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Abstract
The analysis of the wave propagation behavior of a sandwich structure with a soft core and multi-hybrid nanocomposite 
(MHC) face sheets is carried out in the framework of the higher-order shear deformation theory (HSDT). In order to take 
into account the viscoelastic influence, the Kelvin-Voight model is presented. In this paper, the constituent material of the 
core is made of an epoxy matrix which is reinforced by both macro- and nano-size reinforcements, namely carbon fiber (CF) 
and carbon nanotube (CNT). The effective material properties like Young’s modulus or density are derived utilizing a micro-
mechanical scheme incorporated with the Halpin–Tsai model. Then, on the basis of an energy-based Hamiltonian approach, 
the equations of motion are derived. The detailed parametric study is conducted, focusing on the combined effects of the 
viscoelastic foundation, CNT’ weight fraction, core to total thickness ratio, small radius to total thickness ratio, and carbon 
fiber angle on the  wave propagation behavior of sandwich structure. The results show that as well as increasing the phase 
velocity of the sandwich structure by increasing the wave number, this influence will be much more effective by increasing 
the damping factor. It is also observed that there is a critical value for the viscoelastic foundation that the relation between 
wave number and phase velocity will change from direct to indirect. The presented study outputs can be used in ultrasonic 
inspection techniques and structural health monitoring.

Keywords  Kelvin-voight model · Multi-scale hybrid nanocomposite reinforcement · Elastic core · Doubly curved panel · 
Compatibility equations

 *	 Mostafa Habibi 
	 mostafahabibi@duytan.edu.vn

 *	 Hamed Safarpour 
	 Hamed_safarpor@yahoo.com

	 M. S. H. Al‑Furjan 
	 Rayan@hdu.edu.cn

	 Masoud Mohammadgholiha 
	 m.mohamadgholiha@mail.kntu.ac.ir

	 Ibrahim M. Alarifi 
	 i.alarifi@mu.edu.sa

1	 School of Mechanical Engineering, Hangzhou Dianzi 
University, Hangzhou 310018, China

2	 School of Materials Science and Engineering, State Key 
Laboratory of Silicon Materials, Zhejiang University, 
Hangzhou 310027, China

3	 Department of Civil Engineering, K. N. Toosi University 
of Technology, Valiasr Street, P.O. Box 15875 4416, Tehran, 
Iran

4	 Department of Mechanical and Industrial Engineering, 
College of Engineering, Majmaah University, Al‐Majmaah, 
Riyadh 11952, Saudi Arabia

5	 Institute of Research and Development, Duy Tan University, 
Da Nang 550000, Vietnam

6	 Faculty of Electrical–Electronic Engineering, Duy Tan 
University, Da Nang 550000, Vietnam

7	 Faculty of Engineering, Department of Mechanics, Imam 
Khomeini International University, Qazvin, Iran

1  Introduction

A key issue in the various engineering fields is that the 
prediction of the properties, behavior, and performance of 
different systems is an important aspect [1–12]. It is well 

knowen that the compositionally structures have a intresting 
thermo-electro-mechanical property and this matter is being 
an esential fact to get the attention of all engineering fields 
of reaserches for having efficient productions with the aid 
of composite structure, especially carbon-based nanofillers 
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reinforced structure [13–23]. In addition to whatwas men-
tioned owing to the wide applications of wave propagation 
analysis in structural health monitoring, most recently, an 
interesting field of research has been started in scholar which 
is called wave propagation response [24–29].

