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Abstract
In this paper, we propose an efficient numerical technique based on the Bernstein polynomials for the numerical solution 
of the equivalent integral form of the derivative dependent Emden–Fowler boundary value problems which arises in vari-
ous fields of applied mathematics, physical and chemical sciences. The Bernstein collocation method is used to convert the 
integral equation into a system of nonlinear equations. This system is then solved efficiently by suitable iterative method. 
The error analysis of the present method is discussed. The accuracy of the proposed method is examined by calculating the 
maximum absolute error and the L

2
 error of four examples. The obtained numerical results are compared with the results 

obtained by the other known techniques.

Keywords Derivative dependence · Singular differential equation · Bernstein polynomials · Functional approximation · 
Green’s function.

1 Introduction

We consider the following derivative dependent 
Emden–Fowler boundary value problems as

where 𝛾1 > 0 , �2 , �3 , and �4 are real constants. The Emden-
Fowler type Eq. (1) arises in many fields of mathemati-
cal sciences and astrophysics such as in the study of heat 
explosion [1], in calculation of oxygen concentration inside 
a spherical cell [2], to measure heat sources in human head 
[3], in shallow membrane cap theory [4], in modeling ther-
mal explosion in a rectangular slab [5, 6].

Note that the Eq. (1) is called doubly singular boundary 
value problem [8], where r(t) = tav(t) , v(0) ≠ 0, s(t) = tbz(t) , 
z(0) ≠ 0 with r(0) = 0 and s(t) is allowed to be discontinuous 

at t = 0 . The existence and uniqueness results of solution of 
these problems can be found in [7–11].

Finding numerical solution of such problems is very chal-
lenging due to singularity at the origin and strong nonlinear-
ity of the form f (t, y(t), r(t)y�(t)) . Numerous numerical meth-
ods for solving (1) when f (t, y(t), r(t)y�(t)) = f (t, y(t)) have 
been developed like the finite difference method [12–14], the 
spline finite difference method [15], the parametric-spline 
method [16], the cubic spline method [17], the optimal 
parametric iteration method [18], the B-spline collocation 
method [19], the Adomian decomposition method (ADM) 
with Green’s function [20–25], the Laguerre wavelets collo-
cation method [26], the classical polynomial approximation 
method [27], the modified variational iteration method [28], 
the Mickens’ type non-standard finite difference schemes 
[29], the homotopy analysis method [30, 31], the homot-
opy perturbation method [32], the Haar-wavelet colloca-
tion method [33, 34], the Haar wavelet quasi-linearization 
method [35, 36], the advanced Adomian decomposition 
method [37] and the Bernstein collocation method [38].

To the best of our knowledge there is very few meth-
ods provided so far for numerical solution of the derivative 
dependent Emden–Fowler boundary value problems such as 
the modified Adomian decomposition method [24, 25], the 
improved homotopy analysis method [39] and the B-spline 
collocation method [40].

(1)

{(
r(t)y�(t)

)�
= s(t)f

(
t, y(t), r(t)y�(t)

)
, t ∈ (0, 1),

y(0) = �4, or limt→0+ r(t) y
�(t) = 0, �1y(1) + �2y

�(1) = �3,
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In this paper, we propose an efficient collocation method 
based on the Bernstein polynomials for the numerical 
solution of the equivalent integral form of the derivative 
dependent Emden–Fowler boundary value problems (1). 
The Bernstein collocation method (BCM) is used to convert 
the integral equations into a system of nonlinear equations. 
Then a suitable iterative technique is used to find numerical 
solutions of the system of nonlinear equations. The error 
analysis of the proposed method is provided. The accuracy 
of the proposed method is examined by calculating the maxi-
mum absolute error L∞ and the L2 error of some numerical 
examples. To check the efficiency of the present method the 
obtained numerical results are compared with the results 
obtained by the other known techniques.

2  Integral form of derivative dependent 
Emden‑Fowler BVPs

2.1  For Dirichlet‑Robin boundary conditions

Consider the following derivative dependent Emden-Fowler 
equation with Dirichlet-Robin BCs

Integrating the Eq. (2) from t to 1 and then from 0 to t and 
changing the order of integration and applying the boundary 
conditions, we obtain the equivalent integral equation

where G(t, �) is given by

where h(t) =
t∫

0

1

r(�)
d� , h(1) =

1∫
0

1

r(�)
d� and h�(1) = 1

r(1)
.

