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Abstract
Because of fasttechnological development, electrostatic nanoactuator devices like nanosensors, nanoswitches, and nanoreso-
nators are highly considered by scientific community. Thus, this article presents a new solution technique in solving highly 
nonlinear integro-differential equation governing electrically actuated nanobeams made of functionally graded material. The 
modified couple stress theory and Gurtin–Murdoch surface elasticity theory are coupled together to capture the size effects 
of the nanoscale thin beam in the context of Euler–Bernoulli beam theory. For accurate modelling, all the material proper-
ties of the bulk and surface continuums of the FG nanoactuator are varied continuously in thickness direction according to 
power law. The nonlinearity arising from the electrostatic actuation, fringing field, mid-plane stretching effect, axial residual 
stress, Casimir dispersion, and van der Waals forces are considered in mathematical formulation. The nonlinear nonclassical 
equilibrium equation of FG nanobeam-based actuators and associated boundary conditions are exactly derived using Hamilton 
principle. The new solution methodology is combined from three phases. The first phase applies Galerkin method to get an 
integro-algebraic equation. The second one employs particle swarm optimization method to approximate the integral terms 
(i.e. electrostatic force, fringing field, and intermolecular forces) to non-integral cubic algebraic equation. Then, solved the 
system easily in last phase. The resulting algebraic model provides means for obtaining critical deflection, pull-in voltage, 
detachment length, minimum gap, and freestanding effects. A reasonable agreement is found between the results obtained 
from the present method and those in the available literature. A parametric study is performed to investigate the effects of 
the gradient index, material length scale parameter, surface energy, intermolecular forces, initial gap, and beam length on 
the pull-in response and freestanding phenomena of fully clamped and cantilever FG nanoactuators.

Keywords  Pull-in instability · Freestanding phenomenon · FG nanobeams · Modified couple stress theory · Surface 
energy · Galerkin method · Particle swarm optimization method

1  Introduction

Recent advances in the application of nanotechnology 
have resulted in the manufacture of nanoelectromechanical 
devices. The attractiveness of them is due to their excellent 

and distinctive mechanical and electrical properties, Ebra-
himi and Hosseini [21]. Recently, FGMs are employed in 
micro/nano-electro-mechanical system (MEMS/NEMS) and 
atomic force microscopes (AFMs) to achieve high sensitiv-
ity and desired performance, [23, 24]. Electrostatic micro/
nano-actuator devices like nanosensors, nanoswitches, 
and nanoresonators are widely used and can be modeled 
as nanobeam structures, Younis [81]. These devices usu-
ally comprise a conductive deformable body suspended 
above a rigid grounded body, Batra et al. [13]. When the 
applied voltage between the two bodies reaches an upper 
limit, called “pull-in voltage”, they eventually collapse due 
to interaction between electrostatic and elastic forces. Accu-
rate estimate of the pull-in voltage is crucial in the design 
of micro/nano-actuator devices. For a switching device, the 
designer exploits pull-in phenomenon to optimize device’s 
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performance while for a micro-resonator, the designer avoids 
this phenomenon to achieve stable motion.

Rotation in continuum solid mechanics is divided into 
two kinds; one is independent called micro-polar rotation, 
which represents one sort of microstructure effects, and the 
other is the anti-symmetric part of displacement gradient 
field, called local rotation. In fact, the local rotation, at a 
point of the continuum, represents a constraint on the dis-
placements at this point that induces an additional couple 
stress and, consequently, contributes on the strain energy 
density of the continuum. In the present study, the local-
rotation is captured using the modified couple stress theory 
(MCST), Yang et al. [78]. For nanoscale structures, the sur-
face is regarded as a membrane with a negligible thickness, 
[31, 32], where the atoms’ arrangements and material prop-
erties differ from those of the bulk material. For nanostruc-
tures with higher ratio of surface layer volume to the bulk 
volume, surface energy effect becomes effective and cannot 
be ignored, Miller and Shenoy [43], and Shenoy [68].

Therefore, a nonclassical couple stress continuum model 
considering the effect of surface energy is proposed. In 
the present study, modified couple-stress theory and sur-
face elasticity theory are exploited to develop an integrated 
model to investigate simultaneously the effects of micro-
structure local rotation and surface energy on the response 
of nano-devices. Using different beam theories in conjunc-
tion with combined influence of microstructure and surface 
energy, static and dynamic analyses of micro/nanoscale 
beams and plates have been investigated by some research-
ers, i.e. Gao and Mahmoud [29], Gao [28], Gao and Zhang 
[30], Shaat et al. [63], Zhang and Gao [86], Wang et al. [75], 
Attia and Mahmoud [5, 6], Attia et al. [10], and Shanab et al. 
[66, 67, 65].

In this regard, various experimental [12, 34], analytical 
[11, 55, 60, 59], [61, 14, 42, 47], and numerical [8, 2, 4, 6, 7, 
55, 64, 88] investigations have been conducted on the pull-in 
instability behavior of micro/nano-beams subjected to elec-
trostatic loadings. Numerical methods including finite dif-
ference method (FDM) [51, 55, 62], finite element method 
(FEM) [33, 45], differential quadrature method (DQM) [33, 
74], [80], [4], and reduced order model (ROD) [14, 44, 54, 
82] can predict the pull-in voltage with a very high degree 
of accuracy; however, these methods are computationally 
intensive.

Closed and semi-analytical expressions for pull-in volt-
ages of micro/nano-actuators are very helpful since they save 
time and complex computational work required by numeri-
cal methods. Several researchers have provided closed-form 
expressions for the calculation of pull-in voltage [11, 42, 55]. 
Osterberg and Senturia [46] and Pamidighantam et al. [48] 
assumed a lumped spring mass model to obtain a closed-
form expression for the pull-in voltage of microstructures 
such as beams/plates with different end conditions. Based 

on a lumped two degrees of freedom model, Bochobza-
Degani and Nemirovsky [15] presented an analytical solu-
tion for calculating the pull-in parameters of electrostatic 
actuators. Baghani [11] presented an analytical solution for 
size-dependent response of cantilever micro-beams based on 
the MCST using the modified variational iteration method. 
Rokni et al. [55] derived analytical closed-form solutions in 
explicit forms for electrostatically actuated cantilever and 
fully clamped micro-beams based on the MCST. However, 
the solution of this approach is nontrivial. On the other 
hand, including nonlinearity caused by fringing field and/
or intermolecular forces much complicates this approach. 
In Bhojawala and Vakharia [14], a closed-form for static 
pull-in voltage of fully clamped electrostatically actuated 
microbeam was derived as an explicit function of mid-plane 
stretching, axial load, fringing field, Casimir force, and finite 
conductivity. This closed form is invalid if other effects such 
as couple stress, surface residual stress, surface elasticity, 
van der Waals force, and/or material gradation are included. 
Miandoab et al. [42] predicted the static pull-in voltage of 
clamped-free, clamped–clamped and curved nanobeams 
based on the MCST, by transforming governing equations 
to a single degree of freedom model using Galerkin method 
and Genetic Algorithm to approximate the integral form of 
electrostatic force to non-integral form. However, this closed 
form does not account for fringing field or intermolecular 
forces.

In general, intermolecular forces are negligible for 
MEMS, where the separation distance is of the order of 
micron, but they play a significant role for NEMS, where 
the gap reduces to the nanoscale. Ramezani et al. [53, 52] 
obtained closed-form solutions for the pull-in parameters of 
cantilever nanoswitches subjected to intermolecular, electro-
static, and fringing forces using the Green’s function. They 
estimated the detachment length and the minimum initial 
gap of freestanding nanocantilevers. Radi et al. [49, 50] 
investigated the pull-in instability of nanocantilevers actu-
ated by electrostatic force and subject to Casimir or van der 
Waals forces by using the Green’s function. This approach 
provided accurate predictions for the pull-in parameters of 
a freestanding nanoactuator. However, they did not consider 
the influences of microstructure, surface elasticity, and sur-
face residual stresses parameters, which are important when 
the physical dimensions of structures descend to nanoscale. 
The influence of the surface energy on the pull-in instability 
of nanocantilevers under the electrostatic, fringing forces, 
and Casimir intermolecular attraction was investigated by 
Farrokhabadi et al. [26]. They employed the Duan–Rach 
method of determined coefficients and included the contri-
bution of the surface energy on the free end boundary condi-
tions, which have been ignored by almost other researchers.

