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Abstract
In the current report, characteristics of the propagated wave in a sandwich structure with a soft core and multi-hybrid nano-
composite (MHC) face sheets are investigated. The higher-order shear deformable theory (HSDT) is applied to formulate 
the stresses and strains. Rule of the mixture and modified Halpin–Tsai model are engaged to provide the effective material 
constant of the multi-hybrid nanocomposite face sheets of the sandwich panel. By employing Hamilton’s principle, the gov-
erning equations of the structure are derived. Via the compatibility rule, the bonding between the composite layers and a soft 
core is modeled. Afterward, a parametric study is carried out to investigate the effects of the CNTs’ weight fraction, core to 
total thickness ratio, various FG face sheet patterns, small radius to total thickness ratio, and carbon fiber angel on the phase 
velocity of the FML panel. The results show that the sensitivity of the phase velocity of the FML panel to the W

CNT
 and dif-

ferent FG face sheet patterns can decrease when we consider the core of the panel more much thicker. It is also observed that 
the effects of fiber angel and core to total thickness ratio on the phase velocity of the FML panel are hardly dependent on the 
wavenumber. The presented study outputs can be used in ultrasonic inspection techniques and structural health monitoring.

Keywords  Multi-scale hybrid nanocomposite reinforcement · Elastic core · Doubly curved panel · Compatibility 
equations · Phase velocity
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1  Introduction

Up to now, huge research is proved that the composition-
ally structures have a marvelous thermo-electro-mechanical 
property [1–3] and this issue is being an important reason to 
take the attention of all engineering fields for having efficient 
productions with the aid of composite structure, especially 
carbon-based nanofillers reinforced structure [4–10]. In 
addition to what is mentioned owing to the wide applications 
of wave propagation analysis in structural health monitor-
ing, most recently, an interesting field of research has been 
started in scholar which is called wave propagation response 
[11–13]. In addition, the properties of reinforcements make 
them an appropriate choice to be used in chemistry, physics, 
electrical engineering [14–26], materials science [10], and 
engineering applications [27–35].

By considering the mentioned necessities and in the field 
of wave propagation in composite beams and plates, Ebra-
hime et al. [36] could present a paper to investigate the wave 
propagation of the sandwich plate in which the structure 
is embedded in a nonlinear foundation. Also, they consid-
ered a magnetic environment in their model and used the 
classical theory for doing their computational formulation. 
Based on their result, as the magnetic layer will play the 
most important role on the wave response of the sandwich 
plate [37]. presented a comprehensive formulation on the 
wave dispersion of a high speed rotating 2D-FG nanobeam. 
They used nonlocal theory for consideration of the couple 
stress in the nanomechanics effect on the wave response of 
the structure. They could solve their complex formulation 
via an analytical method and they reported that the rotating 
speed is the most effective parameter. By employing the new 
version couple stress theory, Global matrix, and Legendre 
orthogonal polynomial methods, and, Liu et al. [38] had a 
try for reporting the characteristics of the propagated wave 
in a micro FG plate. They reported that by controlling the 
couple stress, we will have the grater phase velocity in the 
aspect of wave propagation. Ebrahimi et al. [39] succeeded 
in publishing a paper in which a computational framework 
is developed for investigation wave behavior in a thermally 
affected nonlocal beam which is made by FG materials. One 
of their assumptions was that the nanobeam is under high-
speed rotation and is located in a thermal environment. They 
presented a lot of results but the most significant one was 
that changing the rotating speed can provide some novel 
results on the wave propagation in the nanostructure. In a 
novel work, Barati [40] showed the behavior of propagated 
wave in the porous nanobeam with attention to the nonlo-
cality via strain–stress gradient theory. Gao et al. [41] could 
report a mathematical framework to analyze the propagated 
wave in a GPLs reinforced porous FG plate via a well-known 
mixture method. Based on their result, porosity and GPLs 

