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Abstract
Using surrogate models to substitute the computationally expensive limit state functions is a promising way to decrease the

cost of implementing reliability-based design optimization (RBDO). To train the models efficiently, the active learning

strategies have been intensively studied. However, the existing learning strategies either do not individually build the

models according to importance measurement or do not completely relate to the reliability analysis results. Consequently,

some points that are useless to refine the limit state functions or far away from the RBDO solutions are generated. This

paper proposes a multi-constraint failure-pursuing sampling method to maximize the reward of adding new training points.

A simultaneous learning strategy is employed to sequentially update the Kriging models with the points selected in the

current approximate safe region. Moreover, the sensitive Kriging model as well as the sensitive sample point are identified

based on the failure-pursuing scheme. A new point that is highly potential to improve the accuracy of reliability analysis

and optimization can then be generated near the sensitive sample point and used to update the sensitive model. Besides,

numerical examples and engineering application are used to validate the performance of the proposed method.

Keywords Reliability-based design optimization � Adaptive Kriging modeling � Failure-pursuing sampling �
Simultaneous learning

1 Introduction

Reliability-based design optimization (RBDO) is an

effective tool to consider the various uncertainties in the

initial design stage. The optimal solution of RBDO can

achieve the balance between the performance and the

reliability of a product. The formulation of RBDO is

generally defined as [1–4]

Find lX
Min f ðlXÞ
S.t. ProbðgcðXÞ� 0Þ�Pt

f ;c; c ¼ 1; . . .;Nc l
L
X � lX � lUX

ð1Þ

where lX are the mean values of random design variables

X, lLX and lUX are the lower and upper bounds of lX
respectively. Due to the uncertainties that exists in X, the

failure probability is used to measure the reliability of a

certain design. In the probabilistic constraint, it is defined

that the failure probability calculated by Prob(�Þ should be

smaller than the maximum allowable failure probability

Pt
f ;c. The failure event occurs when the limit state function

(i.e. performance function) gcðXÞ is smaller than or equal

to zero. Correspondingly, the failure probability is calcu-

lated by [5–7]

Prob(gcðXÞ� 0Þ ¼
Z
Xf ;c

fXðXÞdX ð2Þ

where f XðXÞ is the joint probability density function, and

Xf ;c is the failure region of the c-th probabilistic constraint.
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In practice, the limit state function gcðXÞ is usually the

time-consuming model, such as the finite element analysis

(FEA), computational fluid dynamics (CFD) and true

physics model, which means calculating the complex

integration in Eq. (2) is computationally prohibitive. Since

the estimation of failure probability is an essential part of

RBDO (i.e. Eq. (2) is a part of Eq. (1)), the computational

cost of RBDO is more expensive. Therefore, both the

reliability analysis methods and RBDO methods have been

intensively studied. On one hand, many analytical relia-

bility analysis methods [8–11] and well-known analytical

RBDO approaches, roughly classified into double-loop

methods [12], decoupled methods [13, 14] and single-loop

methods [15, 16], are developed. However, the former

performs poorly sometimes when the limit state function is

highly nonlinear, while the latter gets stuck in the tradeoff

between the accuracy and efficiency. On the other hand,

another alternative, i.e. surrogate model, has been used to

approximate the implicit limit state function in reliability

analysis and RBDO during the last two decades [17]. The

surrogate model is trained by a set of sample points, and

then it can be combined with the simulation method for

analysis and optimization. Because the true function eval-

uations for training the surrogate model are much smaller

than those required by direct simulation method, the

computational cost is sharply reduced. The commonly used

surrogate models include response surface method (RSM)

[18, 19], artificial neural network (ANN) [20], support

vector machine (SVM) [21], and Kriging [22–26]. In this

paper, the Kriging model that has been widely used in

reliability analysis [27–29], system reliability analysis

[30–32] and time-dependent reliability analysis [33–36] is

employed due to its feature in providing the mean predic-

tion and variance.

Kriging-based RBDO methods can be divided into one-

shot sampling methods [37] and sequential sampling

methods [38]. In one-shot sampling methods, Kriging

model is trained with the sample points generated by fac-

torial design [39], central composite design [40] or Latin

hypercube designs [41]. The performance of one-shot

sampling method relies on the number and location of

sample points, which cannot accommodate the unknown

outline of complex functions. Different from one-shot

sampling methods, the latter adds new points and update

Kriging model sequentially. During the refinement of

Kriging, the sequential sample points are selected accord-

ing to some learning strategies. Therefore, the sequential

sampling process can be adjusted based on the results of

reliability analysis or RBDO, which tends to build a more

accurate Kriging model with fewer samples [42].

In sequential sampling methods, the Kriging model can

be built by the global modeling strategy in the design

domain or the local modeling strategy driven by the

iterative optimization. The goal of global modeling strat-

egy is to accurately approximate the whole constraint

boundary in the design domain [43, 44]. When the Kriging

model reaches the predetermined precision, the RBDO

process is conducted to search the optimal solution

according to the constructed Kriging model. The local

modeling strategy driven by the iterative optimization

focuses on the local region where the optimal solution may

exist, since the accuracy of the constraint boundary in that

local region plays an important role on the accuracy of the

optimal solution [45–49]. In the local modeling strategy

driven by the iterative optimization, new samples near the

current optimization solution of each iteration step are

selected to update the Kriging model, and then the next

optimization solution is searched according to the updated

model. The Kriging modeling and design optimization are

conducted sequentially until the optimal solution is found.

