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Abstract
Optimization methods are widely used to improve industrial processes and enhance the quality characteristics of product, 
where process costs are directly linked. Given this assumption, this study aims to present a multivariate proposal of the 
Taguchi loss function, to model and optimize manufacturing processes, searching to establish values that prioritize quality 
and provide the minimum loss in view of the process costs. For this, design of experiments techniques will be used to model 
the process and the calculated loss functions. The strategy of principal components analysis is used to minimize the data 
dimension, considering the structure of variance–covariance. Then, the normal boundary intersection method is used to find 
the Pareto frontier. Based on the values, the method also proposes a total loss function equation, which is characterized as 
an approach to choose the optimal point based on the sum of the loss functions for the Pareto frontier through the process 
cost. To demonstrate the behavior of the method, the flux-cored arc welding of stainless-steel cladding process was applied. 
In view of the results, the method provided an optimal value at the Pareto frontier, contemplating an appropriate balance 
between minimal loss and higher quality, which were compared with other studies in the literature. The method also provided 
a reduction in computational effort of approximately 90% (from 210 to 21 subproblems), obtaining the best solution and 
contemplating the multivariate nature of the data.

Keywords Response surface methodology · Taguchi loss function · Principal component analysis · Normal boundary 
intersection · Flux-cored arc welding process

1 Introduction

To survive in the competitive industry and meet customer 
demands, industries should constantly enhance their pro-
ductive processes. Improvements in quality, cost, flexibility, 
speed and reliability are frequent challenges faced by the 
sector. It is possible to find in the literature several articles 
that present mathematical and computational strategies to 

improve quality in industrial processes, such as: [1–5]. On 
the other hand, the relationship between quality and price is 
a very important factor since price represents a loss for the 
consumer at the time of purchase and low quality represents 
an additional loss during the use of the product. This “loss” 
includes the cost of customer dissatisfaction that leads to the 
denigration of the company’s reputation [6, 7]. This concept 
is very different from traditional guidelines for producers, 
and includes rework, waste, warranty and services costs as 
measures of quality.

For these reasons, Taguchi presented the quadratic quality 
loss function to redefine the quality of a product. All pro-
cesses that have a decreasing value for the quality loss func-
tion (QLF) can assure that performance has been improved. 
QLF is a mathematical model that accounts for the quality 
loss in terms of monetary values resulting from the deviation 
in quality related to the target specification. When analyzing 
the QLF of a process, the existence of few variables facili-
tates the calculation. However, an industrial process with 
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different combinations of parameters and different quality 
characteristics can make the analysis difficult. This problem 
is overcome with the advent of computing, which allows 
complex mathematical applications aimed at improving 
quality. The objective in calculating loss is to evaluate quan-
titatively the loss in quality caused by the variation. This can 
then be applied to various problems in different sectors such 
as health, real estate and manufacturing. Even though QLF 
can be applied in several areas due to its distinct flexibility, 
these applications are rarely exposed in the literature.

Besides, when analyzing applications aimed at industrial 
processes, such as welding, there is a need to promote mod-
eling that allows quality optimization, but that considers the 
cost reduction related to losses. It is possible to verify sev-
eral studies that use different optimization methods aimed at 
quality, such as genetic algorithm [4], particle swarm opti-
mization [8], salp swarm algorithm [9], bat optimization 
algorithm [10] and sunflower optimization [11]. In addition, 
artificial neural network [12, 13] and normal boundary inter-
section (NBI) [14] applied to optimization algorithms and 
damage detection. Among them, the NBI method stands out, 
given its ability to create Pareto borders that are equidistant 
and not dominated. However, none of these contemplates 
the application on QLF.

Another common characteristic of industrial processes 
is the number of quality variables that impact the indus-
trial cost and, consequently, may present a significant vari-
ance–covariance structure. Analyzing data of this nature, 
there is a need to use multivariate techniques [15]. This type 
of technique promotes the quality variables interpretation 
without neglecting the covariance between them. Among 
the most used multivariate techniques, the principal compo-
nent analysis (PCA) can be highlighted. PCA is a technique 
widely used to reduce the dimensionality of extensive and 
correlated data [16, 17], promoting non-correlated response 
vectors. This technique can be verified in several applica-
tions, such as: [9, 16, 18].

Searching to contemplate the scarcity of QLF applica-
tions and contribute to research in this area, this study pro-
poses a multivariate optimization method for the Taguchi 
loss function. For this, the proposal will merge techniques 
such as response surface methodology (RSM), ordinary least 
squares, PCA and NBI in a new methodology to find the 
best quality index based on the process cost in the face of 
loss. Based on a priori experimental design, the target value 
must be found and the loss function of each experiment must 
be calculated, creating a new loss function experimental 
matrix. In view of the correlated nature and the data exten-
sion, PCA technique is applied, reducing the data dimension 
(computational effort) and extracting uncorrelated scores. 
From the modeling of the components scores of loss func-
tions, the multi-objective optimization is performed by the 
NBI method, creating a frontier of optimal loss function 

solutions. In addition, this study presents a total loss func-
tion metric to define the best point on the Pareto frontier 
based on minimizing the QLF. It is important to note that, 
to the authors’ best knowledge, there are no studies in the 
literature that present a multivariate optimization method 
for the Taguchi loss function using techniques such as PCA 
and NBI.

To demonstrate the proposed method in a real case, the 
flux-cored arc welding (FCAW) of stainless-steel cladding 
process will be investigated. This approach is characterized 
by a process of joining metals using the heat of the electric 
arc set between the wire and the workpiece [19]. FCAW has 
several quality characteristics that will be investigated in this 
study, such as bead width, depth of penetration, height of the 
reinforcement, dilution and productivity. In addition, this 
process stands out for being widely studied, as in research 
on [20–24].