weight fraction are two important parameters in the field of 
structural health monitoring via wave propagation method. 
Ebrahimi et al. [42] were able to provide results on the char-
acteristics propagated waves in a compositionally nonlocal 
plate in which the structure located in a high-temperature 
environment. Also, they consider the shear deformation in 
each element of the structure. They found that without doubt 
the nonlocal effect has a bolded role on the characteristics 
of propagated waves. Safaei et al. [43] tried to report char-
acteristics of the propagated waves in a CNTs reinforced 
FG thermoelastic plate via the high order ready plat theory 
and Mori–Tanaka method. Their important achievement was 
that the thermal stress and adding small amount of CNTs 
can make a remarkable effect on the wave velocity in the 
structure. The static and dynamic stabilities of the reinforced 
nanocomposite structures are presented in some researches 
[44–50] by having attention to the impacts of honeycomb 
core, porosity distributions, and transverse dynamic loads 
via higher-order theories. Many researchers [51–56] studied 
the behavior and stability of the FG multilayer composite 
and isotropic materials.

In the field of characteristics propagated waves in the 
shell, Bakhtiari et al. [57] provided some results on the wave 
propagation of the FG shell in which fluid flow through the 
shell is considered. Ebrahimi et al. [58] studied the wave 
response in a high-speed rotating nanoshell with a GPLs 
reinforced compositionally core and patched piezoelectric 
face sheet. They claimed that if the rotating should be con-
trolled for improving the phase velocity of the nanoshell. 
The dispersion behavior of the wave in the MHC reinforced 
shell is investigated by Ebrahimi et al. [59]. They used the 
lowest order shear deformation theory and eigenvalue prob-
lem for providing their formulation and results. They found 
out that the impact of nanosize reinforcements is more effec-
tive than the macro size reinforcements for improving the 
phase velocity of the compositionally shell. Karami et al. 
[60] developed a mathematical model for literature in which 
wave dispersion in an imperfect nanoshell via NSG and HSD 
theories is analyzed. They provided some evidences that sen-
sitivity of the prospected waves to the nonlocal effects, tem-
perature, and humidity in the porous material should be con-
sidered. The vibration and buckling/post-buckling responses 
of the curved structures are investigated in some researches 
[61–67]. A key issue in various engineering field is that the 
prediction of the properties, behavior, and performance of 
different systems is an important aspect [68–77]. Also, some 
researchers tried to predict the static and dynamic properties 
of different structures and materials via neural network solu-
tion [78–84]. In addtion, many studies reported the applica-
tion of applied soft computing method for prediction of the 
behavior of complex system [85–92].

In the field of analysis, the wave propagation in the smart 
structure, Li et al. [93] succeeded in publishing an article in 
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which they examined the wave propagation of a smart plate 
via a semi-analytical method. They modeled a GPLs rein-
forced plate which is covered with a piezoelectric actuator. 
They used the Reissner–Mindlin plate theory and Hamilton’s 
principle for developing their computational approach and 
did the formulation. The application of their result is that 
GPLs in a matrix can play a positive role in structural health 
monitoring and improve wave propagation in the structures, 
especially smart structures. Ebrahimi et al. [94] developed a 
mathematical model for literature in which wave dispersion 
of a smart sandwich nanoplate by considering the nanosize 
effect via nonlocal strain gradient theory and the sandwich 
structure is made of ceramic face sheets and magnetostric-
tive core. Abad et al. [95] published an article in which they 
presented a formulation about the wave propagation prob-
lem of a somewhat sandwich thick plate. They smarted the 
plate by patching a piezoelectric layer on the top face of 
the structure and they considered Maxwell’s assumptions in 
their computational approach. Habibi et al. [96] studied the 
wave response in a nanoshell with a GPLs reinforced com-
positionally core and patched piezoelectric face sheet. When 
they compared their result with molecular simulation, it can 
be seen that the nonlocality should be considered via NSGT. 
As a practical outcome they reported that the thickness of 
the smart layer will have more effect on the characteristics 
propagated waves in the nanoshell.

Based on the extremely detailed exploration in the litera-
ture by the authors, no one can claim that there is a study on 
the wave propagation of the doubly curved panel.