Although great progress has been made in Kriging-

based RBDO methods, there are still some challenges. For

example, some methods treat all the constraints equally and

update all the Kriging models with the same training

points. However, some sample points may be not the

optimal choice of all the constraints, and some points may

be wasted for the inactive constraints. Moreover, some

learning strategies are not able to make full use of the

results of reliability analysis and RBDO, leading to the fact

that some sample points make little contribution to the

improvement of prediction accuracy. To address these

issues, we propose a multi-constraint failure-pursuing

sampling (MCFPS) method. For the RBDO problems with

multiple probabilistic constraints, MCFPS separately

updates the Kriging models with different points by the

simultaneous learning strategy. All the candidate points are

selected from the safe region determined by the current

Kriging models. Furthermore, we propose an error mea-

surement that can calculate the sensitivity of existing

sample points to the accuracy of estimated failure proba-

bility. According to the error measurement, the sensitive

sample point that is the most important to the accuracy

improvement of Kriging model can be identified for every

constraint. Correspondingly, the sensitive constraint that

should be updated can also be identified.

The remainder of this article is organized as follows.

Section 2 introduces two typical Kriging-based RBDO

methods that are compared with our proposed method.

Section 3 provides the details of the proposed method.

Section 4 demonstrates the performance of the proposed

method through three numerical examples and one engi-

neering application. Section 5 summarizes the

contributions.
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2 The multi-constraint failure-pursuing
sampling method

For the Kriging -based RBDO problems with multiple

probabilistic constraints, there are still some challenges: (1)

How to update the Kriging models of different probabilistic

constraints in an effective sequence; (2) How to identify

the active probabilistic constraints important for RBDO

and the inactive constraints useless for RBDO; (3) How to

generate the new training point for the refinement of the

most important Kriging model. To address these important

issues, this work proposes a multi-constraint failure-pur-

suing sampling (MCFPS) method, and the following sub-

sections will introduce how MCFPS answers these

questions one by one.

2.1 Simultaneous learning strategy

The basic idea of Kriging -based RBDO is to substitute the

time-consuming limit state function with cheap Kriging

model. Since each probabilistic constraint contains a limit

state function, several Kriging models are required when

there are multiple probabilistic constraints. To train the

Kriging models, the most popular way is generating the

same sample points for all the limit state functions, just like

what CBS and LAS have done. However, the design

optimization problems in engineering often involve mul-

tiple constraints, and each constraint may correspond to

different disciplines. This means that for each constraint,

the corresponding response value needs to be obtained

through separate simulation or experiment. Therefore,

generating the same sample points for all the limit state

functions may waste the computational resource, as most

sample points may be only important for part of constraints

rather than all constraints. If we can separately identify the

most useful points for every constraint while training the

Kriging models, then the wasted points will be reduced as

much as possible. Therefore, we employ the simultaneous

learning strategy in MCFPS.

In simultaneous learning strategy, different Kriging

models only share the same initial sample point set

(ED0 ¼ Xinitial; c ¼ 1; � � � ;Nc), which is uniformly gener-

ated in the design space. Following the initialization, only

one Kriging model of the constraint will be updated in each

iteration of the sequential refinement, and we name the

updated constraint as sensitive constraint. Figure 1 illus-

trates this strategy by three consecutive iterations. In the k-

th iteration, the Kriging model (ĝ2) of the second constraint

is selected to be updated based on some criteria, while the

other two constraints are not updated. After that, the sen-

sitive constraint will shift from ĝ2 to ĝ3 in the next iteration

shown in Fig. 1b. Based on the same criteria, the constraint

that is the most important to the RBDO result will be

identified and updated one by one. As a result, the sample

sets EDcðc ¼ 1; � � � ;NcÞ of different constraints vary from

each other after the sequential sampling.

Moreover, to avoid adding the points that make few

contributions in the simultaneous learning process, all the

new sample points are only selected in the safe domain that

plays a significant role in searching the RBDO solution.

The main reason for sampling in the safe area is to improve

the sampling efficiency by reducing the sampling region.

Moreover, by adding the sequential sample points in the

safe area, the fitting accuracy of the constraint boundary is

gradually updated and finally meets the accuracy require-

ments. To avoid the possible influence of sampling in the

safe area on the sampling accuracy or efficiency, the

introduction of the conservative boundary will be consid-

ered in the follow-up study. The existing constraint

boundary will be offset to the failure domain by a certain

amount, and then the sequential sampling will be carried

Fig. 1 The illustration of simultaneous learning strategy
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out in the shifted safe area. The specific offset distance and

sampling effect will be the focus of future research.