Based on the mentioned issue, Gao et al. [30] could report 
a mathematical framework to analyze the propagated wave 
in a GPLs reinforced porous FG plate via a well-known 
mixture method. Their results indicate that porosity and 
GPLs weight fraction are two important parameters in the 
field of structural health monitoring via wave propagation 
method. Ebrahimi et al. [31] were able to provide results 
on the characteristics of propagated waves in a composi-
tionally nonlocal plate in which the structure located in a 
high-temperature environment. Also, they consider the shear 
deformation in each element of the structure; they found 
that without doubt the nonlocal effect has a bold role on 
the characteristics of propagated waves. Safaei et al. [32] 
tried to report characteristics of the propagated waves in a 
CNTs reinforced FG thermoelastic plate via the high-order 
ready plat theory and Mori–Tanaka method. Their impor-
tant achievement was that the thermal stress and adding 
small amount of CNTs can make a remarkable effect on 
the wave velocity in the structure. Also, Many researches 
[22, 33–43] published the results of their investigation on 
the static and dynamic responses of the composite struc-
tures. By considering the mentioned necessities and in the 
field of wave propagation in composite beams and plates, 
Ebrahime et al. [44] could present a paper to investigate 
the wave propagation of the sandwich plate in which the 
structure is embedded in a nonlinear foundation. Also, they 
considered a magnetic environment in their model and used 
the classical theory for doing their computational formula-
tion. Based on their results, the magnetic layer will play the 
most important role on the wave response of the sandwich 
plate [45]. presented a comprehensive formulation on the 
wave dispersion of a high-speed rotating 2D-FG nanobeam. 
They used nonlocal theory for consideration of the couple 
stress in the nanomechanics effect on the wave response of 
the structure. they could solve their complex formulation 
via an analytical method and they reported that the rotating 
speed is the most effective parameter. By employing the new 
version couple stress theory, Global matrix, and Legendre 
orthogonal polynomial methods, and, Liu et al. [46] had a 
try for reporting the characteristics of the propagated wave 
in a micro FG plate. They reported that by controlling the 
couple stress, we will have the grater phase velocity in the 
aspect of wave propagation. Ebrahimi et al. [47] succeeded 
in publishing a paper in which a computational framework 
is developed for investigation wave behavior in a thermally 
affected nonlocal beam which is made by FG materials. One 
of their assumptions was that the nanobeam is under high-
speed rotation and is located in a thermal environment. They 

presented a lot of results, but the most significant one was 
that changing the rotating speed can provide some novel 
results on the wave propagation in the nanostructure. In a 
novel work, Barati [48] showed the behavior of propagated 
wave in the porous nanobeam with attention to the nonlocal-
ity via strain–stress gradient theory. Also, some researchers 
tried to predict the static and dynamic properties of different 
structures and materials via neural network solution [49–55].

In the scope of investigation of the wave dispertion in the 
smart structure, Li et al. [56] succeeded in publishing an arti-
cle in which they examined the wave propagation of a smart 
plate via a semi-analytical method. They modeled a GPLs-
reinforced plate which is covered with a piezoelectric actua-
tor. They used the Reissner–Mindlin plate theory and Ham-
ilton’s principle for developing their computational approach 
and did the formulation. The application of their result is that 
GPLs in a matrix can play a positive role in structural health 
monitoring and improve wave propagation in the structures, 
especially smart structures. Ebrahimi et al. [57] developed a 
mathematical model for literature in which wave dispersion 
of a smart sandwich nanoplate by considering the nanosize 
effect via nonlocal strain gradient theory and the sandwich 
structure is made of ceramic face sheets and magnetostrictive 
core. Abad et al. [58] published an article in which they pre-
sented a formulation about the wave propagation problem of 
a somewhat sandwich thick plate. They smarted the plate by 
patching a piezoelectric layer on the top face of the structure 
and they considered Maxwell’s assumptions in their compu-
tational approach. Habibi et al. [59] studied the wave response 
in a nanoshell with a GPLs reinforced compositionally core 
and patched piezoelectric face sheet. When they compared 
their result with molecular simulation can see that the non-
locality should be considered via NSGT. As a practical out-
come they reported that the thickness of the smart layer will 
have more effect on the characteristics propagated waves in 
the nanoshell. Also, many studies reported the application of 
applied soft computing method for prediction of the behavior 
of complex system [60–67].

