
ORIGINAL ARTICLE

AK-GWO: a novel hybrid optimization method for accurate optimum
hierarchical stiffened shells

Reza Kolahchi1,2 • Kuo Tian3 • Behrooz Keshtegar4,5 • Zengcong Li3 • Nguyen- Thoi Trung4,5 •

Duc-Kien Thai6

Received: 18 June 2020 / Accepted: 23 July 2020 / Published online: 9 August 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The efficiency as computational efforts and accuracy as optimum design condition are two major changes in hybrid

intelligent optimization methods for hierarchical stiffened shells (HSS). In this current work, a novel hybrid optimization

coupled by adaptive modeling framework is proposed to improve the accuracy of the predicted optimum results of load-

carrying capacity for HSS by combining active Kriging (AK) and grey wolf optimizer (AK-GWO) for optimization. In the

active learning process, two data sets are introduced to train Kriging model, where active points given from initial data and

adaptive points simulated based on optimal point using radial samples. The ability for accuracy of AK-GWO optimization

method is compared with several soft computing models including Kriging, response surface method and support vector

regression combined by GWO. The accurate results are extracted for simulating the load-carrying strength of HSS using

the proposed AK-GWO method. The AK-GWO method is enhanced about 10% the accuracy of optimum load-carrying

capacity with superior optimum design condition compared to other models, while the load-carrying using AK-GWO is

increased about 2% compared the Kriging model.

Keywords Hybrid intelligent optimization � Adaptive learning method � Hierarchical stiffened shells � Hybrid nature-

inspired method

1 Introduction

Due to high strength and stiffness of stiffened shells, these

structures have widely utilized in aerospace components

[1–4]. The major failure mode of stiffened shells is buck-

ling capacity under axial compression loads [5–7].

Recently, increasing attentions on the hierarchical stiffened

shell (HSS) are being paid due to its outstanding

mechanical properties. In general, for robust design, the

HSS is involved the multi-source dimensional uncertainties

including skin, major and minor stiffeners. Wang et al. [8]

first found that HSS has advantages for improving the load

capacity and decreasing imperfection sensitivity. Wang

et al. [9] extended HSS composed by orthogrid major and

triangle minor stiffeners to improve the ability for buckling

and imperfections. Advanced fabrication and failure testing

investigations were carried out for the isogrid HSS and the

orthogrid HSS by Li et al. [10] and Wu et al. [11]. For

capturing the accurate post-buckling path, collapse point of

HSS, the explicit dynamic FE framework can be used for
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the nonlinear buckling behavior as good choice due to

robust analysis process with high-agreement by experi-

mental results [12, 13]. The asymptotic homogenization

method (AHM) was proposed efficient post-buckling

analysis of HSSs, whose the analysis time is reduced in

explicit dynamic analysis [9]. Tian et al. [14] established

numerical-based smeared stiffener method (NSSM) based

on AHM and Rayleigh–Ritz method, which achieves

higher prediction accuracy for linear buckling load of HSSs

than traditional smeared stiffener method (SSM). An

adaptive strategy using NSSM was developed by Wang

et al. [15] for HSSs to obtain the critical buckling mode.

Tian et al. [16] proposed a fast analytical method for

buckling load of shell structures using orthogonal decom-

position basis eigenvalue buckling method. In the analyti-

cal approaches, the accurate result for buckling loads with

fast computational time is the main changes in the robust

design of HSS. Therefore, the hybrid design optimization

can be used to enhance the computational burden using

modelling approaches in optimization buckling capacity of

HSS.