Therefore, characteristics of the propagated wave in a 
sandwich structure with a soft core and multi-hybrid nano-
composite face sheets are investigated. The HSDT is applied 
to formulate the stresses and strains. Rule of the mixture 
and modified Halpin–Tsai model are engaged to provide the 
effective material constant of the multi-hybrid nanocompos-
ite face sheets of the sandwich panel. By employing Hamil-
ton’s principle, the governing equations of the structure are 
derived. Via the compatibility rule, the bonding between the 
smart layer and the soft core is modeled. The results show 
that, CNT’s weight fraction, core to total thickness ratio, 
various FG face sheet patterns, small radius to total thick-
ness ratio, and carbon fiber angel have an important role in 
the phase velocity of the FML panel.

2 � Mathematical modeling

Figure 1 shows a sandwich doubly curved panel. The effec-
tive thickness (hb + hc + ht) and the middle surface radius of 
the doubly curved panel are presented by heff and R, respec-
tively. Besides, hb hc, and hp are the thickness of the multi-
hybrid nanocomposite reinforcement at the top layer, the 

core layer, and the multi-hybrid nanocomposite reinforce-
ment at the bottom layer, respectively.

2.1 � MHC reinforcement

The procedure of homogenization is made of two main steps 
based upon the Halpin–Tsai model together with a microme-
chanical theory. The first stage is engaged with computing 
the effective characteristics of the composite reinforced with 
CF as following [97]:

Here, elasticity modulus, mass density, Poisson’s ratio, 
and shear modulus are symbolled via �, E, G and � . The 
superscripts of the matrix and fiber are NCM and F, respec-
tively. Add the carbon fiber volume fraction ( VF ) to the 
nanocomposite matrix volume fraction ( VNCM ) is one.

The second step is organized to obtain the effective char-
acteristics of the nanocomposite matrix reinforced with 
CNTs with the aid of the extended Halpin–Tsai microme-
chanics as follows [97]:

Here, �dd and �dl would be computed as the following 
expression:

volume fraction, thickness, length, elasticity modulus, 
weight fraction, and diameter of CNTs are VCNT , tCNT , lCNT , 
ECNT ,WCNT , and dCNT  . Also, the volume fraction of the 
matrix and elasticity modulus of the matrix are VM and EM . 
So, The CNTs volume fraction can be formulated as below:

(1)E11 = VFE
F
11
+ VNCME

NCM,

(2)

1

E22

= 1
/
EF
22
+ VNCM

/
ENCM − VFVNCM

−
(�F)2ENCM

/
EF
22
+ (�NCM)2EF

22

/
EM − 2�NCM�F

VFE
F
22
+ VNCME

NCM
,

(3)
1

G12

=
VNCM

GNCM
+

VF

GF
12

,

(4)� = VF�
F + VNCM�

NCM,

(5)�12 = VF�
F + VNCM�

NCM.

(6)VF + VNCM = 1.

(7)

Ej =
5

8

(
1 + 2�ddVCNT

1 − �ddVCNT

)
EM +

3

8

(
�dlVCNT(2l

CNT∕dCNT ) + 1

1 − �dlVCNT

)
.

(8)

�dl = (ECNT
11

∕EM) − (dCNT∕4tCNT )
/
(ECNT

11
∕EM) + (lCNT∕2tCNT ),

�dd = (ECNT
11

∕EM) − (dCNT∕4tCNT )
/
(ECNT

11
∕EM) + (dCNT∕2tCNT ),



1682	 Engineering with Computers (2022) 38:1679–1696

1 3

Also, the effective volume fraction of CNTs can be for-
mulated as follows:

where �j =
(

1

2
+

1

2Nt

−
j

Nt

)
h j = 1,2,...,Nt . Furthermore, 

the sum of VM and VCNT as the two constituents of the nano-
composite matrix is equal to 1.

(9)V∗
CNT

=
WCNT

WCNT +
(

�CNT

�M

)
(1 −WCNT)

.

(10)

VCNT = V∗
CNT

|||�j
|||

h
FG - X,

VCNT = V∗
CNT

(
1 +

2�j

h

)
FG - V,

VCNT = V∗
CNT

(
1 −

2�j

h

)
FG − A.