The safe region is defined by

Xsafe ¼ x 2 RdjĝcðxÞ� 0; 8c 2 ½1;Nc�
� �

; ð3Þ

where ĝcðxÞ is the Kriging model of the c-th limit state

function. Since the safe region is determined by the current

Kriging models, it can be also observed from Fig. 1 that the

size of the safe region is updated with the update of the

Kriging models. Obviously, the safe region deeply affects

the generation of sample points and the search of RBDO

solution. If we update all the Kriging models in each

iteration, some constraints will be updated by some useless

points that have a higher probability to be located outside

the safe region actually. The simultaneous learning strategy

can reduce the risks of wasting sample resource. Next, we

will discuss how to identify the sensitive constraint and

how to add new training point for the constraint.

2.2 Identification of sensitive constraint
and sensitive point

Motivated by the failure-pursuing sampling framework

proposed by the authors [50], MCFPS identifies the sen-

sitive constraint from all constraints as well as the sensitive

point from the existing training point set before adding new

sample points. It is worth noting that the failure-pursuing

sampling framework is developed for reliability analysis,

while MCFPS is proposed for RBDO. Their different aims

indicate that their identification strategies vary from each

other, let alone the generation of new training points.

In Kriging-based RBDO, it is vital to accurately

approximate the constraint boundaries that are potential to

be visited by the optimal solution. However, the approxi-

mation accuracy of the constraint boundaries around the

current design point is not able to be calculated directly. To

add more sample points that are highly potential to improve

the approximation accuracy, MCFPS validates the

approximation accuracy by calculating the estimation

accuracy of failure probability at the current design point.

Consequently, MCFPS employs an error measurement

defined by

ec;ip̂f ¼ p̂f ;c � p̂
Xc=x

i
c

f ;c

���
���; c ¼ 1; . . .;Nc; i ¼ 1; . . .;Nc

sample; ð4Þ

where p̂f ;c is the failure probability of the c-th constraint

predicted by the current Kriging model ĝcðxÞ, p̂
Xc=x

i
c

f ;c is the

predicted failure probability after removing the sample

point xic from the training set of current Kriging model

ĝcðxÞ, Nc
sample is the current number of sample points for c-

th constraint, and Nc is the total number of probabilistic

constraints. It is observed based on Eq. (7) that the larger

the error is, the less the accuracy of constraint boundary is.

Additionally, since the computational cost will grow

with the increase of number of training points, the efficient

importance sampling technique [51] is adopted while cal-

culating the failure probability, and the most probable point

is found by the iterative control strategy [15].

In each iteration, the error measurement will be calcu-

lated for every constraint and every existing sample point.

As a result, the indices of sensitive point and sensitive

constraint can be identified by

icsen ¼ argmax
i¼1;���;Nc

sample

ec;ip̂f ; c ¼ 1; . . .;Nc ð5Þ

and

csen ¼ argmax
c¼1;���;Nc

ðec;i
c
sen

p̂f
Þ: ð6Þ

The constraint with the maximal error, i.e. sensitive

constraint, will be updated to maximize the accuracy

improvement of the safe region. Correspondingly, the new

added point will be highly related to the corresponding

sensitive point xcsen;isen , as the point is the most sensitive to

the estimation accuracy of failure probability. Based on

this strategy, the active constraints that determine the

location of RBDO solution will be identified and updated,

while the inactive constraints will remain unchanged.

Moreover, it is worth noting that the sample points that are

far away from the current design point have less effect on

the estimation of failure probability. Therefore, the sensi-

tive point will be often located around the current design

point, which means the more computational resource will

be focused on the local region visited by RBDO optimizer.

Figure 1 illustrates the identification process of sensitive

constraint and sensitive point. In each iteration, the error

measurement in Eq. (7) is used to evaluate the sensitive-

ness of all existing samples (blue ‘‘x’’). Then the sample

with the maximal error is regarded as the sensitive point

(blue ‘‘x’’ with a green dotted circle). At the sensitive point,

the constraint with the maximum error is regarded as the

sensitive constraint. In the k-th iteration, constraint 3 is

regarded as the sensitive constraint and new sample (black

‘‘*’’ in Fig. 1b) is added to only update constraint 3. Then

in the (k ? 1)-th iteration, constraint 1 is regarded as the

sensitive constraint and new sample (black ‘‘*’’ in Fig. 1c)

is added to only update constraint 1.

2.3 Generation of new training point

In general, the points around the sensitive point x
icsen
csen of the

sensitive constraint have a high probability to improve the

accuracy of the corresponding Kriging model. Moreover,

the points that are close to the constraint boundary or with
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large prediction uncertainty should also be selected.

Therefore, the learning function (LF) for adding the new

training points can be defined as follows

LFðxÞ ¼ ĝðxÞj j
rĝðxÞ � corrðx; xi

c
sen
csenÞ

ð7Þ

where ĝðxÞ and rĝðxÞ are the mean prediction and error

prediction of Kriging model respectively. corrðx; xi
c
sen
csenÞ is

the correlation between the candidate points and the sen-

sitive point, which is expressed using the minimum dis-

tance to the existing samples.