To robust design, the optimizations of HSSs are carried

out for best conditions of dimensional sizes. The radial

basis function (RBF) model was employed for optimiza-

tions of HSSs [15, 17, 18]. By decomposing a major (mi-

nor)-level as sub-optimization, Wang et al. [15] established

a multilevel optimization method to search the global

optimal solution. Tian et al. [14] proposed a competitive

sampling basis surrogate model for optimizations of HSSs.

the dative response surface method combined by harmony

search was implemented to search the optimum conditions

of stiffened panels [16]. By combining the Latinized par-

tially stratified sampling and multi-fidelity methods, Tian

et al. [19] developed enhanced variance reduction method

for surrogate-based optimizations of HSSs. Recently, the

variable-fidelity surrogate modelling approach for opti-

mization HSSs was employed to improve accuracy of

prediction-based surrogate model [20]. To provide the

optimal results of stiffened panels, Keshtegar et al. [21]

extended the adaptive harmony search combined by Krig-

ing. Generally, the surrogate model can be combined with

the optimization algorithms [22–26], for structural relia-

bility analysis [27–33] and reliability-based design opti-

mization [34–36]. The main effort of applied surrogate

models is to provide the accurate results. However, the

accurate results with efficient computation for analysis of

the complex structures as HSS are the main challenge in

the robust optimal design of thin-welded structures. The

computation burden of HSS can be improved based on the

hybrid intelligent optimization method as modelling tech-

niques coupled by meta-heuristics optimization algorithms.

However, the accurate optimal predictions using hybrid

intelligent optimization method is main challenge for

approximating buckling load and mass using Kriging

model to provide the reliable optimal design condition for

HSS.

A novel iterative active framework procedure is pro-

posed as hybrid intelligent optimization to extract the

accurate optimal results by Kriging model. The active data

and adaptive data points are used to train the Kriging

models. Using optimal results of GWO, the active data are

given from initial sampled data points, while the adaptive

data points are randomly simulated by dynamical radial

samples. The accuracy of the active Kriging is compared

with several models of SVR, Kriging and RSM. The results

indicated that the proposed active procedure is strongly

improved the accuracy predictions of optimal results, while

the safe condition is provided for optimum load capacity of

HSS.

2 Analytical buckling method

2.1 Studied example of HSS

The configuration of studied HSS is displayed in Fig. 1

where diameter D = 3000 mm, and length L = 2000 mm

with Young’s modulus (E) of 100,000 MPa and Poisson’s

ratio (t) of 0.3. The HSS has nine design variables involved

with continues variables (i.e., ts = skin thickness, hrj-
= height of major stiffener, hrn = height of minor stiff-

ener, trj = thickness of major stiffener and trn = thickness

of minor stiffener) and discrete variables (i.e., Naj = num-

ber of major stiffeners at axial, Nan = number of axial

minor stiffeners between axial major stiffeners, Ncn-

= number of circumferential minor stiffeners between

circumferential major stiffeners, Ncj = number of circum-

ferential major stiffeners). The boundary condition is

clamped at lower end and fixed at upper end. On upper end

of HSS, a uniform axial load is utilized.

2.2 Analysis approach of HSS

In this paper, the explicit dynamic method is used as the

analytical approach of HSS, which can capture the ultimate

load-carrying capacity of HSS and yields a good agreement

with the experiment [13]. The formulation of the explicit

dynamic method is as follows:

Mat ¼ Fext
t � Fint

t � CVt �KUt; ð1Þ

in which M stands mass matrix, a stands for the vector of

nodal acceleration, stands for the vector of, Fext
t and Fint

t

denote applied external and internal force vector, respec-

tively. C is damping matrix with nodal velocity vector

V. K is stiffness matrix, U is nodal displacement vector,
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and t denotes time. Here, the central difference approach is

employed to compute the explicit time integration for

velocity and acceleration.

2.3 Initial database of HSS

The data points of load-carrying capacity and mass of HSS

are computed based on FE method. This initial data is used

for training process of the models as Kriging, SVR and

RSM which are given using 400 data points. The input data

for nine design variables of HSS is simulated using Latin

hypercube sampling (LHS) to give the response of struc-

tures under buckling force. The input train data set and

relative responses i.e., load capacity and mass of HSS

which are computed by jointing nine design variables as

input to a computer program. The statistical properties

including maximum (Xmax), minimum (Xmin), average

(Xmean), standard deviations (STD) and coefficient of

variations (COV) of 400-total data for training models data

are presented in Table 1. The COVs of the input variables

are varied in the range from 0.2 to 0.4. As it can be seen,

the load varies from 10,000 ot 35,000 kN with the mean of

18,427 kN, while mass for 200–610 kg with the mean of

351 kg. The bar diagram of the initial data points of load

and mass computed by FE model is presented in Fig. 2.