VCNT = V∗
CNT

FG - UD,

Also, Poisson’s ratio, mass density, and shear modulus 
will be calculated as

2.2 � Kinematic relations

The displacement fields of the core can be given by [98]

(11)VCNT + VM = 1.

(12)�j = VCNT�
CNT + VM�

M ,

(13)�j = �M ,

(14)Gj =
Ej

2
(
1 + �j

) .

The strain components can be given by [98, 99]

(15)

uc(x, y, z, t) = uc
0
(x, y, t) + zc�

c
x
(x, y, t) − c1z

3
c

[
�c
x
(x, y, t) +

�wc
0
(x, y, t)

�x

]
,

vc(x, y, z, t) = vc
0
(x, y, t) + zc�

c
y
(x, y, t) − c1z

3
c

[
�c
y
(x, y, t) +

�wc
0
(x, y, t)

�y

]
,

wc(x, y, z, t) = wc
0
(x, y, t).

(16)
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�
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Also, the strain–stress equations of the metal structure 
can be given as

In which [100–103]:

(17)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�c
xx

�c
yy

�c
xy

�c
xz

�c
yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q55 0

0 0 0 0 Q44

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�c
xx

�c
yy

�c
xy

�c
xz

�c
yz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 1   A schematic of a sand-
wich doubly curved panel

In the Eq. (17) Ec , and �c are Young’s module and poison 
ratio of the metal, respectively.

2.3 � Face sheets

In the present structural model for the sandwich panel, the 
HSDT is adopted for the face sheets. Hence, the displace-
ment components of the top and bottom face sheets (j = t, b) 
are represented as

Q
11

= Q
22

=
Ec

1 − �2
c

, Q
12

= Q
21

=
Ec�c

1 − �2
c

,

Q
44

= Q
55

= Q
66

=
Ec

2(1 + �c)
.

(18)

uj(x, y, z, t) = u
j

0
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j
x
(x, y, t) − c1z

3
j

[
�j
x
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�w
j

0
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�x

]
,

vj(x, y, z, t) = v
j

0
(x, y, t) + z�j

y
(x, y, t) − c1z

3
j

[
�j
y
(x, y, t) +

�w
j

0
(x, y, t)

�y

]
,

wj(x, y, z, t) = w
j

0
(x, y, t).
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The strain components can be given by

Also, the strain–stress equations of the metal structure 
can be given as [9, 104–118]

where [119]

The terms involved in Eq. (21) would be obtained as [114, 
120–123]

Therefore, the face sheets are assumed as in-plane flex-
ible and transversely rigid panels. Also, the core is assumed 
as an in-plane and transversely flexible layer. Finally, in 
this model, there are fifteen displacement unknowns: five 
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unknowns for each face sheet and five unknowns for the 
core.

2.4 � Compatibility equations

The compatibility conditions assuming perfect bonding 
between the core and the composite layers that can be 
defined as follows:

2.5 � Extended Hamilton’s principle

For obtaining the governing equation and associated bound-
ary conditions, we can apply extended Hamilton’s principle 

as follows [24–26, 98, 124–126]:

(22)

uc(zc = −hc∕2) = ub(zb = hb∕2),

vc(zc = −hc∕2) = vb(zb = hb∕2),

wc(zc = −hc∕2) = wb(zp = hb∕2),

uc(zc = hc∕2) = ut(zt = −ht∕2),

vc(zc = hc∕2) = vt(zt = −ht∕2),

wc(zc = hc∕2) = wt(zt = −ht∕2).

(23)

t2

∫
t1

(�U − �W)dt = 0.
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The components of strain energy can be expressed as 
below:

which

(24a)
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where � = b, t, c.
Also, the kinetic energy [4–6, 8, 127–132] of each layer 

of the structure can be defined as bellow:

Finally, the motion equations are derived as follows:

Also, the motion equations for the nanocomposite face 
sheets are as follows:
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It is worth mentioning that, according to compatibil-
ity equations (Eq. 22), the numbers of unknown variables 
are decreased from 15 to 9. Therefore, the total number of 
unknowns in the core and the face sheet is reduced to 9.