The learning function is derived from the U function

[52]. The difference is that the correlation between the

candidate points and the sensitive point is considered in the

proposed method. To compare the two sequential sampling

methods, an example taken from [53] is applied. The

function is given as

gðXÞ ¼ ðð1:5þ X1Þ2 þ 4Þðð2:5þ X2Þ � 1Þ
20

� sin
5ð1:5þ X1Þ

2
� 2 ð8Þ

The initial Kriging model is constructed using 6 Latin

Hypercube samples. The Kriging model is then updated by

U function and proposed learning function when new

samples are added. Figure 2 depicts the true function (gt,

Blue lines), the function from Kriging model (gp, Grey

lines), the initial training points (Black circles), and the

sequential samples (Blue boxes) of U function and pro-

posed methods. It illustrates that the proposed method

effectively reduces the number of training points used in U

function. The reason is that some sequential samples in U

function are too close to the existing samples. These

samples which are less important to the update of the

Kriging model are labeled as red ‘‘x’’ in Fig. 2. However, if

the correlation between the candidate points and the

existing sample points are considered, this situation will be

solved.

Based on Eq. (10), the point that minimizes LF and is

located at the safe region Xsafe will be selected to update

the Kriging model, and the newly added point is repre-

sented by

xnewcsen
¼ x 2 Xsafe min LFðxÞð Þj

� �
: ð9Þ

Then the sample set of the sensitive constraint is

updated as EDcsen ¼ ½Xcsen ; x
new
csen

�.
Additionally, the local refinement of Kriging models

around the current design point is stopped when

e
csen;i

c
sen

p̂f
� 0:1, and a new optimization is performed to

search the next design point. The local refinement and

optimization are sequentially repeated until the design

point satisfies the following stopping condition

xkþ1
opt � xkopt
xkopt

�����
������ eopt; ð10Þ

where xkopt is the design point in the k-th optimization

iteration, eopt is a predefined threshold for the optimization.

2.4 The flowchart of MCFPS method

The flowchart of MCFPS method is shown in Fig. 3. For

initialization, the initial sample points are uniformly gen-

erated in the whole design space, the initial design point

and the corresponding candidate point set are also deter-

mined. After that, the Kriging models are built and the

current safe region is determined. Then the sensitive con-

straint and sensitive point are identified according to the

x1

x2

 

 

0 1 2 3 4
0

1

2

3

4
g

p

g
t

initial samples
sequential samples

x1

x2

 

 

0 1 2 3 4
0

1

2

3

4
gp

gt

initial samples
sequential samples

Fig. 2 The comparison of U function and Proposed Sampling Criterion
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methods proposed in Sect. 3.2. Meanwhile, the sequential

sample is obtained from the current safe region to update

the sensitive constraint by LF criterion. To avoid the waste

of samples, the simultaneous learning strategy is adopted to

only update one Kriging model in each iteration during the

refinement. The local refinement of Kriging models around

the current design is stopped when the stopping condition

shown in Sect. 3.3 is satisfied. After that, reliability anal-

ysis and corresponding sensitivity analysis are carried out

based on the updated Kriging models, and the design

solution get updated until it meets the accuracy require-

ments. It’s worth noting that, the optimization algorithm

used in this paper is sequential quadratic programming,

which is a kind of gradient-based optimization algorithm.

In addition, other algorithms, including global optimization

algorithm, can be used in the proposed method [54].

3 Examples

In this section, three classic numerical examples and the

EDM process parameter optimization example are used to

demonstrate the performance of the proposed method. By

comparing with the one-time sampling method (Latin

hypercube sampling, LHS), constraint boundary sampling

(CBS) and local adaptive sampling (LAS), the performance

of the proposed method is validated. The Kriging param-

eter set for all the four examples is as follows. The initial

value h is 10 and the lower and upper bounds of h is 0.1

and 30. To demonstrate the robustness of each method, all

experiments are repeated 10 times, and the average value is

taken as the final optimization solution. The errors between

the optimization results of each method (loptX ) and the

reference value (lANAX ) are calculated by

ed ¼ ð lANAX � loptX

�� ��Þ= lANAX

�� ��. In addition, the relative error

between Kriging failure probability and actual failure

probability are calculated by

ec ¼ ð PANA
f � PKriging

f

���
���Þ= PANA

f þ eps
���

���. eps is used here to

avoid the 0 denominator.

The convergence conditions of all methods are given by

lkþ1
X � lkX
lkþ1
X

����
����� 10�3; ð11Þ

where lkX is the design point of the k-th iteration. 10�3 is a

relatively reasonable value obtained by experiments, which

can obtain the balance between accuracy and efficiency.

10�1 or 10�4 can also be used here, but the former may

cause inaccurate RBDO solution and the latter may cause

inefficient RBDO solution for the examples used in this

paper. The influence of design point norm, problem

dimensions, nonlinearity to the termination criteria will be

the next research content.

3.1 Numerical example 1

This is a two-dimensional problem with three nonlinear

probabilistic constraints [4, 14]. The two variables follow

the normal distribution Xi � NðlXi
; 0:32Þi ¼ 1; 2. The tar-

get reliability is set to 3 for all the probabilistic constraints,

which means the corresponding failure probability is

Pt
f ;c ¼ 0:1350%. The initial design point is l0X ¼ ½5; 5�. The

RBDO model is formulated as follows

 

Design optimization

Reliability/sensitivi
ty analysis

Update the sensitive constraint
with newly added point

generated by LF

Identify the sensitive constraint
and sensitive point

Convergence?