2.2  For Neumann‑Robin boundary conditions

Similarly, consider the derivative dependent Emden-Fowler 
equation with Neumann-Robin BCs

(2)

{(
r(t)y�(t)

)�
= s(t)f

(
t, y(t), r(t)y�(t)

)
, t ∈ (0, 1),

y(0) = �4, �1y(1) + �2y
�(1) = �3.

(3)

y(t) =�
4
+

(�
3
− �

1
�
4
)

�
1
h(1) + �

2
h�(1)

h(t)

+

1

∫
0

G(t, �) s(�) f
(
�, y(�), r(�) y�(�)

)
d�, t ∈ (0, 1),

(4)G (t, �) =

{
h(t) −

�1h(�)h(t)

�1h(1)+�2h
�(1)

, t ≤ �,

h(�) −
�1h(t)h(�)

�1h(1)+�2h
�(1)

, � ≤ t,

(5)

{(
r(t)y�(t)

)�
= s(t)f

(
t, y(t), r(t)y�(t)

)
, t ∈ (0, 1),

lim
t→0+

r(t) y�(t) = 0, �1 y(1) + �2 y
�(1) = �3.

Integrating the Eq. (5) from t to 1 and then from 0 to t and 
changing the order of integration and applying the boundary 
conditions, we obtain an integral equation

with

3  The Bernstein collocation method

he Bernstein polynomials play a prominent role in many 
areas of mathematical sciences. One of the important prop-
erty of these polynomials is that they all vanish, except at the 
end points of the interval [0, 1]. This gives more flexibility in 
which to impose boundary conditions at the end points of the 
interval. These polynomials have several other useful prop-
erties, such as the continuity, the positivity and complete 
basis formation over the interval [0, 1]. These polynomials 
have frequently been used to solve various differential and 
integral equations [41–51].

Definition 1 The Bernstein polynomials [41] of degree n 
are defined as

where 
(
n

i

)
=

n!

i!(n − i)!
.

A recursive definition can also be used to generate these 
polynomials,

The derivative of the Bernstein polynomials is given by

and their finite integral is

(6)

y(t) =
�3

�1
+

1

∫
0

G(t, �) s(�) f
(
�, y(�), r(�) y�(�)

)
d�, t ∈ (0, 1),

(7)G(t, �) =

⎧
⎪⎪⎨⎪⎪⎩

1∫
�

1

r(t)
dt +

�2

�1r(1)
, t ≤ �,

1∫
�

1

r(t)
dt −

t∫
�

1

r(t)
dt +

�2

�1r(1)
, � ≤ t.

(8)

Bi,n(t) =

(
n

i

)
ti(1 − t)n−i, i = 0, 1, 2,⋯ n, t ∈ [0, 1],

Bi,n(t) = (1 − t)Bi,n−1(t) + tBi−1,n−1(t).

dBi,n(t)

dt
= n[Bi−1,n−1(t) − Bi,n−1(t)],

∫
1

0

Bi,n(t)dt =
1

n + 1
.
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Definition 2 The Bernstein polynomials form a complete 
basis with the following properties 

 (i) Bi,n(t) = 0,    when   i < 0 or i > n,

 (ii) Bi,n(0) = Bi,n(1) = 0,    when i = 1, 2,⋯ n − 1,
 (iii) They form the partition of unity: 

 and their derivative verify the partition of nullity: 

 This property is closely related to the capability of 
an approximation to reproduce exactly a polynomial 
solution [52].

Note that an excellent performance in terms of error can 
be reached with Bernstein expansion for relatively low order 
approximations, but for a higher degree of the Bernstein 
polynomial there may be an increase in the numerical dis-
sipation due to the evaluation of binomial terms and powers 
of a very high order. This drawback can be relieved by using 
the binomial multiplicative formula:

which allows a more efficient computation of binomial terms 
[47].

Any function v(t) ∈ L2[0, 1] can be approximated by the 
Bernstein basis polynomials as

For numerical purpose, we consider the first (n + 1) terms of 
the above expansion as

The collocation points on an interval [0, 1] is defined as

Such collocation points are considered for which maxima 
are reached for the Bernstein polynomial.

