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Abstract
In this research, a mathematical derivation is made to develop a nonlinear dynamic model for the nonlinear frequency and 
chaotic responses of the multi-scale hybrid nano-composite reinforced disk in the thermal environment and subject to a 
harmonic external load. Using Hamilton’s principle and the von Karman nonlinear theory, the nonlinear governing equa-
tion is derived. For developing an accurate solution approach, generalized differential quadrature method (GDQM) and 
perturbation approach (PA) are finally employed. Various geometrically parameters are taken into account to investigate 
the chaotic motion of the viscoelastic disk subject to harmonic excitation. The fundamental and golden results of this paper 
could be that in the lower value of the external harmonic force, different FG patterns do not have any effects on the motion 
response of the structure. But, for the higher value of external harmonic force and all FG patterns, the chaos motion could 
be seen and for the FG-X pattern, the chaosity is more significant than other patterns of the FG. As a practical designing tip, 
it is recommended to choose plates with lower thickness relative to the outer radius to achieve better vibration performance.

Keywords  Chaotic responses · Multi-hybrid reinforced annular plate · Thermal environment · von Karman nonlinearity · 
Poincaré section

Abbreviations
h, R0, and Ri	� Thickness, inner, outer radius 

of the disk, respectively
F and NCM	� Fiber and nanocomposite 

matrix, respectively

�, E, �, � and G	� Density, Young’s module, 
Poisson’s ratio, thermal 
expansion and shear param-
eters, respectively

VNCM,VF	� Volume fractions of nano-
composite matrix and fiber, 
respectively
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ECNT , tCNT , lCNT , dCNT , and VCNT	� Young’s module, 
thickness, length, 
diameter, and vol-
ume fraction of 
carbon nanotubes, 
respectively.

V∗
CNT

, WCNT	� Effective volume fraction 
and weight fraction of the 
CNTs, respectively

Nt, VCNT	� Layer number and volume 
fraction of CNTs

U, V, W	� Displacement fields of a disk
u, w and Øx	� Displacements of the mid-

surface in R and Z direc-
tions and rotations of the 
transverse normal around θ 
direction, respectively

�RR and ���	� Corresponding normal 
strains in R and � directions, 
respectively

�RZ	� Shear strain in the RZ plane
T, U, W	� Corresponding kinetic 

energy, strain energy of the 
system and the work done, 
respectively

KW, C, NT	� Winkler coefficient, damp-
ing parameter, and thermal 
resistance force, respectively.

qdynamic and F	� Dynamical force and force, 
respectively

Ii	� Mass inertias
�RR and ���	� Corresponding normal stress 

in R and � directions
�RZ	� Shear stress in the RZ plane
Qij , Q̄ij and �	� Stiffness elements, stiffness 

elements related to orienta-
tion angle and the orientation 
angle, respectively

�L, �L	� Linear non-dimensional 
linear natural frequencies, 
respectively

�NL, �NL	� Nonlinear non-dimensional 
nonlinear natural frequen-
cies, respectively

C, P1, P2 and �	� Damping coefficient, linear 
part of the w, nonlinear part 
(order one) of the w and 
nonlinear part (order two) of 
the w, respectively

a	� Deflection which is 
dimensionless

Ω, � and �	� Excitation frequency, detun-
ing parameter and perturba-
tion parameter, respectively

T0 and T1	� Excitation term
q	� The weakness form of the 

external force
A and A	� Unknown complex conju-

gate and complex functions, 
respectively.

�0	� Primary resonance
� and �	� Amplitude and phase, 

respectively
M	� Magnification factor

1  Introduction

A key issue in various engineering field is that the predic-
tion of the properties, behavior, and performance of different 
systems is an important aspect [1–15]. Mechanical systems 
(MS) especially annular disks have many applications in 
different fields such as engineering, agriculture, and medi-
cine [16–19]. MS and annular plates are classified based on 
a wide variety of applications such as geometry, applica-
tion, and manufacturing process. In a class of MS strictures 
and disks such as resonators and generators, in which the 
fundamental part of the system oscillates, understanding 
the motion responses of the components of the structure 
becomes impressive [20–29]. Also, some researchers tried 
to predict the static and dynamic properties of different 
structures and materials via neural network solution [30–36].

In the last several decades, many researchers and engi-
neers have focused their efforts on the development and 
analysis of complex materials and structures to satisfy needs 
of an enhanced structural response [15, 37–46]. Using these 
unconventional materials, in fact, higher levels of stiffness 
and strength have been obtained without increasing the 
weight. Similarly, improvements have been achieved in 
terms of thermal properties, corrosion resistance, and fatigue 
life. Since there are an infinite technology’s demands for the 
mechanical properties’ improvement, multi-scale HNC rein-
forcement increased the consideration of scientists in the 
case of design enhancement of practical composites [47–50]. 
The reinforcement scale highly depends on the aim of the 
engineer where the structure should be used. A range of 
composites manufactured by macroscale reinforcement 
including carbon fiber (CF) in a certain orientation to boost 
the performance of the structure mechanically. Recently, it 
is revealed that composites enriched by multi-scale HNC are 
much more beneficial in real engineering applications. 
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Thereby, the dynamics of the composites enhanced by multi-
scale HNC is a significant area of research [51, 52].

In the field of the linear mechanics of an annular disk, 
Ebrahimi and Rastgoo [53] explored solution methods to 
analyze the vibration performance of the FG circular plate 
covered with piezoelectric. As another survey, Ebrahimi 
and Rastgoo [54] studied flexural natural frequencies of 
FG annular plate coupled with layers made of piezoelectric 
materials. Shasha et al. [55] introduce a novel exact model 
on the basis of surface elasticity and Kirchhoff theory to 
determine the vibration performance of a double-layered 
micro-circular plate. The surface effect is captured in their 
model as the main novelty. The results obtained with the aid 
of their modified model showed that the vibration perfor-
mance of the double-layered microstructure is quite higher 
than the single-layered one. Gholami et al. [56] employed a 
more applicable gradient elasticity theory with the capability 
of including higher order parameters and the size effect in 
the analysis of the instability of the FG cylindrical micro-
shell. Their results confirmed that the radius to thickness 
ratio and size effect have a significant influence on the sta-
bility of the microsystem. On the basis of the FSD theory, 
Mohammadimehr et al. [57] conducted a numerical study on 
the dynamic and static stability performance of a compos-
ite circular plate by implementing GDQM. Moreover, they 
considered the thermo-magnet field to define the sandwich 
structure model. As another work, Mohammadimehr et al. 
[58] applied DQM in the framework of MCS to describe 
stress filed and scrutinize the dynamic stability of an FG 
boron nitride nanotube-reinforced circular plate. They 
claimed that using reinforcement in a higher volume fraction 
promotes the strength and vibration response of the struc-
ture. Nonlinear oscillation and stability of micro-circular 
plates subjected to electrical field actuation and mechanical 
force are studied by Sajadi et al. [59]. They concluded that 
pure mechanical load plays a more dominant role on the sta-
bility characteristics of the structure in comparison with the 
electro-mechanical load. Also, they confirmed the positive 
impact of AC or DC voltage on the stability of the system 
in different cases of application. To determine the critical 
angular speed of spinning circular shell coupled with a sen-
sor at its end, Safarpour et al. [60] applied GDQM to analyze 
forced and free oscillatory responses of the structure on the 
base of thick shell theory. Through a theoretical approach, 
Wang et al. [61] obtained critical temperature and thermal 
load of a nanocircular shell. Safarpour et al. [62] introduced 
a numerical technique with high accuracy to study the static 
stability, forced and free vibration performance of a nano-
sized FG circular shell in exposure to thermal site. Also, 
with the aid of fuzzy and neuromethods, many researchers 
presented the stability of the complex and composite struc-
tures [63–70].

