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Abstract
Optimization algorithms have made considerable advancements in solving complex problems with the ability to be applied 
to innumerable real-world problems. Nevertheless, they are passed through several challenges comprising of equilibrium 
between exploration and exploitation capabilities, and departure from local optimums. Portioning the population into several 
sub-populations is a robust technique to enhance the dispersion of the solution in the problem space. Consequently, the explo-
ration would be increased, and the local optimums can be avoided. Furthermore, improving the exploration and exploitation 
capabilities is a way of increasing the authority of optimization algorithms that various researches have been considered, and 
numerous methods have been proposed. In this paper, a novel hybrid multi-population algorithm called HMPA is presented. 
First, a new portioning method is introduced to divide the population into several sub-populations. The sub-populations 
dynamically exchange solutions aiming at balancing the exploration and exploitation capabilities. Afterthought, artificial 
ecosystem-based optimization (AEO) and Harris Hawks optimization (HHO) algorithms are hybridized. Subsequently, 
levy-flight strategy, local search mechanism, quasi-oppositional learning, and chaos theory are utilized in a splendid way 
to maximize the efficiency of the HMPA. Next, HMPA is evaluated on fifty unimodal, multimodal, fix-dimension, shifted 
rotated, hybrid, and composite test functions. In addition, the results of HMPA is compared with similar state-of-the-art 
algorithms using five well-known statistical metrics, box plot, convergence rate, execution time, and Wilcoxon’s signed-rank 
test. Finally, the performance of the HMPA is investigated on seven constrained/unconstrained real-life engineering problems. 
The results demonstrate that the HMPA is outperformed the other competitor algorithms significantly.

Keywords Hybrid optimization · Multi-population · Chaos theory · Levy flight · Local search · Engineering problems · 
Wilcoxon signed-rank test · CEC 2017 test functions

1 Introduction

Optimization algorithms are the most efficient approaches 
for solving time-consuming and complex real-world scien-
tific, medical, engineering, and other NP-complete prob-
lems [1]. In the optimization process, the value of a target 
function is minimized or maximized [2, 3]. Meta-heuristic 
algorithms provide new techniques in discovering optimal 
or near-optimal solutions in a reasonable amount of time 
[4]. In recent years, researchers have increasingly focused 
on these algorithms, and they developed numerous algo-
rithms inspired by various phenomena. For instance, Smart 
Flower Optimization Algorithm (SFOA) [5], Group Teach-
ing Optimization Algorithm (GTOA) [6], Locust Swarm 
Optimization (LSO) [7], Manta Ray Foraging Optimization 
(MRFO) [8], Supply–Demand-Based Optimization (SDO) 
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[9], Artificial Electric Field Algorithm (AEFA) [10], Equi-
librium Optimizer (EO) [11], Sooty Tern Optimization 
Algorithm (STOA) [12], Henry Gas Solubility Optimiza-
tion (HGSO) [13], Fitness Dependent Optimizer (FDO) [14], 
Parasitism-Predation algorithm (PPA) [15], Emperor Pen-
guin Optimizer (EPO) [16], Multi-Objective Spotted Hyena 
Optimizer (MOSHO) [17], Seagull Optimization Algorithm 
(SOA) [18], Spotted Hyena Optimizer (SHO) [19, 20], and 
Marine Predators Algorithm (MPA) [21] are among the 
most recently published meta-heuristic algorithms. These 
algorithms are widely used in complex problems such as 
time series [22–24], industrial applications [25], non-linear 
applications [26–29], clustering and feature selection [30].

Considering the inspiring phenomenon, meta-heuristic 
algorithms can be divided into different categories. Figure 1 
illustrates a possible classification of the meta-heuristic 
algorithms and provides some representative algorithms for 
each category.

Artificial Ecosystem-based Optimization (AEO) [31], and 
Harris Hawks Optimization (HHO) [32] algorithms are two 
influential and potent population-based meta-heuristic algo-
rithms, which are inspired by the flow of energy in the eco-
system of the Earth, and intelligence cooperative behavior 
of Harris’ hawks in nature, respectively. These algorithms, 
like other optimization algorithms, start with a randomly 
generated set of solutions within the problem space [33, 34]. 
Then, the solutions are updated according to the historical 
data and the other solutions’ information in the limited itera-
tion [35]. In this gradual process, the quality of the solutions 

is increased, and further optimal solutions are found for the 
given problem. These algorithms were applied to various 
problems, and tested on abundant test functions, attaining 
promising results.

However, they have several deficiencies. For example, the 
convergence rate of them is scant in some high-dimensional 
and complex problems, and they do not have full confidence in 
finding an optimal solution in a reasonable time. In addition, 
the AEO algorithm has insufficient exploration capability and 
has inadequate performance on multimodal problems. Besides, 
they fall into local optimums easily. Once a solution gets stuck 
on a local optimum, it cannot search other areas of the problem 
space with more iterations. This observation is exceptionally 
unfavorable for real-world NP-Hard applications.

To compensate for the above-mentioned and other short-
comings, the notable creation and successful development 
of new optimization algorithms is still a challenging task. 
Researchers have provided various techniques to overcome 
these weaknesses (e.g., taking advantage of the chaos theory 
[36–38], hybridizing supplementary algorithms [39–44], 
using the memory in solutions [45–48], applying greedy 
or hill climbing selection methods [49–52], dividing the 
population into several sub-populations [53–56], utilizing of 
orthogonal learning [57–59], using quantum-based strategy 
[60–62], employing oppositional learning [63–65], taking 
benefits of information sharing mechanisms [66–68], etc.).

In this paper, the following strides have been taken to 
overcome the stated deficiencies of the AEO and HHO 
algorithms.

Fig. 1  Classification of meta-
heuristic algorithms



1583Engineering with Computers (2022) 38:1581–1625 

1 3

Initially, a multi-population technique has been intro-
duced to enhance the population diversity. The Multi-pop-
ulation technique significantly increases the exploration 
capability by scattering the solutions over the entire search 
space. This dispersion allows solutions to search for more 
areas of problem space and find promising areas. With this 
technique, the population is divided into several sub-pop-
ulations, and each sub-population searches independently. 
Nonetheless, the number of solutions in the sub-populations 
are changed dynamically.

Next, the quasi-oppositional mechanism is utilized to 
increase exploration capability further. The quasi-opposi-
tional mechanism is an expansion of opposite position-based 
learning that many papers have considered the phenomenon 
[69–71].

Afterwards, a chaotic-based local search (CLS) approach 
is adopted in the proposed algorithm to increase the exploi-
tation capability of it. The CLS, using the advantages of the 
chaotic maps, probes around a solution to find better ones. 
This behavior dramatically increases the exploitation abil-
ity [72, 73]. Furthermore, for improving the exploitation as 
much as possible, the levy-flight random walk has also been 
exploited. According to the obtained results of the levy-flight 
based optimization algorithms, it can be concluded that levy-
flight is an efficient technique to improve efficiency [74–76].