In next subsection, we establish a collocation method 
based on Bernstein polynomials for finding numerical solu-
tion of the integral Eqs. (3) and (6).

n∑
i=0

Bi,n(t) = 1.

n∑
i=0

dpBi,n(t)

dtp
= 1, p ≥ 0.

(
n

i

)
=

i∏
l=1

n − l + 1

l
,

(9)v(t) =

∞∑
i=0

aiBi,n(t).

(10)v(t) ≈

n∑
i=0

aiBi,n(t).

(11)tj = t0 +
j

n
, j = 0, 1, 2,… n, 0 ≤ t0 < 1.

3.1  Dirichlet‑Robin boundary conditions

To establish a numerical algorithm, we reconsider Eq. (3) 
as follows:

In Eq. (12), we consider

On approximating y(t), y�(t) and �(t) by the Bernstein basis 
polynomials, we get

Substituting the expression from (14) and (15) into (12), 
we obtain

which can be written as

where

On differentiating (18) w.r.t. t, we get

where

(12)

y(t) =�
4
+

(
�
3
− �

1
�
4

�
1
h(1) + �

2
h�(1)

)
h(t)

+

1

∫
0

G(t, �) s(�) f (�, y(�), r(�) y�(�))d�, t ∈ (0, 1).

(13)�(t) = f (t, y(t), r(t)y�(t)).

(14)y(t) ≈

n∑
i=0

aiBi,n(t),

(15)y�(t) ≈

n∑
i=0

aiB
�
i,n
(t), where � =

d

dt
,

(16)�(t) ≈

n∑
i=0

biBi,n(t).

(17)

n∑
i=0

a
i
B
i,n
(t) =�

4
+

(
�
3
− �

1
�
4

�
1
h(1) + �

2
h�(1)

)
h(t)

+

n∑
i=0

b
i

1

∫
0

G(t, �) s(�) B
i,n
(�)d�,

(18)

n∑
i=0

aiBi,n(t) = �4 +

(
�3 − �1�4

�1h(1) + �2h
�(1)

)
h(t) +

n∑
i=0

biKi(t),

(19)Ki(t) =

1

∫
0

G(t, �) s(�) Bi,n(�)d�, i = 0, 1, 2,… n.

(20)
n∑
i=0

aiB
�
i,n
(t) =

(
�3 − �1�4

�1h(1) + �2h
�(1)

)
h�(t) +

n∑
i=0

biK
�
i
(t).
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Using the expressions of y(t), y�(t) and �(t) from Eqs. (14), 
(15) and (16), Eq. (13) takes form

Upon substituting the expressions from Eqs. (18) and (20) 
into (21) and inserting the collocation points tj defined in 
(11), we obtain the nonlinear system of equations as

where b0, b1,… , bn are the unknowns. The nonlinear system 
of Eq. (22) is solved numerically by the Newton’s iteration 
method to get the unknowns bi , which are then substituted 
in Eq. (18) to get the numerical solution of (12).

3.2  Neumann‑Robin boundary conditions

Let us reconsider the integral Eq. (6) as

Following similar steps of previous subsection, we substitute 
the expressions from Eqs. (13), (14), (15) and (16) into Eq. 
(23) and get

which can further be written as

and

Using (25) and (26) into (21) and inserting the collocation 
points tj , we obtain the nonlinear system of equations as

K�
i
(t) =

d

dt

( 1

∫
0

G(t, �) s(�) Bi,n(�)d�

)
, i = 0, 1, 2,… n.

(21)
n∑
i=0

biBi,n(t) = f

(
t,

n∑
i=0

aiBi,n(t), r(t)

n∑
i=0

aiB
�
i,n
(t)

)
.

(22)

n∑
i=0

biBi,n(tj) − f

[
tj, �4 +

(�
3
− �

1
�
4
)

�
1
h(1) + �

2
h�(1)

h(tj) +

n∑
i=0

biKi(tj),

r(tj)

(
(�

3
− �

1
�
4
)

�
1
h(1) + �

2
h�(1)

h�(tj) +

n∑
i=0

biK
�
i
(tj)

)]
= 0,

j = 0, 1, 2,… n,

(23)

y(t) =
�3

�1
+

1

∫
0

G(t, �)s(�)f (�, y(�), r(�)y�(�))d�, t ∈ (0, 1).