In the field of the nonlinear mechanics of a disk, Ansari 
et al. [71] reported a mathematical model for investigation 
of the nonlinear dynamic responses of the compositional 
disk which is rested on an elastic media. The composite disk 
which they modeled is a CNT-reinforced FG annular plate. 
They employed the thick shear deformation and von Kar-
man theories for considering the nonlinearity. Gholami et al. 
[72] presented the nonlinear static behavior of graphene 
plate-reinforced annular plate under a dynamical load and 
the structure is covered with the Winkler–Pasternak media. 
They applied Newton–Raphson and modified GDQ methods 
to access the nonlinear bending behavior of the graphene-
reinforced disk. Furthermore, a huge number of researches 
focused on the mechanical properties and nonlinear dynamic 
responses of the size-dependent beam structures [73–80]. 
Also, many studies reported the application of applied soft 
computing method for prediction of the behavior of complex 
system [81–88].

In the field of the chaotic behavior of different systems, 
Krysko et al. [89] claimed that the first research on the non-
linear mechanics motion and chaotic responses of a micro-
shell is done by them. They employed the couple stress 
theory for consideration of the size effect and modeled the 
material property as an isotropic shell. In addition, they used 
von Kármán and Kirchhoff’s theories for serving the non-
linearity impacts. Their results that consideration the non-
local and length scale parameter cause to have the periodic 
vibration responses instead of chaotic and quasi-harmonic. 
Ghayesh et al. [90] focused on the mathematical model for 
investigation of the chaotic responses of a geometrically 
imperfect nanotube which allows fluid flow from the inside 
of the tube with the aid of nonlocal beam theory. They used 
the nonlocal strain radiant theory for considering the influ-
ences of the size effect parameter and couple stresses due 
to small effects. Their results presented that increasing the 
geometric imperfection and velocity of fluid flow leads to 
see the chaotic responses. With the aid of perturbation and 
higher order shear deformation methods, Karimiasl [91] 
investigated the chaotic behaviors of a doubly curved panel 
which is reinforced with graphene and carbon nanotube. 
The research showed that increasing the curvature effect 
leads to decrease the chaosity of the system. Ghayesh et al. 
[92] presented the chaos response of the nanotube using the 
nonlocal strain radiant Pertopation technique. In addition, 
they assumed that fluid can flow through the structure and 
they considered the viscoelastic parameters. As a result, 
they found that the velocity of the fluid flow can play an 
important role on the chaos analysis. Farajpour et al. [93] 
studied the bifurcation responses of a clamped–clamped 
micro-shell under a harmonic force and embedded in a vis-
coelastic media. They employ the couple stress theory for 
considering the size effect. Chen et al. [94] presented the 
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chaos motion of a bear which is used as a shaft in a rotor. 
They focused on the investigation of the effect of excitation 
force and damping on the phase and Poincare map of the 
tapered shaft. Farajpour et al. [95] did a research on the 
bifurcation behavior of a microbeam using size-dependent 
couple stress theory and Galerkin method. They modeled the 
fluid flow with the aid of Beskok–Karniadakis method. They 
found that the chaos motion can decline by employing an 
imperfection. Ghayesh et al. [96] developed a mathematical 
model for the investigation of the bifurcation responses of 
a viscoelastic microplate via couple stress theory and Kel-
vin–Voigt model. In their result, they bolded the effect of 
the viscoelastic parameter on the nonlinear responses of the 
system. With the aid of Runge–Kutta, couple stress theory, 
and Galerkin methods, Wang et al. [97] revealed the chaos 
behaviors of a microplate under an electroelastic actuator. 
As a remarkable result, they claimed that could develop a 
novel theory for studying the Poincare map and bifurcation 
diagram of the microplate. Farajpour et al. [98] presented 
the effect of the couple stress and viscoelastic parameters 
on the Poincare and phase map of the imperfect microbeam 
using Beskok–Karniadaki model. Yang et al. [99] gave out 
a presentation about the nonlinear dynamic behavior of the 
electrically reinforced shell under thermal loading with the 
aid of Runge–Kutta and von Kármán models. They showed 
that external voltage plays a remarkable effect on chaos 
responses of the system. Ghayesh and Farokhi [75] run out 
a research on the chaos motion of a geometrically imperfect 
microbeam under external axial load along the length of the 
beams. Krysko et al. [100] investigated the chaos responses 
of a spherical rectangular micro-/nanoshell based on the von 
Karman model, Hamilton energy principle, Galerkin, and 
Runge–Kutta method. By having an exact explorer into the 
literature, no one can claim that there is any research on the 
chaos responses of a disk or annular plate.

To the best of authors’ knowledge, none of the published 
articles focused on analyzing the chaotic responses of the 
multi-scale hybrid nano-composite-reinforced disk in the 
thermal environment and subjected to a harmonic external 
load. In this survey, the extended model of Halpin–Tsai 
micromechanics is applied to determine the elastic charac-
teristics of the composite structure. A numerical approach 
is employed to solve differential governing equations for dif-
ferent cases of boundary conditions. Eventually, a complete 
parametric study is carried out to reveal the impact of some 
geometrical and physical parameters on the quasi-harmonic 
and chaotic responses of the multi-scale hybrid nano-com-
posite-reinforced disk.

2 � Theory and formulation

2.1 � Problem description

Figure 1 shows detail about the MHCD which is formulated 
for investigation of the chaotic behavior.