Fig. 1 Schematic diagram of

hierarchical stiffened shell

Table 1 Statistical properties

using 400 initial data points of

design variables and FE results

for load and mass

Statistics hrj hrn Naj Nan Ncj Ncn trj trn ts Load (kN) Mass (kg)

Xmin 15 9 20 1 3 1 3 3 2.5 6851.09 204.58

Xmax 30 15 50 4 9 4 12 12 5.5 33,973.90 609.85

Xmean 22.5 12 35 2.5 6 2.5 7.5 7.5 4 18,427.12 351.64

STD 4.35 1.74 8.69 0.96 1.78 0.96 2.61 2.61 0.87 4829.16 71.95

COV 0.19 0.15 0.25 0.38 0.30 0.38 0.35 0.35 0.22 0.26 0.20

Fig. 2 Bar diagram of evaluated FE for load capacity and mass of HSS
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3 Optimization process

In hybrid intelligent model to find design point, optimiza-

tion loop is one of major importance steps. In optimization

framework, the buckling load (Pcr) as objective function

should be maximized under the mass constraint (W) as

subjective function for studied HSS. The optimization

model for HSS problem is described by the following

optimization model:

max Pcr

s.t.W � 369;
ð2Þ

where Pcr and W are the two approximated functions that

the Kriging model used to approximate these functions

based on the initial data points-based active data set and the

adaptive data set in the optimization process. The input

data of this problem is used to calibrate the Kriging models

based on nine design variables as Ncj, Naj, Ncn, Nan, ts, hrn,

hrj, trj, and trn, in which four design variables, i.e., Naj, Ncj,

Nan, and Ncn are the integer variables, while other are

continues variables. The lower and upper bond of variables

is, respectively, selected based on the Xmin and Xmax, as

presented in Table 1. The allowable mass in this problem is

given 369 kg that it used in subjective function. Using the

optimization model of HSS, the penalty strategy can be

used to define the unconstraint optimization model as

below:

max Pcr þ k max ðW � 369; 0Þ; ð3Þ

where k is the penalty factor as k ¼ 104 and max ðW �
369; 0Þ represent the penalty function that it set to zero in

the feasible domain on mass. The various optimization

methods can be utilized to search optimal design of this

problem [16, 22, 23, 35, 37–40]. The Grey wolf optimizer

(GWO) is an swarm-inspired optimization method extrac-

ted from grey wolves in social hierarchy and hunting their

behavior [41]. The GWO has advantages including solve-

free mechanism, free parameters to control its convergence

performance, simplicity to apply an optimization problem,

and reducing the local optimum in optimization process.

The presented results by [41] showed that GWO provided

the highly performance to search the optimal results com-

pared to well-known heuristics optimization algorithms.

Consequently, the GWO can be used to find the optimal

conditions of the complex engineering problem due to

application of a random search in the optimizer processes.

Recently, the GWO was implemented for optimization of

different engineering problems [42, 43]. In the GWO, the

random search process is obtained based on four categories

of Wolf as delta (d), beta (b), and alpha (a), while other

wolves named as omega (x). The delta (d), beta (b), and
alpha (a) are three best solutions which are used to adjust

the new position of the x wolves. Alpha (a) Wolf has the

responsibly of the optimal results among other wolves and

the best solution is given based on alpha (a) Wolf, while

beta (b) provides the hunting (best solution) and to give

decision-making for increasing the activities of alpha (a)
Wolf and reinforcing the decision of a to find best solution.