Next, the greedy selection strategy has been introduced to 
accelerate the convergence speed. The greedy selection mecha-
nism can mitigate excessive differentiation and preserve the 
excellent characteristics of the solution [57]. Additionally, 
this strategy can also achieve further targeted search process. 
However, it can cause solutions to get stuck in local optimums 
and prevent them from jumping out. Hence, a mechanism is 
required to take solutions out of local optimums.

Finally, a mechanism is introduced to bring the trapped 
solution out. The effectiveness of the mechanism has been 
evidenced in our previous work [1].

The resulting multi-population hybrid algorithm is exten-
sively evaluated over forty-five unconstrainted single-objective 
test functions from different categories. The evaluations are 
conducted with statistically comparing the resulting algorithm 
with numerous similar meta-heuristic algorithms. Moreover, 
the Wilcoxon signed-rank test is used to investigate the possi-
ble significant difference between the proposed algorithm and 
the competitor algorithms. In the end, the superiority of the 
proposed multi-population algorithm is tested on seven widely-
used constrained and unconstrained engineering problems.

The key contributions of this paper can be summarized 
as follow:

• AEO algorithm has been hybridized with HHO in an 
innovative way.

• A novel multi-population model has been introduced to 
the resulting algorithm.

• A new levy-flight based function has been presented.
• Two neoteric local search algorithms have been provided.
• The quasi-oppositional learning technique has been used.
• The proposed algorithm has been tested on fifty classical 

and CEC 2017 test functions.
• The proposed algorithm has been applied on several real-

life applications.
• The proposed algorithm has been compared with state-

of-the-art algorithm statistically and visually.
• The obtained results have been proved by Wilcoxon 

signed-rank test.

The rest of the paper is organized as follows. Section 2 
reviews some of the multi-population and multi-swarm algo-
rithms. Sections 3 and 4 present a concise description of 
artificial ecosystem-based optimization, and Harris Hawks 
optimization algorithms, respectively. Section 5 provides 
the mathematical details and different parts of the proposed 
algorithm. In Sect. 6, the experimental results of the algo-
rithms are provided on the test functions. Section 7 gives 
the results of real-world problems experiments, and finally, 
Sect. 8 propounds the conclusion and future perspectives.

2  Literature review

This section aims at giving a brief review of the presented 
multi-population algorithms. Many pieces of research 
attempted to improve the performance of meta-heuristic algo-
rithms using multi-swarming or multi-populating techniques. 
For instance, in [77], Qiu proposed a novel multi-swarm par-
ticle swarm optimization algorithm. In the proposed algo-
rithm, the population is divided into several sub-swarms, 
and the particles of each sub-swarm update their positions 
according to the corresponding best particle of the swarm.

Besides, Rao et al. suggested an adaptive multi-team per-
turbation Jaya algorithm in [53]. In the suggested schema, 
the multiple teams of the population are used to explore 
search scopes efficiently, and the teams have the same size 
with different perturbation or movement equations. The 
supremacy of the solutions of the teams are investigated 
based on the fitness value and boundary violations.

Furthermore, in [55], Rao and Pawar presented self-
adaptive multi-population Rao algorithms for solving engi-
neering design problems. In this study, the initial population 
of Rao algorithms is divided into several sub-population to 
keep the diversity of the population. In addition, the number 
and members of sub-populations are changed over time. The 
resulting algorithms are evaluated on 25 test functions and 
several constrained engineering problems.

Additionally, in [78], the authors propounded a multi-
swarm multi-objective hybrid algorithm called MSMO/2D. 
In MSMO/2D, the particle swarm optimization algorithm 
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is integrated with decomposition and dominance strategies. 
This algorithm has been proposed to reduce the gap between 
solutions in the Pareto Front, and maximize the solutions’ 
diversity.

Moreover, a new multi-swarm hybrid optimization 
algorithm has been presented in [79] by Nie, and Xu for 
solving dynamic optimization problems. In the presented 
multi-swarm algorithm, the particle swarm algorithm is 
combined with the simulated annealing algorithm and a 
prediction strategy. Afterwards, the resulting algorithm has 
been applied to the CEC 2009 test functions. These changes 
enhanced the adaptability of individual evolution and bal-
anced exploration and exploitation.

Similarly, in [80], Li et  al. proposed a multi-swarm 
cuckoo search algorithm named MP-QL-CS, which is 
enhanced by the Q-learning strategy. In Q-Learning, the 
optimal action is learned by selecting the action of enlarg-
ing the accumulative benefits with a discount. Additionally, 
to evaluate the multi-stepping evolution effect and learn the 
optimal step size, Q function value used a step size con-
trol in the proposed algorithm. The Q function is defined as 
diminished, the maximum expected, and cumulative reward.

In addition, in [81], the authors developed a novel multi-
population differential evolution algorithm. In the proposed 
algorithm, the diversity of the population increases while the 
simplicity is preserved. The diversity is achieved by dividing 
the population into independent subpopulations, which each 
subpopulation has the different mutation and update equa-
tions. A new mutation strategy, which utilizes information 
on the best solution or a randomly selected one, is used as 
another contribution to balance exploration and exploitation 
by generating better individuals. Moreover, in the proposed 
algorithm, function evaluations are divided into epochs. At 
the end of each epoch, solutions of the sub-populations are 
exchanged.

In a similar study, Biswas et al. proposed a new multi-
swarm artificial bee colony algorithm for global searching 
[82]. In this study, the swarm of bees is divided into mul-
tiple sub-swarms, which are characterized using different 
and unique perturbation mechanisms. Also, the reinitializing 
operator has been replaced with a set of criteria for detecting 
impotent sub-swarms. Whenever an impotent bee is detected 
in a sub-swarm, the foragers mitigation strategy is performed 
considering the minimum member constraint.

Likewise, in [83], Di Carlo et al. provided a novel multi-
population adaptive inflationary differential evolution algo-
rithm. In the inflationary differential evolution algorithm, 
some of the restart, and local search techniques of mono-
tonic basin hopping have been used. In addition, in the 
proposed adaptive differential evolution algorithm, the CR, 
and F parameters are adopting with each other automatically 
with the size of local restart bubble, and the number of local 
restarts of monotonic basin hopping. The multi-swarming 

technique in the proposed algorithm avoids trapping in the 
local optimums.

Withal, Xiang and Zhou offered a multi-colony artificial 
bee colony algorithm in [84]. In the offered algorithm, a 
multi-deme model and a dynamic information technique are 
used to handle multi-objective problems. The colonies in 
the algorithm search the problem space independently by 
exchanging useful information. The colonies have the same 
number of employed and onlooker bees, and the bees search 
the space by neighboring information and use the greedy 
mechanism to keep better solutions.

Correspondingly, in [85], the authors propounded a new 
hybrid multi-swarm particle swarm optimization and shuf-
fled frog leaping algorithm to improve particle communica-
tions and enhance their searching ability. Accompanying the 
multi-swarming, and updating along with a cooperating strat-
egy have been proposed in the propounded algorithm. The 
particles of the sub-swarms update their positions using the 
equations morphed from the shuffled frog leaping algorithm.