The homogenization procedure is presented according to 
the Halpin–Tsai model. The effective properties can be for-
mulated as follows:

The index of F, and NCM show fiber and nanocomposite 
matrix, respectively. Besides, have

The effective Young’s modulus of the nanocomposite with 
the aid of Halpin–Tsai–micromechanics theory can be pre-
sented as follows:

in which βdd and βdl are given by

Besides, the V∗
CNT

 can be formulated as follows:

Besides, the VCNT can be formulated as below:

(1a)E11 = VNCME
NCM + VFE

F
11
,

(1b)

1

E22

=
VNCM

ENCM
+

1

EF
22

−

(�NCM)2EF
22

EM
+

(�F)2ENCM

EF
22

− 2�F�NCM

VNCME
NCM + VFE

F
22

− VFVNCM,

(1c)(G12)
−1 =

VNCM

GNCM
+

VF

GF
12

,

(1d)� = VNCM�
NCM + VF�

F,

(1e)�12 = VNCM�
NCM + VF�

F.

(2)VNCM + VF = 1.

(3)

ENCM = EM

(
(
3 + 6(lCNT∕dCNT)�dlVCNT

8 − 8�dlVCNT

)) + ((
5 + 10�ddVCNT

8 − 8�ddVCNT

)

)
,

(4)

�dd =
(ECNT

11
∕EM)

(ECNT
11

∕EM) + (dCNT∕2tCNT)
−

(dCNT∕4tCNT)

(ECNT
11

∕EM) + (dCNT∕2tCNT)
,

�dl =
(ECNT

11
∕EM)

(ECNT
11

∕EM) + (lCNT∕2tCNT)
−

(dCNT∕4tCNT)

(ECNT
11

∕EM) + (lCNT∕2tCNT)
.

(5)V∗
CNT

=
WCNT

WCNT + (
�CNT

�M
)(1 −WCNT)

.
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Also, for j = 1,2,...,Nt , we have �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h . For 

total volume fraction, we have

(6)

VCNT = V∗
CNT

|||�j
|||

h
FG - X,

VCNT = V∗
CNT

(
1 +

2�j

h

)
FG - V,

VCNT = V∗
CNT

(
1 −

2�j

h

)
FG - A,

VCNT = V∗
CNT

FG − UD.

(7)VCNT + VM = 1.

The effective shear module, Poisson’s ratio and mass 
density parameters of the nanocomposite matrix could be 
expressed as below:

Moreover, the expansion coefficients of the MHC is deter-
mined as

(8a)�NCM = �MVM + �CNTVCNT,

(8b)�NCM = �M ,

(8c)GNCM =
ENCM

2
(
1 + �NCM

) .

Fig. 1   Geometry of a multi-hybrid reinforced composite disk in a thermal environment
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where �NCM which is equal to

2.2 � Kinematic relations

The HOSD theory is chosen to define the corresponding 
displacement fields of the MHCD according to the subse-
quent relation:

Based on the conventional form of the high-order defor-
mation theory [101], c1 is equal to 4/3h2. strain components 
would be written as

(9a)�11 =
VfE

f

11
�
f

11
+ VNCME

NCM�NCM

VfE
f

11
+ VNCME

NCM
,

(9b)
�22 = (1 + Vf )Vf�

f

22
+ (1 + VNCM)VNCM�NCM − �12�11,

(10)

�
NCM

=
1

2
{(
V
CNT

E
CNT

11
�CNT

11
+ V

m
E
m
�
m

V
CNT

E
CNT

11
+ V

m
E
m

)}(1 − �NCM)

+ (1 + �
m
)�

m
V
m
+ (1 + �CNT)�CNT

V
CNT

.

(11)

U(R, z, t) = −z
�w(R, t)

�R
+ u(R, t) +

(
�(R, t) +

�w(R, t)

�R

)(
z − c1z

3
)
,

V(R, z, t) = 0,

W(R, z, t) = w(R, t).

where ��� and �RR indicate the corresponding normal strains 
in θ and R directions. Also, �RZ presents the shear strain in 
the RZ plane. Equation (12) would be formulated as

2.3 � Extended Hamilton’s principle

To acquire the governing equations and related boundary 
conditions, we can utilize Hamilton’s principle as below 
[17–19, 102–107]:

The following relation describes the components involved 
in the process of obtaining the strain energy of the afore-
mentioned disk:

(12)

⎧
⎪⎨⎪⎩

�RR
���
�RZ

⎫
⎪⎬⎪⎭
= z3

⎧
⎪⎨⎪⎩

�∗∗
RR

�∗∗
��

�∗∗
RZ

⎫
⎪⎬⎪⎭
+ z2

⎧
⎪⎨⎪⎩

�∗
RR

�∗
��

�∗
RZ

⎫
⎪⎬⎪⎭
+ z

⎧
⎪⎨⎪⎩

�RR
���
�RZ

⎫
⎪⎬⎪⎭
+

⎧
⎪⎨⎪⎩

�0
RR

�0
��

�0
RZ

⎫
⎪⎬⎪⎭
,

(13)

⎧
⎪⎨⎪⎩

�∗∗
RR

�∗∗
��

�∗∗
RZ

⎫
⎪⎬⎪⎭
=

⎧
⎪⎪⎨⎪⎪⎩

−c1

�
�2w

�R2
+

��

�R

�

−
c1

R

�
�w

�R
+ �

�

−c1

�
��

�z
+

�2w

�R�z

�

⎫
⎪⎪⎬⎪⎪⎭

,

⎧
⎪⎨⎪⎩

�∗
RR

�∗
��

�∗
RZ

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

0

0

−3c1

�
� +

�w

�R

�
⎫
⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�RR
���
�RZ

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

��

�R
1

R
�

��

�z

⎫
⎪⎬⎪⎭
,

⎧
⎪⎨⎪⎩

�0
RR

�0
��

�0
RZ

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

�u

�R
+

1

2

�
�w

�R

�2

u

R
�u

�z
+

�w

�R

⎫
⎪⎬⎪⎭
.

(14)∫
t2

t1

(
�T − �U + �W1 + �W2 + �W3

)
dt = 0.

(15)

�U =
1

2 ∫
V

�ij��ijdV =

R2

∫
R1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
�NRR

�R
−

N��

R

�
�u

+

�
�MRR

�R
−

M��

R
− c1

�PRR

�R
+

c1

R
P�� −

�
QRZ − 3c1SRZ

��
��

+

�
c1
�2PRR

�R2
−

c1

R

�P��

�R
+

�
�QRZ

�R
− 3c1

�SRZ

�R

�
+

�

�R

�
NRR

�w

�R

��
�w

⎤⎥⎥⎥⎥⎥⎥⎥⎦

dR.
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The resultants of the moment and force can be obtained as

The variation of the work done by external force can be 
formulated as follows:

(16a)∫z

{
z3, z, 1

}
�RRdz =

{
PRR,MRR,NRR

}
,

(16b)∫z

{
z3, z, 1

}
���dz =

{
P�� ,M�� ,N��

}
,

(16c)∫z

{
z2, 1

}
�Rzdz =

{
SRz,QRz

}
.