Design Output

Generate the candidate point
set around the current design

Accuracy?

N

Y

Y

N

Initialization

Construct the Kriging models

Determine the safe domain

Fig. 3 The flowchart of MCFPS method

S302 Engineering with Computers (2022) 38 (Suppl 1):S297–S310

123



Find lX ¼ ½lX1
; lX2

�
Min lX1

þ lX2

S:t: ProbðgcðXÞ� 0Þ�Pt
f ;c c ¼ 1; 2; 3

0� lX1
� 10; 0� lX2

� 10;

g1ðXÞ ¼ 1� X2
1X2=20

g2ðXÞ ¼ ðX1 þ X2 � 5Þ2=30þ ðX1 � X2 � 12Þ2=120� 1

g3ðXÞ ¼ 1� 80=ðX2
1 þ 8X2 þ 5Þ

ð12Þ

The optimization results are shown in Table 1. For

sequential sampling methods, 10 same LHS sample points

are used to construct the initial Kriging models. ‘‘45/45/4500

means the number of sample points needed to construct the

Kriging model for each constraint, respectively. The results

of ANA are obtained by directly calling the real perfor-

mance functions. The error results for numerical example 1

is shown in Table 2. As can be seen from Table 2, all the

methods show small errors ranging from 0.0827 to

0.2234%. Therefore, all the methods are in good precision.

The error of the optimal design point calculated by MCFPS

is small, and the failure probability error of each constraint

is closer to the result of ANA, which means the proposed

method has high accuracy.

On the other hand, the total numbers of sample points

are gradually decreased from LHS to MCFPS. Many

samples that are meaningless to the Kriging modeling are

selected in LHS, thus it has the lowest efficiency. The

sequential samples of CBS are mainly located near the

constraint boundaries, but some of them are useless to the

solution of RBDO. In LAS, the sequential samples are

mainly selected within a small region around the current

iteration design point. Therefore, its sampling efficiency is

higher than that of LHS and CBS. But in LAS, the same

sample points are selected for all the constraints, which

wastes the computational resource because most sample

points may only be important for part of constraints rather

than all constraints. This issue is solved by MCFPS, thus it

has the highest efficiency. Seen in Table 1, there is no

sequential sample added for the third constraint in MCFPS,

the reason is that the third constraint is identified as the

inactive constraint in each iteration of the refinement.

Moreover, the maximum number of samples for single

constraint approximation in MCFPS (21) is less than that of

LAS (22), which indicates that the learning function (LF)

for adding the new training samples in MCFPS is effective.

Figure 4 shows the positions of samples for each

method. The samples of LHS are uniformly distributed in

the whole design space, and the samples of CBS, LAS and

MCFPS are mainly located near the constraint boundary.

Most samples of LAS concentrate on the local region of

current iterative design points, so LAS has higher effi-

ciency. Different from other methods which share the same

samples for all constraints, MCFPS handles the constraints

separately. In Fig. 4d, the blue squares and red squares are

the sequential samples of constraint 1 and constraint 2,

respectively. The number of samples is different for each

constraint in MCFS method, where most samples are

identified near the corresponding constraint boundary

(Table 2).

3.2 Numerical example 2

This is a two-dimensional problem with two probabilistic

constraints, where the first constraint is strongly nonlinear

and the second constraint is linear [43, 45]. The two vari-

ables follow the normal distribution

Xi � NðlXi
; 0:12Þi ¼ 1; 2. The target reliability for both

constraints is 2, while the corresponding target failure

probability is Pt
f ;c ¼ 2:2750%; c ¼ 1; 2. The initial design

Table 1 RBDO results for

numerical example 1
Methods Sample Optimal design Pf ;1;% Pf ;2;% Pf ;3;%

ANA – 6.7306 (3.4526, 3.2780) 0.1340 0.1328 0

LHS 45/45/45 6.7218 (3.4543, 3.2675) 0.1377 0.1454 0

CBS 32.8/32.8/32.8 6.7322 (3.4568, 3.2754) 0.1302 0.1332 0

LAS 22.3/22.3/22.3 6.7353 (3.4558, 3.2795) 0.1308 0.1284 0

MCFPS 18.2/21.6/10 6.7326 (3.4562, 3.2764) 0.1311 0.1347 0

Table 2 Error results for

numerical example 1
Methods Optimal design ec1, % ec2, % ec3, % ed , %

ANA 6.7306 (3.4526, 3.2780) – – – –

LHS 6.7218 (3.4543, 3.2675) 2.7612 9.4880 0 0.2234

CBS 6.7322 (3.4568, 3.2754) 2.8358 0.3012 0 0.1038

LAS 6.7353 (3.4558, 3.2795) 2.3881 3.3133 0 0.0742

MCFPS 6.7326 (3.4562, 3.2764) 2.1642 1.4307 0 0.0827
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point is l0X ¼ ½2:5; 2:5�. This problem is formulated as

follows

Find lX ¼ ½lX1
; lX2

�T

Min f ðlXÞ ¼ ðlX1
� 3:7Þ2 þ ðlX2

� 4Þ2

S:t: ProbðgðXÞ� 0Þ�Uð�btÞ
g1ðXÞ ¼ �X1 sinð4X1Þ � 1:1X2 sinð2X2Þ
g2ðXÞ ¼ X1 þ X2 � 3

0:0� lX1
� 3:7; 0:0� lX2

� 4:0

ð13Þ

The optimization results are shown in Table 3. All the

methods show small errors ranging from 0.0149 to

0.0909%. Therefore, all the methods are in good precision.