Recently, Dehghan et al. [17] investigated the wave prop-
agation analysis of fluid-conveying magneto-electro-elastic 
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nanotube incorporating nanoscale effect by using nonlo-
cal elasticity theory of Eringen. Ebrahimi and Hosseini 
[20] studied analytically nonlinear vibration and dynamic 
instability of nonlocal nanobeams under thermo‑mag-
neto‑mechanical loads by using Galerkin method and mul-
tiple scales method. Sahmani et al. [58] developed analytical 
solution for vibrational response of postbuckled laminated 
FG graphene platelet-reinforced composite nonlocal strain 
gradient nanobeams. Ebrahimi et al. [22] studied bending of 
magneto‑electro‑elastic analysis of piezoelectric–flexoelec-
tric nonlocal nanobeams rested on silica aerogel foundation. 
Ebrahimi and Hosseini [21] presented effect of residual sur-
face stress on nonlinear dynamics and instability of double-
walled nanobeams by using nonlinear Mathieu–Hill equa-
tion. Wu and Liu [76] studied nonlinear thermo‑mechanical 
response of temperature‑dependent FG sandwich nonlocal 
strain gradient nanobeams with geometric imperfection. Xie 
et al. [77] investigated nonlinear secondary resonance of FG 
porous silicon nanobeams under periodic hard excitations 
based on surface elasticity theory. For more details, many 
recent studies in the literature on the static and dynamic 
response of nanobeams and nanoplates in the context of the 
nonlocal elasticity theory, nonlocal strain gradient theory, 
or modified couple stress theory have been developed, i.e. 
Fattahi et al. [27], Thanh et al. [71], Fan et al. [25], Ma et al. 
[40], Sahmani and Safaei [57], Trinh et al. [73], Yi et al. 
[79], Yuan et al. [85, 83, 84], Zhang and Liu [87], Lyu et al. 
[39], Liu et al. [38] and Liu and Lyu [37].

From the prementioned literature, it is noticed that the 
availability of closed-form or analytical model expressions 
for static pull-in instability analysis is still limited. These 
closed-form models mostly suffer from increased complexity 
and they may involve complicated mathematical operations. 
Therefore, the objective of the present paper was to propose 
a generalized closed-form expression for the size-dependent 
pull-in voltage of electro-mechanical FG nanobeams as well 
as the critical parameters of freestanding nanoactuator. The 
mathematical model is derived utilizing Hamilton princi-
ple taking into account the simultaneous effects of mate-
rial length scale parameter, surface elasticity, and surface 
residual stress as well as nonlinearity raised by mid-plane 
stretching effect, axial residual stress, and van der Waals, 
Casimir, and electrostatic forces including fringing field 
under static condition in conjunction with Euler–Bernoulli 
beam theory. Power law distribution is employed to describe 
the material distribution of bulk and surface continuums 
through thickness and consequently the physical neutral axis 
is considered. Application of Galerkin method transforms 
the highly nonlinear integro-differential governing equation 
into a highly nonlinear integro-algebraic equation. The main 
idea behind the proposed closed-form solution is to replace 
appropriately the integral-terms in this equation by non-
integral algebraic functions with undetermined coefficients. 

Particle Swarm Optimization (PSO) method is utilized to 
determine these coefficients such that they minimize the 
error between integral- and non-integral forms. Based on 
the resulting algebraic equation, generalized simple closed 
forms for the pull-in voltage and freestanding parameters 
are derived.

Accordingly, the present paper was organized as follows: 
in Sect. 2, the size-dependent governing equation and asso-
ciated boundary conditions are derived. Section 3 presents 
the proposed solution method and its accuracy is verified by 
comparing the obtained results with other reported litera-
ture in Sect. 4. Section 5 presents an extensive parametric 
study to explore the effects of various material and geometri-
cal parameters on the pull-in response as well as proposed 
expressions for permissible detachment length, minimum 
gap, and pull-in parameter parameters. Finally, Sect. 6 pre-
sents conclusion including key findings.

2 � Theoretical formulation

An electrostatically actuated FG nanobeam is depicted in a 
rectangular coordinate system as illustrated in Fig. 1. The 
beam has length L with a uniform rectangular cross section 
of width b and thickness h . The initial gap separating the 
nanobeam from the substrate is d . The effective material 
properties P of the FG nanobeam that vary continuously 
along the thickness are described according to the following 
power law:

where subscripts PU and PL are the material properties of the 
two constituents at the upper (z = h∕2) and lower (z = −h∕2) 
surfaces of the nanobeam, respectively, and k is a non–nega-
tive number (power law index), which controls the material 
variation profile through the thickness of the beam,where 
neutral surface reference can be evaluated by

Taking the physical neutral surface as a reference, the 
effective material properties take the following form:

From this equation, it is seen that P = PL , when 
z̃ = −

(
0.5h + h0

)
 and P = PU  when z̃ =

(
0.5h − h0

)
 . 

Young’s modulus ( E(z) ), Poisson’s ratio ( �(z) ), mass den-
sity ( �(z) ), microstructure material length scale ( l(z) ) of 

(1)P(z) =
(
PU − PL

)(1
2
+

zm

h

)k

+ PL,−
h

2
≤ zm ≤ h

2
,

(2)z̃ =
∫A zm[𝜆(zm) + 2𝜇

(
zm
)]
dA

∫A [𝜆(zm) + 2𝜇
(
zm
)]
dA

, z̃ = zm − h0.

(3)P(z) = PL +
(
PU − PL

)(1

2
+

z̃ + h0

h

)k

.
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the bulk, surface Lamé constants ( �s(z) and �s(z) ), surface 
residual stress ( �s(z) ), and surface mass density ( �s(z) ) can 
be expressed by power law gradation function, Eq. (3).

The displacement field based on the Euler–Bernoulli 
beam theory is expressed as

where u and w are the axial and lateral displacements of any 
point (x, z) on the mid-plane and t denotes time.

Based on Euler–Bernoulli beam theory in conjunction 
with the modified couple stress theory (MCST) presented by 
Yang et al. [78], the non-zero components of the infinitesimal 
strain vector ( �ij ), rotation vector ( �i ), and the symmetric cur-
vature tensor ( �ij ), respectively, can be obtained as [5, 9, 66]

where the prime dash refers to the derivative with respect 
to the coordinate x and dot represents to the derivative with 
respect to the time t  . Assuming a linear elastic behavior 
of the nanobeam, the bulk constitutive equations of the FG 
nanobeam can be expressed in terms of displacements as 
follows [5]:

(4)
ux(x, z, t) = u(x, t) − z̃w�(x, t), uy(x, z, t) = 0, uz(x, z, t) = w(x, t),

(5)𝜀xx = u� − z̃w��,

(6)�y = −w�,

(7)�xy = �yx = −
1

2
w��,

(8)
{

𝜎xx
𝜎yy = 𝜎zz

}
=

{
[𝜆(z) + 2𝜇(z)]

(
u� − z̃w��

)
𝜆(z)

(
u� − z̃w��

)
}
,

where the other components are zero. �ij and mij are the 
force-stress component and the deviatoric part of the sym-
metric couple stress tensor, respectively. �(z) and �(z) are 
the Lamé constants in classical elasticity, l(z) refers to the 
material length scale parameter which is spatially dependent 
according to Eq. (3), and �ij denotes the Kronecker delta.

The surface energy effects are incorporated into the devel-
oped size-dependent model based on Gurtin–Murdoch sur-
face elasticity theory [32], in which the surface constitutive 
relations of the FG micro/nanoscale beam can be formulated 
as, [3, 5]

where E±
s
 is the surface elastic modulus, i.e. E±

s
= �±

s
+ 2�±

s
 , 

where �±
s
and �±

s
 are the surface Lamé constants, �±

s
 is the 

surface residual stress, and nz represents the z-component 
of the outward unit normal n to the beam lateral surface. 
Here, the indices “ + ” and “−” represent the upper and 
lower surfaces of the nanobeam, respectively. The stresses 
of the surface layers must satisfy the equilibrium equations 
of Gurtin–Murdoch model; thus the normal component of 
the Cauchy stress �xx (Eq. (8)) is modified into [3, 5, 41]:

in  which f (z) = −

[
2
(

z

h

)3

−
3z

2h

]
 ,  �s = �+

s
+ �−

s
 and 

Δ�s = �+
s
− �−

s
.