In addition, Wu et al. proposed a multi-population dif-
ferential evolution algorithm with different mutation strat-
egies [86]. The mutation strategies are current particle to 
best particle, current particle to random particle, and random 
mutation. In the proposed algorithm, four sub-populations 
are used: three sub-populations with a smaller size and one 
with a larger size. After a specified number of rounds, the 
best mutation strategy can be determined using the fitness 
improvements and consumed functions evaluated. Subse-
quently, the reward sub-population will dynamically be allo-
cated to the determined best performing mutation strategy.

3  Artificial ecosystem‑based optimization

The artificial ecosystem-based optimization (AEO) is a 
novel nature-inspired meta-heuristic algorithm, which is 
presented in [31] by Zhao et al. AEO is a population-based 
algorithm inspired from the energy flow in the ecosystem of 
Earth, and has three main operators: production, consump-
tion, and decomposition. The details of the AEO algorithm, 
along with the exposition of its operators, have been pre-
sented in the [31]. However, a brief overview of the opera-
tor’s head with its equations is presented here.

3.1  Production

The first operator of the AEO algorithm is production. 
Through using this operator, a new individual is produced 
using Eq. (1) between the best individual and a randomly 
selected individual from the current population.

(1)NewXIt+1
1

= (1 − a) ⋅ BestX + a ⋅ XIt
r
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where BestX is the best individual found so far, It is the 
current iteration, r and r1 are random number vectors within 
(0,1) whose sizes are Dim and one, respectively. Further-
more, Dim is the dimension of the problem, Lb and Ub are 
the lower and upper bounds of problem space, respectively. 
The a is a coefficient, which decreases linearly over time 
and specifies the exploration or exploitation of the NewXIt+1

1
.

3.2  Consumption

The second operator of the AEO is the consumption opera-
tor. The consumer individuals are divided into three species: 
Herbivore, Carnivore, and Omnivore, and are updated by 
Eqs. (4)–(6), respectively.

where r2 is a random number in range (0,1), X
j
 is a randomly 

chosen solution from the current population, and C can be 
obtained as below:

where u and v are normally distributed random numbers. It 
is worth mentioning that the second-best individual is in the 
Herbivore category.

3.3  Decomposition

The last operator of the AEO is a decomposition operator, 
which models the decomposition process in ecosystems. 
This process is formulated as Eq. (8). In other words, the 
individuals in this phase are updated by Eq. (8).

where XIt
N

 is the best individual in the current iteration, D , e , 
and h are calculated using Eqs. (9)–(11), respectively.

(2)a =

(
1 −

It

Max_it

)
⋅ r1

(3)XIt
r
= Lb + r ⋅ (Ub − Lb)

(4)NewXIt+1
i

= XIt
i
+ C ⋅

(
XIt
i
− NewXIt+1

1

)

(5)NewXIt+1
i

= XIt
i
+ C ⋅

(
XIt
i
− XIt

j

)

(6)
NewXIt+1

i
= XIt

i
+ C ⋅ r2 ⋅

(
XIt
i
− NewXIt+1

1

)
+
(
1 − r2

)(
XIt
i
− XIt

j

)

(7)C =
1

2
.
u

v

(8)NewXIt+1
i

= XIt
N
+ D ⋅

(
e ⋅ XIt

N
− h ⋅ XIt

i

)

(9)D = 3u

(10)e = r3 ⋅ randi([12]) − 1

where u is a normally distributed random numbers, and r3 
is a random number in (0,1). The flowchart of the AEO has 
been illustrated in Fig. 2.

4  Harris Hawks optimization

Harris Hawks optimization (HHO) algorithm is another 
powerful population-based meta-heuristic algorithm, which 
is motivated by the behavior of Harris’ hawks in nature [32]. 
As with the previous algorithm, a summary of the HHO 
algorithm is given with its update equations (for more 
details, refer to [32]). HHO models the intelligence coopera-
tive behavior and chasing style of Harris hawks mathemati-
cally. The HHO consists of two main phases: exploration and 
exploitation, which are characterized in the next subsections. 
In addition, these phases are selected by parameter E, which 
can be obtained by Eq. (12).

(11)h = 2 ⋅ r3 − 1

(12)E = 2E0

(
1 −

It

Max_it

)

Fig. 2  Flowchart of the basic AEO
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where E0 is the initial energy of the prey, It and Max_it are 
the current, and maximum number of iterations, respectively. 
Whenever |E| ≥ 1 , the exploration phase is selected, and 
when |E| < 1 , the exploitation phase is going to be selected.

4.1  Exploration phase

The current phase presents the exploration mechanism of 
HHO. In this phase, the solutions are updated by the perch-
ing strategy of Harris hawks that is simulated by Eq. (13).

In Eq. (13), XIt
i
 is the current position of ith solution in itera-

tion It , NewXIt+1
i

 is the updated position of ith , XIt
r
 is a ran-

domly chosen solution from the population, r1 , r2 , r3 , r4 , and 
q are random numbers in (0,1), BestX is the best solution 
found so far, Lb and Ub are the lower and upper bounds of 
problem space, and XIt

m
 is the average of the solutions in the 

current population, and can be calculated using Eq. (14).

where N is the number of solutions in the population.

4.2  Exploitation phase

This phase models the surprising pounce of the Harris 
hawks. Given that the preys try to escape from the menac-
ing situation, the Harris hawks use different chasing styles 
for hunting. In this phase, four possible strategies are sug-
gested to simulate the attacking behaviors: soft besiege, 
hard besiege, soft besiege with progressive rapid dives, and 
hard besiege with progressive rapid dive, which are briefly 
described in the next subsections. Two parameters are used 
in HHO to choose one of these four strategies. First param-
eter is r , which is a random number inside (0,1), and the 
second one is E, which is calculated using Eq. (12).

4.2.1  Soft besiege

When r ≥ 0.5 and |E| ≥ 0.5 , the soft besiege phase is 
selected, and the solution is updated by Eq. (15).

(13)

NewXIt+1
i

=

{
XIt
r
− r1

|||XIt
r
− 2r2X

It
i

||| q ≥ 0.5(
BestX − XIt

m

)
− r3

(
Lb + r4(Ub − Lb)

)
q < 0.5

(14)XIt
m
=

1

N

N∑
i=1

XIt
i

(15)XIt+1
i

= ΔXIt − E
|||J ⋅ BestX − XIt

i

|||

(16)ΔXIt = BestX − XIt
i

(17)J = 2
(
1 − r5

)

where r5 is a random number between [0, 1].

4.2.2  Hard besiege

When r ≥ 0.5 and |E| < 0.5 , the hard besiege phase is used, 
and the solution is updated by Eq. (18).

4.2.3  Soft besiege with progressive rapid dives

When r < 0.5 and |E| ≥ 0.5 , the third strategy is selected, 
and the solution is updated using Eq. (19).

where F is the fitness of the given solution, S is a random 
vector, L is the levy-flight function, u and v are random val-
ues in (0,1), and � is a constant value of 1.5.