This study can be divided as follows: in Sect. 2, the theo-
retical background is presented, describing techniques such 
as loss function, RSM, PCA and NBI; Sect. 3 presents the 
proposed method; the application, method, results and tech-
nical discussion of the method is detailed in Sects. 4 and; 5 
draws the conclusion.

2  Theoretical background

2.1  Taguchi loss function

Taguchi loss function (or quality loss function) is a method 
of measuring loss as a result of a service or product that 
does not satisfy the demanded standards [7]. There are two 
reasons for using the Taguchi function. Firstly, the charac-
teristics that have different measurement units can be con-
verted into a common magnitude: loss scores. Also, the loss 
becomes even more significant when the value deviates from 
the target value, given that the loss of a quadratic function 
is not linear [25].

On loss modelling, Taguchi also affirms that customers 
become even more dissatisfied as performance deviates from 
the target. The author proposed a quadratic function to rep-
resent this dissatisfaction, which is defined when the first 
term derived from the target’s Taylor expansion is equal to 
zero. The curve is centred over the target-value, which rep-
resents the best performance. On the other hand, identifying 
this optimal value is not necessarily a simple task and the 
designer’s best approximation is usually adopted [6].

The Taylor series expansion for the loss function L(y)= f(y 
– T) around the nominal value is defined as [7]:

(1)
L(y) = L (T) +

L�(T)

1!
(y − T) +

L��(T)

2!
(y − T) +⋯ +

Ln(T)

n!
(y − T)
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Given that L(y) is 0 when y = T (by definition, the loss 
of quality is zero when y = T), and that the function has a 
minimal value at this point, the first derivative in relation to 
m is equal to zero. Therefore, the first two terms of Eq. (1) 
are equal to zero. If the terms of order higher than two are 
disregarded (truncated at the 2nd order term), the equation 
is represented as follows:

where δ is the proportionality constant.The loss increases 
significantly as the difference between the real and target 
values increase, since the loss function is quadratic [7]. This 
loss is represented by a continuous function, indicating that 
it is possible to find a minimal point through optimization 
techniques that corresponds to the lowest losses in a manu-
facturing process.

2.2  Response surface methodology

Response surface methodology (RSM) is a tool that models, 
analyses and optimizes problems where the responses can 
be influenced by several variables. This is also valid where 
the relationship between these dependent and independent 
values is unknown [26].

An approximation of the real interaction can be used to 
analyse a process. The original argument of a multidimen-
sional Taylor Series’ expansion can be used to approximate 
a high order polynomial. This is done by truncating the 
polynomial in the quadratic term to obtain a second order 
surface response. In regions where curvatures are present, 
this model will provide satisfactory results. This model can 
be expressed in mathematical terms by the Eq. (3), where 
β represents the coefficients of the model, k represents the 
number of independent variables being considered and ε 
represents the error. The importance of using this method 
can be found widely in the literature, where many papers 
have used the response surface methodology in optimization 
problems [27, 28].

2.3  Principal component analysis

Principal component analysis (PCA) is a multivariate analy-
sis technique used to transform a set of responses or quality 

L(y) =
L�(T)

2!
(y − T)

(2)L(y) = �(y − T)2,

(3)Y(�) = 𝛽0 +

k∑
i=1

𝛽ixi +

k∑
i=1

𝛽iix
2
i
+
∑
i<j

∑
𝛽ijxixj + 𝜀.

characteristics into a linear relation of the non-correlated 
components. PCA has three goals: exploration, reduction 
and data classification. The best results are obtained when 
the responses or quality characteristics are highly correlat-
ed1positively and negatively [29].

According to the Johnson and Wichern [30], PCA aims 
to explain the variance–covariance structure of variables 
defined through some linear combinations. These authors 
claim that if the multi-objective functions f1(x), f2(x),…, 
fp(x) have correlated response surfaces, they can be writ-
ten as a random vector YT=[Y1, Y2,…,Yp]. If it is assumed 
that Σ is the variance–covariance matrix associated with 
this vector, one has that Σ can be factored into pairs of 
eigenvalues – eigenvectors (λi, ei),…,≥(λp, ep), where 
λ1≥ λ1≥ … ≥ λp≥ 0. Thus, the ith principal component can be 
given as PC1 = eT

i
Y = eT

1
Y1 + eT

2
Y2 +⋯ + eT

p
Yp , for i =1, 

2,…,p.
PCA is often used to reduce the dimensionality of data 

sets, where they usually have many correlated variables [31]. 
The number of principal components is less than or equal to 
the number of original variables and the first few principal 
components retain most of the variation present in all data 
[32].

The Kaiser criterion is used to identify the number of 
principal components needed for the study, where an amount 
of at least 80% variation is required. In addition, the eigen-
values of the principal components must be greater or equal 
than 1 [30, 33].

2.4  Normal boundary intersection

In front of a The Normal Boundary Intersection (NBI) is 
a method capable of finding uniformly equidistant Pareto-
optimal solutions [34], compensating for the deficiencies 
presented in the weighted sum method [35]. This formula-
tion can be written mathematically by Eq. (4):

where, Ф presents the payoff matrix, obtained by the indi-
vidual minimization of each objective function; �̄� is the 
scaled payoff matrix; β refers to the weight vector for each 
utopia point, and t is a scalar that is perpendicular to the 
utopia line. �̂ is the normal vector and �̄(�) represents the 
vector of the dimensioned objective functions.

(4)

Max
(𝐱,t)

t

S.t ∶ �̄�𝛃 + t�̂� = �̄�(𝐱)

𝐱 ∈ 𝛺

gj(x) ≤ 0

hj(x) = 0
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NBI represents a line perpendicular to the utopia line 
(convex hull of individual minima—CHIM) where the nor-
mal line is defined by Eq. (5):

To create a Pareto frontier, only one point of the sur-
face, as well as the direction vector, is required. In the payoff 
matrix ( � ) and in the scaled payoff matrix ( �̄� ), the ith line 
consists of minimum and maximum values of the fi(x) func-
tion, being the lower and upper limits respectively, and also 
being used.