Based on the previous reaserch on the property of propa-
gated waves in the cylandrical shell, Bakhtiari et al. [68] pro-
vided some results on the wave propagation of the FG shell 
in which fluid flow through the shell is considered. Ebrahimi 
et al. [69] studied the wave response in a high speed rotating 
nanoshell with a GPLs reinforced compositionally core and 
patched piezoelectric face sheet. They claimed that if the 
rotating should be controlled for improving the phase veloc-
ity of the nanoshell. The dispersion behavior of the wave in 
the MHC reinforced shell is investigated by Ebrahimi et al. 
[70]. They used the lowest order shear deformation theory 
and eigenvalue problem for providing their formulation and 
results. They found out the impact of nanosize reinforce-
ments is more effective than the macro-size reinforcements 
for improving the phase velocity of the compositionally 

Engineering with Computers (2022) 38 (Suppl 1):S353–S369 S354



	

1 3

shell. Karami et al. [71] developed a mathematical model for 
literature in which wave dispersion in an imperfect nanoshell 
via NSG and HSD theories is analyzed. They provided some 
evidences that sensitivity of the prospected waves to the 
nonlocal effects, temperature, and humidity in the porous 
material should be considered. In addition, Stability of the 
complex structure is investigated in Refs [72, 73].

According to the summary of the presented paper in the 
literature, the analysis of the wave propagation behavior of a 
sandwich structure with a soft core and multi-hybrid nanocom-
posite (MHC) face sheets is carried out as a novel reaserch in 
the framework of the higher-order shear deformation theory 
(HSDT). In order to take into account, the viscoelastic influ-
ence, the Kelvin–Voight model is presented. In this paper, the 
constituent material of the core is made of an epoxy matrix 
which is reinforced by both macro- and nano-size reinforce-
ments, namely carbon fiber (CF) and carbon nanotube (CNT). 
The effective material properties like Young’s modulus or den-
sity are derived utilizing a micromechanical scheme incorpo-
rated with the Halpin–Tsai model. Then, on the basis of an 
energy-based Hamiltonian approach, the equations of motion 
are derived. The detailed parametric study is conducted, focus-
ing on the combined effects of the viscoelastic foundation, 
CNT’ weight fraction, core to total thickness ratio, small radius 
to total thickness ratio, and carbon fiber angle on the wave 
propagation behavior of sandwich structure.

2 � Mathematical modeling

Figure 1 shows a sandwich doubly curved panel in a viscoe-
lastic medium. The effective thickness (hb + hc + ht) and the 
shell curvatures of the doubly curved panel are presented by 
heff, R1, and R2R, respectively. Besides, hb hc, and hp are the 
thickness of the multi-hybrid nanocomposite reinforcement 
at the top layer, the core layer, and the multi-hybrid nano-
composite reinforcement at the bottom layer, respectively.

2.1 � MHC Reinforcement

The procedure of homogenization is made of two main steps 
based upon the Halpin–Tsai model together with a microme-
chanical theory. The first stage is engaged with computing 
the effective characteristics of the composite reinforced with 
carbon fibers [74] as following [75]:

(1)E11 = VFE
F
11
+ VNCME

NCM

(2)

1

E22

=
Vf

EF
22

+
VNCM

ENCM
− VFVNCM ×

(�F)2
ENCM

EF
22

+ (�NCM)2
EF
22

EM
− 2�F�NCM

VFE
F
22
+ VNCME

NCM

where elasticity modulus, mass density, Poisson’s ratio, and 
shear modulus are symbolled via, and � . the superscripts 
of the matrix and fiber are NCM and F, respectively. Add 
the carbon fiber volume fraction ( VF ) to the nanocomposite 
matrix volume fraction ( VNCM ) is one.