(17)�W1 =

R2

∫
R1

qdynamic�wdR,

It is worth noting that in this study, one pattern is consid-
ered for the temperature gradient across the thickness as

The first variation of the kinetic energy would be formu-
lated as

 where 
{
Ii
}
=

h

2∫
−

h

2

{
zi
}
�NCMdz, i = 1 ∶ 6 . Now by replacing 

Eqs. (25), (20), (19), (17) and (15) into Eq. (14) the motion 
equations of MHCD can be formulated as following 
equations:

(21)NT = ∫
h∕2

−h∕2

(Q11�11 + Q12�22) (T(z) − T0)dz.

(22)T(z) = T0 + ΔT
(
1

2
+

z

h

)
.

(23)T =
1

2 ∫
A

�
[
(W,t)

2 + (V,t)
2 + (U,t)

2
]
dRdZ,

(24)�T = ∫
R2

R1

�

[
��W

�t

�W

�t
+

��V

�t

�V

�t
+

��U

�t

�U

�t

]
dR,

(25)�T = ∫
R2

R1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
−IO

�2u

�t2
− I1

�2�

�t2
+ I3c1

�
�2�

�t2
+

�3w

�R�t2

��
�u

+

�
−I1

�2u

�t2
− I2

�2�

�t2
+ I4c1

�
�2�

�t2
+

�3w

�R�t2

��
��

+

�
c1I3

�2u

�t2
+ c1I4

�2�

�t2
− I6c

2
1

�
�3�

�R�t2
+

�3w

�R�t2

��
��

+

�
−c1I3

�3u

�R�t2
− c1I4

�3�

�R�t2
+ I6c

2
1

�
�3�

�R�t2
+

�4w

�R2�t2

��
�w

+

�
−IO

�2w

�t2

�
�w

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dR,

(26a)

�u ∶
�NRR

�R
−

N��

R
= −c1I3

(
�2�

�t2
+

�3w

�R�t2

)
+ I1

�2�

�t2
+ I0

�2u

�t2
,

(26b)

�w ∶ c1
�2PRR

�R2
−

c1

R

�P��

�R
+

�QRz

�R
− 3c1

�SRz

�R
+

�

�R

(
NRR

�w

�R

)

−q − NT �
2w

�R2
+ C

�w

�t
= c1I3

�3u

�R�t2

+c1I4
�3�

�R�t2
− c2

1
I6

(
�3�

�R�t2
+

�4w

�R2�t2

)
+ I0

�2w

�t2
,

where q can be defined as follows:

The applied work due damper coefficient can be presented 
as below:

Furthermore, the variation of the work induced by thermal 
gradient is formulated as

Force resultant of NT involved in Eq. (25) can be deter-
mined by the following relation:

(18)qdynamic = F cos (Ω t).

(19)𝛿w2 =

R2

∫
R1

(Cẇ𝛿w) dR.

(20)�W3 =

R2

∫
R1

[
NT �w

�x

��w

�x

]
dR .
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The boundary conditions are obtained as below:

2.4 � Governing equations

The stress–strain relation would be formulated as below 
[108–113]:

 with

� is the orientation angle with [29, 64, 114–123]:

(26c)

�� ∶
�MRR

�R
− c1

�PRR

�R
−

M��

R
+

c1

R
P�� − QRz + 3c1SRz

= −c1I4

(
�2�

�t2
+

�3w

�R�t2

)
+ +I2

�2�

�t2
+ I1

�2u

�t2

−c1I3
�2u

�t2
− c1I4

�2�

�t2
+ c2

1
I6

(
�2�

�t2
+

�3w

�R�t2

)
,

(27)

�u = 0 or NRRnR = 0,

�w = 0 or

[
c1
�PRR

�R
− c1

P��

R
+ QRZ − 3c1SRZ + NRR

�w

�R
+ NT �w

�R

]
nR = 0,

�� = 0 or
[
−c1PRR +MRR

]
nR = 0.

(28)

⎧⎪⎨⎪⎩

�RR
���
�RZ

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q55

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�RR
���
�RZ

⎫⎪⎬⎪⎭
,

(29)

Q11 = Q11 cos
4 � + 2Q12 sin

2 � cos2 � + Q22 sin
4 �,

Q12 = Q12

(
sin4 � + cos4 �

)
+
(
Q11 + Q22

)
sin2 � cos2 �,

Q21 = Q21

(
sin4 � + cos4 �

)
+
(
Q11 + Q22

)
sin2 � cos2 �,

Q22 = Q22 cos
4 � + 2Q12 sin

2 � cos2 � + Q11 sin
4 �,

Q55 = Q55 cos
2 �.

(31a)

�u ∶

{
A11

�2u

�R2
+ B11

�2�

�R2
− D11c1

(
�2�

�R2
+

�3w

�R3

)
+ A11

�2w

�R2

�w

�R

}

+

{
A12

R

�u

�R
+

B12

R

��

�R
−

D12c1

R

(
��

�R
+

�2w

�R2

)}

−

{
A12�u

R�R
+

B12��

R�R
−

(
��

�R
+

�2w

�R2

)
D12c1

R
+

A12

2R

(
�w

�R

)2
}

−

{
A22

R2
u +

B22

R2
� −

D22c1

R

(
�

R
+

1

R

�w

�R

)}

= −I3c1

(
�2�

�t2
+

�3w

�R�t2

)
+ I1

�2�

�t2
+ I0

�2u

�t2
,

Finally, the governing equation of the MHCD can be 
obtained as follows:

(30)

Q
11

= E
11

1

−�
12
�
21
+ 1

, Q
12

= �
12
E
22

1

−�
12
�
21
+ 1

,

Q
21

= �
12
E
11

1

−�
12
�
21
+ 1

, Q
22

=
E
22

−�
12
�
21
+ 1

, Q
55

= G
12
.
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(31b)

�w ∶ c1

{
D11

�3u

�R3
+ E11

�3�

�R3
− G11c1

(
�3�

�R3
+

�4w

�R4

)
+ D11

�3w

�R3

�w

�R
+ D11

(
�2w

�R2

)2
}

+c1

{
D12

R

�2u

�R2
+

E12

R

�2�

�R2
−

G12c1

R

(
�2�

�R2
+

�3w

�R3

)}

−
c1

R

{
D12

�2u

�R2
+ E12

�2�

�R2
− G12c1

(
�2�

�R2
+

�3w

�R3

)
+ D12

�2w

�R2

�w

�R

}

−
c1

R

{
�uD22

R�R
+

��E22

R�R
−

G22c1

R

(
�2w

�R2
+

��

�R

)}

+
(
A55 − 3C55c1

)(��

�R
+

�2w

�R2

)
− 3c1

(
C55 − 3E55c1

)(��

�R
+

�2w

�R2

)