(9)mxy = myx = −�(z)l2(z)w��,

(10)
{

𝜏s±
xx

𝜏s±
nx

}
=

{
𝜏±
s
+ E±

s

(
u� − z̃w��

)
𝜏±
s
un,x = 𝜏±

s
nzw

�

}
,

(11)

𝜎xx = [𝜆(z) + 2𝜇(z)]
(
u� − z̃w��

)
+

𝜈(z)

1 − 𝜈(z)

[(
1

2
Δ𝜏s + f (z)𝜏s

)
w��

]
,

Fig. 1   Schematic of an FGM 
nanobeam subjected to an elec-
trostatic force
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Hamilton’s principle is employed to derive the governing 
equations and corresponding boundary conditions for the 
static analysis of FG nanobeams as following:

The first variation of the total strain energy of FG nano-
beam can be obtained as follows:

in which �nx = 0.5w�nz . Substituting Eqs. (5, 7, 9, 10), 
Eq. (13) can be obtained in terms of the stress resultants 
as follows:

where the forces and moments resultants are expressed as

in which,

(12)

t2

∫
t1

(
�U +

[
�Wq + �Ws + �Wr

])
dt

(13)

�U =
1

2
�

L

∫
0

∫
A

�
�ij�ij + mij�ij

�
dAdx +

1

2
�

L

∫
0

∮
�A

�s
ij
�ijdSdx

=
1

2
�

L

∫
0

⎧⎪⎨⎪⎩
∫
A

�
�xx�xx + 2mxy�xy

�
dA + ∮

�A

�
�s
xx
�xx + 2�s

nx
�nx

�
dS

⎫⎪⎬⎪⎭
dx

(14)

�U = ∫
L

{[
Nxx + Ns

xx
+

1

2
T11w

�� −
1

2
CP1

]
�u�

−
[
Mxx + Yxy +Ms

xx
−

1

2
PA1 −

1

2
T11u

�
]
�w��

+
[
SPw

�
]
�w�

}
dx,

(15a)

{
Nxx

Mxx

}
≡ �

A

{
1

z̃

}
𝜎xxdA =

{
Axx

Bxx

}
u� −

{
Bxx − T11

Dxx − T22

}
w��,

(15b)

{
Ns
xx

Ms
xx

}
≡ �

𝜕A

{
1

z̃

}
𝜏s
xx
dS =

{
CP1

PA1

}
+

{
CP2

PA2

}
u� −

{
PA2

IP

}
w��,

(15c)Yxy ≡ �
A

mxydA = −Sxyw
��,

(16a)
{
Axx Bxx Dxx

}
= �

A

E(z)
{
1 z̃ z̃2

}
dA,E(z) =

E(z)(
1 − 𝜈(z)2

) ifb ≥ 5h else E(z) = E(z),

(16b)Sxy = ∫
A

�(z)l(z)2dA,�(z) =
E(z)

2(1 + �(z))
,

(16c)
{
CP1 PA1 SP

}
= ∮

𝜕A

𝜏s(z)
{
1 z̃ n2

z

}
dS,

The virtual work done by the electrostatic and intermo-
lecular forces ( �Wq ) is

The electrostatic force qe per unit length of the nanobeam 
including the first-order fringing field correction can be 
defined as [53, 52, 69]

in which, �0 = 8.854 × 10−12C2N−1m−2 denotes the vacuum 
permittivity, v is the voltage applied on the system, and d 
represents the initial distance between the nanobridge and 
fixed substrate. When the width of the nanobeam is much 
larger than the gap between beam and substrate (i.e. b ≫ d ), 
the effect of fringing field can be neglected. For nanobeams 
with the width in order of the initial gap, effect of fringing 
field is important and neglecting this phenomenon underes-
timates the electrostatic load and overestimates the pull-in 
voltage of the nanobeam, Rahaeifard et al. [51]. Regarding 
the interatomic forces qint , two interaction regimes can be 
considered; the first one belongs to the small separation sizes 
(typically below several tens of nanometers, Soroush et al. 
[69] and [1] that vdW force ( qvdW ) dominates. The second 
one accomplished with the large separation sizes (typically 
above several tens of nanometers, Soroush et al. [69] and 
Abdi et al. [1] that Casimir force ( qCas ) dominates. These 
interatomic forces per unit length of the nanobeam are given 
by

(1d)
{
CP2 PA2 IP

}
= ∮

𝜕A

Es(z)
{
1 z̃ z̃2

}
dS,

(16e)

{
T11 T22

}
= ∫

A

f𝜏
{
1 z̃

}
dA, f𝜏 =

𝜈(z)

1 − 𝜈(z)

[(
1

2
Δ𝜏s + f (z)𝜏s

)]
.

(17)�Wq =

L

∫
0

[
qe + qvdW + qC

]
�wdx.

(18)qe =
�0bv

2

2[d − w]2
+

0.65�0v
2

2[d − w]
,

where AH = (0.4upto4) × 10−19J is the Hamaker constant, 
hP = 1.055 × 10−34Js denotes the reduced Planck’s constant 
divided by 2� , and C = 2.998 × 108m∕s is the light speed.

(19)qvdW =
AHb

6�(d − w)3
andqCas =

b�2hPC

240(d − w)4
,
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In the case of FG nanobeams with immovable boundary 
conditions, the virtual work due to midplane stretching of 
the nanobeam ( �Ws ) and residual stress ( �Wr ) is, respec-
tively, given by

where the axial force Nr = srbh , in which the effective resid-
ual stress sr = (1 − �)s0 ; otherwise, sr = s0 for narrow beams 
(b < 5 h), where s0 is the initial biaxial residual stress in the 
beam, Rokni et al. [55]. For the case of cantilever nanobe-
ams, �Ws and �Ws are set to zero. Substituting Eqs. (14), 
(17), (20), and (21) into Eq. (13), and integrating by parts, 
results in the following size-dependent nonlinear governing 
equations of motion in terms of displacements,

subject to the following boundary conditions at x = 0 and 
x = L.

(20)�Ws = �

⎛
⎜⎜⎝
−Nr

L

∫
0

w
�2dx

⎞
⎟⎟⎠
,

(21)�Wr = −
1

8
Ka�

⎛⎜⎜⎝

L

∫
0

w�2dx

⎞⎟⎟⎠

2

, Ka = ∫
A

E(z)

L
dA

(22a)�u ∶
(
Axx + CP2

)
u�� −

(
B +

1

2
T11

)
w��� = 0,

(22b)

�w ∶ −Dw���� +
�
B +

1

2
T11

�
u��� +

⎡
⎢⎢⎣
SP + Nr +

1

2
Ka

⎛
⎜⎜⎝

L

∫
0

w�2dx

⎞
⎟⎟⎠

⎤
⎥⎥⎦
w��

+ qe + qvdW + qCas = 0,

(23a)
Either u = ũor

(
Axx + CP2

)
u� −

(
B +

1

2
T11

)
w�� +

1

2
CP1 = 0,

(23b)

Eitherw = w̃or Dw��� −
�
B +

1

2
T11

�
u��

−

⎛⎜⎜⎝
SP + Nr +

1

2
Ka

L

∫
0

w
�2dx

⎞⎟⎟⎠
w� = 0,

where

Substitution of Eq. (22a) into Eq. (22b) yields Eq. (22b) 
in terms of the transverse displacement only as follows:

For convenience, introducing the nondimensional varia-
bles x̂ = x∕L and ŵ = w∕d in Eq. (24), multiplying the result 
by L4∕ELId and dropping the hats, we obtain the following 
nondimensional governing equation:

Further, the nondimensional boundary conditions are 
obtained as

The dimensionless coefficients appear in Eqs. (25) and 
(26a–26c) and are defined as

(23c)Eitherw� = w̃�or
(
B +

1

2
T11

)
u� −Dw�� +

1

2
PA1 = 0,

D = Dxx − T22 + Sxy + IP andB = Bxx − T11 + PA2.

(24)

�
D −

1

Axx + CP2

�
B +

1

2
T11

�2
�
w����

−

⎡
⎢⎢⎣
SP + Nr +

1

2
Ka

⎛
⎜⎜⎝

L

∫
0

w�2dx

⎞
⎟⎟⎠

⎤
⎥⎥⎦
w��

= qe + qvdW + qCas.

(25)

�w���� −

⎡⎢⎢⎣
SP + Nr + Ka

⎛⎜⎜⎝

1

∫
0

w
�2dx

⎞⎟⎟⎠

⎤⎥⎥⎦
w��

= V2

�
1

(1 − w)2
+

cf

(1 − w)

�
+

cvdW

(1 − w)3
+

cCas

(1 − w)4
.

