.7442    | 3.0953    | 21.9796    | 25.4217    | 31.3975   | 59.5513             | 74.4738   | 106.6443  |  |
|     | 1       | 2.4582       | 2.7265    | 3.0744    | 20.8192    | 24.0194    | 29.5614   | 51.5669             | 64.0462   | 90.7834   |  |
|     | 2       | 2.4136       | 2.6749    | 3.0134    | 17.9724    | 20.5975    | 25.1076   | 36.7749             | 44.9262   | 62.2120   |  |
| 50  | 0       | 2.4768       | 2.5709    | 2.6863    | 22.2451    | 23.2645    | 24.8194   | 61.5403             | 65.3204   | 72.4764   |  |
|     | 1       | 2.4743       | 2.5683    | 2.6835    | 22.0485    | 23.0556    | 24.5922   | 60.0525             | 63.7166   | 70.6604   |  |
|     | 2       | 2.4670       | 2.5606    | 2.6753    | 21.4789    | 22.4507    | 23.9344   | 55.9917             | 59.3429   | 65.7140   |  |

Table 12 Cantilever nanobeam: dimensionless fundamental frequencies

| L/h | ea (nm) | First mode |           |           | Second mo | de        |           | Third mode |           |           |  |
|-----|---------|------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|--|
|     |         | l = 0  nm  | l = 1  nm | l = 2  nm | l = 0  nm | l = 1  nm | l = 2  nm | l = 0  nm  | l = 1  nm | l = 2  nm |  |
| 5   | 0       | 3.4254     | 5.0103    | 6.7106    | 18.5342   | 29.4441   | 43.0438   | 27.2417    | 84.0706   | 43.0438   |  |
|     | 1       | 3.1515     | 4.4874    | 5.8972    | 12.7079   | 18.7541   | 26.9064   | 23.6772    | 42.9708   | 71.6460   |  |
|     | 2       | 2.5946     | 3.5313    | 4.5155    | 8.1506    | 11.8915   | 17.2785   | 13.6783    | 25.1129   | 42.3937   |  |
| 10  | 0       | 3.5028     | 4.2674    | 5.1639    | 21.0100   | 26.7584   | 34.4589   | 55.3320    | 76.9570   | 108.9553  |  |
|     | 1       | 3.4244     | 4.1545    | 5.0079    | 18.3362   | 22.8261   | 28.7976   | 42.2444    | 56.7013   | 78.8647   |  |
|     | 2       | 3.2153     | 3.8596    | 4.6080    | 14.0481   | 17.0436   | 21.1093   | 28.6743    | 37.9554   | 53.0279   |  |
| 20  | 0       | 3.5233     | 3.8819    | 4.2973    | 21.8264   | 24.4156   | 27.9957   | 60.0283    | 69.4160   | 84.5772   |  |
|     | 1       | 3.5030     | 3.8574    | 4.2678    | 20.9969   | 23.4030   | 26.7284   | 55.0325    | 63.1483   | 76.2705   |  |
|     | 2       | 3.4438     | 3.7863    | 4.1825    | 18.9742   | 20.9782   | 23.7531   | 45.3876    | 51.4739   | 61.4571   |  |
| 50  | 0       | 3.5292     | 3.6591    | 3.8106    | 22.0758   | 22.9504   | 24.0898   | 61.6279    | 64.4705   | 68.8419   |  |
|     | 1       | 3.5259     | 3.6556    | 3.8067    | 21.9337   | 22.7974   | 23.9228   | 60.6962    | 63.4614   | 67.7211   |  |
|     | 2       | 3.5161     | 3.6450    | 3.7953    | 21.5227   | 22.3554   | 23.4414   | 58.1370    | 60.6985   | 64.6637   |  |

clamped-simply supported and cantilever boundary conditions, when the nonlocal parameter is equal to the material length scale parameter, the buckling loads and natural frequencies predicted by nonlocal strain gradient theory are higher than those obtained by classical continuum theory (ea = l = 0), contrary for the case of maximum deflection. This indicates that the combined effects of nonlocal and strain gradient depend not only on the relative magnitude of the two scale parameters but also on the boundary conditions.