(24)
n∑
i=0

aiBi,n(t) =
�3

�1
+

n∑
i=0

bi

1

∫
0

G(t, �) s(�) Bi,n(�)d�,

(25)
n∑
i=0

aiBi,n(t) =
�3

�1
+

n∑
i=0

biKi(t),

(26)
n∑
i=0

aiB
�
i,n
(t) =

n∑
i=0

biK
�
i
(t).

with the unknowns b0, b1,⋯ , bn. Solving the nonlinear sys-
tem of Eqs. (27) by Newton’s iteration method, we obtain the 
unknown coefficients which will be substituted in Eq. (25) 
to get the numerical solution of (23).

Remark 1 In the present analysis, the nonlinear systems of 
Eqs. (22) and (27) lead to full matrices which are generally 
computationally demanding. But in this method, we have 
need solve a very small sized matrix to reach the desired 
accuracy. So, it is computationally efficient to use the Bern-
stein collocation method for solving these nonlinear systems 
of equations.

4  Error analysis

Let � = C[0, 1]
⋂

C1(0, 1] be the Banach space with the 
norm [7, 8] defined as

where ‖y‖0 and ‖y‖1 are defined as

and

We consider the following integral equation

Note that the integral Eqs. (3) and (6) are special cases of 
(31) when g(t) = �4 +

�3−�1�4

�1h(1)+�2h
�(1)

h(t) and g(t) =
�3

�1
 , 

respectively.

Theorem 1 (See [53]) If v(t) ∈ C[0, 1] , the sequence {Bn(v)} 
converges uniformly to v, where Bn(v) =

∑n

i=0
ai B

n
i
(t) is the 

Bernstein approximation function. In other words for any 
𝜖 > 0 there exists a number n ∈ ℕ such that ‖Bn(v) − v‖ < 𝜖.

Theorem 2 (See [54]) If v(t) is bounded and v��(t) exists in 
[0, 1], then the error bound for Bernstein’s approximation 
function is obtained as

(27)

n∑
i=0

biBi,n(tj) − f

(
tj,

�
3

�
1

+

n∑
i=0

biKi(tj), r(tj)

n∑
i=0

biK
�
i
(tj)

)
= 0,

j = 0, 1, 2… , n,

(28)‖y‖ = max{‖y‖0, ‖y‖1}, y ∈ �,

(29)‖y‖0 = max
t∈[0,1]

�y(t)�,

(30)‖y‖1 = max
t∈[0,1]

�r(t)y�(t)�.

(31)

y(t) = g(t) +

1

∫
0

G(t, �) s(�) f (�, y(�), r(�)y�(�))d�, t ∈ (0, 1).
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and the rate of convergence of Bernstein’s approximation 
function is precisely 1∕n [55], provided v��(t) ≠ 0.

Theorem 3 Let y(t) and yn(t) be the exact and the approxi-
mate solutions of the integral Eq. (31). Assume that the non-
linear function f (t, y, ry�) satisfies the Lipschitz condition

where l1 and l2 are the Lipschitz constants. Then the error 
bound for Bernstein collocation method is estimated as

where l = max{l1, l2} , m = max{m1,m2} , w = ‖y��‖,

Proof Consider

Applying the Lipschitz condition, the above inequality 
becomes

In the same way, we obtain

Using the Lipschitz condition, we get

(32)‖Bn(v) − v‖ ≤ ‖v��‖
2n

max
t∈[0,1]

�
t(1 − t)

�
=

‖v��‖
8n

,

(33)|f (t, y, ry�) − f (t, yn, ry
�
n
)| ≤ l1|y − yn| + l2|r(y� − y�

n
)|,

(34)‖y − yn‖ ≤ wlm

4n
,

m1 = max
t∈[0,1]

1

∫
0

||G(t, 𝜉) s(𝜉)||d𝜉 < ∞,

m2 = max
t∈[0,1]

1

∫
0

||r(t)Gt
(t, 𝜉) s(𝜉)||d𝜉 < ∞.

‖y − yn‖0 = max
t∈[0,1]

�����
1

0

G(t, �) s(�)

�
f
�
�, y(�), r(�)y�(�)

�
− f

�
�, yn(�), r(�)y

�
n
(�)

��
d�

����
≤ max

t∈[0,1]

�����
1

0

G(t, �) s(�)d�
���� × max

�∈[0,1]

����f
�
�, y(�), r(�)y�(�)

�
− f

�
�, yn(�), r(�)y

�
n
(�)

�����.