(26a)Clamped (C) ∶ w = 0andw� = 0,

(26b)
Simply supported (S) ∶ w = 0and −Dw�� + PA1 = 0,

(26c)

Free (F) ∶ − �w��� +

⎛⎜⎜⎝
SP1 + Nr + Ka

1

∫
0

w
�2dx

⎞⎟⎟⎠
w�

= 0and − �w�� + � = 0.

(27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� = D −
1

Axx+CP2

�
B +

1

2
T11

�2

� =
1

2

�
PA1 −

CP1

Axx+CP2

�
B +

1

2
T11

��

�
V cf cvdW cCas

�
=

��
�0bL

4

2ELId
3
v

0.65d

b

bL4AH

6�ELId
4

�2bL4hPc

240ELId
5

�

�
D � � Nr Ka SP PA1

�
=

1

ELI

�
D �

ELI

d
� L2Nr

Ld2

2
Ka L2SP L2PA1

�
.
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3 � Analytical approach

3.1 � Pull‑in closed form

To derive a closed-form solution to Eqs. (25, 26a–26c), the 
normalized displacement of the FG micro/nanobeam w(x) 
is approximated as

where �(x) is deflection shape function satisfying the 
boundary conditions and u denotes a scaling of the dis-
placement function such that Eq. (25) is satisfied. Note that 
�(x) is normalized such that max (|�(x)|) = 1 and hence u 
describes the mid-point and tip deflections of, respectively, 
clamped–clamped and clamped-free FG nanobeams.

The deflection shape function �(x) is given in Table 1 for 
fully clamped and clamped-free nanobeams.

Substitution of Eq. (28) into Eq. (25) and multiplying the 
result by �(x) , then integrating with respect to x between 
0,1 yields

where

In this study, the integral forms of the electrostatic and 
intermolecular forces in the right-hand side of Eq. (29) are 
approximated in the form of algebraic functions of u as 
follows:

(28)w(x) ≅ u�(x),

(29)

(
i04� − i02

(
SP + Nr

))
u − i02i11Kau

3 = V2

1

∫
0

[
1

(1 − u�(x))2
+

cf

(1 − u�(x))

]
�(x)dx

+

1

∫
0

[
cvdW

(1 − u�(x))3
+

cCas

(1 − u�(x))4

]
�(x)dx,

(30)
{
i02 i04 i11

}
=

1

∫
0

{
���� ������ ��2

}
dx.

(31)

1

∫
0

[
1

(1 − u�(x))2
+

cf

(1 − u�(x))

]
�(x)dx ≅

a0(
1 − a1u

)a2 ,

(32a)

1

∫
0

�(x)

(1 − u�(x))3
dx ≅ b3u

3 + b2u
2 + b1u + b0,

(32b)

1

∫
0

�(x)

(1 − u�(x))4
dx ≅ c3u

3 + c2u
2 + c1u + c0.

At specific values of u in the range 0 ≤ u ≤ 0.5 , the values 
of the integrals in the left-hand sides of Eqs. (31, 32a, 32b) 
can be accurately computed. Then, the least squares method 
is applied to determine the coefficients in the right-hand 
sides of Eqs. (32a, 32b). However, such classical method is 
not applicable for Eq. (31).

Particle Swarm Optimization (PSO) is a powerful evolu-
tionary technique for many optimization applications due to 
its high performance and flexibility. PSO was first developed 
by Kennedy and Eberhart [35]. PSO shares many similarities 
with evolutionary computation techniques such as Genetic 
Algorithms (GA). In PSO, the process is initialized with a 
population of random solutions and continuing searching for 
optima by updating generations. However, unlike GA, PSO 
has no evolution operators, such as mutation and crossover. 
PSO has been successfully applied in many research and 
application areas, Eberhart et al. [19]. It is demonstrated 
that, compared with other methods, PSO gets better results 
in a faster and cheaper way. Therefore, in the present study, a 
PSO algorithm is used to approximate the coefficients in the 

right-hand side of Eq. (31). For this equation, the coefficients 
are determined to minimize an objective function defined as 
the sum of squares of the difference of the two sides at the 
chosen values of u.

Substitution of Eqs. (31, 32a, 32b) in Eq. (29), reduces to

where

Notice that the coefficients in the left-hand side of 
Eq. (33) are dependent on mechanical parameters �,SP,Nr, 
and Ka . In the right-hand side, the first term corresponds to 
the electrostatic force including fringing field, while the last 
term corresponds to the intermolecular forces.

(33)

A1u + A3u
3 = V2

a0(
1 − a1u

)a2 +
(
k3u

3 + k2u
2 + k1u + k0

)
,

(34)
{
A1 A3

}
=
{
i04� − i02

(
SP + Nr

)
−i02i11Ka

}
,

(35)ki =

{
cvdWbi for vdW force

cCasci for Casimir force
, i = 0, 1, 2, 3.
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Equation (33) represents an implicit algebraic equation 
of the deflection amplitude u and applied voltage V  . Dif-
ferentiating Eq. (33) with respect to u yields

Multiplying Eq. (36) by 
(
1 − a1u

)
 and subtracting the 

result from Eq. (33) and since the mathematical condition 
of pull-in phenomena is dV/du = 0 , the pull-in deflection upi 
must satisfy the following relation:

where

Equation (37) is a cubic algebraic equation in the pull-in 
deflectionupi . Once upi is obtained, the pull-in voltage Vpi is 
computed from Eq. (33). The integration parameters i02 , i11 
and i04 defined in Eq. (30) as well as the used shape functions 
�(x) are reported in Table 1 for the C–C and C–F nano-
beams. On the other hand, the approximation parameters 
( a0, a1 , a2 in Eq. (31)) are dependent on cf and are computed 
using PSO. Table 2 reports these parameters at some values 
of cf . The case of cf = 0 corresponds to b ≫ d , where the 
fringing field effect is neglected.

3.2 � Freestanding closed form

When considering a nanosystem, it is worth noting that one 
of the most important parameters is its freestanding behavior. 
In the absence of electrostatic force (applied voltage), intera-
tomic Casimir and van der Waals forces may tend the nano-
beam to undergo a primary displacement, i.e. the movable 
electrode falls on the fixed electrode, and thus the nanobeam 

(36)

A1 + 3A3u
2 = V2

a0(
1 − a1u

)a2
a1a2(

1 − a1u
)

+ 2V
dV

du

a0(
1 − a1u

)a2 +
(
3k3u

2 + 2k2u + k1
)
.

(37)C0u
3
pi
+ C1u

2
pi
+ C2upi + C3 = 0

(38)

⎧⎪⎨⎪⎩

C0

C1

C2

C3

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

a1
�
3 + a2

�
A3 − a1k3

�
a2 + 3

�
−3A3 − (a1a2k2 − 3k3 + 2k2a1)

a1
�
a2 + 1

�
A1 −

�
k1a1 + a2a1k1 − 2k2

�
−A1 −

�
a1a2k0 − k1

�

⎫⎪⎬⎪⎭
.

may behave unstably. Such effect can induce undesired adhe-
sion in freestanding during the fabrication and operation pro-
cedures of such systems, which should be considered when 
either the gap distance between the movable electrode and 
the field one is small or the length of the nanobeam is greater 
than a certain magnitude, Farrokhabadi et al. [26]. In this 
regard, modeling of intermolecular interatomic Casimir and 
van der Waals force-induced instability is crucial for inves-
tigating the performance of nanoactuators made of FGMs.

When the nanoactuator becomes freestanding, the voltage 
difference between the nanobeam and the substrate vanishes. 
Accordingly, the smallest amount of intermolecular force 
that causes the movable electrode to fall on the fixed elec-
trode in the absence of electrostatic force is called critical 
intermolecular force. Behavior of a freestanding nanoactua-
tor is a special case of the present study. Setting the applied 
voltage V = 0 in Eqs. (33) yields

where A1,A3 are defined by Eq.  (34) and coefficients 
bi , ci , i = 0, 1, 2, 3 are given in Table 3 for C–C and C–F 
nanobeams.