2.6 � Solution procedure

Displacement fields for investigation the wave propagation 
analysis of the structure defined as follow [24–26, 109]:

where s and n are wave number along with the directions 
of x and y, respectively, also � is called frequency. With 
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replacing Eq.  (28) into governing equations achieve to 
[133–137]:

where

Also, the phase velocity of wave dispersion can be cal-
culated by Eq. (29):

(29)([K] − �2[M]){d} = {0},

(30){d} =
{
u0 v0 w0 �x0

��0

}
.

(31)c =
�

s
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In the Eq. (31), c and s are called phase velocity and 
wavenumber of a laminated nanocomposite cylindrical shell. 
These parameters are propagation speeds of the particles in 
a sandwich panel.

2.7 � Validation

The obtained results for the perfect panel are compared with 
the results of Refs.[138, 139]. These results are listed in 
Table 1 and 2. From these tables, it can be seen that the pre-
sent results have a good agreement with the obtained results 
in the literature. Note that, the dimensionless form of the 
frequency can be calculated using the below relation:

For more verification, the fundamental frequencies of 
the FML moderately thick plates resting on partial elastic 
foundations are calculated by the free vibration Eq. (21) as 
an eigenvalue problem. In Table 2, non-dimensional funda-
mental frequencies of the symmetrically laminated cross-ply 
plate (0◦

, 90
◦

, 90
◦

, 0
◦

) are shown as compared for different 
E1/E2.

3 � Results

In this part, a comprehensive investigation is carried out to 
demonstrate the effects of various parameters on the phase 
velocity response of a multi-hybrid nanocomposite doubly 

(32)Ω = �
a2

h

√
�M

EM

.

curved panel. The geometrical and material characteristics 
of constituent materials would be presented in Table 3.

With pay attention to Fig. 1 can find an investigation 
about the impacts of the various CNTs weight fraction 
( WCNT ) and core to total thickness ratio ( hc∕h ) of the FML 
panel on the wave responses of the doubly carved panel.

As stated by Fig. 2, the impact of WCNT on the phase 
velocity is obvious and considerable if the hc∕h is less than 
0.8. in another word for 0 ≤ hc∕h ≤ 0.8 , the phase velocity 
can improve due to increasing the CNTs’ weight fraction and 
this enhancement will be weakened by increasing the core 
thickness of the FML panel. Also, when the thickness of 
the core is small, the phase velocity falling down owning to 
increasing the hc∕h , but if we consider the thicker core, we 
can find an indirect relation between hc∕h and phase veloc-
ity. Accordingly, the sensitivity of the phase velocity of the 
FML panel to the WCNT can decrease when we consider the 
core of the panel thicker.

From Fig. 3, we can find research about the effects of the 
various FG face sheet patterns and core to total thickness 
ratio ( hc∕h ) of the FML panel on the wave responses of the 
MHC reinforced doubly carved panel.

The most obvious result in Fig. 3 is that for having an 
impact from FG face sheet patterns on the phase velocity we 
should consider the hc∕h less than 0.2. As another explana-
tion, considering different FG face sheet patterns will be 
ineffective at the higher value of the hc∕h . As a practical 
result, according to Fig. 3, it can be stated that the sensitiv-
ity of the phase velocity of the FML panel to the different 
FG face sheet patterns can decrease when the thickness of 
the core of the FML panel increases. Generally, for each 
hc∕h , when the face sheet is made by Pattern 1 and Pattern 
3, we can see the lowest and highest phase velocity in the 
sandwich panel.

With the aid of Fig. 4, presented the effects of the wave-
number and small radius to total thickness ratio ( R1∕h ) of 
the FML panel on the wave responses of the FML reinforced 
doubly carved panel.

The most evident outcome in Fig. 4 is that boosting the 
wave number can be an encouragement for improving the 
phase velocity of the FML panel and this impact from wave-
number on the wave propagation of the sandwich structure 
will change to be ineffective when the wavenumber is more 
than 11e4. As a practical result, if the small radius of the 
FML doubly curved panel is rising, the phase velocity of the 
system can increase and this impact will be ineffectual at the 
higher value of the wavenumber.