The Utopia point is the vector which has the individual 
minimum �� =

[
f ∗
1
(x∗

1
),… , f ∗

i
(x∗

i
),… , f ∗

m
(x∗

m
)
]T . It is the best 

possible value but is usually outside of the viable solution 
region [36]. In an antagonistic sense, the Nadir point has 
the maximum value of each objective function, and is the 
worst possible solution �� =

[
f N
1
,… , f N

i
,… , f N

m

]T [36, 37]. 
The payoff matrices are described by Eq. (6):

where: f̄i(�) =
[
fi(�)−f

U
i

f N
i
−f U

i

]
=

[
fi(�)−f

I
i

f MAX
i

−f I
i

]
.

Therefore, for bi-objective problems, the NBI formulation 
of Eq. (4) can be rewritten as the Eq. (7):

3  NBI PCA‑based multivariate Taguchi loss 
function optimization

Many studies use optimization approaches to improve prod-
uct quality (as inferred in Sect. 1), in addition to reducing 
costs and losses during the process. When checking these 
industrial processes, it is possible to find a significant cor-
relation between the quality responses, bringing the need to 

(5)�⃗(t) =
[
x0 y0 z0

]T
+ t × ∇⃗f

[
x0 y0 z0

]T
.
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(7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Min
�

F(�) = f̄1(x)

St. ∶ f̄1(�) − f̄2(�) + 2𝛽1 − 1 = 0

� ∈ 𝛺

gj(�) ≤ 0

hj+1(x) = 0

.

use appropriate techniques to treat these data. Therefore, this 
study proposes a multivariate approach to the Taguchi loss 
function using PCA and the NBI optimization technique. 
The method can be divided into five steps, illustrated in 
Fig. 1 and described below.

 Step 1. Faced with a suitable design of experiments (DOE), 
such as RSM, an experimental matrix can be created 
for the process under analysis. The experimental lines 
must be generated randomly, so that there is no bias. 
Thus, it is possible to collect all responses to the pro-
cess, such as quality characteristics, sustainability, 
among others, in addition to the process cost.

 Step 2. After collecting all the responses, the loss function 
must be calculated. For that, it is necessary to find the 
utopian value for each of the response. These values 
can be provided by the customer or through individual 
optimization for each quality response (for the appli-
cation of this study, individual optimization will be 

considered). Based on this, it is possible to calculate 
(from Eq. (2)) the values of the loss functions for each 
DOE line.

 Step 3. Based on the new experimental matrix [considers 
the values of loss functions (Li)], one must analyze 
the degree of correlation between these values. If 
the responses have a significant variance–covariance 
structure, a multivariate strategy must be used, such 
as PCA. Hence, the necessary number of components 
is verified using the Kaiser criterion as presented in 
Sect. 2.3. After that, the principal components scores 
must be extracted.

 Step 4. Considering the loss functions component scores 
(LPCi), the DOE should be modeled and analyzed again 
based on these scores, calculating the coefficients nec-
essary to perform the multi-objective optimization. For 
this, the NBI method must be used, which is capable of 
generating Pareto frontiers based on different weight 
distributions for the restrictions (detailed in Sect. 2). 
This step allows to find the real optimal values for the 
quality responses based on the loss functions.

 Step 5. From the Pareto frontier of the original responses, 
the loss functions are recalculated, considering the 
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costs of each parameter. To carry out this step, the 
modeling of total costs must be formulated (such as 
labor, materials, energy, etc.). After that, the respec-
tive values must be found for each point on the Pareto 
frontier. This allows to obtain the loss value for each 
quality response.

As a criterion for decision making, the best point can be 
found according to Eq. (8), indicating the value that has the 

lowest total loss, indicated at the Pareto frontier. In this sense, 
this equation considers the sum of all loss functions (of the 
responses of interest) for each machine parameter, associated 
with their respective total cost (δ). The point with the lowest 
loss value is characterized as the best point on the Pareto 
frontier. This metric is called a total loss function (TLF).

4  A case study of flux‑cored arc welding 
(FCAW) of stainless‑steel cladding process

4.1  FCAW process modeling

To apply the proposed method in a real case, the flux-cored 
arc welding of stainless-steel cladding process will be inves-
tigated. Experiments were carried out using an ESAB Aristo-
Power 460 welding machine, an AristoFeed 30-4-watt MA6 
module (employed to feed the wire), and a mechanical sys-
tem device to control welding speed, torch distance and torch 
angle, which was defined as 15° to “pushing”. The base metal 
was AISI 1020 carbon steel cut into plates of 120 × 60 × 
6.35 mm. Filler metal was a flux-cored stainless-steel wire 
type AWS E316LT1-1/4, with a diameter of 1.2 mm and linear 
density of 7.21 g/m. Chemical compositions of the materials 
are presented in Table 1. To carry out this study, Minitab®, 
Matlab® and Visual Basic for Applications (VBA®) were used.

A mixture of 75% Ar + 25%  CO2 was used as the shield-
ing gas at a flow rate of 16 L/min. The welding technique 
used in the experiments was bead on plate, setting the input 
variables according to the chosen DOE. Input variables were 
wire feed rate (Wf), voltage (V), welding speed (S) and the 
distance from the contact tip to the work piece (N).

Based on the steps described in Sect. 3, experiments 
based on the DOE technique should initially be performed. 
Following a Central Composite Design (CCD), 31 experi-
ments were carried out: 16 factorial points  (2k = 24), eight 
axial points (2k = 2 × 4) and seven center points. The param-
eter levels were established based on previous tests and are 
presented in Table 2.