The second step is organized to obtain the effective char-
acteristics of the nanocomposite matrix reinforced with 
CNTs with the aid of the extended Halpin–Tsai microme-
chanics as follows:

(3)
1

G12

=
VNCM

GNCM
+

VF

GF
12

(4)� = VF�
F + VNCM�

NCM

(5)�12 = VF�
F + VNCM�

NCM

(6)VF + VNCM = 1

(7)

Ej =
5

8

(
1 + 2�ddVCNT

1 − �ddVCNT

)
EM +

3

8

(
�dlVCNT (2l

CNT∕dCNT ) + 1

1 − �dlVCNT

)

Fig. 1   A schematic of a sandwich doubly curved panel
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where �dd and �dl would be computed as the following 
expression:

where volume fraction, thickness, length, elasticity modu-
lus, weight fraction, and diameter of CNTs are VCNT , tCNT , 
lCNT , ECNT,WCNT , and dCNT . Also, the volume fraction of the 
matrix and elasticity modulus of the matrix are VM and EM . 
So, The CNT volume fraction can be formulated as below:

Also, the effective volume fraction of CNTs can be for-
mulated as follows:

(8)

�dl = (ECNT
11

∕EM) − (dCNT∕4tCNT )
/
(ECNT

11
∕EM) + (lCNT∕2tCNT )

�dd = (ECNT
11

∕EM) − (dCNT∕4tCNT )
/
(ECNT

11
∕EM) + (dCNT∕2tCNT )

(9)V∗
CNT

=
WCNT

WCNT +
(

�CNT

�M

)(
1 −WCNT

)

(10)

VCNT = V∗
CNT

|||�j
|||

h
FG − X

VCNT = V∗
CNT

(
1 +

2�j

h

)
FG − V

VCNT = V∗
CNT

(
1 −

2�j

h

)
FG − A

VCNT = V∗
CNT

FG − UD

Also, Poisson’s ratio, mass density, and shear modulus 
will be calculated as follows:

2.2 � Kinematic relations

The displacement fields of the core can be given by [27, 
76–81]:

The strain components can be given by

(11)VCNT + VM = 1

(12)�j = VCNT�
CNT + VM�

M

(13)�j = �M

(14)Gj =
Ej

2
(
1 + �j

)

(15)

uc(x, y, z, t) = uc
0
(x, y, t) + zc�

c
x
(x, y, t) − c1z

3
c

[
�c
x
(x, y, t) +

�wc
0
(x, y, t)

�x

]

vc(x, y, z, t) = vc
0
(x, y, t) + zc�

c
y
(x, y, t) − c1z

3
c

[
�c
y
(x, y, t) +

�wc
0
(x, y, t)

�y

]

wc(x, y, z, t) = wc
0
(x, y, t)

where �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h j = 1,2,...,Nt . Furthermore, the 

sum of VM and VCNT as the two constituents of the nanocom-
posite matrix is equal to 1.

Also, the strain–stress equations of the metal structure 
can be given as [24, 77, 82–92] follows:

(16)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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�c
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�c
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�c
xz

�c
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⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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��c
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c
c1

�
��c
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�x
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�x2

�
+

wc
0

R1

�vc
0

�y
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��c
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�2wc
0

�x�y

�
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c
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x
+

�wc
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(1 − 3z2
c
c1)

�
�c
y
+
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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in which [80, 93–99]

In Eq. (17) Ec , and �c are Young’s modulus and poison 
ratio of the metal, respectively.

2.3 � Face sheets

In the present structural model for the sandwich panel, the 
HSDT is adopted for the face sheets. Hence, the displace-
ment components of the top and bottom face sheets (j = t, b) 
are represented as follows:

The strain components can be given by [78, 83, 100–109]:

Also, the strain–stress equations of the metal structure 
can be given as [110–114]:

(17)

⎡
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where [115]
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The terms involved in Eq. (21) would be obtained as 
follows:

(21-f)

̂̄Q
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2.4 � Extended Hamilton’s principle

For obtaining the governing equation and associated bound-
ary conditions, we can apply Extended Hamilton’s principle 
as follows [44, 70, 116, 117]:

The components of strain energy can be expressed as fol-
lows [24, 77, 90, 117–122]:
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where � = b, t, c . Also, the kinetic energy [123] of each 
layer of the structure can be defined as follows:

(23-b)
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xx
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(24)
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Zj
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(
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�t
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��vj
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+
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)dAj

+∫
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∬
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{
(
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��uc
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�vc
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��vc

�t
+

�wc
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��wc
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According to the Kelvin–Voight viscoelastic model for 
the MHC layer, the first variation of the viscoelastic model 
can be expressed as the following equation:

Also, for piezoelectric layer, we have

According to Eq. (25), Kw and Cd are elastic and dmping 
factor of the foundation.