The error of the optimal design point calculated by MCFPS

is small, and the failure probability error of each constraint

is closer to the result of ANA, which means the proposed

method has high accuracy. Compared with other methods,

the proposed MCFPS method obtains the optimal solution

with the least sample points (38.2 samples). One reason is

that the two constraints are considered respectively in the

(a) LHS (b) CBS 

(c) LAS (d) MCFPS 

Fig. 4 The positions of sample points for numerical example 1

Table 3 RBDO results for

numerical example 2
Methods Sample Optimal design Pf ;1;% ec1, % Pf ;2;% ec2, % ed , %

ANA – 1.3258 (2.8421, 3.2320) 2.2770 – 0 – –

LHS 60/60 1.3193 (2.8424, 3.2359) 2.2411 1.5766 0 0 0.0909

CBS 42.3/42.3 1.3320 (2.8384, 3.2321) 2.2151 2.7185 0 0 0.0860

LAS 34.8/34.8 1.3249 (2.8413, 3.2335) 2.2844 0.3250 0 0 0.0350

MCFPS 28.2/10 1.3256 (2.8426, 3.2316) 2.2717 0.2328 0 0 0.0149
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sequential sampling process of MCFPS method. The linear

constraint (constraint 2) can be accurately fitted using the

initial samples, which will not be updated afterwards.

Therefore, sequential sampling is only conducted for the

highly nonlinear constraint (constraint 1). Another reason

is that the learning function (LF) used for adding the new

training samples in MCFPS is efficient. Figure 5 further

compares the sample position of each method. For

sequential sampling methods, 10 same LHS sample points

are used to construct the initial Kriging models. The

samples of LHS are uniformly distributed in the whole

design space, where many samples are located at the

meaningless area (such as the lower-left corner), so the

efficiency of LHS is very low. Most samples of CBS are

located near the constraint boundary, but there are still

some samples at the meaningless constraint boundary,

resulting in a waste of computing resources. In LAS and

MCFPS, the sequential samples are selected in areas which

have the important influence on the solution of RBDO, thus

they have higher efficiency. However, the same samples

are shared for both constraints in LAS, its sampling effi-

ciency is thus lower than that of MCFPS method.

3.3 RBDO of the speed reducer

The speed reducer is regularly used to test the performance

of RBDO methods [45, 55]. There are 7 independent ran-

dom variables and 11 probabilistic constraints in this

problem. The random design variables are termed as gear

width X1, gear module X2, the number of pinion teeth X3,

distance between bearings ðX4;X5Þ and the shaft diameters

ðX6;X7Þ. The optimization objective is to minimize the

weight of the speed reducer. The constraints are related to

bending stress, contact stress, longitudinal displacement,

(a) LHS (b) CBS 

(c) LAS (d) MCFPS 

Fig. 5 The positions of sample points for numerical example 2
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stress of the shaft and geometry. The target reliability is set

to 3 for all the probabilistic constraints, which means the

corresponding failure probability is Pt
f ;c ¼ 0:1350%. The

initial design point is

3:20; 0:75; 23:00; 8:00; 8:00; 3:60; 5:00½ �

. The RBDO model of the speed reducer is formulated as:

find : d ¼ d1; d2; d3; d4; d5; d6; d7½ �T

min : f dð Þ ¼ 0:7854d1d
2
2 3:3333d23 þ 14:9334d3 � 43:0934
� �

�1:5080d1 d26 þ d27
� �

þ 7:4770 d36 þ d37
� �

þ 0:7854ðd4d26 þ d5d
2
7Þ

s:t: : P gi Xð Þ[ 0½ � �U �bti
� �

; i ¼ 1; � � � ; 11

where g1 Xð Þ ¼ 27

X1X2
2X3

� 1; g2 Xð Þ ¼ 397:5

X1X2
2X

2
3

� 1

g3 Xð Þ ¼ 1:93X3
4

X2X3X
4
6

� 1; g4 Xð Þ ¼ 1:93X3
5

X2X3X
4
7

� 1

g5 Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745X4=ðX2X3ÞÞ2 þ 16:9� 106

q

0:1X3
6

� 1100

g6 Xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð745X5=ðX2X3ÞÞ2 þ 157:5� 106

q

0:1X3
7

� 850

g7 Xð Þ ¼ X2X3 � 40; g8 Xð Þ ¼ 5� X1

X2

g9 Xð Þ ¼ X1

X1

� 12; g10 Xð Þ ¼ 1:5X6 þ 1:9

X4

� 1

g11 Xð Þ ¼ 1:1X7 þ 1:9

X5

� 1;Xj �N dj; 0:005
2

� �
; j ¼ 1; � � � ; 7:

2:6� d1 � 3:6; 0:7� d2 � 0:8; 17� d3 � 28

7:3� d4 � 8:3; 7:3� d5 � 8:3; 2:9� d6 � 3:9

5:0� d7 � 5:5

ð14Þ

The RBDO results for the speed reducer are shown in

Table 4. The MCS results of different methods are shown

in Table 5. The Summary of failure probability error

results for speed reducer is shown in Table 6. The number

of initial samples for sequential sampling methods (CBS,

LAS and proposed methods) is 396 (36*11) using LHS.

From Table 4, it can be seen that all the methods show

small errors ranging from 0.0115 to 0.0754%. Therefore,

all the methods are in good precision. The average sample

number of MCFPS is 443.6, which is much less than that of

other methods, so it is very efficient. Moreover, the error of

the optimal design point calculated by MCFPS is small,

and the failure probability error of each constraint is closer

to the result of ANA, which means the proposed method

has high accuracy.

3.4 RBDO of EDM process parameters

Electrical discharge machining (EDM) is an effective tool to

deal with difficult-to-machining materials (such as super-

hard materials) and complicated configurations [56]. In

EDM, the instantaneous high temperature produced by pulse

discharge between twopoles (workpiece and tool) are used to

melt and remove the material, so as to process the required

shape [57]. After being electrified, the pulse voltage breaks

through the insulating medium between the two poles to

form a discharge channel, and then forms a plasma composed

of charged particles and neutral particles. The charged par-

ticles which are moving at high speed collide with the

electrode to form an instantaneous high-temperature heat

source. Then the workpiece around the discharge point is

separated from the local materials due to the influence of

high temperature. When the pulse stops, the ion channel is

closed, and the heated workpiece is rapidly cooled by the

circulating coolant. Then the insulation between the two

electrodes is restored until the next cycle. The duration of

single spark discharge is very short, thus there are very few

materials to be removed. However, EDM can remove a

certain amount of metal due to multiple pulse discharge per

second. Due to the high temperature in the discharge process

and the erosion of workpiece materials, the air particle pol-

lution near the EDM machine tool is formed. In addition,

there are surface quality requirements in engineering

Table 4 Summary of RBDO results for speed reducer

Methods Sample Optimal design ed , %

ANA – 3038.64 (3.5765, 0.7000, 17.0000, 7.3000, 7.7542, 3.3652,

5.3017)

–

LHS 1320 (120 9 11) 3039.13 (3.5774, 0.7000, 17.0000, 7.3000, 7.7542, 3.3665,

5.3014)

0.0754

CBS 860.2 (78.2 9 11) 3039.20 (3.5768, 0.7000, 17.0000, 7.3000, 7.7542, 3.3667,

5.3018)

0.0719

LAS 511.5 (46.5 9 11) 3038.67 (3.5767, 0.7000, 17.0000, 7.3000, 7.7541, 3.3648,

5.3018)

0.0220

MCFPS 443.6 (39.4/38.8/38.8/39.2/42.4/43.2/38.2/42.4/38.6/39.2/

43.4)

3038.68 (3.5767, 0.7000, 17.0000, 7.3000, 7.7542, 3.3653,

5.3016)

0.0115
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practice. Therefore, the unit energy consumption (UEC),

surface roughness (SR), PM2.5 and PM10 indices in EDM

process are considered and analyzed in this paper.

There are many factors that affect the unit energy con-

sumption, surface roughness, PM2.5 and PM10 indices in

EDM process, among which peak current (A), cycle rate (s)

and efficiency are the most important ones. Therefore, peak

current, cycle rate and efficiency are regarded as the design

variables in EDM of 304 steel. In EDM processing process,

these three parameters have certain uncertainty, thus

RBDO is conducted to obtain the optimal unit energy

consumption with reliability requirement of the surface

roughness (SR), PM2.5 and PM10. The RBDO model of

EDM process parameters is formulated as follows

Find lX ¼ ½lX1
; lX2

; lX3
�T

Min f ðlXÞ ¼ UEC
S:t: ProbðgðXÞ\0Þ�Uð�btÞ
g1ðXÞ ¼ 6:3� SR
g2ðXÞ ¼ 100� PM2:5
g3ðXÞ ¼ 150� PM10

4A� lX1
� 10A; 100 ls� lX2

� 500 ls; 0:3� lX3
� 0:7

X1 �NðlX1
; 0:12Þ; X2 �NðlX2

; 102Þ;X3 �NðlX3
; 0:012Þ;

bti ¼ 2:0; i ¼ 1; 2; 3; l0X ¼ ½7; 300; 0:5�
ð15Þ

whereUEC is the unit energy consumption (Kwh/cm3), which

is the power consumption per unit processed volume. The first

constraint means that the roughness of the machined surface

should be less than the given value to ensure the surface

quality of the workpiece. The second and third constraints are

the requirements about PM2.5 (lg=m3 ) and PM10 (lg=m3 ),

which should be less than the given value to ensure the health

of operators. The EDM process and the machined workpiece

are shown in Fig. 6.