(35)

‖y − yn‖0 ≤ m1 max
�∈[0,1]

�
l1
��y(�) − yn(�)

�� + l2
��r(�)(y�(�) − y�

n
(�))��

�

≤ 2lm1 max

�
‖y − yn‖0, ‖y − yn‖1

�

= 2lm1 ‖y − yn‖.

‖y − yn‖1 = max
t∈[0,1]

�����
1

0

r(t)Gt(t, �) s(�)

�
f
�
�, y(�), r(�)y�(�)

�
− f

�
�, yn(�), r(�)y

�
n
(�)

��
d�

����
≤ max

t∈[0,1]

�����
1

0

r(t)Gt(t, �) s(�)d�
���� × max

�∈[0,1]

����f
�
�, y(�), r(�)y�(�)

�
− f

�
�, yn(�), r(�)y

�
n
(�)

�����.

From Eqs. (35) and (36), we obtain

Replacing yn(�) by the Bernstein solution Bn

(
y(�)

)
 , Eq. (37) 

reduces to

Using the result from Eq. (32), the Eq. (38) becomes

  ◻

5  Numerical results

We examine the accuracy of the proposed method by solving 
the several derivative dependent Emden-Fowler type singu-
lar BVPs. For comparison purpose, we define the maximum 
absolute error as

and the L2 error as

(36)

‖y − yn‖1 ≤ m2 max
�∈[0,1]

�
l1
��y(�) − yn(�)

�� + l2
��r(y�(�) − y�

n
(�))��

�

≤ 2lm2 max

�
��y − yn

��0, ��y − yn
��1
�

= 2lm2‖y − yn‖.

(37)

‖y − yn‖ = max

�
��y − yn

��0, ��y − yn
��1
�

≤ max

�
2lm1

��y − yn
��, 2lm2

��y − yn
��
�

≤ 2lm‖y − yn‖ = 2lm max
�∈[0,1]

�y(�) − yn(�)�.

(38)‖y − yn‖ ≤ 2lm max
�∈[0,1]

�y(�) − Bn(y(�))�.

(39)‖y − yn‖ ≤ 2lm
w

2n
max
�∈[0,1]

�
�(1 − �)

�
=

wlm

4n
.

L∞ = max
t∈[0,1]

|y(t) − yn(t)|, n = 1, 2,… ,
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Here y(t) is the exact solution and yn(t) is the Bernstein solu-
tion. The maximum absolute error is defined as

where �n(t) =
∑n

j=0
yj(t) denotes Adomian decomposition 

method solution [24].

Example 1 Consider the following derivative dependent 
Emden-Fowler BVP [24] as

Its exact solution is given by y(t) = et
l . The equivalent 

integral form of (40) is

where G(t, �) is

L2 =

( n∑
j=1

|y(tj) − yn(tj)|2
)1∕2

.

En = max
t∈[0,1]

|y(t) − �n(t)|, n = 1, 2,… ,

(40)

{(
tky�(t)

)�
= tk+l−2

(
lty�(t) + l

(
k + l − 1

)
y(t)

)
, t ∈ (0, 1), l > 0,

y(0) = 1, y(1) = e.

(41)y(t) = 1 +
(e − 1)

(1 − k)2
t1−k +

1

∫
0

G(t, �) �k+l−2
(
l�y� + l

(
k + l − 1

)
y(�)

)
d�,

We compare the numerical results of maximum absolute 
errors L∞ and En obtained by BCM and the ADM [24] of 

Example 1 for l = 1 and l = 2.5 with different values of 
k = 0.25, 0.50, 0.75 in Tables  1 and 2. In addition, the 
numerical results of the L2 error are shown in Tables 3 and 
4. From the numerical results, it is observed that the BCM 

(42)G(t, �) =

{
t1−k

1−k
(1 − �1−k), t ≤ �,

�1−k

1−k
(1 − t1−k), � ≤ t.