Let the critical parameters of Eqs. (39, 40) be, respec-
tively ( u∗

vdW
, c∗

vdW
) and ( u∗

Cas
, c∗

Cas
) . Once the critical intermo-

lecular parameters c∗
vdW

 and c∗
Cas

 are determined, the defini-
tions of cvdW and cCas in Eq. (27) can be used to compute the 
permissible maximum length (called the detachment length) 
and minimum initial gap and of the of freestanding nanobe-
ams as follows:

(39)cvdW =
A1u + A3u

3

b3u
3 + b2u

2 + b1u + b0
,

(40)cCas =
A1u + A3u

3

c3u
3 + c2u

2 + c1u + c0
,

(41)

The detachment length ∶ L∗
Cas

= d5∕4
4

√
20E1h

3

�2hPc
c∗
Cas

and L∗
vdW

= d
4

√
�E1h

3

2AH

c∗
vdW

,

Table 1   Trial shape function �(x) for the clamped–clamped and clamped-free FG nanobeams and associated integrals (Eq. (30))

Beam type Trial shape function �(x) Integration parameters

C–C �(x) =
1

1.58815

[
cosh(mx) − cos(mx) −

cosh (m)−cos(m)

sinh(m)−sin(m)
(sinh(mx) − sin(mx))

]
,

m = 4.73004074

i02 = −4.877693688

i04 = 198.4615997

i11 = 4.877693672

C-F �(x) =
1

2

[
cosh(mx) − cos(mx) −

sinh(m)−sin(m)

cosh(m)+cos(m)
(sinh(mx) − sin(mx))

]
,

m = 1.875104069

i02 = 0.2145609034

i04 = 3.090590853

i11 = 1.161944579
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4 � Model validation

4.1 � Proposed approximation in Eqs. (31, 32a, 32b)

As mentioned in Sect. 3, the basic idea to get the proposed 
closed-form approximations is to replace the integral forms 
representing electrostatic, fringing, and intermolecular 
forces in Eq. (29) by non-integral algebraic functions. For 
the purpose of validation of these approximations introduced 
in Eqs. (31, 32a, 32b), the integral and non-integral forms 
are computed at different values of the maximum deflection, 
u , as presented in Figs. 2 and 3 for the C–C and C–F cases. 
Figure 2 shows the accuracy of the PSO approximation 
given in Eq. (31) for the terms of electrostatic and fringing 
(with d∕b = 1 ) forces, while Fig. 3 corresponds to Eqs. (32a, 
32b) that associates with approximations of van der Waals 
and Casimir forces. The maximum relative errors E∞

r
 are 

reported in Table 4 for the proposed approximations, where 
the error is the difference between the exact integral values 
and the corresponding algebraic functions in Eqs. (31, 32a, 
32b).

4.2 � Validation of pull‑in voltage

To validate the present analytical closed-form approach for 
predicting the static pull-in phenomenon, the static pull-in 
voltage of microcantilevers with different geometric and 
material properties are obtained and compared with some 
available analytical and numerical results in Table 5. For 
clamped–clamped nanobeams with different geometric, 

(42)

Minimum gap ∶ d∗
Cas

= L4∕5 5

√
�2hPc

20E1h
3c∗

Cas

and d∗
vdW

= L 4

√
2AH

�E1h
3c∗

vdW

.

material properties and axial residual stresses, the static 
pull-in voltages obtained using the proposed closed-form are 
compared with similar ones available in literature in Table 6. 
Based on the results of Tables 5 and 6, the accuracy of pre-
sent analytical closed-form approach can be observed. It 
should be noted that for comparison in the above validations, 
the nanobeams are assumed homogeneous, i.e. k = 0 , and 
are modeled based on the classical elasticity theory (CT), i.e. 
all the nonclassical surface and microstructure parameters 
are set to zero. Also, the effects of fringing field and inter-
molecular van der Waals and Casimir forces are neglected.

To validate the present closed-form model in the pres-
ence of microstructure effect, homogeneous cantilever 
microactuators are considered and modeled based on the 
modified couple stress theory (MCST), i.e. all the surface 
parameters are set to zero. For the aim of comparison, the 
influences of fringing field and intermolecular forces are 
neglected in this validation. The geometrical and material 
parameters used in Rahaeifard et al. [51] and Rokni et al. 
[55] are E =169.2 GPa, �=0.239, b=50 µm, h=2.94 µm, and 
d=1.05 µm. The obtained results of the static pull-in voltage 
for different beam lengths and microstructure material length 
scale parameters are displayed in Table 7 and compared with 
corresponding values reported in Rokni et al. [55] based on 
a closed-form solution and Rahaeifard et al. [51] where a 
numerical approach was used.

Next, the proposed closed-form solution is validated by 
investigating the pull-in characteristics of a micro/nanocan-
tilever including the effects of fringing field and intermo-
lecular forces. The obtained results are compared with Radi 
et al. [49], who modeled a micro/nanocantilever actuated 
by electrostatic force including fringing field and subject 
to Casimir or van der Waals forces based on the classical 
continuum mechanics (CL). Rather than determining the 
pull-in parameters, they estimated lower and upper bounds 
of the parameters, namely the pull-in voltage parameter ( �l 
and �u ) and the normalized tip displacement ( ul and uu ). 
For comparison with Radi et al. [49], Eq. (25) is reduced 
to account for a classical cantilever nanobeam by setting 

Table 2   Coefficients of 
approximation ( a0 , a1 , a2 ) in 
Eq. (31) for various fringing 
field parameters cf

cf = 0.65(d∕b) a0 a1 a2

C–C 0.0 0.523127954802096 0.997496563158028 1.519042711142470
0.65 × 1/50 0.530337989567136 1.008794228934500 1.487159569030100
0.65 × 1/10 0.557320816780667 1.012407974951880 1.450408267732250
0.65 × 1/2 0.693456113366252 1.048974660627200 1.267460739469660
0.65 0.862852855161830 1.056886076090580 1.157757467970810

C–F 0.0 0.391581895921048 0.956563131373158 1.331439465244600
0.65 × 1/50 0.396275296263726 0.948106024063029 1.341945603173360
0.65 × 1/10 0.417631602595171 0.983617243441750 0.983617243441750
0.65 × 1/2 0.519080342333035 0.998800736182284 1.117609064675130
0.65 0.645855527683283 1.005190511721540 1.021182912266340
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SP = Nr = Ka = 0,� = 1 , and defining the pull-in voltage 
parameter � = V2 ; thus the governing equation becomes

Results are reported in Table 8 for some specific values of 
the initial gap-to-width ratio d∕b , which controls the fring-
ing field effects and for various values of the coefficients 
cvdW and cCas . In this table, the normalized pull-in tip dis-
placement and pull-in voltage are displayed, respectively, 
as u and � , determined by the present closed-form approach 
and by lower and upper bounds 

(
ul, uu

)
 and 

(
�l, �u

)
 reported 

in Radi et al. [49]. It is noticed that excellent agreement is 
observed, since almost of the parameter values computed 
by the present closed-form PSO-based approach lie within 
the lower and upper bounds computed in Radi et al. [49]. 
Note that negative values of � = V2 appearing in Table 8 
imply sudden occurrence of the pull-in instability as no real 
solution can be obtained for the tip displacement and that at 

(43)

d4w

dx4
= �

[
1

(1 − w)2
+

cf

(1 − w)

]
+

cvdW

(1 − w)3
+

cCas

(1 − w)4
.

these situations the intermolecular forces exceed their criti-
cal values.

4.3 � Validation of freestanding behavior

To determine the critical points of the intermolecular param-
eters cvdW and cCas based on Eqs. (39) and (40), respectively, 
they are plotted in Fig. 4 based on the classical elasticity 
theory for a cantilever nanobeam. For the purpose of com-
parison with Duan et al. [18], the material is assumed to 
be homogeneous, k = 0 . The critical points on the curves 
of Eqs. (39 and 40) are, respectively, 

(
u∗
vdW

, c∗
vdW

)
 = (0.34, 

1.204) and 
(
u∗
Cas

, c∗
Cas

)
 = (0.27, 0.9372) as displayed in the 

Table 3   Coefficients of approximation in Eqs. (32a, 32b): approximation of 
1∫
0

1

(1−u�)r
�dx

van der Waals force ( r = 3 ), Eq. (32a) Casimir force ( r = 4 ), Eq. (32b)

b3 b2 b1 b0 c3 c2 c1 c0

C–C 17.9699071753 − 4.5374333346 1.9651785203 0.5101494421 51.2226530837 − 17.1257097294 4.0648401872 0.4808110277
C–F 7.6970124549 − 1.5409055297 1.0616078391 0.3863159541 21.2764246197 − 6.2491912389 1.9713552500 0.3750585890
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Fig. 2   Exact and PSO approximation of the integral function in 
Eq. (31)
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Fig. 3   Exact and pproximation of the integral function in Eqs. (32a, 
32b)

Table 4   Maximum relative error E∞
r

 in the proposed PSO approxima-
tion given in Eqs. (31, 32a, 32b)

Beam type Equation (31), 
d∕b = 1

Equation (32a) Equation (32b)

C–C 0.000424 0.043 0.070
C–F 0.000174 0.017 0.026
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figure. Based on the classical elasticity theory (CT), Duan 
et  al. [18] reported that for a homogeneous cantilever 
u∗
Cas

 = 0.269401 and c∗
Cas

 = 0.932616, which agree well with 
the corresponding values displayed in Fig. 4. Also, Radi 
et al. [49] have reported lower and upper bounds for c∗

vdW
 

as [1.1967, 1.2171], u∗
vdW

 as [0.3350, 0.3423] and c∗
Cas

 as 
[0.9326, 0.9492], u∗

Cas
 as [0.2694, 0.2756], which agree well 

with the present predicted critical values.