## 7 Conclusion

The size-dependent bending, vibration and buckling analysis of nanobeams is investigated using finite element approach and based on nonlocal strain gradient theory using a novel two variable trigonometric shear deformation beams theory. The size effects are evaluated by introducing a nonlocal parameter and strain gradient parameter. The robustness and the reliability of the developed finite element model are tested using analytical solutions. Navier's method is employed to get the analytical solutions for bending, vibration and buckling responses of a simply supported nanobeam. A parametric study is conducted to bring out the influence of various parameters such as nonlocal parameter, strain gradient parameter and slenderness ratio considering different boundary conditions. The following main points can be drawn from the present study:

- 1. The present formulation is in good agreement with those of analytical results and with those of the literature.
- 2. The response of the nanobeam depends largely on the nonlocal parameter, strain gradient parameter and slenderness ratio and it can be even qualitatively different.
- With increasing the nonlocal parameter value, the dimensionless deflection value increases, the dimensionless critical buckling load and the frequency value decrease.
- 4. The nanobeam could exhibit either stiffness-softening effect or stiffness-hardening effect, which depends on the relative magnitude of the nonlocal parameter and the material length scale parameter.

The present novel two-variable theory is not only accurate but also simple in predicting the size-dependent bending, vibration and buckling analysis of nanobeams.

## References

- Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Part B Eng 37(6):425–436
- Malekzadeh P, Setoodeh A, Beni AA (2011) Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos Struct 93(7):1631–1639
- Bouazza M, Becheri T, Boucheta A, Benseddiq N (2016) Thermal buckling analysis of nanoplates based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler–Pasternak elastic foundation. Int J Comput Methods Eng Sci Mech 17(5–6):362–373
- 4. Motezaker M, Jamali M, Kolahchi R (2020) Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory. J Comput Appl Math 369:112625
- Motezaker M, Kolahchi R (2017) Seismic response of concrete columns with nanofiber reinforced polymer layer. Comput Concrete 20(3):361–368
- Qian Z, Hui Y, Rinaldi M, Liu F, Kar S (2013) Single transistor oscillator based on a graphene-aluminum nitride nano plate resonator. In: 2013 joint European frequency and time forum international frequency control symposium (EFTF/IFC), pp 559–561
- Tong X, DiLabio GA, Clarkin OJ, Wolkow RA (2004) Ringopening radical clock reactions for hybrid organic silicon surface nanostructures: a new self-directed growth mechanism and kinetic insights. Nano Lett 4(2):357–360
- Reddy B, Dorvel BR, Go J et al (2011) High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved PH sensing. Biomed Microdev 13(2):335–44
- 9. Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X (2011) A new preparation of au nanoplates and their application for glucose sensing. Biosens Bioelectron 28(1):344–348
- Ding J, Zhang K, Wei G, Su Z (2015) Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv 5:69745–69752
- Tang X, Lai KWC (2014) Quantitative study of AFM-based nanopatterning of graphene nanoplate. In: 14th IEEE International Conference on Nanotechnology, pp 54–57
- Jeong W, Lee M, Lee H, Ken B, Park JY (2016) Ultraflat au nanoplates as a new building block for molecular electronics. Nanotechnology 27(21):215601

- Nan T, Hui Y, Rinaldi M, Sun NX (2013) Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Scientific Reports 3
- Hui Y, Gomez-Diaz JS, Qian Z, Alù A, Rinaldi M (2016) Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat Commun 7:11249
- Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. Rev Sci Instrum 76(6):061101
- Houari MSA, Bessaim A, Bernard F, Tounsi A, Hassan S (2018) Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter. Steel Compos Struct 28:13–24
- Lu L, Guo X, Zhao J (2017) Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int J Eng Sci 116:12–24
- Lu L, Guo X, Zhao J (2017) A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int J Eng Sci 119:265–277
- Eringen A (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16
- Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710
- Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78
- 22. Mindlin R (1965) Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1(4):417–438
- Papargyri-Beskou S, Tsepoura K, Polyzos D, Beskos D (2003) Bending and stability analysis of gradient elastic beams. Int J Solids Struct 40(2):385–400
- Yang F, Chong A, Lam D, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743
- 25. Askes H, Aifantis EC (2009) Gradient elasticity and flexural wave dispersion in carbon nanotubes. Phys Rev B 80:195412
- Civalek Ömer, Demir Çiğdem (2011) Bending analysis of microtubules using nonlocal Euler–Bernoulli beam theory. Appl Math Model 35(5):2053–2067
- 27. Eltaher M, Khater M, Emam SA (2016) A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl Math Model 40(5):4109–4128
- Barati MR, Zenkour AM, Shahverdi H (2016) Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Compos Struct 141:203–212
- Merzouki T, Ganapathi M, Polit O (2017) A nonlocal higher-order curved beam finite model including thickness stretching effect for bending analysis of curved nanobeams. Mech Adv Mater Struct 26:1–17
- Ganapathi M, Merzouki T, Polit O (2018) Vibration study of curved nanobeams based on nonlocal higher-order shear deformation theory using finite element approach. Compos Struct 184:821–838
- Thai H-T, Vo TP, Nguyen T-K, Kim S-E (2017) A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos Struct 177:196–219
- Fleck N, Hutchinson J (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825–1857
- Lam D, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508
- 34. Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