The samples were cut at four different points along the 
specimens (Fig. 2) and their cross sections were attacked 
with nital solution (4%) and then photographed. The 

(8)TLF =

n�
i=1

⎡
⎢⎢⎣
𝛿i

�
F̂s(i)(�) − Ti

�2
Ti

⎤
⎥⎥⎦
.

Fig. 1  Flowchart of the multivariate Taguchi loss function optimiza-
tion approach

Table 1  Chemical composition 
of base metal and filler metal 
[23]

Material C [%] Mn [%] P [%] S [%] Si [%] Ni [%] Cr [%] Mo [%]

AISI 1020 0.18–0.23 0.30–0.60 0.04 0.05 – – – –
AWS E316LT1-1/4 0.03 1.58 – – 1.00 12.4 18.5 2.46
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software Analysis Five® was used to measure the bead 
width (W), penetration (P), reinforcement (R), penetration 
area (A2) and total area (At = A1+ A2) of the weld, as shown 
in Fig. 2. Then, the dilution percentage (D) was obtained by 
calculating A2/At. In addition, the percentage of productiv-
ity (PI) was calculated, as described in Gomes et al. [23]. 
Table 3 presents the results of the experiments regarding the 
measured responses. In addition, this table also describes the 
electric current (I) values measured for each experimental 
parameter. These values will later be used to calculate the 
energy costs of the process.

4.2  Multivariate Taguchi loss function optimization 
for FCAW process

Considering the quality responses, it is possible to verify 
that the experimental design from the general second order 

polynomial model (step 1) presented in Eq. (3). The coeffi-
cients were estimated using the ordinary least squares algo-
rithm and are described in Table 4. In view of the original 
responses of the process, it is possible to verify that they all 
present an appropriate adjustment ( R2

adj
 ), as detailed in 

Table 4. Furthermore, it is possible to define the individual 
optimum to calculate the loss function of the responses (step 
2). Considering the characteristics of the welding process, 
the characteristics W, R and PI must be maximized, while P 
and D must be minimized [23]. In this sense, the utopian 
values of each response were found, with Y* = [15.570 mm; 
0.830 mm; 3.340 mm; 16.3%; 100%] for W, P, R, D and PI, 
respectively.

In view of the optimum points and Eq. (2), it is possible to 
generate a new experimental design for the loss functions of 
FCAW process (In this initial stage, a δ value equal to 1 was 
considered). While Table 5 presents the values of the loss 
functions, Table 6 presents the variance–covariance struc-
ture of the loss function values. As a result, the PCA strategy 
was applied to extract the component scores that adequately 
represent all the analyzed values. In view of the Kaiser crite-
rion (highlighted in step 3), Fig. 3 presents the Pareto Chart 
for the principal components of the loss functions, where it 
is possible to verify that two components (LPC1 and LPC2) 
are necessary to represent the entire data set (eigenvalues 
greater than 1 and explanation percentage equal to 81.6%).

From the RSM, it is possible to estimate the coefficients 
of the experimental design based on the loss function, rep-
resented by the principal components. The regression equa-
tions are described in Eqs. (9) and (10), showing high adjust-
ment values with R2

adj
 equal to 93.89% and 94.39% for LPC1 

and LPC2, respectively. To graph the behavior of the equa-
tions mentioned above, Fig. 4 and 5 illustrate the response 
surface plots (in addition to the contour plot) for LPC1 and 
LPC2, respectively. From these graphs, it is possible to verify 
that LPC2 presents a more linear behavior when comparing 
with LPC1. It is important to note that the parameters that do 
not appear on the axes were fixed in their respective center 
point. Both Figures show the possible combinations between 
the control variables. Figure 6 illustrates the main effects of 

Table 2  Input variables and 
levels [23]

Parameter Unit  Notation  Levels

− 2 − 1 0 1 2

Wire feed rate [m/min] Wf 5.5 7 8.5 10 11.5
Voltage [Volt] V 24.5 27 29.5 32 34.5
Welding speed [cm/m] S 20 30 40 50 60
Distance from contact 

tip to work piece
[mm] N 10 15 20 25 30

Fig. 2  Welding bead, cross sectional weld bead profile and Bead 
geometry



1633Engineering with Computers (2022) 38:1627–1643 

1 3

the components in relation to the parameters, considering 
the significant relationships for a 95% confidence interval. 
In Fig. 6a, it can be seen that the values of LPC1 increase as 

the parameters Wf, V and S increase, showing an inverse 
behavior for parameter N. However, when analyzing Fig. 6b, 
the effects of Wf and S have opposite meanings for LPC2, 
while V and N have a lesser effect in the center point region.

(9)
LPC1 = 6.4−2.217 ×Wf−0.259 × V−0.020 × S + 0.381 × N + 0.0716 ×Wf ×Wf + 0.0069V × V

−0.001486 × S × S + 0.01024 × N × N + 0.0313 ×Wf × V + 0.01186 ×Wf × S

−0.0069 ×Wf × N + 0.00776 × V × S−0.02230 × V × N−0.00822 × S × N

Table 3  Experimental matrix 
and electric current values. 
Adapted from [23]

Run Input variables Responses

Wf V S N W P R D PI I

[m/min] [Volt] [cm/min] [mm] [mm] [mm] [mm] [%] [%] [A]