4.2.4  Hard besiege with progressive rapid dives

When r < 0.5 and |E| < 0.5 , the solution is updated using the 
last phase, which is modeled by Eq. (24).

where XIt
m

 , and L are calculated using Eqs. (14) and (22), 
respectively. The flowchart of the HHO algorithm is repre-
sented in Fig. 3.

(18)XIt+1
i

= BestX − E
|||ΔX

It|||

(19)XIt+1
i

=

{
Y F(Y) < F

(
XIt
i

)
Z F(Z) < F

(
XIt
i

)

(20)Y = BestX − E
|||J ⋅ BestX − XIt

i

|||

(21)Z = Y + S × L

(22)LF(x) = 0.01 ×
u × �

|v| 1

�

(23)� =

⎛
⎜⎜⎜⎝

� (1 + �) × sin
�

��

2

�

�
�

1+�

2

�
× � × 2

�
�−1

2

�
⎞
⎟⎟⎟⎠

1

�

(24)XIt+1
i

=

{
Y F(Y) < F

(
XIt
i

)
Z F(Z) < F

(
XIt
i

)

(25)Y = BestX − E
|||J ⋅ BestX − XIt

m

|||

(26)Z = Y + S × L
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5  Proposed hybrid multi‑population 
algorithm (HMPA)

As mention earlier, the main challenge of the meta-heuris-
tic algorithms is enhancing the exploration and exploita-
tion capabilities and balancing them. In addition, provid-
ing an approach to avoid or jump out of local optimums is 
another challenge relevant to the so-called algorithms. In 
the proposed hybrid multi-population algorithm (HMPA), 
the whole list of these issues is considered, and a solution 
is provided for each of them, which are described below in 
detail. Figure 4 outlines the schematic view of the HMPA.

5.1  Proposed multi‑population technique

First, a novel multi-population technique has been utilized to 
propagate the diversity of solutions. This technique helps to 
make the solutions more scattered and search for more space 
of the problem. For this intension, three sub-populations are 
considered in the proposed method, which exchanges the 
solutions dynamically. The first sub-population is respon-
sible for independently searching the entire space of the 
problem, which initially includes 60% of the solutions. This 
process improves exploration significantly. The solutions in 
the first sub-population update their position using Eq. (27). 
Additionally, this equation is used in the initialization phase 
to initialize the solutions.

To make this random search process more efficient, the new 
solution that is being produced will replace the previous 
solution only if it has better fitness. The greedy selection 
mechanism dramatically increases efficiency. Figure 5 pre-
sents the pseudo-code of the greedy selection mechanism 
that is used in HMPA.

Moreover, in each H iterations, the best solution of the 
first sub-population is selected and added to one of the sec-
ond or third sub-populations. Thenceforth, the selected solu-
tion will be eliminated from the first sub-population. In this 
way, the number of solutions in the first sub-population is 
reduced, and the solutions for the next two sub-populations 
increased over time. This makes the algorithm more search-
able in the initial iterations and more exploitable in the final 
iterations.

Afterwards, the remained 40% of initial solutions are 
divided into two sub-populations equally. The solutions 
of each sub-population update their positions according 
to the best solution (local best of the sub-population) and 
other solutions of the corresponding sub-population. Con-
sequently, the solutions are converged to two different areas, 
instead of converging only to one point. Besides, there is 
a counter in the solutions of second and third sub-popula-
tions, which counts the unsuccessful updates of the solu-
tions. With this parameter, the trapped solutions in the local 
optimal points can be detected. The details of this param-
eter and its effectiveness are entirely stated in our previous 
work [1]. Similarly, in each H iterations, if the counter of 
a solution exceeds a threshold ( Thr ), and the members of 
the sub-population ( NM ) were more than specified mini-
mum numbers ( MNM ), the solution will be transmitted 
into the first sub-population to reinitialize. Maintaining the 
minimum number of solutions in the sub-populations are for 
retaining the successful functioning of the sub-populations. 
As it is vividly apparent, the size of the sub-populations 
is changed dynamically, and they can exchange the solu-
tions. Figure 6 illustrates the exchange mechanism between 
sub-populations.

The solutions of the second and third sub-populations are 
updated either with AEO or HHO algorithm.

5.2  Quasi‑oppositional learning

The quasi-oppositional position technique (QOPP) is used in 
the HMPA to enhance the searching ability. The QOPP is a 
learning-based technique, which can improve the searching 
ability by generating the symmetrical position of a solution 
[87]. In HMPA, the QOPP has been used only in the autono-
mous solutions of the first sub-population. The pseudo-code 
of the QOPP is presented in Fig. 7.

(27)newXIt
i
= Lb + rand(0, 1) × (Ub − Lb)

Fig. 3  Flowchart of the basic HHO
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In pseudo-code of Fig. 7, D is the dimension of the prob-
lem, and QOpXIt

i
 is the quasi-opposite position of XIt

i
 . In 

addition, as shown in Fig. 4, after generating new solutions 
using the QOPP, the greedy selection mechanism is used 
yet again.

5.3  Chaotic local search strategy

Chaotic local search (CLS) strategy explores the nearby of 
a solution to discover promising areas [69]. Therefore, this 

Fig. 4  Flowchart of HMPA

Fig. 5  Pseudo-code of the greedy selection mechanism
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strategy enhances exploitation capability. Besides, taking 
advantages of chaos theory increases the potency of the 
strategy. In HMPA, the CLS strategy is just applied to the 
local best of the sub-populations. In this way, only around 
the best solutions will be explored, and the execution time 
will be reduced. In the CLS, a new local best solution can 
be calculated using Eq. (28).

where XIt
r1

 and XIt
r2

 are two randomly selected solutions from 
the corresponding sub-population, and CVk+1 is the chaotic 
value generated by the chaotic map. In the HMPA, the piece-
wise map has been selected as the chaotic map, which is 
a well-known chaotic map and generates random numbers 
between (0,1). The piecewise chaotic map is modeled math-
ematically as below:

(28)newBestX = BestX +
(
CVk+1 − 0.5

)
×
(
XIt
r1
− XIt

r2

)

P = 0.4
Figure 8 shows the distribution of the piecewise map over 

time.
Similarly, the pseudo-code of the CLS strategy is pro-

vided in Fig. 9.
After producing a new local best using the proposed CLS 

strategy, the greedy selection mechanism is used to increase 
profitability.

(29)CV
k+1 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

CV
k

P
0 ≤ CV

k
≤ P

CV
k−P

0.5−P
P ≤ CV

k
< 0.5

1−P−CVk

0.5−P
0.5 ≤ CV

k
< 1 − P

1−CVk

P
1 − P ≤ CV

k
< 1

Fig. 6  Solution exchange mech-
anism between sub-populations

Fig. 7  Pseudo-code of the QOPP

Fig. 8  Distribution of the piecewise map over time
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5.4  Proposed levy‑flight function (PLF)

The levy-flight random walk function has been introduced 
earlier in Sect. 4 in the HHO algorithm. The levy-flight ran-
dom walk is an advantageous approach to enhance the per-
formance of the algorithms by increasing exploitation. This 
approach has been used in the state-of-the-art algorithms 
in various ways. In HMPA, this approach is used in a novel 
way, as illustrated in Fig. 10.