- Ebrahimi F, Barati MR, Dabbagh A (2016) A nonlocal strain gradient theory for wave propagation analysis in temperaturedependent inhomogeneous nanoplates. Int J Eng Sci 107:169–182
- Reddy J (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(11):2382–2399
- Li Y, Feng W, Cai Z (2014) Bending and free vibration of functionally graded piezoelectric beam based on modified strain gradient theory. Compos Struct 115:41–50
- Mohammadimehr M, Farahi MJ, Alimirzaei S (2016) Vibration and wave propagation analysis of twisted micro-beam using strain gradient theory. Appl Math Mech 37(10):1375–1392
- Li L, Hu Y, Ling L (2015) Flexural wave propagation in smallscaled functionally graded beams via a nonlocal strain gradient theory. Compos Struct 133:1079–1092
- Li L, Li X, Hu Y (2016) Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci 102:77–92
- Xu X-J, Wang X-C, Zheng M-L, Ma Z (2017) Bending and buckling of nonlocal strain gradient elastic beams. Compos Struct 160:366–377
- 42. Li X, Li L, Hu Y, Ding Z, Deng W (2017) Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos Struct 165:250–265
- 43. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos Struct 186:68–78
- 44. Allam MNM, Radwan AF (2019) Nonlocal strain gradient theory for bending, buckling, and vibration of viscoelastic functionally graded curved nanobeam embedded in an elastic medium. Adv Mech Eng 11(4):1687814019837067
- 45. Radwan AF, Sobhy M (2018) A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load. Physica B 538:74–84
- Ghugal YM, Shimpi RP (2001) A review of refined shear deformation theories for isotropic and anisotropic laminated beams. J Reinf Plast Compos 20(3):255–272
- Motezaker M, Eyvazian A (2020) Buckling load optimization of beam reinforced by nanoparticles. Struct Eng Mech 73(5):481–486
- Castellazzi G, Krysl P, Bartoli I (2013) A displacement-based finite element formulation for the analysis of laminated composite plates. Compos Struct 95:518–527
- Reddy JN (1984) A simple higher-order theory for laminated composite plates. ASME J Appl Mech 51(4):745–752
- 50. Kolahchi R, Hosseini H, Fakhar MH, Taherifar R, Mahmoudi M (2019) A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions. Comput Math Appl 78(6):2018–2034
- Daikh AA, Bensaid I, Zenmour AM (2020) Temperature dependent thermomechanical bending response of functionally graded sandwich plates. Eng Res Express 2(1):015006
- Touratier M (1991) An efficient standard plate theory. Int J Eng Sci 29(8):901–916
- Soldatos K (1992) A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech 94(3–4):195–220
- Keshtegar B, Bagheri M, Meng D, Kolahchi R, Trung N-T (2020) Fuzzy reliability analysis of nanocomposite zno beams using hybrid analytical-intelligent method. Eng Comput 1–16
- 55. Keshtegar B, Tabatabaei J, Kolahchi R, Trung N-T (2020) Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load. Adv Concrete Construct 9(3):327–335
- 56. Karama M, Afaq K, Mistou S (2003) Mechanical behaviour of laminated composite beam by the new multi-layered laminated

- 57. Hajmohammad MH, Kolahchi R, Zarei MS, Nouri AH (2019) Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory. Int J Mech Sci 153:391–401
- Farokhian A, Kolahchi R (2020) Frequency and instability responses in nanocomposite plate assuming different distribution of CNTS. Struct Eng Mech 73(5):555–563
- Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64
- Levy M (1877) Mémoire sur la théorie des plaques élastiques planes. Journal de mathématiques pures et appliquées 219–306
- Abualnour M, Houari MSA, Tounsi A, Mahmoud S et al (2018) A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates. Compos Struct 184:688–697
- Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1–16
- 63. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248
- Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

- Aifantis K, Willis J (2005) The role of interfaces in enhancing the yield strength of composites and polycrystals. J Mech Phys Solids 53(5):1047–1070
- Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279–1299
- Lim C, Zhang G, Reddy J (2015) A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids 78:298–313
- Li L, Hu Y, Ling L (2016) Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E 75:118–124
- 69. Mouffoki A, Adda Bedia E, Mohammed Sid Ahmed H, Tounsi A, Hassan S (2017) Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory. Smart Struct Syst 20:369–383
- Li L, Hu Y, Li X (2016) Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci 115–116:135–144

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.