1 7.0 27.0 30.0 15.0 11.2 1.3748 2.6278 26.44 89.74 172
2 10.0 27.0 30.0 15.0 13.0 1.6609 3.1158 25.82 89.71 214
3 7.0 32.0 30.0 15.0 12.7 1.6891 2.4963 31.49 89.14 181
4 10.0 32.0 30.0 15.0 15.0 1.9768 2.7782 31.25 89.47 233
5 7.0 27.0 50.0 15.0 9.2 1.6468 2.1651 36.22 91.58 173
6 10.0 27.0 50.0 15.0 10.0 1.9361 2.6666 33.69 90.70 205
7 7.0 32.0 50.0 15.0 9.7 1.5379 2.0649 37.12 87.43 176
8 10.0 32.0 50.0 15.0 11.5 2.1808 2.4249 41.08 88.36 218
9 7.0 27.0 30.0 25.0 10.3 1.2504 2.8700 22.46 90.49 143
10 10.0 27.0 30.0 25.0 11.4 0.9993 3.5940 18.32 89.47 179
11 7.0 32.0 30.0 25.0 11.3 1.3215 2.8479 23.71 90.60 152
12 10.0 32.0 30.0 25.0 13.3 1.1005 3.1793 21.96 89.81 179
13 7.0 27.0 50.0 25.0 8.0 1.1114 2.5543 24.96 94.03 143
14 10.0 27.0 50.0 25.0 8.6 1.2254 2.7967 23.31 90.17 177
15 7.0 32.0 50.0 25.0 8.5 1.3697 2.3628 28.77 93.52 151
16 10.0 32.0 50.0 25.0 10.8 1.6370 2.5983 30.19 91.74 183
17 5.5 29.5 40.0 20.0 9.1 1.3822 2.2068 31.56 92.62 141
18 11.5 29.5 40.0 20.0 12.2 2.1393 3.0557 30.95 89.52 213
19 8.5 24.5 40.0 20.0 9.4 1.2045 3.0263 22.84 90.41 175
20 8.5 34.5 40.0 20.0 11.7 1.8644 2.4578 35.58 90.04 188
21 8.5 29.5 20.0 20.0 14.9 0.9476 3.4536 18.58 90.27 187
22 8.5 29.5 60.0 20.0 8.5 1.4328 2.2498 35.78 93.08 172
23 8.5 29.5 40.0 10.0 11.7 2.1784 2.6103 40.44 88.15 223
24 8.5 29.5 40.0 30.0 9.2 1.2825 2.8912 24.16 92.05 152
25 8.5 29.5 40.0 20.0 10.8 1.7082 2.5960 31.05 93.04 180
26 8.5 29.5 40.0 20.0 10.9 1.7229 2.5923 31.67 91.91 181
27 8.5 29.5 40.0 20.0 10.7 1.6230 2.6549 30.88 92.51 179
28 8.5 29.5 40.0 20.0 10.6 1.8014 2.4950 32.83 91.98 176
29 8.5 29.5 40.0 20.0 10.6 1.4854 2.6208 29.99 92.15 175
30 8.5 29.5 40.0 20.0 10.6 1.4897 2.6119 31.09 92.40 172
31 8.5 29.5 40.0 20.0 10.6 1.5041 2.5574 31.02 92.58 174 
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From these coefficients, it is possible to perform multi-
objective optimization using the NBI method (step 4). For 
this, the two principal components were considered, where 
they present different optimization directions. Concerning 
the original responses and their respective optimization 
directions, the behavior of the loss function components 
was analyzed to define the appropriate approach. In this 
sense, it is possible to verify that LPC1 presents a greater 
degree of explanation of the characteristics that need to be 
minimized. (P and D). However, when analyzing LPC2, it 
appears that this component explains the characteristics that 
should be maximized (W, R and PI). In this sense, LPC1 must 
be minimized, while LPC2 needs to be maximized. Figure 7 
illustrates the level of similarity between the original quality 
characteristics and the principal components for loss func-
tion, where Ward linkage method was used, considering the 
absolute correlation. Then, it was possible to calculate the 

(10)

LPC2 = 29.8 + 0.069 ×Wf−1.495 × V−0.276 × S−0.249 × N + 0.0151 ×Wf ×Wf

+ 0.02680 × V × V + 0.000456 × S × S + 0.00637 × N × N−0.0106

−Wf × V + 0.01267 ×Wf × S + 0.0005 ×Wf × N + 0.00014 × V × S

−0.00055 × V × N + 0.00021 × S × N.

individual optimal values for each component and find the 
payoff matrix for the NBI method, according to Eq. (11).

In view of the criteria established by the NBI method, the 
distribution of weights to create the constraints (necessary 
when forming the Pareto frontier) was formulated using the 
Simplex-Lattice mixture-design. Thus, it was possible to cre-
ate a total of 21 different weight combinations. The impor-
tance of using the PCA also stands out here, because without 
reducing the data dimension, the optimization method would 
need 210 subproblems to contemplate the weight distribu-
tion for the 5 original responses. Applying the NBI method, 
it was possible to find 21 distinct optimal, where all repre-
sent optimal Pareto points. Table 7 presents the values found 
for the frontier, with the optimal values of the components 
and the real values of the processes.

4.3  Optimal point selection using the total loss 
function

Choosing the best point on a Pareto frontier is not a trivial 
task. In this sense, to find the best point on the frontier, one 
must recalculate the loss functions considering the optimal 
Pareto values. That is, it is possible to find the cost of the 
FCAW process for each point of the Pareto frontier, from 
the machine parameters. The FCAW process cost (Ct) was 
calculated based on Marques et al. [19] and is described, for 
each line on the Pareto border, in Table 7. In this work, Ct 
included machine and labor (Cml), filler metal and flux (Cmf), 
gas (Cg) and energy (Ce), as shown in Eq. (12). Additional 
information to estimate process costs is described in Table 8, 
based on machine parameters. Table 9 presents the equations 
used to calculate the components of Ct.

(11)� =

[
−2.599 −1.1824

−1.8911 2.4985

]
.

(12)Ct = Cml + Cmf + Cg + Ce.