Table 1  Comparison of 
numerical results of maximum 
absolute errors of Example 1 
when l = 1

n k = 0.25 k = 0.5 k = 0.75

L∞ E
n
 [24] L∞ E

n
 [24] L∞ E

n
 [24]

4 3.38E-05 9.47E-04 3.99E-05 6.55E-04 5.04E-05 8.36E-04
5 1.66E-06 1.59E-04 2.08E-06 1.41E-04 2.58E-06 2.32E-04
6 1.66E-06 3.09E-05 9.25E-08 6.27E-05 1.13E-07 3.62E-05
7 3.02E-09 3.98E-06 3.68E-09 1.22E-05 4.48E-09 1.79E-05
8 1.07E-10 9.46E-07 1.30E-10 1.47E-06 1.57E-10 3.86E-06
9 3.50E-12 9.53E-08 4.24E-12 3.58E-07 5.11E-12 2.67E-07
10 1.04E-13 1.91E-08 1.25E-13 3.26E-08 1.51E-13 8.04E-08

Table 2  Comparison of 
numerical results of maximum 
absolute errors of Example 1 
when l = 2.5

n k = 0.25 k = 0.5 k = 0.75

L∞ E
n
 [24] L∞ E

n
 [24] L∞ E

n
 [24]

4 2.10E-03 9.21E-04 2.17E-03 8.65E-04 2.23E-03 6.55E-04
5 3.88E-04 1.75E-04 3.99E-04 2.14E-04 4.10E-04 1.41E-04
6 6.91E-05 8.36E-05 7.13E-05 6.14E-05 7.34E-05 6.27E-05
7 1.25E-05 2.08E-05 1.28E-05 1.40E-05 1.32E-05 1.21E-05
8 2.20E-06 5.11E-06 2.27E-06 5.95E-06 2.34E-06 1.54E-06
9 3.61E-07 5.56E-07 3.70E-07 9.38E-07 3.79E-07 4.07E-07
10 7.16E-08 6.88E-08 7.94E-08 6.74E-08 9.53E-08 4.40E-08

Table 3  Numerical results of L
2
 error of Example 1 when l = 1

n k = 0.25 k = 0.5 k = 0.75

3 1.23E-03 1.42E-03 1.63E-03
4 6.46E-05 7.40E-05 8.42E-05
5 3.22E-06 3.66E-06 4.14E-06
6 3.22E-06 1.55E-07 1.74E-07
7 5.52E-09 6.21E-09 6.94E-09
8 1.93E-10 2.16E-10 2.41E-10
9 6.43E-12 7.17E-12 7.97E-12
10 1.90E-13 2.11E-13 2.34E-13
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converges faster than the ADM [24]. It can be seen that as 
the degree of the Bernstein polynomial increases, the numer-
ical errors decreases significantly.

Example 2 Consider the following Emden-Fowler equation 
with derivative dependence [24]

Its exact solution is given by y(t) = ln

(
1

2+t

)
 . The equiva-

lent integral form of (43) is

where G(t, �) is

Comparison of the numerical results of L∞ and En obtained 
by the BCM and the ADM [24] of Example 2 is given in 

(43)

{(
tky�(t)

)�
= tk−1

(
− ty�(t)ey(t) − key(t)

)
, t ∈ (0, 1),

y(0) = ln
(
1

2

)
, y(1) = ln

(
1

3

)
.

(44)

y(t) = ln
(1
2

)
+

(
ln
(
1

3

)
− ln

(
1

2

))

(1 − k)2
t1−k

+

1

∫
0

G(t, �) �k−1
(
− �y(�)�ey(�) − key(�)

)
d�,

(45)G(t, �) =

{
t1−k

1−k
(1 − �1−k), t ≤ �,

�1−k

1−k
(1 − t1−k), � ≤ t.

Table 5. In addition, the numerical results of the L2 error is 
shown in Table 6.

Example 3 Consider the following derivative dependent 
Emden-Fowler BVP [24]

Its exact solution is given by y(t) = ln
(

1

4+tl

)
 . The equiva-

lent integral form of (46) is

where G(t, �) is

In Tables 7 and 8, we provide the numerical results of 
maximum absolute errors obtained by the BCM and 
the ADM [24] of Example 3 for l = 1 and l = 3.5 with 

(46)

⎧⎪⎨⎪⎩

�
tky�(t)

��
= tk+l−2

�
ltey(t)y�(t) + l

�
k + l − 1

�
ey(t)

�
, t ∈ (0, 1),

y(0) = ln
�
1

4

�
, y(1) = ln

�
1

5

�
.