Delta (d) has the three-rank in the wolves and they provide

other design domain and try for producing the best position

to find the best solution for a and b wolves. The omega (x)
have the lowest ranking wolves that they control the

boundaries and territory of design domain and they guar-

antee to safe search for find the best solution in the opti-

mization process. The positions of d, b, and a wolves are

adjusted by the following random process using the below

formulation:

Xðt þ 1Þ ¼ XpðtÞ � AjC:XpðtÞ � XðtÞj; ð4Þ

where the position vector of wolves X is updated based on

random parameter C and A at new position of t ? 1. Xp

represents the wolves position of a, b, and d. The type of

alpha provides the best optimal results among other wolf’s

positions. Based on the adjusting positions of the wolves,

the iterative procedure to search the optimal results of HSS

is given as follows:

Step 1: Define optimum model as

f ðXÞ ¼ Pcr þ k max ðW � 369; 0Þ.
Step 2: Set the upper bound (XU), lower bound (XL) of

design variables, numbers of wolves (NW = 10), and

maximum iterations (NI = 1000).

Step 3: Uniformly initialize variables as

X ¼ XL þ randðÞðXU � XLÞ; ð5Þ

where randðÞ is a random randðÞ [ [0, 1] and X [ [ Naj,

Nan, Ncn, Ncj, ts, hrn, hrj, trj, trn].

Step4: Check the boundaries of the each position for

wolves as XL £ X £ XU.

Step 5: Compute f(Xi), i = 1, 2, …, NW for each agent.

Step 6: Determine Xa; Xb and Xd based on results

obtained from step 5.

Step 7: Generate A and C as follows:

A ¼ 2randðÞ � vðtÞ � vðtÞ
C ¼ 2randðÞ;

ð6Þ

where rand() 2 0; 1½ �and vðtÞ ¼ 2� 2t/NI. A [ [- 2, 2]

that it is given at a small value at the final iterations, i.e.,

A * 0 due to vðtÞ * 0.

Step 8: determine position of each agent as below:

X1 ¼ Xa�A1jC1:Xa�Xj
X2 ¼ Xb�A2jC2:Xb�Xj;
X3 ¼ Xd�A3jC3:Xd�Xj

ð7Þ
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where Xa, Xb and Xd, respectively, represent the position

of alpha, beta and Xd delta wolves.

Step 9: Update the position of X X in the current

solution as below:

Xðt þ 1Þ ¼ X1 þ X2 þ X3

3
: ð8Þ

Step 10: Control convergence as t[NI.

In the optimization process, the optimization function is

approximated using the Kinging model. Consequently, the

accurate optimal condition is directly sensitive to predic-

tions of Kriging model to evaluate the load and mass

functions. In this current work, we enhanced the predic-

tions of Kriging–based surrogate model using an active

learning procedure.

4 Active learning Kriging

The Kriging model-based data-driven is enhanced for

accurate prediction of the load-capacity and mass of HSS

in the optimization process. The Kriging model is trained

using two active data points. In the first selected data, the

initial input data points are refined by selecting the active

points. In the second stage, several adaptive points are

simulated in active region of optimum condition.

4.1 Kriging model

The Kriging-based surrogate model was introduced for

geostatistical problems by Krige and Danie in 1952 [44]

Commonly, the Kriging model-based data-driven can be

implemented for approximation of the nonlinear relations

in engineering problems as hydrology [45] energy of solar

[16], structural design optimization [46, 47], reliability

analysis [34, 48–51], reliability-based design optimization

[52, 53], and etc. The Kriging model is presented as

follows:

PðXÞ ¼ gðXÞTbþ rðXÞTc: ð9Þ

In Kriging model, the first term, i.e., gðXÞTb represents

mathematical formulation, while the second term, i.e.,

rðXÞTc represents the stochastic relation. g(X) and b,
respectively, denote the basic function and unknown

coefficient vectors. The stochastic term is given by Gaus-

sian function with mean of zero and covariance vector as

follows:

covðÞ ¼ r2Rðh;Xp;XqÞ; ð10Þ

where r2 represents the variance, Rðh;Xp;XqÞ denotes the
correlation function between input data points Xp and Xq (p,

q = 1, 2, …, m, where m is number of train data). h in

Rðh;Xp;XqÞ denotes the correlation parameter. Generally,

the correlation parameter h is computed using the follow-

ing maximizing function [29, 54]:

LðhÞ ¼ �mðLnðr2Þ þ Lnð Rj jÞ; ð11Þ

where Ln denotes the logarithmic operator. By determining

h, we can be given the b as below:

b ¼ ðgTR�1gÞ�1gTR�1O; ð12Þ

and based on h and b, we have

c ¼ R�1ðO� gTbÞ; ð13Þ

where O is observed data in train phase, R is the cor-

relation matrix and is determined as follows [27, 28]:

R ¼

1 rðX1;X2Þ . . .
rðX2;X1Þ 1

..