5 � Parametric studies

In this section, selected numerical results are presented to 
demonstrate the capability of the developed closed-form 
approach to investigate the influences of incorporating 
surface energy and microstructure theories on the pull-in 
instability and freestanding behavior of electrically actu-
ated clamped–clamped (C–C) and clamped–free (C–F) FG 
nanobeams. To demonstrate the influence of couple stress 
and surface energy simultaneously together or individually, 
four various analyses are considered: (1) the classical theory 
(CT), based on the classical continuum mechanics theory, 
where all surface and microstructure parameters are set to 
zero: (2) analysis based on the modified couple stress theory 
only (MCST): (3) analysis based on surface elasticity theory 
only (SET), and (4) fully nonclassical analysis incorporat-
ing the simultaneous effects of surface energy and modified 
couple stress (CSSE). Also, effects of fringing field and the 
intermolecular Casimir and van der Waals forces are simul-
taneously included.

Throughout the following analyses, consider an FG beam 
possessing the material properties given in Table 9, assum-
ing a material length scale parameter ratio lL∕lU = 1.5 . The 
geometrical parameters of the beam are h = 3lU , L = 40h, 
b = 5h , and d = 0.6h ; otherwise, other values of the material 
or geometrical parameters are defined. Further, Poisson’s 
effect is included in this parametric study and Nr = 0 . Due 
to the assumption in Eq. (28) that w(x) ≅ u�(x), where �(x) 
is deflection shape function satisfying the classical boundary 
conditions, the proposed closed-form does not account for 

the nonclassical boundary conditions. In fact, nonclassical 
boundary conditions occur only at a free end due nonzero 
surface residual stress �s as can be seen from Eq. (26c) since 
SP1 = � = 0 if �s = 0.

5.1 � Effect of the material composition

To understand the effect of the material composition on the 
pull-in instability of the nanobeam, the distribution of bulk 
Young’s modulus through thickness E(z) for various val-
ues of the gradient index k is plotted in Fig. 5. Note first 
that at upper edge of the beam ( z = h∕2 ), the material is 
pure ceramic. As the value of k increases, the constitution 
of ceramic in the material decreases and results in lower 
Young’s modulus distribution, i.e. as k tends to ∞ , the mate-
rial becomes pure metal. Since the beam stiffness depends 
mainly on Young’s modulus, one can expect that increas-
ing k would result in reducing the beam stiffness. However, 
incorporation of micro/nanoscale effects (couple stress and 
surface energy) adds important contributions to the stiffness 
of the beam as can be seen in the coefficients of the govern-
ing equation (Sect. 2).

First, the effect of the gradient index on the pull-in volt-
age of a nanobeam is investigated taking into considera-
tion the influence of MCST. The variations of the pull-in 
voltage with the gradient index k are shown in Fig. 6a for a 
clamped–clamped nanobeam and in Fig. 6b for a cantilever 
nanobeam, according to CT and MCST with and without 
fringing field effect.

Some numerical values of the pull-in voltage at differ-
ent gradient indices are provided in Table 10. From these 
results, one can conclude that increasing the gradient index 
decreases the pull-in voltage of the nanobeam. Compared 
with CT, MCST results in increasing the beam bend-
ing rigidity. Therefore, the microstructure size-dependent 
effect provides a hardening behavior that enhances the elas-
tic resistance of the nanobeam and accordingly requires 
higher applied voltage before the instability occurs. Also, 
including fringing field acts as additional electrostatic force 
that increases the nanobeam deflection and results in lower 

Table 5   Comparison of static pull-in voltage of homogeneous microcantilevers obtained from the present closed-form method with data from 
the literature based on the classical analysis ( E = 169 GPa, � = 0.06)

Geometric dimensions 
(μm)s

Static pull-in voltage (volt)

L b h d Osterberg and 
Senturia [46]

Chowdhury 
et al. [16]

Haluzan 
et al. [33]

Rokni et al. [55] Hu et al. [34] Kuang and 
Chen [36]

Younis
[81]

Present

20,000 5000 57 92 – – – – 68.5 68.5 – 69.37
100 50 3 1 37.9 37.84 37.85 37.88 – 37.49 – 37.97
150 50 3 1 16.8 16.83 16.85 16.84 – 16.67 – 16.88
100 10 1 1 – – – – – – 7.14 7.11
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pull-in voltage. These results also demonstrate that, for the 
same material geometric parameters, pull-in voltages for 
nanocantilevers are lower than those of clamped–clamped 
nanobeams.

Next, the effect of the surface energy (surface elastic-
ity and surface residual stress) is explored in the presence 
of Poisson’s effect and intermolecular forces. The vari-
ations of the pull-in voltage versus the gradient index for 
CT, SET, MCST, and CSSE are shown in Fig. 7a for a 
clamped–clamped FG nanobeam. For a fixed value of the 
gradient index (k = 3) , Eq. (33) is used to plot the variation 
of normalized maximum deflection (u) versus the applied 
voltage in Fig. 7b.

A further interesting study is obtained by repeat-
ing the previous case study by just changing the material 
length scale parameter of the upper surface of the beam 
(ceramic) from lU = 65nm to lU = 10nm , keeping h = 3lU
,L = 40 h, b = 5 h and d = 0.6 h . Thus, in this study not 
only the effect of the couple stress is reduced but also the 
dimensions of the beam are decreases and consequently 
the influence of intermolecular forces can be significantly 
observed. Results are drawn in Fig. 8. Comparing Fig. 8 with 
Fig. 7, the following conclusions can be derived. First, due 
to the smaller size of the beam, less electrostatic force is 
required to cause instability and hence much low pull-in 
voltages are observed. Second, the effect of surface energy is 
more significant which can be interpreted due to the increase 
of the surface to volume ratio. Finally, at no applied volt-
age, one can observe nonzero deflection in Fig. 8b com-
pared with zero deflection in Fig. 7b. Furthermore, as the 
initial gap between the nanobeam and substrate becomes 
sufficiently small, the induced intermolecular forces cannot 
be neglected. These intermolecular forces induce the beam 
deflection even at no applied voltage. More details about 
influence of intermolecular forces will be considered in the 
following subsections.

5.2 � Effect of the intermolecular forces

To clearly investigate the influence of the intermolecular 
forces on the pull-in voltage of actuated FG nanobeams, the 
nonclassical effects due to surface energy and microstruc-
ture are not incorporated, i.e. classical elasticity theory (CT) 
is employed. The variations of pull-in voltage versus the 
gradient index with and without the effects of Casimir or/
and van der Waals forces are shown in Fig. 9. The dimen-
sions of the beam are taken as h = 10nm , L∕h = 50 , and 
b∕h = 5 . Results for a clamped–clamped FG nanobeam with 
initial gap-to-thickness ratio d∕h = 1.2 are plotted in Fig. 9a, 
whereas Fig. 9b shows results for an FG nanocantilever with 
d∕h = 2.6 . These results reveal that the intermolecular forces 
significantly reduce the pull-in voltage. Such behavior is 
due to that these forces increase the beam deflection and Ta
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consequently the pull-in instability occurs at lower applied 
voltage. Next, the effect of the initial gap-to-thickness ratio 
on the pull-in voltage with and without the intermolecular 
forces is demonstrated in Fig. 10 and Table 11 at k = 1 . It is 
observed that the pull-in voltage significantly decreases with 
the decrease of d∕h and that a critical value of the initial 
gap ( d∗ ) exists, at which the pull-in instability occurs in the 
absence of any applied voltage. These situations are shown 
in Tables 12, 13 by symbol “-”. For the geometrical and 
material parameters considered here, it can be observed that 
these critical values are 

[
d∗∕h

]
vdW

= 0.65 , 
[
d∗∕h

]
Cas

= 1.1 for 
the clamped–clamped FG nanobeam and 

[
d∗∕h

]
vdW

= 1.6 , [
d∗∕h

]
Cas

= 2.3 for the FG nanocantilever.