Table 4  Model coefficients for the RSM

Coef. W P R D PI

Constant 10.6996 1.6193 2.5898 0.3122 0.9237
Wf 0.7967 0.1221 0.2026 − 0.0028 − 0.0055
V 0.6555 0.1220 − 0.1156 0.0249 − 0.0027
S − 1.4507 0.0934 − 0.2618 0.0368 0.0061
N − 0.6290 − 0.2408 0.1261 − 0.0425 0.0090
W2

f − 0.0033 0.0266 0.0025 − 0.0023 − 0.0039
V2 − 0.0240 − 0.0300 0.0302 − 0.0074 − 0.0060
S2 0.2637 − 0.1161 0.0576 − 0.0125 − 0.0024
N2 − 0.0440 0.0190 0.0323 0.0003 − 0.0063
Wf× V 0.2663 0.0337 − 0.0467 0.0077 0.0028
Wf× S − 0.1137 0.0757 − 0.0304 0.0050 − 0.0026
Wf× N − 0.0308 − 0.0998 − 0.0061 − 0.0042 − 0.0049
V × S − 0.1023 0.0002 0.0109 0.0023 − 0.0032
V × N − 0.0064 0.0048 − 0.0010 − 0.0020 0.0055
S × N 0.0665 0.0045 − 0.0302 − 0.0077 0.0057
R
2
adj

97.98% 83.24% 92.81% 93.43% 84.77%
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Under previous information presented (and also the 
Eq. (8)), it is possible to find the total loss function value 
(step 5). This value includes the total loss, for all quality 
responses in relation to the cost of each machine parameter. 
So, to find the best point on the Pareto frontier, just find 
the lowest total loss function value, which represents the 
lowest loss for the process. For this, the total cost is calcu-
lated, with the factor δ, for each point on the Pareto frontier. 
Subsequently, Eq. (8) is applied to find the minimum “total 
loss” value. Table 10 presents the cost and the loss values 
for the Pareto solution, in addition to the TLF values, indi-
cating the optimal point of the frontier. Therefore, it can be 

Table 5  Experimental matrix 
of the loss function values and 
component scores

Run Input variables Loss function

Wf V S N LW LP LR LD LPI LPC1 LPC2

1 7.0 27.0 30.0 15.0 19.1844 0.2916 0.5041 0.0095 0.0105 − 0.43032 0.75705
2 10.0 27.0 30.0 15.0 6.6564 0.6889 0.0484 0.0095 0.0106 0.00671 1.99333
3 7.0 32.0 30.0 15.0 8.2369 0.7396 0.7056 0.0217 0.0118 1.01984 0.80900
4 10.0 32.0 30.0 15.0 0.2704 1.3225 0.3136 0.0217 0.0111 1.51866 1.69457
5 7.0 27.0 50.0 15.0 40.4496 0.6724 1.3689 0.0389 0.0071 0.72193 − 2.40873
6 10.0 27.0 50.0 15.0 31.4721 1.2321 0.4489 0.0314 0.0086 0.95287 − 0.25409
7 7.0 32.0 50.0 15.0 33.8724 0.5041 1.6384 0.0430 0.0158 2.14319 − 1.64672
8 10.0 32.0 50.0 15.0 16.4836 1.8225 0.8464 0.0612 0.0135 3.89315 − 0.28239
9 7.0 27.0 30.0 25.0 27.5625 0.1764 0.2209 0.0033 0.0090 − 1.30334 0.80653
10 10.0 27.0 30.0 25.0 17.1396 0.0289 0.0625 0.0003 0.0111 − 1.20325 1.75119
11 7.0 32.0 30.0 25.0 18.4900 0.2401 0.2401 0.0060 0.0088 − 0.98555 1.06106
12 10.0 32.0 30.0 25.0 4.9729 0.0729 0.0256 0.0033 0.0104 − 0.94131 2.14824
13 7.0 27.0 50.0 25.0 57.4564 0.0784 0.6241 0.0076 0.0036 − 2.32197 − 1.73693
14 10.0 27.0 50.0 25.0 48.3025 0.1600 0.2916 0.0045 0.0097 − 1.52458 − 0.08149
15 7.0 32.0 50.0 25.0 50.2681 0.2916 0.9604 0.0162 0.0042 − 1.35592 − 2.05629
16 10.0 32.0 50.0 25.0 22.3729 0.6561 0.5476 0.0189 0.0068 − 0.20680 − 0.03677
17 5.5 29.5 40.0 20.0 42.2500 0.3025 1.2769 0.0247 0.0054 − 0.53649 − 2.25872
18 11.5 29.5 40.0 20.0 11.2896 1.7161 0.0784 0.0217 0.0110 1.62826 1.63945
19 8.5 24.5 40.0 20.0 37.8225 0.1369 0.0961 0.0045 0.0092 − 1.53593 0.57655
20 8.5 34.5 40.0 20.0 15.0544 1.0609 0.7744 0.0389 0.0099 1.68328 − 0.12793
21 8.5 29.5 20.0 20.0 0.4096 0.0144 0.0121 0.0007 0.0095 − 1.15370 2.29285
22 8.5 29.5 60.0 20.0 50.2681 0.3600 1.1881 0.0389 0.0048 − 0.23149 − 2.81972
23 8.5 29.5 40.0 10.0 14.7456 1.8225 0.5329 0.0563 0.0140 3.63868 0.42697
24 8.5 29.5 40.0 30.0 40.3225 0.2025 0.2025 0.0060 0.0063 − 1.78807 − 0.04533
25 8.5 29.5 40.0 20.0 22.5625 0.7744 0.5476 0.0217 0.0048 − 0.24103 − 0.32543
26 8.5 29.5 40.0 20.0 21.5296 0.7921 0.5625 0.0247 0.0065 0.15228 − 0.17324
27 8.5 29.5 40.0 20.0 23.3289 0.6241 0.4761 0.0217 0.0056 − 0.36252 − 0.17142
28 8.5 29.5 40.0 20.0 24.6016 0.9409 0.7056 0.0280 0.0064 0.45242 − 0.58315
29 8.5 29.5 40.0 20.0 24.3049 0.4356 0.5184 0.0189 0.0062 − 0.60256 − 0.16616
30 8.5 29.5 40.0 20.0 24.8004 0.4356 0.5329 0.0217 0.0058 − 0.55156 − 0.31446
31 8.5 29.5 40.0 20.0 25.0000 0.4489 0.6084 0.0217 0.0055 − 0.53488 − 0.46781