. . .
.

rðXm;X1Þ rðXm;X1Þ � � �

rðX1;XmÞ
rðX2;XmÞ

..

.

1

2
6664

3
7775; ð14Þ

in which r(Xp, Xq) is the covariance basis function which is

computed using kernel basis Gaussian function as follows

[31]:

r Xp;Xq

� �
¼ exp �

Xk
i¼1

hiðXi
p � Xi

qÞ
2

" #
; ð15Þ

where hi, i = 1, 2, …, k represents the i-th correlation

parameter for k input data. In Kriging model using the

kernel function,

rðXÞ ¼ ½Rðh;X1;XÞ; Rðh;X2;XÞ; . . .;Rðh;Xn;XÞ�T. It can

be conducted that the Kriging model is predicted data using

covariance term which is provide using correlation matrix

R by Gaussian kernel function. Consequently, the flexi-

bility of the Kriging model for prediction the nonlinear

relation may be increased compared to the polynomial

regression. The Kriging is combined with global opti-

mization method by satisfying feasible point based on

sampling set for Kriging model [23, 55]. Recently, the

Kriging model was applied to optimal design condition

[28]. The design domain in the optimization process is

approximated based on Kriging instead of space reduction

methods by expensive point strategy [38].

4.2 Active learning procedure

There is tried to increase the effect of active region of

optimal design space in calibrating process of Kriging

model. Therefore, an iterative regression process using

Kriging approach is introduced based on two major active

samples. The first samples are given from initial data

presented in Sect. 2.3 for HSS, while second active points

are simulated using radial random samples, which are
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added into the input data set. Using the optimal design

point (X*) given from optimization process, it is used to

adjust the active and adaptive points. These data points are

provided in modelling procedure as below.

4.2.1 First active data points

Using x* obtained by GWO, the active points are selected

from initial data points using scalar criterion which is

computed as below:

SCi ¼ Zi � Z�k k i ¼ 1; 2; . . .;NS, ð16Þ

where NV denotes the number of design variables. Z� and

Zi are, respectively, the normalized design variables at

optimum points (x*) and initial samples (x) computed as

below:

Zi ¼ 2
xi � Xmin

i

Xmax
i � Xmin

i

� 1 � 1� Zi � 1 i ¼ 1; 2; . . .;NV,

ð17Þ

in which Xmax
i Xmin

i are, respectively, the upper and lower

bounds of ith design variable which is given based on

Table 1. The active points are selected in modelling pro-

cess of Kriging when SCi � ea where, ea is a factor.

4.2.2 Adaptive data points

In the proposed active model, several additive points are

randomly simulated to increase the data set at the optimal

region. Using optimal design point (Z�), the normalized

adaptive random points are generated as follows:

ZAi ¼ R� randðÞ � expð�kÞ RDi

jjRDijj
þ Z�

i ¼ 1; 2; . . .;NA,
ð18Þ

where R is the control factor, i.e., 0:1�R� 1, k is iteration

number to provide the additive points. rand() [ [0, 1]. RDi

is the random input point. The adaptive points are gener-

ated using random radius of R� randðÞ � expð�kÞ RDi

jjRDijj
.

By increasing the iteration number to build the Kriging

model in the optimization process, the random radius is

decreased to provide. This means that, the additive data

samples are located on the optimal design domain. Con-

sequently, the predictions of Kinging model may be

improved to evaluate the accurate results of optimal con-

ditions for HSS. In this current work, we used R ¼ 0:5.

4.3 Framework of AK-GWO

Using additive and active points, the surrogate model is

regressed then; calibrated model is implemented for

approximating the optimum model of HSS in GWO

framework presented in Fig. 3. In the first iteration, The

Kriging model is trained using initial data. However, the

Kriging model is adapted by the active process. The input

dataset applied to train Kriging model are presented as

below steps:

Step 1: Give the optimum point (x*), number of adap-

tive points (NA), R and the iterations for training the

Kriging model (k).