5.3 � Freestanding nanoactuator analysis

The detachment length L∗ of a nanobeam and the mini-
mum initial gap d∗ are basic design parameters for NEMS. 
An actuator nanobeam with specified initial gap d and 
length L > L∗ would collapse onto the substrate due to the 

Table 7   Comparison of the static pull-in voltage (volts) of homogeneous cantilever microactuators based on the MCST

L (μm) l = 65 nm l = 592 nm l = 612.5 nm

Rokni et al. [55] Shaat and 
Mohamed 
[62]

Present Rokni et al. [55] Shaat and 
Mohamed 
[62]

Present Rokni et al. [55] Shaat and 
Mohamed 
[62]

Present

75 72.37 72.00 72.69 78.48 77.32 79.04 78.89 77.74 79.48
100 40.71 40.15 40.89 44.14 43.49 44.46 44.38 43.72 44.71
150 18.09 17.78 18.17 19.62 19.33 19.76 19.72 19.43 19.87
200 10.18 10.00 10.22 11.04 10.86 11.12 11.09 10.92 11.18
250 6.51 6.40 6.54 7.06 6.94 7.11 7.10 6.98 7.15

Table 8   Comparison of the static normalized pull-in tip deflection u and pull-in voltage parameter � = V2 with the corresponding lower and 
upper values 

(
ul, uu

)
 and 

(
�l, �u

)
 obtained by Radi et al. [49] of a homogeneous cantilever microactuator based on the classical analysis

cvdW cCas Neglecting fringing field With fringing field ( d∕b = 1)

u (present) (ul, uu ) Radi et al. 
[49]

� (present) (�l, �u ) Radi et al. 
[49]

u (present) (ul, uu ) Radi et al. 
[49]

� (present) (�l, �u ) Radi et al. 
[49]

0 0.0 0.4484 (0.4425,0.4510) 1.6786 (1.6702,1.6965) 0.4923 (0.4864,0.4950) 1.1730 (1.1677,1.1847)
0 0.2 0.3807 (0.3812,0.3893) 1.2547 (1.2500,1.2756) 0.4042 (0.4031,0.4111) 0.8528 (0.8515,0.8680)
0 0.4 0.3363 (0.3411,0.3491) 0.8882 (0.8769,0.9023) 0.3487 (0.3539,0.3619) 0.5937 (0.5884,0.6048)
0 0.6 0.3058 (0.3101,0.3180) 0.5541 (0.5320,0.5574) 0.3120 (0.3170,0.3251) 0.3663 (0.3530,0.3695)
0 0.8 0.2832 (0.2844,0.2924) 0.2397 (0.2069,0.2323) 0.2855 (0.2869,0.2950) 0.1572 (0.1361,0.1527)
0 1.0 0.2655 (0.2623,0.2702) − 0.0615 (− 0.103, − 0.077) 0.2649 (0.2611,0.2694) − 0.0401 (− 0.067, − 0.051)
0.0 0 0.4484 (0.4425,0.4510) 1.6786 (1.6702,1.6965) 0.4923 (0.4864,0.4950) 1.1730 (1.1677,1.1847)
0.2 0 0.4234 (0.4183,0.4268) 1.3813 (1.3749,1.4012) 0.4572 (0.4494,0.4579) 0.9548 (0.9506,0.9677)
0.4 0 0.4003 (0.3978,0.4062) 1.0930 (1.0878,1.1142) 0.4244 (0.4198,0.4284) 0.7481 (0.7453,0.7626)
0.6 0 0.3795 (0.3797,0.3882) 0.8126 (0.8072,0.8337) 0.3955 (0.3947, 0.4033) 0.5514 (0.5489,0.5664)
0.8 0 0.3612 (0.3634,0.3719) 0.5390 (0.5321,0.5587) 0.3706 (0.3726,0.3814) 0.3631 (0.3595,0.3771)
1.0 0 0.3450 (0.3485,0.3571) 0.2712 (0.2618,0.2885) 0.3493 (0.3528,0.3617) 0.1816 (0.1758,0.1936)
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Fig. 4   Variation of intermolecular parameters cvdW and cCas versus 
the normalized maximum deflection u for the freestanding analysis of 
cantilever homogeneous nanobeams based on classical analysis



S268	 Engineering with Computers (2022) 38 (Suppl 1):S255–S276

1 3

intermolecular forces even in the absence of any applied 
voltage. If the length of the nanobeam is fixed, one can cal-
culate the minimum gap d∗ between the beam and the sub-
strate to ensure that the nanobeam does not adhere to the 
substrate without applying a voltage due to the intermolecu-
lar forces. Therefore, it is very important for the designers 
to estimate the critical dimensions, i.e. minimum feasible 
gap and maximum detachment length, for the freestanding 
actuated FG beam to prevent collapse or adhesion due to 
intermolecular forces. As mentioned in Sect. 3.2, the criti-
cal points of Eqs. (39, 40) have to be computed first. Based 
on the values c∗

vdW
 and c∗

Cas
 , the freestanding parameters can 

be determined using Eqs. (41, 42). Equations (39) and (40) 

are plotted in Fig. 11 based on the classical elasticity and 
modified couple stress theories for clamped–clamped and 
cantilever FG nanobeams. The critical points 

(
u∗
vdW

, c∗
vdW

)
 

and 
(
u∗
Cas

, c∗
Cas

)
 on the curves of Eqs. (39 and 40), respec-

tively, are displayed in the figure. It is observed that, for both 
clamped–clamped and cantilever nanobeams, introducing 
the microstructure effect considerably increases the critical 
intermolecular parameters c∗

vdW
 and c∗

Cas
 but does not affect 

the critical normalized maximum deflections 
(
u∗
Cas

, c∗
Cas

)
 . In 

addition, the predicted critical parameters under the effect 
of Casimir force are higher than those under the effect of 
van der Waals force.

Next, the critical intermolecular forces F∗
vdW

 and F∗
Cas

 are 
plotted versus the beam length L and initial gap d in Fig. 12. 
These forces are defined as

It is observed from Fig. 12 that for a clamped–clamped 
FG nanobeam, the critical values of both van der Waals and 
Casimir forces are independent on either the beam length or 
the initial gap. However, these critical values depend on the 
material distribution (gradient index) and the microstructure 
material length scale parameter. Also, it can be noticed that 
as the stiffness of the beam increases either by decreasing k 
or including the couple stress effect, larger force is required 
to cause instability.

In Fig. 13, the minimum gap required to prevent instabil-
ity of the nanoactuator due to intermolecular Casimir and 
van der Waals forces is plotted versus beam length in the 
range of 1–20 µm and thickness in the range of 6–30 nm, 
considering CT, MCST, and SET analyses. It is observed 
that, compared with MCST and SET, the classical theory 

F∗
vdW

=
c∗
vdW(

1 − u∗
vdW

)3 andF∗
Cas

=
c∗
Cas(

1 − u∗
Cas

)4 .

Table 9   Material properties 
of the functionally graded 
nanobeam constituents

Property Upper surface, silicon [110] Lower surface, 
aluminum 
[100]

Bulk modulus of elasticity (GPa) EU = 169.2 EL = 68.5

Poisson’s ratio �U = 0.239 �L = 0.35

Bulk mass density 
(
kg∕m3

)
�U = 2300 �L = 2700

Material couple stress length scale parameter lU = 65nm

Residual surface stress (N∕m) �s
U
= 0.605 �s

L
= 0.9108

Surface Lamé constants (N∕m) �s
U
= −2.774 �s

L
= −0.376

�s
U
= −4.488 �s

L
= 6.842

Surface mass density 
(
107 × kg∕m2

)
�s
U
= 3.17 �s

L
= 5.46

Permittivity of vacuum coefficient �0 = 8.854 × 10−12N−1m−2

Light speed c = 2.998 × 108m∕s

Hamaker constant AH = 2.96 × 10−19J

Planck’s constant hP = 1.05457 × 10−34 Js
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for different gradient index k values (Eq. (1))
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CT overestimates the minimum gap which in turn lead to 
unexpected damage during device operation. Tables 12 and 
13 tabulate the values of the minimum gap and detachment 
length of actuated clamped–clamped and cantilever nanobe-
ams due to the influence of Casimir or van der Waals force 
based for classical and MCST analyses.