Finally, the motion equations are derived as follows:

(25-a)

𝛿Wc =∬
A

Kw(2w
c𝛿wc − wb𝛿wb − wt𝛿wt)dAc

+ Cd(2ẇ
c𝛿ẇc − ẇb𝛿ẇb − ẇt𝛿ẇt)dAc

(25-b)

𝛿Wj = ∬
Aj

Kw(2w
j𝛿wj − wc𝛿wc)dAj + Cd(2ẇ

j𝛿ẇj − ẇc𝛿ẇc)dAj

(26)
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+
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Also, the motion equations for the nanocomposite face 
sheets are as follows:

(27)
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+
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2.5 � Solution procedure

Displacement fields for investigation the wave propagation 
analysis of the structure are defined as follows [117]:

where s and n are wave numbers along with the directions of 
x and y, respectively; also � is called frequency. With replac-
ing Eq. (29) into governing equations we get:

where

Also, the phase velocity of wave dispersion can be cal-
culated by Eq. (32):

In Eq. (32),c and s are called phase velocity and wave-
number of a laminated nanocomposite cylindrical shell, 
respectively. These parameters are propagation speeds of 
the particles in a sandwich panel.

(28)
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(30)([K] − �2[M]){d} = {0}
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��0

}

(32)c =
�

s

2.6 � Validation

The obtained results for the perfect panel are compared 
with the results of Refs. [124, 125]. These results are listed 
in Table 1. From this table, it can be seen that the present 
results have a good agreement with the obtained results in 
the literature. Note that, the dimensionless form of the fre-
quency can be calculated using the following relation:

Table 1   Comparison of the first dimensionless natural frequency of 
simply supported CNT reinforced composite square perfect panel 
(a/h = 10)

VCNT Ref [31] Ref [32] Present study

11% 0.1319 0.1357 0.1350
14% 0.1400 0.1438 0.1429
17% 0.1638 0.1685 0.1658

Table 2   Non-dimensional fundamental frequency of simply sup-
ported cross-ply laminated square plate with G12/E2 = 0.6, G13/
E2 = 0.6, G23/E2 = 0.5, a = b = 1, �=0.25

E1/E2 Ref [33] Ref [34] Presented study Discrepancy

10 8.2982 8.2981 8.5485 3%
20 9.5671 9.5671 10.0328 4%
30 10.326 10.326 10.6318 2%
40 10.824 10.854 11.0045 1%

For more verification, the fundamental frequencies of the 
FML moderately thick plates resting on partial elastic foun-
dations are calculated by eigenvalue problem. In Table 2, 
non-dimensional fundamental frequencies of the symmetri-
cally laminated cross-ply plate (0◦

, 90
◦

, 90
◦

, 0
◦

) are shown as 
compared for different E1/E2.

3 � Results

In this part, a comprehensive investigation is carried out to 
demonstrate the effects of various parameters on the phase 
velocity response of a multi-hybrid nanocomposite doubly 
curved panel. The geometrical and material characteristics 
of constituent materials would be presented in Table 3. Also, 
the material properties of aluminum properties can be given 
as follows:E = 3.51GPa, � = 1200kg∕m3, � = 0.34.