In the PLF, the first command can speed up the conver-
gence, and the second command improves the exploitation 
capability. Additionally, LF is the value obtained by the 
Eq. (22).

5.5  Proposed local search mechanism (PLS)

To increase the searching strength of the HMPA, a local 
search mechanism denoted as PLS is also proposed, which 
searches the space between solutions of the sub-population 
more accurately to discover better solutions. In PLS, a new 
solution is generated using Eq. (30).

where � is coefficient between (−L,+L) , L and � are random 
numbers in (0,1), XIt

j
 is a randomly chosen solution from the 

sub-population, CP2 is a control parameter with a value of 
0.5, and NX is a solution vector produced by Eq. (27). The 
pseudo-code of the PLS is provided in Fig. 11.

(30)XIt+1
i

=

{
XIt
i
+ 𝜇 ⋅

(
XIt
i
− XIt

j

)
𝛿 < CP2

XIt
i
+ 𝜇 ⋅ (BestX − NX) otherwise

5.6  Computational complexity

In this subsection, the computational complexity of HMPA 
is discussed in terms of time complexity on three main pro-
cess of the algorithm: initialization, fitness evaluation, and 
updating phase.

The complexity of the initialization phase is O(N) , where 
N is the total number of solutions. The evaluating fitness of 
solutions requires O(T × (N × N + 3 × K)) time, since the 
fitness of each solution is evaluated twice in each iteration, 
and three local best solutions are evaluated K times in each 
iteration. The T  is the maximum number of iterations.

The updating phase of the proposed algorithm is con-
sisting of three branches; therefore, the complexity of the 
updating phase is discussed for each branch.

T h e  c o mp l ex i t y  o f  t h e  f i r s t  b r a n ch  i s 
O
(
T ×

(
N1 + D × N1 + K

))
, which N1 is the number of solu-

tions in the first sub-population, and D indicates the dimen-
sion of the problem.

For the second and third branches the approximate com-
plexity must be expressed, since the AEO or HHO , and PLS 
or PLF algorithms are selected randomly in each iteration. 
The approximate complexity of the second and third 
b r a n c h e s  a r e  O

(
T × (N2 × (A1 + A2

)
+ K))  a n d 

O
(
T × (N3 × (A1 + A2

)
+ K)) , respectively. Where, A1 is the 

average complexity of HHO and AEO algorithms, A2 is the 
average complexity of PLS and PLF methods, N2 and N3 are 
the number of solutions in the second and third sub-popula-
tions, respectively. The complexity of PLS is O

(
Nn

)
 , PLF is 

O(1) , HHO is O(N × (T + T × D + 1)) , and AEO is 

O(T × N × N) . It is worth to mention that 
3∑

n=1

Nn = N.

6  Experimental results

To substantiate the superiority of the proposed HMPA, the 
performance of HMPA is evaluated on fifty widely-used test 
functions comprising unimodal, multimodal, fix-dimension, 
shifted rotated, hybrid, and composite functions. The results 
of the HMPA is compared with several state-of-the-art meta-
heuristic algorithms in terms of the best, worst, median, 
average, standard deviation, average execution time (AET) 
in second, and box plot metrics over the results of 30 inde-
pendent executions. Furthermore, the convergence speed 

Fig. 9  Pseudo-code of the CLS strategy

Fig. 10  Proposed levy-flight function (PLF)

Fig. 11  Proposed local search mechanism (PLS)
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of the algorithms is compared graphically. Moreover, the 
Wilcoxon signed-rank test is used to prove the supremacy of 
HMPA. The R column in the tables of Wilcoxon signed-rank 
test presents the result of the test, which ‘ + ’, ‘− show the 
HMPA is significantly is better, or worse than the competitor 
algorithm, respectively. When the results of the algorithms 
are equal or very close to each other, the difference between 
algorithms cannot be determined using this test (The ‘ = ’ 
sign in R column).

Harris hawks optimization (HHO) [32], artificial eco-
system-based optimization (AEO) [31], spotted hyena opti-
mizer (SHO) [88], farmland fertility algorithm (FFA) [89], 
Salp swarm algorithm (SSA) [90], moth-flame optimization 
(MFO) [91], and antlion optimizer (ALO) [92] have been 
selected as competitor algorithms. The number of solutions 
in the algorithms is set to 50, and stopping criteria in them 
is considered to reach 1000 rounds of iteration. The val-
ues of other parameters of these algorithms are presented in 
Table 1, which are the default values proposed by the authors 
in the original papers.

The specifications of the system by which the experi-
ments are conducted are shown in Table 2.

6.1  Experiments on unimodal test functions

In this subsection, the performance of the HMPA is evalu-
ated on a set of standard unimodal test functions illustrated 
in Table 3. These test functions challenge the exploitation 
capability of the algorithms and categorized into separa-
ble and non-separable functions. The statistical results of 
the algorithms on unimodal test functions are specified in 
Table 4.

According to Table 4, the proposed HMPA has achieved 
better results on all unimodal test functions. To further eval-
uate the obtained results, the box plot metric is used, and the 
graphical results are provided in Fig. 12.

According to Table 4, the proposed HMPA has achieved 
better results on all unimodal test functions. To further eval-
uate the obtained results, the box plot metric is used, and the 
graphical results are provided in Fig. 12.

Figure 12 states that the HMPA has reached better and 
more coherent results in the independent runs. The conver-
gence rate of algorithms is also significant in evaluating the 
efficiency of optimization algorithms. Figure 13 represents 
the convergence rates comparison of the algorithms visually.

Figure 13 expresses the HMPA started with better solu-
tions and converged quickly in the early iterations. More-
over, the Wilcoxon signed-rank test is performed on the 
HMPA versus other competitor algorithms, and the results 
are provided in Table 5 for investigating the significant dif-
ferences among the algorithms.

The p-values presented in Table 5 declare that the HMPA 
has a significant difference with other algorithms on all test 

Table 1  Parameter values of the algorithms

* rand is a random number inside [0,1]

Algorithm Parameter Value

HMPA Thr 100
H 5
MNM 10
K 10
CP1, and CP2 0.5
�, �, and L rand

AEO r1 , r2 , and r rand
h 2 × rand-1

HHO r1,r2 , r3 , r4 , and q rand
E0 (− 1,1)
J 2 × (1 − rand)

SHO h⃗ 5 to 0

M⃗ [0.5, 1]

FFA k 2
� 0.6
� 0.4
Q 0.7

ALO Selection method Roulette wheel
SSA c1,c2 , c3 rand
MFO Spiral constant 1

Converge constant − 1 to − 2
Number of flames N − l ×

N−1

T

STOA Cf 2
SA 2 to 0
CB 0.5 × rand

u, v 1
MRFO � 2r ×

√�log (r)�
r1,r2 , r3 , and r rand
� rand
s 2

SCA r1,r2 , r3 , and r4 rand
WOA � 2 to 0

r, p rand
A, l [− 1,1]

Table 2  Running platform specifications

Name Value

Hardware
 CPU Core i5
 Frequency 3.1 GHz
 RAM 8 GB
 Hard drive 1 TB + 250 SSD

Software
 Operating system Windows 10
 Language MATLAB R2017a
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functions, except on TF1-TF4 with SHO, and TF1-TF2 with 
AEO algorithms.