The RBDO results of EDM process parameters are

shown in Table 7. Except LHS, 10 same initial sample

points are used to construct the initial Kriging models. It

can be observed that the optimal solutions are obtained by

all the methods, where the proposed method is the most

efficient one. For the surface roughness constraint, LAS is

as efficient as MCFPS, but the fitting efficiency of the other

two constraints in the proposed method is much higher than

that of LAS. Therefore, using MCFPS to optimize the

EDM process parameters, the optimal unit energy con-

sumption can be obtained with reliability requirement of

the surface roughness (SR), PM2.5 and PM10.

4 Conclusions

In this paper, a sampling method, named as MCFPS, is

proposed to improve the efficacy of the Kriging-based

RBDO. The contribution of this work is as follows

• A simultaneous learning strategy is employed to update

the different constraint functions sequentially. Since

some unimportant constraint or inactive constraint will

be rarely updated, the sample points are saved.

• An error index is proposed to identify the constraint as

well as the sample point that are the most sensitive to

the accuracy of the failure probability at the current

design point. The sensitive constraint will be updated

by the new training point identified from the neighbor-

hood of the sensitive sample point.

• A learning function is developed to add the sample

point that has the maximum probability to improve the

accuracy of Kriging model.

Table 5 Summary of failure

probability results for speed

reducer (%)

Methods Pf ;1 Pf ;2 Pf ;3 Pf ;4 Pf ;5 Pf ;6 Pf ;7 Pf ;8 Pf ;9 Pf ;10 Pf ;11

ANA 0 0 0 0 0.1363 0.1325 0 0.1359 0 0 0.1346

LHS 0 0 0 0 0.0656 0.1618 0 0.1209 0 0 0.1159

CBS 0 0 0 0 0.0587 0.1234 0 0.1301 0 0 0.1395

LAS 0 0 0 0 0.1769 0.1233 0 0.1317 0 0 0.1466

MCFPS 0 0 0 0 0.1273 0.1403 0 0.1305 0 0 0.1256

Table 6 Summary of failure

probability error results for

speed reducer (%)

Methods ec1 ec2 ec3 ec4 ec5 ec6 ec7 ec8 ec9 ec10 ec11

ANA – – – – – – – – – – –

LHS 0 0 0 0 51.8709 22.1132 0 11.0375 0 0 13.8930

CBS 0 0 0 0 56.9332 6.8679 0 4.2678 0 0 3.6404

LAS 0 0 0 0 29.7872 6.9434 0 3.0905 0 0 8.9153

MCFPS 0 0 0 0 6.6031 5.8868 0 3.9735 0 0 6.6865
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Three numerical examples and RBDO of the EDM

process parameters are used to validate the efficacy of

MCFPS. The comparison results demonstrate that MCFPS

can identify both the important sampling regions and the

inactive constraints, then more computational resource is

allocated to the important regions. As a result, MCFPS is

more efficient than the typical constraint boundary sam-

pling method and local adaptive sampling method. In

future work, we will take into account the influence of

objective function in the sampling strategies.
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Appendix

Kriging model

Kriging model has been widely used to approximate the

implicit performance responses in engineering applications

[58]. In Kriging, the predicted response value at a point not

only depends on the design parameters but also is affected

by the sample distribution [46].

Kriging model is based on the assumption that the

response function ĝðxÞ is composed of a regression model

f ðxÞTb and stochastic process ZðxÞ as follows:

ĝðxÞ ¼ f ðxÞTbþZðx) ð16Þ

where f ðxÞ is the prediction trend which is expressed by

polynomial function and with the coefficient vector b;ZðxÞ
is a Gaussian process with zero mean and covariance

between points x and w as follows:

Cov½ZðxÞ; ZðwÞ� ¼ r2ZRðh,x,wÞ ð17Þ

where r2Z is the process variance and Rðh,x,wÞ is the cor-

relation function defined by parameter h.

The squared-exponential function (also named aniso-

tropic Gaussian model) is commonly used to define the

correlation function [53, 58]:

R(h; x;wÞ ¼
Yn

1
exp½�hiðxi � wiÞ2� ð18Þ

Where xi and wi are the ith coordinates of points x and

w, n is the dimension of points x and w, and hi is a scalar

which gives the multiplicative inverse of the correlation

length in the ith direction [46]. An anisotropic correlation

function is preferred here because in reliability analysis and

RBDO the random variables are often of different natures

[52].

Fig. 6 EDM of 304 steel

Table 7 RBDO results for

EDM process parameters
Methods Sample Optimal design Pf ;1;% Pf ;2;% Pf ;3;%

LHS 60/60/60 21.7332 (4,364.68, 0.3) 2.2871 0 0

CBS 24/24/24 21.7271 (4,364.22, 0.3) 2.2845 0 0

LAS 15/15/15 21.7304 (4,364.43,0.3) 2.2947 0 0

MCFPS 15/12/12 21.7312 (4,364.62,0.3) 2.2865 0 0
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