Figure 2 is presented for investigating the influence of 
the damping factor of the foundation on the characteristic of 
the elastic propagating wave. Figure 2 shows that as well as 

(33)Ω = Ω
a2

h

√
�M

EM
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increasing the phase velocity of the FML panel by increasing 
the wavenumber, this influence will be much more effective 
by increasing the damping factor. Also, at the grater wave 
number, we cannot find any change in the wave behavior of 
the sandwich panel due to increasing the damping factor. As 
the most impressive result, by improving the elastic founda-
tion the ineffective range of the wavenumber will be limited 
in which there is not any effect from Cd of the foundation on 
the phase velocity. Initially, as the wave number increases, 
the phase velocity of the panel increases, exponentially, 
while the relation between phase velocity and wave number 
is linear at the grater wave number. Last but not the least, 
as Cd increase, the phase velocity improves. In Fig. 3 the 
phase velocity of the hybrid nanocomposite doubly curved 
panel versus wave number is presented with attention to the 
effect of elastic parameter (Kw) of the foundation. Base on 
Fig. 3 can conclude that when the elastic parameter of the 

foundation is considered zero, as the wave number increases, 
the phase velocity improves, logarithmic while this relation 
will be complex by considering Kw > 0 . For each Kw , at first, 
the phase velocity of the panel is constant by increasing the 
wavenumber, and at the medium values of the wavenum-
ber, the phase velocity will be falling, so after a minimum 
value the relation changes to be increasing. Another impor-
tant result from Fig. 3 is that the impact of Kw on the wave 
response of the structure is considerable for 0.1 < Kwe4 < 
0.8, and this effect from the elastic foundation on the phase 
velocity could be negligible at the initial and grate value 
of the wavenumber. Figure 4 is presented for investigating 
the influence of elastic factor of the foundation and core to 
total thickness ( hc∕h ) on the characteristic of the propagate 
elastic wave. As stated by Fig. 4 the impact of Kw on the 
phase velocity is more obvious and considerable if the hc∕h 
is between 0.5 to 0.8. in other words, the phase velocity can 

Table 3   Material properties of the multiscale hybrid nanocomposite annular plate [33]

Carbon fiber EF
11[
Gpa

]

233.05

EF
22[
Gpa

]

23.1

GF
12[

Gpa
]

8.96

ρF[
kg
/
m3

]

1750

�F

0.2

�F
11[
×10−6

/
k
]

− 0.54

�F
22[
×10−6

/
k
]

10.08

Epoxy Matrix Em

[
Gpa

]

3.51

νm

0.34

ρm[
kg
/
m3

]

1200

�m

[
×10−6

/
k
]

45

Carbon nanotube dCNT

[nm]

1.4

lCNT

[�m]

25

ρCNT[
kg
/
m3

]

1350

GCNT
12

= GCNT
13[

Tpa
]

1.9445

ECNT
22

= ECNT
33[

Tpa
]

7.0800

ρm[
kg
/
m3

]

1200

tCNT

[nm]

0.34

dCNT

[nm]

1.4

tCNT

[nm]

0.34
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Fig. 2   The phase velocity versus wavenumber for four value of Cd

0 0.5 1 1.5 2
Wave number 104

0

200

400

600

800

1000

1200

Ph
as

e
ve

lo
ci

ty
(m

/s
)

K
w

=0 (N/m)

K
w

=0.1e12 (N/m)
K

w
=0.2e12 (N/m)

K
w

=0.3e12 (N/m)

Fig. 3   The effect of the elastic parameter of the foundation on the 
characteristic of the propagated wave in the FML panel
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improve due to increasing the Kw and this enhancement will 
be more considerable for 0.5 ≤ hc∕h ≤ 0.8. In addition, it is 
true that when the thickness of the core is small the phase 
velocity is falling down owing to increasing the hc∕h , but 
if we consider the thicker core, we can find a direct relation 
between hc∕h and phase velocity Figs 5, 6, 7 and 8.