6.2  Experiments on multimodal test functions

This subsection evaluates the performance of the HMPA 
on six widely used standard multimodal test functions. The 
multimodal test functions are demonstrated in Table 6.

These test functions have a lot of local optima points and 
challenge the exploration capability of the algorithm. The 
statistical results of the algorithms on multimodal test func-
tions are presented in Table 7.

As it is evident from the results of Table 7, the HMPA 
attained better results in all test functions. For further in-
depth scrutinizing the obtained results of the algorithms on 
multimodal test functions, the box plot graphs are plotted 
and shown in Fig. 14.

As depicted in the diagrams of Fig. 14, unlike other 
algorithms that have diverse results in each execution, the 
obtained results in the proposed algorithm are closer to each 
other. In addition, the comparisons of the convergence rate 
of the algorithms are provided in Fig. 15.

The graphs of Fig. 15 represent that the HMPA is con-
verged with more agility than other competitor algorithms 
in all multimodal test functions. Besides, the results of algo-
rithms are further investigated statistically by the nonpara-
metric Wilcoxon signed-rank test, and the consequence is 
presented in Table 8.

As it is evident from Table 8, the HMPA has a signifi-
cant difference from other algorithms, except in TF9-TF11 
from HHO, SHO, and AEO algorithms. Although the results 
of the algorithms are similar, considering the convergence 
rate of the algorithms, it can be inferred that the HMPA 

is premier than the other algorithms in all multimodal test 
functions.

6.3  Experiments on fix‑dimension test functions

Fix-dimension test functions are kind of standard test func-
tions with constant and unchangeable dimensions. This 
subsection presents the results of experiments on ten well-
known fix-dimension test functions. The details of the test 
functions are provided in Table 9.

Similarly, the statistics of the obtained results by the algo-
rithms on these test functions are presented in Table 10.

The statistical results presented in Table 10 indicate that 
the HMPA algorithm outperforms the competitor algo-
rithms. Additionally, the box plot graphs of the algorithms 
on fix-dimension test functions are depicted in Fig. 16.

The box plots of Fig. 16 affirm the authenticity of the sta-
tistical results of the algorithms. Moreover, the convergence 
speeds of the algorithms are examined on fix-dimension test 
functions, and the results are illustrated in Fig. 17. Likewise, 
the non-parametric Wilcoxon signed-rank test results are 
provided in Table 11 to investigate the possible superiority 
of the HMPA with further confidence.

6.4  Experiments on CEC 2017 test functions

These test functions are the most complicated test func-
tions, which comprise three categories: shifted and rotated 
hybrid, and composite. Shifted and rotated test functions 
are the result of rotating the optimal points around a par-
ticular axis, which complicates the optimization process. 
Hybrid and composite test functions are the results of com-
bining several test functions. To achieve satisfactory results 

Table 3  Details of the unimodal 
test functions

Function dim Range Fmin

TF1
f (x) =

d∑
i=1

x2
i

30 [−100, 100]d 0

TF2
f (x) =

d∑
i=1

��xi�� +
d∏
i=1

��xi��
30 [−10, 10]d 0

TF3
f (x) =

d∑
i=1

�
i∑

j=1

xj

�2 30 [−100, 100]d 0

TF4 f (x) = maxi
{||xi||, 1 ≤ i ≤ d

}
30 [−100, 100]d 0

TF5
f (x) =

d−1∑
i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 30 [−30, 30]d 0

TF6
f (x) =

d∑
i=1

���xi + 0.5��
�2 30 [−100, 100]d 0

TF7
f (x) =

d∑
i=1

ix4
i
+ random[0, 1)

30 [−1.28, 1.28]d 0
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Table 4  Statistical results obtained by the algorithms on the unimodal test functions

Algorithm Best Median Average Worst STD AET(s)

TF1 HHO 1.0000e−323 2.5000e−323 3.5000e−323 8.4000-323 0.0000e+00 10.0097
FFA 1.6369e−15 6.0574e−15 8.0388e−15 2.1586e−14 5.6259e−15 4.70663
MFO 3.3689e−06 3.8259e−05 2.0000e+04 1.0000e+04 4.0824e+03 2.34953
ALO 1.1823e−07 5.1007e−07 7.3696e−07 2.2146e−06 5.7755e−07 98.3398
SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 12.9254
SSA 5.5065e−09 8.0706e−09 8.0563e−09 1.3163e−08 1.8566e−09 3.88224
AEO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.60428
HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 19.0020

TF2 HHO 5.1979e−206 1.7512e−197 1.8512e−190 4.9795e−189 0.0000e+00 11.2838
FFA 2.9715e+03 3.8991e+03 4.0797e+03 5.6537e+03 8.1891e+03 4.68083
MFO 4.9049e+02 1.5404e+04 1.7750e+04 4.5014e+04 1.2734e+04 2.45368
ALO 6.1435e+01 1.9159e+02 2.9953e+02 1.0512e+03 2.4488e+02 41.0972
SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 6.50187
SSA 1.2186e−02 1.2476e−01 2.3641e−01 1.0632e+00 2.8210e−01 3.73297
AEO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 4.76564
HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 20.3771

TF3 HHO 1.4522e−212 4.8138e−196 2.3876e−182 7.12616e−181 0.0000e+00 14.7399
FFA 6.2985e+00 1.0327e+01 1.0496e+01 1.4887e+01 2.2956e+00 8.27796
MFO 3.4044e+01 5.9916e+01 5.8078e+01 8.1314e+01 1.1906e+01 3.96288
ALO 2.4086e+00 8.0520e+00 8.0912e+00 2.5570e+01 5.0478e+00 39.8589
SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 8.63975
SSA 7.4633e−01 2.7721e+00 3.3223e+00 1.0269e+01 2.3172e+00 3.44956
AEO 1.3784e−194 1.6972e−188 1.1399e−182 2.2171e−181 0.0000e+00 6.60229
HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 30.5945