+ A11

�2u

�R2

�w

�R
+ A11

�u

�R

�2w

�R2
+ B11

�2�

�R2

�w

�R
+ A11

��

�R

�2w

�R2

−D11c1

((
�2w

�R2

)2

+
�w

�R

�2�

�R2
+
�2w

�R2

��

�R
+

�w

�R

�3w

�R3

)
+ A11

�2w

�R2

(
�w

�R

)2

+A11

(
�w

�R

)2 �2w

�R2
+
A12

R

�u

�R

�w

�R
+

A12

R
u
�2w

�R2
+
B12

R

��

�R

�w

�R
+

B12

R
�
�2w

�R2

−
D12c1

R

(
��

�R

�w

�R
+�

�2w

�R2
+ 2

�w

�R

�2w

�R2

)

−q + C
�w

�t
− NT �

2w

�R2
= I0

�2w

�t2
− c2

1
I6

(
�3�

�R�t2
+

�4w

�R2�t2

)

+c1I4
�3�

�R�t2
+ c1I3

�3u

�R�t2
,

(31c)

�� ∶

{
B11

�2u

�R2
+ C11

�2�

�R2
− E11c1

(
�2�

�R2
+

�3w

�R3

)
+ B11

�2w

�R2

�w

�R

}

+

{
B12

R

�u

�R
+

C12

R

��

�R
−

E12

R
c1

(
��

�R
+

�2w

�R2

)}

−c1

{
D11

�2u

�R2
+ E11

�2�

�R2
− G11c1

(
�2�

�R2
+

�3w

�R3

)
+ D11

�2w

�R2

�w

�R

}

−c1

{
D12

R

�u

�R
+

E12

R

��

�R
−

G12

R
c1

(
��

�R
+

�2w

�R2

)}

−
1

R

{
B12

�u

�R
+ C12

��

�R
− E12c1

(
��

�R
+

�2w

�R2

)
+

B12

2

(
�w

�R

)2
}

−
1

R

{
B22

u

R
+ C22

�

R
− E22c1

(
�

R
+

1

R

�w

�R

)}

+
c1

R

{
D12

�u

�R
+ E12

��

�R
− G12c1

(
��

�R
+

�2w

�R2

)
+

D12

2

(
�w

�R

)2
}

+
c1

R

{
D22

u

R
+ E22

�

R
− G22c1

(
�

R
+

1

R

�w

�R

)}

−
(
A55 − 3C55c1

)(
� +

�w

�R

)
+ 3c1

(
C55 − 3E55c1

)(
� +

�w

�R

)

= I6c
2
1

(
�2�

�t2
+

�3w

�R�t2

)
− c1I3

�2u

�t2
− c1I4

�2�

�t2

−I4c1

(
�2�

�t2
+

�3w

�R�t2

)
+ I2

�2�

�t2
+ I1

�2u

�t2
,

with ∫ h

2

−
h

2

{
z6, z5, z4, z3, z2, z1, 1

}
Qijdz =

{
Gij,Fij,Eij,Dij,Cij,Bij,Aij

}
 . 

So, Eqs. (31a–c) can be formulated as follows (for details, 
see ‘Appendix’):

3 � Procedure to obtain the solution

To study the vibrational characteristics of a cylindrical 
micropanel, the GDQM [22, 60, 63, 120, 124–130] method 
which is a computational technique is used. A weighted 
linear sum of the function at all the discrete mesh points 
estimates the nth-order derivatives of a function with 
respect to its relative discrete points which must be within 

(32a)
L11u(t) + L12w(t) + L13𝜙(t) = M11ü(t) +M12ẅ(t) +M13𝜙̈(t),

(32b)
L21u(t) + L22w(t) + L23ẇ(t) + L24w

3(t) + L25𝜙(t) =

M21ü(t) +M22ẅ(t) +M23𝜙̈(t) + F cos (Ωt),

(32c)
L31u(t) + L32w(t) + L33𝜙(t) = M31ü(t) +M32ẅ(t) +M33𝜙̈(t).
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the total length of the domain [28, 131–137]. Hence, this 
function can be expressed as

 where g(r) are weighting coefficients of GDQM. From 
Eq. (33), it is apparent that calculating the weighting coef-
ficients is the essential parts of DQM. To estimate the nth 
order derivatives of function along radius direction, two 
forms of DQM developed of GDQM are adopted in this 
study. Thus, the weighting coefficients are computed from 
the first-order derivative which is shown below [17–19]:

with

Likewise, the weighting coefficients for higher order 
derivatives can be calculated using the shown expressions.

In the presented research, the set of grid points is cho-
sen as below:

For convenience, before solving the governing equation, 
displacement components are written in the following form to 
separate time and space variables:

Now, by substituting Eq. (38) into Eqs. (32a–c) and using 
Eq. (33) to solve the unknown functions u(t), w(t) and Øx(t) in 
terms of w(t), the nonlinear differential equation of disk can 
be driven as

(33)
�rf (x)

�Rr

||||x=xp
=

n∑
j=1

g
(r)

ij
f (Ri),

(34)

g
(1)

ij
=

M
(
Ri

)
(
Ri − Rj

)
M
(
Rj

) i, j = 1 ∶ n and i ≠ j,

g
(1)

ii
= −

n∑
j=1,i≠j

C
(1)

ij
i = j,

(35)M
(
Ri

)
=

n∏
j=1,j≠i

(
Ri − Rj

)
.

(36)

g
(r)

ij
= r

⎡
⎢⎢⎣
g
(r−1)

ij
g
(1)

ij
−

g
(r−1)

ij�
Ri − Rj

�
⎤
⎥⎥⎦

2 ≤ r ≤ n − 1 and i, j = 1 ∶ n, i ≠ j,

g
(r)

ii
= −

n�
j=1,i≠j

g
(r)

ij

2 ≤ r ≤ n − 1 and i, j = 1 ∶ n.

(37)

Rj =

(
1 − cos

(
(j − 1)(
Nj − 1

)�
))

b − a

2
+ a j = 1 ∶ Nj.

(38)
u(R, t) = u(R)ei�mnt, w(R, t) = w(R)ei�mnt, �x(R, t) = �x(R)e

i�mnt.

where

subsequently, the panel linear oscillation can be defined as

and �L = �Lb
2
√

�m

Em

, where by initial boundary conditions 

can be identified as

By replacing the g(t) instead of W(t) in Eq. (39), and by 
considering F(t) and C equal to zero, we have the following 
equation:

in which

By implementing the homotopy perturbation method, solu-
tion for Eq. (44) can be given as

where � ∈ [0, 1] is an integrated variable When � = 0 , 
Eq.  (45) will be representing linear differential relation 
which is shown as

where

Substituting Eq. (47) into Eq. (46), we get

(39)
ẅ(t) + Cẇ(t) + P1w(t) + P2w

2(t) + 𝛾w3(t) = F(t) cos (Ωt),

(40)� = −
M21 +M22 +M23

L24
;

(41)�L =
√
P1

(42)Wmn(0) =
W

h
,
dWmn(t)

dt

||||t=0 = 0.