With close attention to the provided diagrams in Fig. 9 
we can see that as well as an improvement on the phase 
velocity of the structure due to increasingKw , the mentioned 
impact is more remarkable when the carbon fibers in the 
matrix are distributed vertically. In addition, if the fibers are 
vertical, there is not any change in the phase velocity due to 
any change in�∕� . The main point of Fig. 9 is that the wave 
response of the MHC reinforced panel is more dependent on 
the carbon fiber angle and the impact of the elastic factor of 
the foundation on the phase velocity is more effective when 
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the fiber angle is vertical. Reported data in Fig. 10 are shown 
to have a deep presentation about the effects of the carbon 
fiber angle ( �∕�)and CNT weight fraction ( WCNT ) on the 
wave responses of the sandwich structure. The most general 
result in Fig. 10 is that for eachWCNT , when the fiber angle is 

less than�∕2 , the phase velocity is decreasing and this trend 
will be reverse for the fiber angle more than�∕2 . The most 
interesting result in 

Fig. 10 is that when the fiber angle is 0.4 ≤ �∕� ≤ 0.6, 
adding more CNTs cannot provide any change on the phase 
velocity of the structure. As another explanation, if the fibers 
are distributed in the matrix vertically, changing WCNT can-
not play any role on the wave response of the sandwich panel 
and as the fibers become horizontal, the effect of the WCNT 
on the phase velocity becomes more dramatic. Provided 
diagrams in Fig. 11 are shown to have a comparative study 
about the effects of elastic and damping factors ( Kw andCd ) 
of the foundation on the wave responses of the doubly carved 
smart panel. The most principal result from Fig. 11 is that in 
the (Kw , Cd) plane, there is a region as the same as a trape-
zium in which there are no effects from elastic and damping 
factors of the foundation on the wave response of the sand-
wich smart panel and this area will be small by increasing 
the value of wavenumber. The last and impressive outcome 
is that the effect of Cd on the phase velocity is greater than 
the impact of Kw on the wave propagation of the panel. The 
reported 3D diagram in Fig. 12 is shown in order to have 
a comparative study about the effects of the wavenumber 
and fiber angle on the wave responses of the doubly carved 
panel. The most principal and evident result in Fig. 12 is that 
as the wave number increases, the changes in phase veloc-
ity of the sandwich panel which is caused by increasing the 
fibers angel becomes much more dramatic. In the simpler 
words, the effects of fiber angle on the phase velocity of the 
FML panel is highly dependent on the wavenumber.

Fig. 8   The phase velocity versus �∕� with having attention to the 
impact of Cd
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4 � Conclusion

The analysis of the wave propagation behavior of a sandwich 
structure with a soft core and multi-hybrid nanocomposite 
(MHC) face sheets is carried out as a novel reaserch in the 
framework of the higher-order shear deformation theory 
(HSDT). In order to take into account the viscoelastic influ-
ence, the Kelvin-Voight model is presented. In this paper, 
the constituent material of the core is made of an epoxy 
matrix which is reinforced by both macro- and nano-size 
reinforcements, namely carbon fiber (CF) and carbon nano-
tube (CNT). The effective material properties like Young’s 
modulus or density are derived utilizing a micromechanical 
scheme incorporated with the Halpin–Tsai model. Then, 
on the basis of an energy-based Hamiltonian approach, the 

equations of motion are derived. Finally, the most bolded 
results of this paper are as follow:

As well as increasing the phase velocity of the FML panel 
by increasing the wavenumber, this influence will be much 
more effective by increasing the damping factor;

By improving the elastic foundation the ineffective range 
of the wavenumber will be limited in which there is not any 
effect from Cd of the foundation on the phase velocity;

Kw=8e12 is a critical value for the viscoelastic foundation 
that the relation between wavenumber and phase velocity 
will change from direct to indirect;

When the orientation of the carbon fiber in the matrix 
is being close to the vertical axis, the effect of Cd on the 
phase velocity of the sandwich panel will be evident and this 
impact is a positive point for increasing the wave propaga-
tion response of the panel;

In a specific range of �∕� , the damping factor of the foun-
dation has an ineffective role on the phase velocity of the 
panel and the range will be small by boosting the Cd;

If the fibers are distributed in the matrix vertically, 
changing WCNT cannot play any role on the wave response 
of the sandwich panel and as the fibers become horizontal, 
the effect of the WCNT on the phase velocity becomes more 
dramatic;

The effects of fiber angel on the phase velocity of the 
FML panel is hardly dependent on the wavenumber.
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