With attention to Fig. 5 can see an investigation for analy-
sis the impacts of the various CNTs weight fraction ( WCNT ) 
and wavenumber on the wave responses of the FML doubly 
carved panel.

The apparent and the most important result in Fig. 5 is 
that if there is more distribution of CNTs in the matrix of 

Table 1   Comparison of the first dimensionless natural frequency of 
simply supported CNT reinforced composite square perfect panel 
(a/h = 10)

VCNT Ref [138] Ref [139] Present study

11% 0.1319 0.1357 0.1350
14% 0.1400 0.1438 0.1429
17% 0.1638 0.1685 0.1658

Table 2   Non-dimensional fundamental frequency of SSSS cross-ply 
laminated square plate with G12/E2 = 0.6, G13/E2 = 0.6, G23/E2 = 0.5, 
a = b = 1, �=0.25

E1/E2 Ref [140] Ref [141] Presented study Discrepancy

10 8.2982 8.2981 8.5485 3%
20 9.5671 9.5671 10.0328 4%
30 10.326 10.326 10.6318 2%
40 10.824 10.854 11.0045 1%
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the face sheet of the FML panel, we will find that the phase 
velocity or wave response of the system can improve and 
without a doubt, this issue is considerable at the higher 
wavenumber.

Presented diagrams in Fig. 6 are drawn to have an expla-
nation about the effects of the wavenumber and different FG 
face sheet patterns of the FML panel on the wave responses 
of the FML reinforced doubly carved panel.

The bolded result in Fig. 6 is that boosting the wave num-
ber can be an encouragement for improving the phase veloc-
ity of the FML panel and this impact from wavenumber on 
the wave propagation of the sandwich structure will change Ta
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to be ineffective in the higher value of the wavenumber. As 
a practical result and at the lower wavenumber, when the 
face sheet is made by Pattern 1 and Pattern 3, we can see 
the lowest and highest phase velocity in the sandwich panel. 
Also, the wave propagation response of the FML panel with 
Pattern 2, 3, and 4 is similar when the wavenumber is great 
enough.

With the aid of Fig. 7, the effects of the fibers angel and 
different FG face sheet patterns on the wave responses of the 
FML reinforced doubly carved panel are presented.

The most general result in Fig. 7 is that for each FG face 
sheet patterns when the fibers angel is less than �∕2 , the 
phase velocity is decreasing and this trend will be revers for 
the fibers angel more than �∕2 . As the most interesting result 
from Fig. 7 is that when the fiber angel is 0.3 ≤ �∕� ≤ 0.7 , 
employing different FG patterns for making the FML cannot 
provide any change on the phase velocity of the structure. As 
another explanation, if the fibers are distributed in the matrix 
vertically, changing the FG patterns cannot play any roles 
on the wave response of the FML panel and as the fibers 
become horizontal, the effect of the FG patterns on the phase 
velocity becomes more dramatic. Reported data in Fig. 8 
are shown to have a deep presentation about the effects of 
the wavenumber, fibers angel of the FML panel, and small 
radius to total thickness ratio ( R1∕h ) of the FML panel on 
the wave responses of the doubly carved panel.

If we have excellent attention to Fig. 8, it could be seen 
that within a certain range of the core to total thickness ratio, 
there is no effect from the small radius to total thickness 
ratio of the FML panel on the phase velocity, and this range 
will be wider if the wave number rises. Also, for the lower 
wavenumber, when the fiber angel is 0 and 1 radians, the 
pick of the phase velocity of the system will happen but as 
the wave number increases, the maximum value of the phase 
velocity will be seen at 0.25 and 0.75 radians.
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With the aid of Fig. 9, the effects of the fibers angel and 
weight fraction of CNTs ( WCNT ) on the wave responses of 
the FML doubly carved panel are presented.