TF4 HHO 1.6793e−114 2.5701e−108 6.7150e−104 2.0077e−102 3.6652e−103 11.8984
FFA 2.6937e−11 6.6793e−11 8.5617e−11 2.1259e−10 5.1696e−11 4.50707
MFO 1.6907e−04 3.0000e+01 3.2000e+01 6.0000e+01 1.6329e+01 1.76030
ALO 1.7437e−02 4.4840e+00 2.1912e+01 1.0910e+02 3.8137e+01 42.6791
SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 7.23653
SSA 5.5213e−05 2.6504e−01 4.0761e−01 1.9738e+00 5.1345e−01 3.10988
AEO 1.0355e−198 3.2118e−193 2.2896e−189 5.6003e−188 0.0000e+00 3.71831
HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 18.3284

TF5 HHO 8.3815e−06 9.7890e−05 2.2322e−04 1.2350e−03 3.1150e−04 12.7046
FFA 4.1162e+00 6.0000e+00 5.8803e+00 6.6667e+00 5.4078e−01 4.84226
MFO 3.6068e−02 4.8846e+00 2.6352e+02 3.0228e+03 8.3396e+02 2.15418
ALO 8.0219e−05 5.3664e+00 8.3663e+01 1.0148e+03 2.4137e+02 42.7115
SHO 2.8689e+01 2.8704e+01 2.8762e+01 2.8976e+01 1.0644e−01 6.70522
SSA 1.1144e+00 4.4050e+00 6.8853e+00 5.5888e+01 1.0464e+01 3.38507
AEO 7.0413e−12 4.8640e−07 7.2525e−06 7.4446e−05 1.6008e−05 3.46068
HMPA 2.6430e−22 2.0135e−19 7.3912e−18 1.5420e−16 3.0772e−17 22.5178

TF6 HHO 4.3626e−07 1.8420e−05 2.9232e−05 1.1375e−04 3.0713e−05 12.1314
FFA 1.2877e−15 9.3170e−15 1.0636e−14 3.4602e−14 7.5780e−15 4.66573
MFO 1.6901e−06 3.0841e−05 1.2040e+03 1.0100e+04 3.3279e+03 1.66695
ALO 4.7917e−08 8.1258e−07 9.0834e−07 3.8749e−06 7.9537e−07 44.3519
SHO 9.2260e−03 4.6681e−01 2.2458e+00 6.9165e+00 2.7662e+00 5.18416
SSA 4.2972e−09 7.5869e−09 8.0025e−09 1.4509e−08 2.2793e−09 2.88100
AEO 6.8362e−13 4.3952e−10 2.2861e−09 3.2404e−08 6.7688e−09 2.78123
HMPA 0.0000e+00 0.0000e+00 1.2326e−33 1.2326e−32 3.0814e−33 19.6652



1594 Engineering with Computers (2022) 38:1581–1625

1 3

in these test functions, the algorithms must have superior 
exploitation and exploration capabilities along with local 
optima avoidance ability. CEC 2017 includes twenty-nine 

single-objective test functions, which the second and twenty-
second test functions have been removed in the recent update 
[93]. The brief description of CEC 2017 test functions is 

The best results have been written in bold

Table 4  (continued)

Algorithm Best Median Average Worst STD AET(s)

TF7 HHO 2.3273e−06 2.6054e−05 5.0525e−05 2.3625e−04 5.9026e−05 10.9908

FFA 7.8302e−03 1.9475e−02 1.8355e−02 3.0869e−02 5.2235e−03 5.14018

MFO 2.0341e−02 2.5288e−01 5.0071e+00 3.2248e+01 8.1182e+00 2.18480

ALO 3.1288e−02 5.3176e−02 5.6774e−02 1.0049e−01 2.0556e−02 42.9241

SHO 4.9675e−06 1.9173e−05 4.0058e−05 2.5764e−04 5.9995e−05 5.32082

SSA 2.5333e−02 4.6630e−02 5.4026e−02 1.0453e−01 2.1156e−02 2.92922

AEO 2.0266e−05 1.3109e−04 1.5704e−04 4.8868e−04 1.1154e−04 2.96990

HMPA 2.6040e−07 1.0774e−05 1.3767e−05 5.3285e−05 1.3687e−05 17.5846

Fig. 12  Box plots of the obtained results from the algorithms on the unimodal test functions
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presented in Table 12. Similar to the previous subsections, 
the statistical results of the algorithms are provided in 
Table 13.

In line with the statistics presented in Table 13, the 
HMPA found better solutions for all CEC 2017 test 

functions. The box plot graphs are depicted in Fig. 18 for 
additional examination.

The box plots of Fig. 18 confirm the statistical results of 
Table 13 and expose the superiority of the HMPA. Besides, 
Box charts show that the HMPA is less dependent on the 
initial solutions, and it demonstrated better achievements 

Fig. 13  Convergence graphs of the algorithms on the unimodal test functions

Table 5  Wilcoxon signed-rank test results of the HMPA versus the competitor algorithms with 5% significance level on the unimodal test func-
tions

HMPA vs.HHO HMPA vs.FFA HMPA vs.MFO HMPA vs.ALO HMPA vs.SHO HMPA vs.SSA HMPA vs.AEO

P value R P value R P value R P value R P value R P value R P value R

TF1 2.726e−06 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + – =
TF2 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + – =
TF3 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + 1.229e−05 +
TF4 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + 1.229e−05 +
TF5 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 +
TF6 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 +
TF7 0.0049 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 0.0264 + 1.229e−05 + 1.389e−05 +
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than the rest of the algorithms. Likewise, the convergence 
speeds of the algorithms are compared, and the results are 
established in Fig. 19.

The graphs of Fig. 19 indicate that the HMPA outper-
forms the other comparative algorithms in terms of con-
vergence rate, in all CEC 2017 test functions except TF32. 
In addition, it can be inferred that HMPA has the ability to 
go out of the local optimum points. Besides, the results of 
the Wilcoxon signed-rank test on these test functions are 
disclosed in Table 14.

Drawing on the results of Figs. 18, 19, and Tables 13, 14, 
it can be concluded that the HMPA could find optimal or 
near-optimal solutions for CEC 2017 test functions, and have 
a significant difference from other representative algorithms.

According to the results of experiments on the vast set of 
test functions, it can be concluded that the HMPA outper-
forms in all test functions.

7  Real‑world engineering applications

To further investigate the superiority of the HMPA, in this 
section, the algorithms have been utilized to solve real-life 
engineering problems. For this purpose, the algorithms are 
applied to seven constrained and unconstrained real-world 
engineering problems of minimization and maximization 

nature. Besides, the results of HMPA is compared statisti-
cally with the results of the algorithms used in Sect. 6, as 
well as Tree Seed Algorithm (TSA) [95], Manta Ray For-
aging Optimization (MRFO) [8], Sine Cosine Algorithm 
(SCA) [96], and Whale Optimization Algorithm (WOA) 
[97]. The values of the parameters of the algorithms are 
provided in Table 1. It is worth mentioning that, in the con-
strained engineering problems, the death penalty mechanism 
is utilized as a constraint handling method, in which a con-
siderable positive/negative number is added to the objective 
value as a penalty. As a result, the infeasible solutions would 
be rejected.