Step 2: Normalize input data (Zi).

Step 3: Select the active data as

Zai 2 fZijSCi � ea i ¼ 1; 2; . . .;NSg.
Step 4: Generate RD = rand(NA, NV).

Step 5: Create the adaptive points using Eq. (18)

Step 6: Transfer active and adaptive data into original

space as below:

xi ¼
Zi þ 1

2
ðXmax

i � Xmin
i Þ þ Xmin

i : ð19Þ

Step 7: Compute the buckling loads and mass of HSS

for adaptive points.

The optimization result is affected on the active and

adaptive points due to applying the optimal point. The

framework of hybrid intelligent optimization method is

proposed in the Fig. 3. The final optimal result is given as

solution when the new optimum design point is followed

on the previous optimum point. In this framework, the

GWO is used to search the optimal conditions, while

Kriging model is actively learned using adaptive and active

points. The adaptive data is jointed to the FE model to give

the buckling load and mass. The proposed hybrid mod-

elling and nature-inspired optimization method involves

two major loops as optimization operated by GWO and

modelling loop operated using Kriging model trained by

the active data sets.

5 Results and discussion

The abilities of proposed method for accurate optimum

results are compared with Kriging without active learning

process, response surface method and support vector

regression. The parameter of the SVR are given asC = 9000,

r = 16.5 and e = 0.25 in training phase buckling load and

C = 5000, r = 15 and e = 0.15 in training process of mass.

The factors to active learning Kriging model are set as

ea = R = 0.5 and ||Z*(k) - Z*(k - 1)||\ 10–2 is used for

stopping criterion of the proposed hybrid intelligent model.

The results of the hybrid intelligent model as active

Kriging combined by GWO are presented in Table 2.

However, the relative buckling modes corresponding to

each iterations 1–6 of active learning Kriging for studied

HSS are presented in Fig. 4. By comparing results in

Table 2 and Fig. 4, it can be conducted that the different
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predictions for loads are obtained in the first and second

iterations. This means that the active data to increase the

optimal domain in the optimization process may be

improve the prediction of the buckling load. On the other

hand at the final iterations, the buckling load predictions

are followed to the same results as 23,330 kN.

Buckling modes for different iterations at optimum point

of hybrid intelligent method for HSS are plotted in Fig. 4.

It can be observed that, these buckling modes are all global

buckling modes, which are considered as buckling modes

with high load-carrying capacity for HSS [14].

The iterative procedure-based Step 1 to Step 6 of the

active data points from initial simulation and adaptive data

points from radial sampling for studied method are showed

in Fig. 5 based on two principal dimensions which is

computed based on principal component analysis (PCA)

[56]. Note from Fig. 5 that the adaptive points are

increased the chance to simulate the optimal design

domain, while the active point is selected form initial

database. By comparing the results, it can be conducted

that the active data and adaptive data points of Step 5 are

similar to Step 6.

Figure 6 illustrates the obtained results from the intel-

ligent approach using AK and the FE model at the optimal

design points for load and mass of HSS. It can be con-

ducted that the accuracy prediction of Kriging for mass is

more than the buckling load, while the approximated

buckling loads by active learning Kriging model are fol-

lowed to the FE results as well as the mass at the final

iteration. This means that the proposed stagey can be

Fig. 3 Framework of proposed intelligent optimization method for HSS
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provided the accurate results compared the Kriging com-

bined by GWO.

The optimal design for different models as Kriging, AK-

Kriging, SVR and RSM are presented in Table 3. As seen

from the results of Table 3, the AK- Kriging is improved

the accuracy of the Kriging model for load about 10% from

25,188.54 to 23,329.24 kN and for mass about 0.6% from

366.60 to 368.94 kg. By comparing the FE results for all

models, the Kriging and AK-Kriging are satisfied the mass

constraint of the optimum model for HSS as W � 369.