Table 6  Correlation analysis for the loss function values

a Pearson correlation
b P value

LW LP LR LD

LP -0.372a

0.039b

LR 0.479a 0.114a

0.006b 0.542b

LD 0.013a 0.747a 0.662a

0.945b 0.000b 0.000b

LPI − 0.533a 0.402a − 0.098a 0.266a

0.002b 0.025b 0.601b 0.148b
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inferred that the best point on the border is represented by 
line 2, with parameters X = [9.43; 28.89; 21.18; 20.56] for 
Wf, V, S and N, respectively. Such a configuration represents 
the values Y = [14.655 mm; 0.959 mm; 3.511 mm; 18.03%; 
89.94%] for W, P, R, D and PI, respectively, being the opti-
mal response in relation to the Pareto frontier. Figure 8 illus-
trates the relationship of TLF with the values found in the 
optimization of the multivariate loss functions (LPC1 and 
LPC2). The red dot highlights the optimal value found.

4.4  Comparison of results through the TLF 
approach

To compare the results with another study already mentioned 
in the literature, the results found in Gomes et al. [23] were 
investigated. In this study, the authors performed a direct 
optimization for the FCAW process. For this, they mixed 
the PCA technique with the mean square error approach 
(MMSE). To analyze and compare the results found by the 
authors, an analysis of the process costs was carried out 
from the machine parameters to the optimum point found 
by Gomes et al. [23]. The MMSE method provided machine 
parameter values of Wf = 10.31[m/min]; V = 26.97[Volt]; 
S = 50.33[cm/min]; N = 23.36[mm]. For these reasons, it 

was possible to apply the TLF decision-making approach, 
described in Eq. (8). Table 11 presents the information and 
calculations of the optimal points found for both studies, in 
addition to the cost information and the total loss function 
values.

From this, it is possible to verify that the optimum point 
found in the study by Gomes et al. [23] presented a cost of 
US$ 5.30, presenting a final value of TLF equal to 4.7011. 
However, the method proposed in this study showed a lower 
total loss value (TLF = 1.0521), proving to be a better option 
for this process. In other words, when analyzing the results 
of both studies, it appears that the multivariate method Tagu-
chi loss function optimization (proposed in this work) pro-
vided results closer to the targets established. In addition, the 
method of this study considers the relationship established 
by the process cost, promoting results in a scope closer to 
the industrial reality.

5  Conclusion

This study presents a multivariate proposal to find the com-
bination of parameters to minimize the total quality values 
based on cost and loss functions. This proposal includes 

Fig. 3  Pareto chart and number 
of principal components for loss 
function
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Fig. 4  Response surface graphic for LPC1



1638 Engineering with Computers (2022) 38:1627–1643

1 3

Fig. 5  Response surface graphic for LPC2
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QLF, DOE, PCA and NBI. A case study using the flux-cored 
arc welding of stainless-steel cladding process was applied 
to validate this method. Finally, the following conclusions 
are presented:

• The multivariate Taguchi loss function optimization 
method presents a viable alternative to optimize quality 
responses, considering the loss functions calculated. In 
addition, the method presents an alternative for decision 
making at the optimum points of the Pareto frontier that 
consider the reduction of process costs;

• In the application of FCAW, the method presented an 
optimal value of Y = [14.655 mm; 0.959 mm; 3.511 mm; 
18.03%; 89.94%] for W, P, R, D and PI, respectively. 
Such amounts represent a cost of US$11.13, resulting 
in the best value of the Pareto frontier. These results 
also promote competitive advantages for the business, 
increasing the possibility of customer continuity and pro-

Fig. 6  Main effects plot for a LPC1 and b LPC2

Fig. 7  Cluster analysis between the principal components of the loss 
function and the original responses
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moting a better company reputation as well as increase in 
market participation.

• The method also provides an emphasis on quality charac-
teristics based on the customer’s interest, where the target 

values may vary based on the customer’s objective. In 
this sense, the benefits from optimization are translated 
into higher quality and lower costs from the customer’s 
point of view.

• The use of the PCA strategy allowed to reduce the data 
dimension, in addition to considering the existing vari-
ance–covariance structure in the data set. Combined with 

Table 7  Pareto frontier for 
the multivariate Taguchi loss 
function optimization approach