Tables 12 and 13 tabulate the values of the minimum 
gap and detachment length of actuated clamped–clamped 
and cantilever nanobeams due to the influence of Casimir or 
van der Waals force based for classical and MCST analyses.

6 � Conclusions

A novel, simple, and accurate closed-form solution is 
derived for computing the size-dependent pull-in volt-
age of clamped–clamped and cantilever electrically actu-
ated FG nanobeams using a Particle Swarm Optimization 
(PSO) algorithm. The mathematical model of the problem 

is presented using the size-dependent Euler–Bernoulli beam 
hypothesis accounting for surface energy and microstruc-
ture effects. In the present model, the modified couple-stress 
theory and Gurtin–Murdoch surface elasticity model are 
employed to, respectively, determine the effect of micro-
structure local rotational degree of freedom and surface 
energy effect on the pull-in behavior of FG micro/nanobeam. 
The model accounts for the simultaneous effect of inter-
molecular Casimir and van der Waals forces, fringing field, 
mid-plane stretching, and axial residual stress. All properties 
of the bulk material and surface layers of the FG beam are 
supposed to vary across the thickness direction according to 
power-law. The governing equation and boundary conditions 
are exactly derived employing Hamilton principle account-
ing for the position of physical neutral axis of the mentioned 
FG nanobeam.

Using Galerkin method, the governing equation is 
reduced to an algebraic-integral equation, then a PSO 
method is utilized to approximate the integral forms of the 
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Table 10   Pull-in voltages 
(volt) for the clamped–clamped 
and cantilever FG nanobeams 
at different gradient indices 
incorporating CT and MCST 
with and without fringing field

Gradient index k Clamped–clamped FG nanobeam Cantilever FG nanobeam

With fringing field Without fringing 
field

With fringing field Without fringing 
field

CT MCST CT MCST CT MCST CT MCST

0.0 (ceramic) 28.904 34.651 29.633 35.532 4.368 5.277 4.482 5.414
0.5 26.364 32.741 27.027 33.574 3.979 4.988 4.083 5.118
1.0 25.246 31.701 25.882 32.508 3.810 4.831 3.909 4.956
5.0 23.642 29.822 24.238 30.583 3.573 4.549 3.666 4.668
10.0 23.060 29.176 23.642 29.920 3.485 4.451 3.576 4.567
∞ (metal) 21.478 27.690 22.019 28.396 3.240 4.222 3.324 4.332
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fringing field, electrostatic, and intermolecular Casimir and 
van der Waals forces to non-integral forms. Finally, a general 
closed form solution of the pull-in voltage is obtained. Also, 
the proposed method leads to an accurate prediction of the 
detachment length and minimum initial gap of the freestand-
ing nanoactuator. The main conclusions that can be extracted 
from the numerical results are outlined as follows:

1.	 Different coefficients of the non-integral forms for elec-
trostatic force, fringing field effect, and intermolecular 
Casimir and van der Waals forces are extracted using 
PSO and tabulated (Tables 2, 3).

2.	 A single nonlinear algebraic equation (Eq.  (33)) is 
derived for the relation between the applied voltage and 
the maximum normalized deflection of the FG nanoac-
tuator. This equation is very helpful for understanding 
the instability behavior under the mutual nonlinear 
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effects of mechanical, electrostatic, and intermolecular 
forces. Based on this equation, the closed-form expres-
sions for pull-in voltage and freestanding parameters are 
easily derived. Besides being simple, the accuracy of 
the closed-form expression for pull-in voltage of micro/
nanobeams with clamped–clamped and clamped-free 
boundary conditions as well as the detachment length 

and minimum gap of the freestanding nanoactuator are 
verified by comparing the present results with those in 
published literature and good agreement is found.

3.	 The presence of surface energy effects (surface elastic-
ity and surface residual stress) leads to a higher pull-
in voltage compared with that of classical theory due 
to the stiffening effect of surface modulus. The effects 
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of surface energy become considerable when the beam 
reduced to nanoscale. Comparison between CT, MCST, 
SET, and CSSE demonstrates that the nonclassical anal-
yses predict higher pull-in voltage due to the stiffness 
effect, which becomes stronger in CSSE than SET and 
MCST.

4.	 For both classical and nonclassical analyses, increasing 
the gradient index shows a significant reduction in the 
pull-in voltage. This is attributed to the softening effect 
as the gradient index increases, since we assume that the 
constitution of ceramic in the material decreases with 
increasing k.

5.	 The coupled effects of fringing field and intermolecular 
Casimir and van der Waals forces distinctly decrease 
the pull-in voltage. If the contribution of these effects is 

neglected, the pull-in voltage may be considerably over-
estimated leading to unexpected damage during device 
operation. Therefore, the present investigation may be 
very helpful for assuring the safe operation of MEMS 
and NEMS actuators. As the initial gap decreases, the 
influence of the intermolecular forces become more sig-
nificant and the nanobeam may collapse at no applied 
voltage.

6.	 The proposed method is used to determine the criti-
cal dimensions of the freestanding FG nanoactuators, 
i.e. minimum initial gap and detachment length. It is 
observed that the critical intermolecular forces are inde-
pendent of the beam length and the initial gap. Increas-
ing the gradient index, smaller forces are required to 
cause pull-in. In addition, neglecting the nonclassical 

Table 11   Pull-in voltage (volt) 
at different gap-to-thickness 
ratios d∕h for clamped–clamped 
and cantilever FG nanobeams 
based on the classical elasticity 
theory with and without (WO) 
the intermolecular forces ( k = 1)

Clamped–clamped FG nanobeam Cantilever FG nanobeam

d∕h WO vdW Cas vdW and Cas d∕h WO vdW Cas vdW and Cas

0.5 0.642 – – – 1.0 0.277 – – –
0.65 0.962 0.377 – – 1.55 0.534 – – –
1.0 1.905 1.748 – – 1.60 0.560 0.072 – –
1.1 2.229 2.106 0.518 – 2.30 0.966 0.840 – –
1.2 2.580 2.482 1.495 1.360 2.35 0.998 0.878 0.234 –
1.5 3.813 3.758 3.274 3.216 2.40 1.030 0.917 0.380 –
2.0 6.581 6.556 6.381 6.355 2.50 1.095 0.994 0.573 0.389

Table 12   Minimum gap (nm) 
due to Casimir or van der Waals 
force at different beam lengths 
for clamped–clamped and 
cantilever nanobeams ( k = 0 , 
b = h = 10 nm)

L (μm) Clamped–clamped nanobeam Cantilever nanobeam

CT MCST CT MCST

d∗
vdW

d∗
Cas

d∗
vdW

d∗
Cas

d∗
vdW

d∗
Cas

d∗
vdW

d∗
Cas

1 12.213 18.835 10.016 16.071 31.014 39.682 25.435 33.860
5 61.066 68.255 50.080 58.241 155.072 143.802 127.175 122.704
10 122.131 118.839 100.160 101.404 310.143 250.374 254.350 213.641
15 183.197 164.373 150.241 140.258 465.215 346.307 381.525 295.500
20 244.262 206.910 200.321 176.554 620.286 435.926 508.700 371.970
25 305.328 247.349 250.401 211.060 775.358 521.123 635.875 444.668
30 366.394 286.190 300.481 244.203 930.430 602.956 763.051 514.495

Table 13   Detachment length 
(μm) due to Casimir or van der 
Waals force at different initial 
gaps for clamped–clamped and 
cantilever nanobeams ( k = 0 , 
b = h = 10 nm)

d(nm) Clamped–clamped nanobeam Cantilever nanobeam

CT MCST CT MCST

L∗
vdW

L∗
Cas

L∗
vdW

L∗
Cas

L∗
vdW

L∗
Cas

L∗
vdW

L∗
Cas

10 0.819 0.453 0.998 0.553 0.322 0.179 0.393 0.218
50 4.094 3.389 4.992 4.132 1.612 1.335 1.966 1.628
100 8.188 8.059 9.984 9.827 3.224 3.175 3.932 3.872
150 12.282 13.379 14.976 16.313 4.836 5.271 5.897 6.427
200 16.376 19.169 19.968 23.373 6.449 7.552 7.863 9.208
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effects overestimates the minimum gap which may result 
in unexpected damage of the actuator if it is designed 
based on classical theory.

This present model and the proposed analytical solution 
can be used as an efficient accurate tool for predicting the 

influences of the material and geometrical parameters on 
the size-dependent static pull-in instability and freestanding 
behavior of FG nanobeams for their design and optimization 
which may need a large number of simulations.
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