(43)
d2g(t)

dt2
+ P1

{
g(t) + �g3(t)

}
= 0,

(44)� =
�

P1

.

(45)

d2g(t)

dt2
+ �2

NL
g(t) + �

{(
P1 − �2

NL

)
g(t) + P1�g

3(t)
}
= 0,

(46)
d2g(t)

dt2
+ �2

NL
g(t) = 0,

(47)g(t) = g0(t) + �g1(t) + �2g2(t) +…

(48a)

�0 ∶
d2g0(t)

dt2
+ �2

NL
g0(t) = 0, g0

||t=0 = W

h
,
dg0(t)

dt

||||t=0 = 0,

(48b)

�1 ∶
d2g1(t)

dt2
+ �2

NL
g1(t) +

{(
P1 − �2

NL

)
g0(t) + P1g

3
0
(t)
}
= 0.

, g1
||t=0 = W

h
,
dg1(t)

dt

||||t=0 = 0
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Hence, computing Eq. (48a) results in

Utilizing Eqs. (48b, 49), the following expression can be 
achieved as shown below:

Hence, elimination in terms of g0(t) will yield

in which the nonlinear form of the frequency of the MHCD 
would be formulated as

 where A∗ =
W

h2
,

3.1 � Primary resonance

In this case, it is supposed that �L is near to Ω . So a param-
eter of σ is presented to illustrate the nearness of Ω to �0 as

To study the oscillations and bifurcations of the nonlinear 
system, the multi-scale method is presented to investigate 
the nonlinear vibration responses of the nanocomposite 
annular plate [138]. The uniformly approximate solutions 
of Eq. (39) are obtained as

where T0 = t and T1 = εt. The excitation in terms of T0 and 
T1 is expressed as

Then the derivatives with respect to t become

(49)g0(t) =
W

h
cos

(
�NLt

)
, a=

W

h
.

(50)

d2g1(t)

dt2
+ P1g1(t) +

(
P1 − �2

NL
+

3

4
a2�P1

)
a cos

(
�NLt

)

+
1

4
P1a

3� cos
(
3�NLt

)
= 0.

(51)P1 − �2
NL

+
3

4
a2�P1 = 0,

(52)�NL = �L

√
1 +

3

4
a2� ,

(53)�NL = �L

√
1 +

3

4
h2�A∗2.

(54)Ω = �0 + ��.

(55)
w = w0

(
T0, T1, T2,…

)
+ �w1

(
T0, T1, T2,…

)
+ �2w2

(
T0, T1, T2,…

)
,

(56)F(t) = �q cos
(
�0T0 + �T1

)
.

(57a)
d

dt
= D0 + �D1,

where D0 =
�

�T0
, D1 =

�

�T1
and D0D1 =

�2

�T0�T
 . Substituting 

Eqs. (55–57) into Eq. (39) and equating the coefficients of ε 
equal to zero yields the following differential equations:

The solution of Eq. (58a) can be suggested as

The governing equations for A are gained by requiring 
w1 to be periodic in T0 and extracting secular terms which 
are coefficients of e±iω0T0 ; the solvability equation will be 
determined as

where

Substituting Eq. (61) into Eq. (60) and separating real and 
imaginary parts, we have

Term T1 can be eliminated by transforming Eqs. (62a–b) 
to an autonomous system considering:

and substituting Eq. (63) into Eqs. (62a–b) leads to

The point at a�

= 0 and ��

= 0 corresponds to a singu-
lar point of the system and illustrates the motion of the 

(57b)d2

dt2
= D2

0
+ 2�D0D1 + �2

(
D2

1
+ 2D0D1

)
,

(58a)�0 ∶ D2
0
w0 + p1w0 = 0,

(58b)

�1 ∶ D
2

0
w
1
+ p

1
w
1
= − 2D

0
D

1
w
0
− 2CD

0
w
0

− �w3

0
− q cos

(
�
0
T
0
+ �T

1

)
.

(59)
w0

(
T0, T1, T2,…

)
= A

(
T1
)
exp

(
iT0

)
+ A

(
T1
)
exp

(
−iT0

)
.

(60)2i�0

(
A� + CA

)
+ 3�A2A −

1

2
q exp

(
−i�T1

)
= 0,

(61)A =
1

2
� exp (i�).

(62a)�� = −C� +
1

2

q

�0

sin
(
�T1 − �

)
,

(62b)��� =
3

8

�

�0

�3 +
1

2

q

�0

cos
(
�T1 − �

)
.

(63)� = �T1 − �,

(64a)�� = −C� +
1

2

q

�0

sin �,

(64b)��� = �� −
3

8

�

�0

�3 +
1

2

q

�0

cos �.
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steady-state of the system. So, in the condition of steady 
state, we have

Squaring and adding these equations, one may obtain 
the frequency response equation:

Substituting Eqs. (65a–b) into Eq.  (63) and sub-
stituting that result in Eq.  (61) and substituting that 
result in Eq. (59) and Eq. (55), one may obtain the first 
approximation:

With this, the response of the amplitude (magnification 
factor) could be expressed as

The maximum value of the magnification factor could 
be found from differentiating Eq. (68a) with respect to Ω:

 which can be solved for d�
dΩ

 as

(65a)C� =
1

2

q

�0

sin �,

(65b)�� −
3

8

�

�0

�3 = −
1

2

q

�0

cos �.

(66)

[(
� −

3

8

�

�0

�2

)2

+ C2

]
�2 =

q
2

4�2
0

.

(67)w = � cos
(
�0t + ��t − �

)
+ O(�).

(68a)
M =

�

||q||
=

1

2�0

√(
� −

3

8

�

�0

�2

)
+ C2

,

(68b)dM

dΩ
= 0,

d2M

dΩ2
< 0.

(69)

1

32
�
(
3��2 − 8Ω + 8�

0

)(
3��

d�

dΩ
− 4

)

+
(
C
2 +

(
Ω − �

0
− 3��2

)2) d�

dΩ
= 0,

This derivative vanishes (and so does dM
dΩ

 ) when

By considering dΩ
dM

= 0 , the values of the critical points 
Ω1 and Ω2 can be obtained [139]. This condition can be 
found by following equation:

So

4 � Periodic solutions, poincare sections, 
and bifurcations

4.1 � Periodic solutions

The steady-state forced vibrations of the current study are peri-
odic solutions. We suggested that

where x ∈ ℝ
n, t ∈ ℝ , is said to have a periodic solution 

(orbit) X of least period P if this solution satisfies X(x0 = t0) 
=X(x0 = t0 + P0) for all initial conditions x = x0 on this orbit 
at t = t0 . To transform the Duffing equation into this form, 
it is first to recast as a system of first-order equations as fol-
lows [139]:

(70)

d�

dΩ
=

8a
(
3��2 − 8Ω + 8�0

)

27�2�4 − 96
(
Ω − �0

)
��2 + 64

(
C2 +

(
Ω − �0

)2) .