Bold: Optimal point found by the TLF method

Run w1 Uncoded input variables Uncoded responses and component scores

Wf V S N W P R D (%) PI (%) LPC1 LPC2

1 0.00 9.60 29.09 21.46 19.93 14.869 1.027 3.490 18.69 90.05 – 1.1824 2.4986
2 0.05 9.43 28.89 21.18 20.56 14.655 0.959 3.511 18.03 89.94 – 1.3216 2.4909
3 0.10 9.17 28.64 20.98 21.28 14.326 0.892 3.518 17.45 89.81 – 1.4514 2.4538
4 0.15 8.32 28.86 23.88 25.74 12.506 0.887 3.412 18.29 89.72 – 1.4359 1.9668
5 0.20 8.71 25.66 28.88 23.10 11.025 0.954 3.375 18.16 89.09 – 1.4967 1.7165
6 0.25 8.90 25.36 32.80 24.09 10.143 0.998 3.318 18.68 89.10 – 1.5417 1.4168
7 0.30 8.98 25.36 35.48 24.88 9.628 1.025 3.263 19.12 89.25 – 1.6058 1.1763
8 0.35 8.46 28.69 36.25 28.32 9.824 1.174 3.051 22.44 91.21 – 1.5665 0.6158
9 0.40 9.02 25.63 39.36 26.09 9.010 1.062 3.158 19.95 89.76 – 1.7551 0.7609
10 0.45 9.00 25.82 40.89 26.55 8.808 1.076 3.107 20.35 90.06 – 1.8346 0.5684
11 0.50 8.96 26.02 42.26 26.91 8.647 1.090 3.057 20.74 90.39 – 1.9156 0.3804
12 0.55 8.91 26.22 43.49 27.21 8.516 1.102 3.007 21.13 90.73 – 1.9972 0.1942
13 0.60 8.84 26.41 44.63 27.43 8.407 1.113 2.958 21.52 91.09 – 2.0787 0.0077
14 0.65 8.77 26.60 45.69 27.58 8.315 1.123 2.909 21.90 91.45 – 2.1594 – 0.1812
15 0.70 8.68 26.78 46.70 27.67 8.235 1.132 2.861 22.29 91.81 – 2.2387 – 0.3745
16 0.75 8.58 26.95 47.67 27.69 8.166 1.139 2.812 22.68 92.18 – 2.3159 – 0.5745
17 0.80 8.47 27.11 48.62 27.66 8.104 1.144 2.762 23.08 92.56 – 2.3899 – 0.7842
18 0.85 8.35 27.27 49.55 27.56 8.051 1.148 2.711 23.51 92.93 – 2.4594 – 1.0078
19 0.90 8.20 27.44 50.50 27.38 8.004 1.151 2.656 23.98 93.32 – 2.5221 – 1.2525
20 0.95 8.03 27.61 51.48 27.10 7.964 1.152 2.596 24.54 93.73 – 2.5733 – 1.5327
21 1.00 7.80 27.83 52.61 26.61 7.932 1.152 2.520 25.29 94.19 – 2.5993 – 1.8912

Table 8  Information used to estimate costs

Information Symbol Value Unit

Occupational factor θ 0.65 –
Machine and labor cost per hour Cmlh 200.00 US$
Linear density of the wire ρw 7.21 g/m
Wire reel cost per kg Cw 73.80 US$
Gas inflow Gf 16.00 L/min
Gas price per  m3 Gp 698.48 US$
Average energy price Pe 0.35 US$
Electrical efficiency of the equipment Ee 0.7 –

Table 9  Equations of the costs included in Ct. Adapted from [19]

Cost Symbol Equation

Machine and labor Cml Cml =
tw

(3,600×�)
Cmlh

Metal and flux Cmf Cmf =
Wf× tw× � × Cw

(60,000)

Gas Cg Cg =
Gf× tw× Pg

60,000

Energy Ce Ce =
V× I× tw× Pe

Ee
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the NBI technique, PCA promoted a minimization of 
90% of the optimization subproblems (210–21 subprob-
lems), reducing the computational effort required for this 
application.

• The comparison with results from another study in the 
literature, made it possible to infer that the proposed 
method presented better performance when considering 
the cost of the process. The results showed that the loss-
based approach provided results with less deviation from 
the targets, in addition to promoting less total loss. The 
TLF decision-making method proved to be a valid option 
to find the best point on a Pareto frontier for industrial 
applications and can be extended to other segments.

Finally, as suggestions for future studies, the proposed 
method can be extended to stochastic applications, as well as 
the use of other optimization and multivariate techniques. In 
addition, the TLF strategy can be applied to decision making 
related to other processes.

Table 10  Cost, loss function 
and TLF values calculated for 
the Pareto frontier

Bold: Optimal point found by the TLF method

Run w1 Cost (δ) Loss function TLF

US$ LW LP LR LD LPI

1 0.00 $ 11.08 0.350 0.520 0.075 0.040 0.110 1.095
2 0.05 $ 11.13 0.598 0.222 0.098 0.021 0.113 1.052
3 0.10 $ 11.14 1.108 0.052 0.106 0.010 0.116 1.391
4 0.15 $ 9.95 5.997 0.039 0.015 0.025 0.105 6.181
5 0.20 $ 8.71 11.559 0.162 0.003 0.019 0.104 11.847
6 0.25 $ 7.76 14.679 0.263 0.001 0.028 0.092 15.064
7 0.30 $ 7.16 16.242 0.326 0.013 0.036 0.083 16.699
8 0.35 $ 6.61 14.013 0.941 0.166 0.155 0.051 15.326
9 0.40 $ 6.37 17.613 0.412 0.063 0.053 0.067 18.208
10 0.45 $ 6.09 17.875 0.445 0.099 0.062 0.060 18.541
11 0.50 $ 5.84 17.988 0.476 0.141 0.072 0.054 18.731
12 0.55 $ 5.63 18.006 0.504 0.187 0.082 0.048 18.827
13 0.60 $ 5.45 17.964 0.528 0.238 0.092 0.043 18.865
14 0.65 $ 5.29 17.883 0.548 0.294 0.103 0.039 18.867
15 0.70 $ 5.14 17.776 0.564 0.354 0.114 0.034 18.843
16 0.75 $ 5.01 17.653 0.575 0.419 0.126 0.031 18.804
17 0.80 $ 4.89 17.515 0.582 0.489 0.139 0.027 18.753
18 0.85 $ 4.78 17.364 0.584 0.567 0.154 0.024 18.693
19 0.90 $ 4.68 17.197 0.581 0.654 0.171 0.021 18.625
20 0.95 $ 4.58 17.006 0.573 0.759 0.192 0.018 18.548
21 1.00 $ 4.47 16.758 0.558 0.900 0.224 0.015 18.456

Fig. 8  Relationship between the Pareto frontier and the total loss 
function
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