The most interesting result from Fig. 9 is that when the 
fiber angel is 0.4 ≤ �∕� ≤ 0.6 , increasing WCNT cannot 
provide any change on the phase velocity of the structure. 
As another explanation, if the fibers are distributed in the 
matrix vertically, changing the WCNT cannot play any roles 
on the wave response of the FML panel and as the fibers 
become horizontal, the effect of WCNT on the phase velocity 
becomes more dramatic. With pay attention to Fig. 10, we 
can see a study about the effects of the fibers angel and core 
to total thickness ratio ( hc∕h ) of the FML panel on the wave 
responses of the doubly carved panel.

as stated by Fig. 10 when the fiber angel is 0 ≤ �∕� ≤ 0.42 
and 0.58 ≤ �∕� ≤ 1, the phase velocity will be improved by 
having each decline in the core to total thickness ratio but 
this relation between fiber angel and hc∕h change to direct 
as the fibers angel is 0.42 < 𝜃∕𝜋 < 0.58. The reported 3D 
diagram in Figs. 11 and 12 are shown to have a compara-
tive study about the effects of the wavenumber, core to total 
thickness ratio ( hc∕h ) of the FML panel, and fiber angle on 
the wave responses of the doubly carved panel.

The most principal and evident result in Figs. 11 and 12 
are that as the wave number increases, the changes in phase 
velocity of the MHC reinforced sandwich panel which is 
caused by increasing the fibers angel and core to total thick-
ness ratio become much more dramatic. In the simpler word, 
the effects of fibers angel and core to total thickness ratio on 
the phase velocity of the FML panel are highly dependent 
on the wavenumber.

Fig. 7   Phase velocity versus fibers angel by having attention to the 
impact of different FG face sheet patterns
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4 � Conclusion

Wave propagation characteristics of a sandwich structure 
with the soft core and multi-hybrid nanocomposite face 
sheets is investigated. The stresses and strains are obtained 
using HSDT. Rule of the mixture and modified Halpin–Tsai 
model are engaged to provide the effective material constant 
of the multi-hybrid nanocomposite face sheets of the sand-
wich panel. Via the compatibility rule, the bonding between 
the smart layer and a soft core is modeled. Finally, the most 
bolded results of this paper are as follow:

•	 it is true that when the thickness of the core is small, 
the phase velocity falling down owning to increasing the 
hc∕h , but if we consider the thicker core, we can find an 
indirect relation between hc∕h and phase velocity;

•	 the sensitivity of the phase velocity of the FML panel 
to the WCNT and different FG face sheet patterns can 
decrease when we consider the core of the panel thicker;

•	 boosting the wave number can be an encouragement for 
improving the phase velocity of the FML panel and this 
impact from wavenumber on the wave propagation of the 
sandwich structure will change to be ineffective when the 
wavenumber is more than 11e4;

•	 as a practical result, if the small radius of the FML dou-
bly curved panel is rising, the phase velocity of the sys-
tem can increase and this impact will be ineffectual at the 
higher value of the wavenumber;

•	 if the fibers are distributed in the matrix vertically, chang-
ing the FG patterns cannot play any role on the wave 
response of the FML panel and as the fibers become hori-
zontal, the effect of the FG patterns on the phase velocity 
becomes more dramatic;

•	 when the fiber angel is 0 and 1 radians, the pick of the 
phase velocity of the system will happen but as the wave 
number increases, the maximum value of the phase 
velocity will be seen at 0.25 and 0.75 radians;

•	 when the fiber angel is 0 ≤ �∕� ≤ 0.42 and 0.58 ≤ �∕� ≤ 
1, the phase velocity will be improved by having each 
decline in the core to total thickness ratio but this rela-
tion between fiber angel and hc∕h changes to direct as the 
fiber angel is 0.42 < 𝜃∕𝜋 < 0.58;
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Fig. 10   Phase velocity versus �∕� for different value of hc∕h

Fig. 11   Phase velocity of the FML panel with respects to the impact 
of wavenumber and fibers angel

Fig. 12   Phase velocity of the FML panel by concerning the impacts 
of wavenumber and core to total thickness ratio
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•	 the effects of fibers angel and core to total thickness ratio 
on the phase velocity of the FML panel is hardly depend-
ent on the wavenumber.
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