(71)(
3��2 − 8Ω + 8�0

)
= 0 ⇒ �p =

√
8
(
Ω − �0

)
3�

.

(72)
27�2�4 − 96

(
Ω − �0

)
��2 + 64

(
C2 +

(
Ω − �0

)2)
= 0.

(73)Ω1,2 =
1

8

�
8�0 + 6��2 −

√
9�2�4 − 64C2

�
.

(74)ẋ = F(x, t),

(75a)ẇ1 = w2,

Table 1   Material properties of the multiscale hybrid nanocomposite annular Ebrahimi and Habibi [140]

Carbon fiber EF

11[
Gpa

]

233.05

EF

22[
Gpa

]

23.1

GF

12[
Gpa

]

8.96

ρF[
kg
/
m3

]

1750

�F

0.2

�F

11[
×10−6

/
k
]

−0.54

�F

22[
×10−6

/
k
]

10.08

Epoxy matrix Em

[
Gpa

]

3.51

νm

0.34

ρm[
kg
/
m3

]

1200

�m

[
×10−6

/
k
]

45

Carbon nanotube EF

11[
Tpa

]

5.6466

ECNT

22
= ECNT

33[
Tpa

]

7.0800

GCNT

12
= GCNT

13[
Tpa

]

1.9445

�CNT
12

0.175

ρCNT[
kg
/
m3

]

1350

�CNT

[
×10−6

/
k
]

3.4584

lCNT

[�m]

25

dCNT

[nm]

1.4

tCNT

[nm]

0.34
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The following transformations, motivated by the method of 
variations of parameters

Finally, we have

4.2 � Poincare section and poincare map

In this section, the second-order non-autonomous Eq. (39) can 
be converted to the autonomous system

Note that Duffing Eq. (78) is invariant under the transfor-
mation w1 → −w1,w2 → −w2, t → t −

�

Ω
 . The state space of 

this system (the so-called extended state space) is the three-
dimensional Euclidean spaceℝ ×ℝ ×ℝ = ℝ

3 . Since the forc-
ing is periodic with period T = 2�

Ω
 , the solutions are invariant 

to a translation in time by T. This observation can be utilized 

(75b)ẇ2 = −w1 − 2𝜇w2 − P3w
3
1
+ Fcos

(
𝜔0T0 + 𝜎T1

)
.

(76a)w1 = x1cosΩt + x2sinΩt,

(76b)w2 = Ω(−x1sinΩt + x2cosΩt).

(77a)ẋ1 =
1

Ω
(−𝜎w

1
− 𝜇w2 − P3w

3
1
+ FcosΩt)sinΩt,

(77b)ẋ2 =
1

Ω
(−𝜎w

1
− 𝜇w2 − P3w

3
1
+ FcosΩt)cosΩt.

(78a)ẇ1 = w2,

(78b)ẇ2 = −w1 − 2𝜇w2 − P3w
3
1
+ Fcos

(
𝜔0T0 + 𝜎T1

)
,

(78c)ṫ = 1.

to introduce an essential tool of nonlinear dynamics, the Poin-
care section. Starting at an initial time t = t0 , the points on a 
suitable surface ( 

∑
, the Poincare section) can be collected by 

stroboscopically monitoring the state variables at intervals of 
the period T can be recast in the following form:

where � =
2�t

T
 (mod 2 � ). Since the response at t = 0 and t = T 

can be considered to be identical, the state space of Eq. (79) 
is the cylinder ℝ2 × S →S1. This topology results from the 
state space ( w1, w2, t) with the points t = 0 and t = T ‘glued 
together’.

The normal vector n to this surface 
∑
, is given by

 and the positivity of the dot product.

4.3 � Results

In the current study, MHC is a useful reinforcement that we 
used in this work. The properties of the reinforcement and 
pure epoxy are shown in Table 1 [140].

(79a)ẇ1 = w2,

(79b)ẇ2 = −w1 − 2𝜇w2 − P3w
3
1
+ Fcos

(
𝜔0T0 + 𝜎T1

)
,

(79c)𝜃̇ = Ω,

(80)n = (001)T

(81)

(001).

⎛⎜⎜⎜⎝

w2

−w1 − 2�w2 − P3w
3
1
+ Fcos

�
�0T0 + �T1

�
2�

T

⎞⎟⎟⎟⎠
=

2�

T
.

Table 2   Comparison of the non-
dimensional natural frequency 
of the annular plate for different 
axisymmetric vibration mode 
number, inner radios to outer 
radios ratio and thickness to 
outer radios ratio for clamp–
clamp supported. (b/a = 0.1, 
�
n
= �

n
b
2

√
�
m
h

D
,D =

E
m
h
3

12(1−�2)
)

Ebrahimi and Habibi [140]
Han and Liew [141]

h

a

Simply–simply Clamped–clamped

Axisymmetric vibration mode 
number

Axisymmetric vibration mode 
number

1 2 3 4 1 2 3 4

Han and Liew [141] 0.001 14.485 51.781 112.99 198.44 27.280 75.364 148.21 245.47
Present 0.001 13.624 50.302 111.86 198.61 28.514 77.363 151.05 249.05
Han and Liew [141] 0.050 14.324 50.409 107.25 182.55 26.534 71.228 135.24 215.08
Present 0.050 13.528 49.109 106.09 182.08 27.679 72.766 136.36 214.46
Han and Liew [141] 0.100 13.874 46.947 94.670 151.91 24.629 62.140 111.12 167.16
Present 0.100 13.254 46.061 93.794 151.36 25.558 62.834 110.39 163.41
Han and Liew [141] 0.150 13.218 42.630 81.519 124.92 22.230 52.762 90.286 131.35
Present 0.150 12.838 42.182 81.036 124.24 22.909 52.835 88.962 127.51
Han and Liew [141] 0.200 12.450 38.337 70.224 104.20 19.843 44.913 74.860 106.81
Present 0.200 12.326 38.243 70.075 104.04 20.294 44.683 73.628 103.75

RETRACTED A
RTIC

LE



S232	 Engineering with Computers (2022) 38 (Suppl 1):S219–S242

1 3

4.4 � Validation study

Table 2 is presented for investigation of the validity in the 
present work by comparing our results with Ref. [141] for 
two geometrical parameters (a/b and h/b) in which they are 
shown in Fig. 1. Also, the validation is done for two bound-
ary conditions (clamped–clamped and simply–simply). With 
respect to Table 2, we can claim that differences between our 
result and that in Ref. [141] is less than 2%.