Whereas, SVR and RSM models are provided optimal

mass more than the 369 kg. Therefore, it can be conducted

Fig. 4 Buckling mode at the optimum design point for different iterations of hybrid intelligent method for HSS

Table 2 Iterative results of the

proposed hybrid intelligent

method for HSS structure

Iteration hrj hrn Naj Nan Ncj Ncn trj trn ts Load (kN) Mass (kg)

1 30 15 50 3 3 4 3 3 5.305 25,188.54 369.00

2 30 15 48 2 3 4 3 5.048 5.057 23,878.47 368.99

3 29.916 13.5715 50 3 3 4 3 3 5.5 23,644.04 369.00

4 30 15 50 3 3 3 3 3.493 5.218 23,167.56 369.00

5 30 15 48 3 3 2 3 3.948 5.264 23,391.24 369.000

6 29.954 14.7329 48 3 3 2 3.002 4.409 5.179 23,329.24 369.00
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Fig. 5 Two-dimensional reduction of simulating input data using PCA for HSS

Fig. 6 Comparative results of load and mass using active learning Kriging and FE models
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Table 3 Comparative optimal

results for different models in

studied HSS

Method Kriging AK-Kriging SVR RSM

Optimal design point

hrj 30 29.954 30 30

hrn 15 14.733 14.99 15

Naj 50 48 39 33

Nan 3 3 4 4

Ncj 3 3 4 3

Ncn 4 2 1 1

trj 3 3.002 4.399 3

trn 3 4.409 3 10.158

ts 5.305 5.179 5.553 4.33

Predicted results

Load (kN) 25,188.54 23,329.24 23,764.18 23,383.90

Mass (kg) 369.00 369.00 369.00 369.00

FE results

Load (kN) 22,817.85 23,252.35 24,023.45 23,906.05

Mass (kg) 366.60 368.94 383.14 379.22

Relative error

Load (%) 10.39 0.33 1.08 2.18

Mass (%) 0.66 0.02 3.69 2.70

Fig. 7 Comparing the buckling

mode at optimum design point

for different models for HSS
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the RSM and SVR show the less relative error for pre-

diction load capacity than the Kriging but the mass is not

satisfied the optimum condition using the evaluating opti-

mization model. However, AK-Kriging model is signifi-

cantly improved the accuracy of predictions for load and

mass compared to the RSM and SVR. The Kriging model

is provided more accurate result for mass than RSM, while

the stochastic term in Kriging model is not improved the

accuracy of predicted load compared to the RSM.

Buckling modes at optimum design point for Kriging,

AK-Kriging, SVR and RSM models for HSS are compared

and displayed in Fig. 7. Similarly, it can be found that,

these buckling modes are all global buckling modes

6 Conclusions

In optimization complex engineering problems, the finding

optimal design is time consuming process due to applying

the finite element analyzer. The accurate optimum result

for real engineering problems is vital issue to safe and

reliable design conditions. A hybrid statistical and nature-

inspired optimization method using active learning-based

Kriging method combined by Grey Wolf optimizer (GWO)

named AK-GWO is proposed to enhance the accuracy of

optimal design condition for the hierarchical stiffened

shells (HSS). To enhance the accuracy and efficiency of

optimization for HSS for both load capacity as objective

and mass as constraint, the active process can be imple-

mented using Kriging model. An active learning process

applied in Kriging is proposed using active and adaptive

points. Using optimum determined by GWO, the active

points are determined from initial simulated data, while the

adaptive points are computed using convex procedure for

training Kriging model. The accuracy of proposed AK-

GWO are compared with several modelling methods as

Kriging, support vector regression (SVR) and response

surface method (RSM) which, are combined by GWO. The

optimization results for maximum load-carrying capacity

of HSS indicated that AK-GWO preformed superior

accuracy compared to other models. The accuracy of

optimum results using AK-GWO is improved about 10%,

6% and 7% for load and about 1%, 4% and 3% for mass

compared to Kriging, SVR, and RSM, respectively. The

mass constraint based results obtained by RSM and SVR

are not satisfied, while the hybrid AK-GWO method is

provided the accurate results with safe condition for HSS.

The proposed optimization framework can be tested for

searching the optimal condition of complex engineering

problem, in future.
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