(47)

y(t) = ln

(
1

4

)
+

(
ln
(
1

5

)
− ln

(
1

4

))

(1 − k)2
t1−k

+

1

∫
0

G(t, �) �k+l−2
(
l�ey(�)y�(�) + l

(
k + l − 1

)
ey(�)

)
d�,

(48)G(t, �) =

{
t1−k

1−k
(1 − �1−k), t ≤ �,

�1−k

1−k
(1 − t1−k), � ≤ t.

Table 4  Numerical results of L
2
 error of Example 1 when l = 2.5

n k = 0.25 k = 0.5 k = 0.75

3 2.02E-02 2.18E-02 2.37E-02
4 2.70E-03 2.84E-03 2.99E-03
5 5.27E-04 5.72E-04 6.29E-04
6 8.16E-05 8.60E-05 9.06E-05
7 1.78E-05 1.93E-05 2.13E-05
8 2.78E-06 2.93E-06 3.10E-06
9 5.18E-07 5.52E-07 5.93E-07
10 1.20E-07 1.33E-07 1.48E-07

Table 5  Comparison of 
numerical results of maximum 
absolute error of Example 2

k = 0.25 k = 0.5 k = 0.75

n L∞ E
n
  [24] L∞ E

n
   [24] L∞ E

n
 [24]

4 7.82E-06 5.79E-04 1.06E-05 9.71E-04 1.52E-05 7.73E-04
5 1.03E-06 2.18E-04 1.38E-06 3.53E-04 1.94E-06 3.49E-04
6 1.34E-07 5.07E-05 1.77E-07 4.57E-05 2.43E-07 8.71E-05
7 1.76E-08 8.74E-06 2.31E-08 2.14E-05 3.17E-08 2.48E-05
8 2.30E-09 2.24E-06 3.00E-09 4.03E-06 4.07E-09 8.27E-06
9 3.06E-10 6.14E-07 3.99E-10 1.29E-06 5.42E-10 1.15E-06
10 4.05E-11 5.88E-08 5.27E-11 3.34E-07 7.14E-11 4.82E-07

Table 6  Numerical results of L
2
 error of Example 2

n k = 0.25 k = 0.5 k = 0.75

3 1.25E-04 1.62E-04 2.17E-04
4 1.42E-05 1.82E-05 2.40E-05
5 1.79E-06 2.27E-06 2.98E-06
6 2.21E-07 2.78E-07 3.62E-07
7 2.92E-08 3.66E-08 4.75E-08
8 3.76E-09 4.67E-09 6.04E-09
9 5.09E-10 6.33E-10 8.17E-10
10 6.71E-11 8.31E-11 1.07E-10
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k = 0.25, 0.50, 0.75 , respectively. We also present the L2 
error in Tables 9 and 10. It has been observed that the BCM 
converges faster and as the value of n increases, the L∞ and 
L2 errors decrease rapidly.

Example 4 Consider the following derivative dependent 
Emden-Fowler BVP [25]

(49)

⎧⎪⎨⎪⎩

�
tky�(t)

��
= tk+l−2

�
ty�(t) + y(t)(k + l − 1)

�
, t ∈ (0, 1), l > 0,

lim
t→0+

r(t) y�(t) = 0, y(1) = e.

Its exact solution is given by y(t) = et
l . The equivalent 

integral form of (49) is

where G(t, �) is

The numerical results of maximum absolute error L∞ and 
L2 error of Example 4 are provided in Table 11 for k = 2 

(50)

y(t) = e +

1

∫
0

G(t, �) �k+l−2
(
�y�(�) + y(�)

(
k + l − 1

))
ds,

(51)G(t, �) =

{
1

1−k
(1 − �1−k), t ≤ �,

1

1−k
(1 − t1−k), � ≤ t.