4.5 � Parametric study

Figure 2 represents and compares the variation of the asso-
ciated mechanical properties (such as volume fraction of 
CNTs, elasticity modulus, mass density, Poisson’s ratio, 
shear modulus, and thermal expansion of the MHCD) of 
the annular plate for each FG distribution patterns across 
the thickness by considering equal MHCD particles weight 
fraction.

Fig. 2   Through-the-thickness variation of mechanical properties 
(
� =

�

4
,W

CNT
= 0.02,V

F
= 0.2

)
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Figure 3 provides a presentation about the impact of the 
different CNT distribution patterns and the increasing large 
deflection parameter (A*) on the nonlinear frequency response 
of the simply–simply MHCD. The common result is that for 
every FG pattern, there is a direct relation between A* param-
eter and nonlinear dynamic response of the MHCD. For better 
understanding, increasing the A* parameter causes to increase 
the nonlinear natural frequency of the FG annular structures, 
exponentially. The main point which is come up from Fig. 3 is 
that for each value of the A* parameter, the highest and lowest 
nonlinear frequency is for the FG annular plate with FG-A and 
FG-X patterns, respectively, and this issue is decreased in the 
higher value of the A* parameter. For more detail, the best FG 
pattern for serving the highest nonlinear dynamic response of 
an MHCD-reinforced annular plat is FG-A.

The effects of rising temperature patterns (uniform, 
power, sinusoidal) and A* parameter on the nonlinear 

non-dimensional natural frequency of the simply–simply 
supported MHCD-reinforced annular plate is presented in 
Fig. 4. According to this figure, for each value of the A* 
parameter, rising temperatures with sinusoidal and uniform 
patterns encounter us with an MHCD-reinforced annular 
plate which has the highest and lowest nonlinear natural 
frequency.

With consideration of the thermal environment, the 
influence of external harmonic force ( F̄ ) and different pat-
tern of the multi-scale hybrid nanocomposites (FG-UD, 
FG-A, FG-V, and FG-X) on the time history on the planes 
(x,t), phase-plane on the planes (x,ẋ ), and Poincaré maps 
on the planes ( x1,x2 ) of the MHC-reinforced disk with 
clamped–clamped boundary conditions, h/a = 0.1, FG-A, 
Ti = 273 [K], T0 = 300 [K], STR, ϴ = π/4, WCNT = 0.02, 
VF = 0.2,q̄ = 2 , C=0.01, Kp = 10 [MN/m] and Kw = 100 [MN/
m3] are presented in Figs. 5,6,7and8.

According to Figs. 5,6,7and8, for all FG patterns, it could 
be seen that by increasing the value of the F̄ parameter, the 
motion and dynamic responses of the MHC-reinforced disk 
is changed from harmonic to the chaotic with respect to the 
time history, phase-plane, and Poincaré maps. By having a 
comparison between the above figures, it is clear that for all 
FG pattern, when F̄ = 1, the motion behavior of the system 
is harmonic. For better understanding, in the lower value of 
the external harmonic force, different FG patterns do not 
have any effects on the motion response of the structure. But, 
for the higher value of external harmonic force and all FG 
patterns, the chaos motion could be seen and for the FG-X 
pattern, the chaosity is more significant than other patterns 
of the FG.

4.6 � Conclusion

This was the fundamental research on the nonlinear sub- and 
supercritical complex dynamics of a multi-hybrid nanocom-
posite-reinforced disk in the thermal environment and sub-
ject to a harmonic external load. The displacement–strain 
of nonlinear vibration of the multi-scale laminated disk via 
third-order shear deformation (TSDT) theory and using von 
Karman nonlinear shell theory was obtained. Hamilton’s 
principle was employed to establish the nonlinear governing 
equations of motion, which was finally solved by the GDQM 
and PA. To examine the validity of the approach applied in 
this study, the numerical results were compared with those 
published in the available literature and a good agreement 
was observed between them. The numerical results revealed 
that

•	 As a practical designing tip, it was recommended to 
choose plates with lower thickness relative to the outer 
radius to achieve better vibration performance.

Fig. 3   Effects of CNT pattern on the nonlinear non-dimensional nat-
ural frequency of the simply–simply MHCD with b/a = 4, h/b = 0.3, 
Ti = 273 [K], To = 300 [K], UTR, � =

�

4
 , WCNT = 0.02, VF = 0.2, Kp = 10 

[MN/m] and Kw = 100 [MN/m3] for large deflection values

Fig. 4   Effects of rising temperature on the nonlinear non-dimensional 
natural frequency of the simply-simply MHCD with b/a = 4, h/b = 0.3, 
Ti = 273 [K], To = 300 [K], � = �∕4 , WCNT = 0.02, VF = 0.2, Kp = 10 
[MN/m] and Kw = 100 [MN/m3] for large deflection values
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Fig. 5   The influence of F̄ on the time history on the planes (x,t), phase-plane on the planes (x,ẋ ), and Poincaré maps on the planes ( x
1
,x

2
 ) of the 

FG-UD pattern of the multi-scale hybrid nano-composite-reinforced disk with clamped–clamped boundary conditionsRETRACTED A
RTIC

LE
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Fig. 6   the influence of F̄ on the time history on the planes (x,t), phase-plane on the planes (x,ẋ ), and Poincaré maps on the planes ( x
1
,x

2
 ) of the 

FG-A pattern of the multi-scale hybrid nano-composite-reinforced disk with clamped–clamped boundary conditionsRETRACTED A
RTIC
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•	 In the lower value of the external harmonic force, differ-
ent FG patterns did not have any effects on the motion 
response of the structure. But, for higher value of exter-
nal harmonic force and all FG patterns the chaos motion 
could be seen, and for FG-X pattern, the chaosity was 
more significate than other patterns of the FG.

•	 For each value of the A* parameter, rising tempera-
tures with sinusoidal and uniform patterns encounter 
us with an MHCD-reinforced annular plate which 
had the highest and lowest nonlinear natural fre-
quency.

Fig. 7   the influence of F̄ on the time history on the planes (x,t), phase-plane on the planes (x,ẋ ), and Poincaré maps on the planes ( x
1
,x

2
 ) of the 

FG-X pattern of the multi-scale hybrid nano-composite-reinforced disk with clamped–clamped boundary conditionsRETRACTED A
RTIC

LE
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Appendix

In Eqs. (32a–c), Lij and Mij are expressed as follows:

Fig. 8   the influence of F̄ on the time history on the planes (x,t), phase-plane on the planes (x,ẋ ), and Poincaré maps on the planes ( x
1
,x

2
 ) of the 

FG-V pattern of the multi-scale hybrid nano-composite-reinforced disk with clamped–clamped boundary conditionsRETRACTED A
RTIC

LE
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