Table 7  Comparison of 
numerical results of maximum 
absolute error of Example 3 
when l = 1

k = 0.25 k = 0.5 k = 0.75

n L∞ E
n
[24] L∞ E

n
[24] L∞ E

n
[24]

4 2.37E-07 4.84E-05 3.13E-07 9.43E-05 4.38E-07 1.79E-04
5 1.69E-08 1.11E-05 2.25E-08 1.52E-05 3.09E-08 1.16E-05
6 1.21E-09 1.12E-06 1.58E-09 1.52E-06 2.13E-09 2.78E-06
7 8.82E-11 1.23E-07 1.14E-10 2.49E-07 1.53E-10 3.10E-07
8 6.35E-12 2.30E-08 8.17E-12 2.69E-08 1.09E-11 4.91E-08
9 4.66E-13 2.16E-09 6.00E-13 4.01E-09 8.00E-13 6.76E-09
10 3.41E-14 3.54E-10 4.38E-14 5.40E-10 5.81E-14 9.22E-10

Table 8  Comparison of 
numerical results of maximum 
absolute error of Example 3 
when l = 3.5

k = 0.25 k = 0.5 k = 0.75

n L∞ E
n
[24] L∞ E

n
[24] L∞ E

n
[24]

4 1.95E-05 1.88E-04 2.08E-05 2.19E-04 2.21E-05 2.38E-04
5 5.09E-06 1.51E-05 5.28E-06 1.58E-05 5.47E-06 2.89E-05
6 1.30E-06 3.04E-06 1.36E-06 3.51E-06 5.47E-06 3.76E-06
7 1.96E-08 3.13E-07 1.90E-08 3.27E-07 1.83E-08 6.25E-07
8 6.44E-08 4.78E-08 6.71E-08 6.53E-08 7.00E-08 6.93E-08
9 6.78E-09 6.47E-09 7.13E-09 6.96E-09 7.49E-09 1.30E-09
10 6.78E-09 1.13E-09 1.60E-09 1.33E-09 1.65E-09 1.39E-09

Table 9  Numerical results of L
2
 error of Example 3 when l = 1

n k = 0.25 k = 0.5 k = 0.75

3 7.01E-06 5.75E-14 1.16E-05
4 4.34E-07 5.44E-07 7.00E-07
5 3.01E-08 3.74E-08 4.80E-08
6 2.04E-09 2.52E-09 3.19E-09
7 1.49E-10 1.83E-10 2.32E-10
8 1.05E-11 1.29E-11 1.62E-11
9 7.90E-13 9.65E-13 1.21E-12
10 5.75E-14 7.00E-14 8.78E-14

Table 10  Numerical results of L
2
 error of Example 3 when l = 3.5

n k = 0.25 k = 0.5 k = 0.75

3 4.32E-04 4.98E-04 5.92E-04
4 3.17E-05 3.71E-05 4.49E-05
5 8.88E-06 1.02E-05 1.21E-05
6 2.15E-06 2.49E-06 1.21E-05
7 3.44E-08 3.53E-08 3.69E-08
8 1.17E-07 1.36E-07 1.63E-07
9 1.28E-08 1.50E-08 1.81E-08
10 1.28E-08 3.64E-09 4.33E-09
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and different values of l = 1, 2, 4 . It can be seen that as the 
degree of the Bernstein polynomial increases, the numerical 
errors decreases significantly.

Remark 2 From the numerical results, it can be seen that a 
smaller value of n ≤ 10 is sufficient for obtaining an excel-
lent approximation. Also increasing the value of n results 
in an increment of computational time and the numerical 
results of L∞ and ̌2 errors are increased or become con-
stant because a problem of truncation error occurs when 
the degree of the Bernstein polynomial is raised. So, in this 
case, it is numerically advisable to use a smaller value of n. 
However, for a high-order collocation scheme, if no trunca-
tion of decimal positions could be achieved, the solution 
would be better than those coming from a lower number of 
evaluation points.

6  Conclusion

We have considered the derivative dependent Emden–Fowler 
boundary value problems, which arise in various mathematical 
modeling such as heat conduction problem [56], the unsteady 
poiseuille flow in a pipe [57], and electroelastic dynamic 
problem [58]. We have proposed the Bernstein collocation 
approach for the numerical solution of the equivalent integral 
form of the derivative dependent Emden-Fowler equation 
with two sets of boundary conditions. The error analysis of 
the Bernstein collocation method has been established under 
quite general conditions. The proposed method gives better 
numerical results which can be seen from Tables 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11. The accuracy and efficiency of the pre-
sent method have been checked by evaluating the maximum 
absolute error and the L2 error of several numerical examples.
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