7.1  Welded beam design problem

The welded beam design problem is a constrained optimiza-
tion problem, the objective of which is to minimize the fab-
rication cost of welding. The constraints are shear stress (τ) 
and bending stress (θ) in the beam, buckling load ( Pc ) on the 
bar, and deflection (δ) of the beam. Additionally, the thick-
ness of the weld (h), length of the clamped bar (l), height of 
the bar (t), and thickness of the bar (b) are the design vari-
ables of the problem. The welded beam design problem is 
illustrated in Fig. 20.

Below is outlined the problem’s constraints as well as 
mathematical formulation.Consider:

Table 6  Details of the multimodal test functions

Function dim Range Fmin

TF8
f (x) = −

d∑
i=1

�
xi sin

����xi��
�� 30 [−500, 500]d − 12569.5

TF9
f (x) = 10d +

d∑
i=1

�
xd
i
− 10 cos

�
2�xi

�� 30 [−5.12, 5.12]d 0

TF10
f (x) = −20 exp

⎛⎜⎜⎝
−0.2

�
1

d

d∑
i=1

x2
i

⎞⎟⎟⎠
− exp

�
1

d

d∑
i=1

cos 2�xi

�
+ 20 + e

30 [−32, 32]d 0

TF11
f (x) =

1

4000

d∑
i=1

x2
i
−

d∏
i=1

cos
�

xi√
i

�
+ 1

30 [−600, 600]d 0

TF12
f (x) =

�

d

�
10 sin

�
�y1

�
+

d−1∑
i=1

�
yi − 1

�2�
1 + 10 sin2

�
�yi+1

��
+
�
yd − 1

�2
�

+
d∑
i=1

U
�
xi, 10, 100, 4

�

yi = 1 +
xi+1

4
 , U

�
xi, a, k,m

�
=

⎧⎪⎨⎪⎩

k
�
xi − a

�m
xi > a

0 −a < xi < a

k
�
−xi − a

�m
xi < −a

30 [−50, 50]d 0

TF13
f (x) = 0.1

{
sin

2
(
3�x

1

)
+

d∑
i=1

(
x
i
− 1

)2[
1 + sin

2
(
3�x

i
+ 1

)]
+
(
x
d
− 1

)2[
1 + sin

2
(
2�x

d

)]}

+

d∑
i=1

U
(
x
i
, 5, 100, 4

)

30 [−50, 50]d 0
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Table 7  Statistical results obtained by the algorithms on the multimodal test functions

Algorithm Best Median Average Worst STD AET(s)

TF8
 HHO − 12568.7987 − 11955.4152 − 11503.3821 − 8131.4065 1311.77832 12.4664
 FFA − 8336.5535 − 6872.4861 − 6805.3727 − 4337.8464 1110.6248 4.93968

MFO − 9956.2579 − 8876.6594 − 8794.5104 − 7559.0769 602.7702 2.07681
 ALO − 12569.4862 − 5537.5832 − 5830.718 − 5417.6747 1432.9433 37.6073
 SHO − 3703.5540 − 2672.2821 − 2797.3806 − 2103.6576 507.9239 1.51219
 SSA − 8611.5961 − 7495.9671 − 7522.6963 − 6407.7053 603.1958 3.00812
 AEO − 11951.7028 − 11403.2147 − 11296.5607 − 10437.5459 382.6176 3.28673
 HMPA − 12569.4866 − 12569.4866 − 12569.4866 − 12569.4866 7.9200e−12 24.8868

TF9
 HHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 11.7496
 FFA 2.7809e+01 6.4123e+01 7.2483e+01 1.4118e+02 3.0201e+01 4.67649
 MFO 8.5566e+01 1.3531e+02 1.4153e+02 2.1924e+02 3.3390e+01 1.83756
 ALO 4.3778e+01 6.8652e+01 7.2552e+01 1.1939e+02 2.0848e+01 37.0378
 SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.25136
 SSA 1.5919e+01 3.9798e+01 3.8166+01 5.1737e+01 1.0753e+01 2.52734
 AEO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 2.90343
 HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 14.6411

TF10
 HHO 8.8818e−16 8.8818e−16 8.8818e−16 8.8818e−16 0.0000e+00 12.5164
 FFA 1.3491e−08 3.5601e−08 3.7066e−08 8.1063e−08 1.5065e−08 4.96700
 MFO 6.8828e−04 2.0133e+00 8.1163e+00 1.9407e+01 8.3068e+00 2.02379
 ALO 9.3130e−01 2.0133e+00 2.0257e+00 3.1583e+00 5.2546e−01 37.4280
 SHO 8.8818e−16 8.8818e−16 2.2788e−01 6.8366e+00 1.2481e+00 5.27194
 SSA 2.0905e−05 1.7779e+00 1.6169e+00 3.0937e+00 9.9016e−01 2.79218
 AEO 8.8818e−16 8.8818e−16 8.8818e−16 8.8818e−16 0.0000e+00 2.81257
 HMPA 8.8818e−16 8.8818e−16 8.8818e−16 8.8818e−16 0.0000e+00 15.5893

TF11
 HHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 13.1575
 FFA 5.5333e−07 8.1217e−06 1.5229e−05 1.0052e−04 2.1261e−05 5.09034
 MFO 1.8909e−05 1.0001e−02 1.0849e+01 1.8021e+02 3.9669e+01 2.37502
 ALO 3.0444e−05 1.0101e−02 1.0552e−02 3.4540e−02 8.7807e−03 37.4154
 SHO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 5.32358
 SSA 1.8703e−08 3.8554e−08 6.2056e−03 3.1942e−02 8.8470e−03 2.90227
 AEO 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 3.84447
 HMPA 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 16.3819

TF12
 HHO 4.3702e−08 1.8335e−06 3.6155e−06 1.3021e−05 4.0857e−06 15.4125
 FFA 4.4294e−08 3.3747e−06 9.1515e−06 6.4776e−05 1.4657e−05 7.21749
 MFO 6.5085e−06 1.0366e+01 5.1443e−01 2.1648e+00 7.6444e−01 3.88970
 ALO 3.1954e+00 7.3917e+00 8.3076e+00 1.5311e+01 3.1104e+00 37.6693
 SHO 5.2445e−05 6.9714e−05 6.7554e−05 7.7207e−05 7.3433e−06 6.28763
 SSA 3.2789e−02 2.8403e+00 3.4545e+00 1.0355e+01 2.6140e+00 3.62955
 AEO 2.8785e−13 3.0158e−11 8.0771e−11 3.9070e−10 1.1344e−10 5.72319
 HMPA 1.5705e−32 1.5705e−32 1.5757e−32 1.6028e−32 8.9833e−35 31.3325

TF13
 HHO 7.1677e−08 3.2164e−05 3.5770e−05 1.0822e−04 3.1856e−05 15.3583
 FFA 7.4271e−09 1.3615e−07 3.6941e−07 1.9783e−06 5.5921e−07 7.10244
 MFO 3.6688e−05 1.6317e−03 5.4674e−03 2.7851e−02 1.5454e−03 3.97892
 ALO 2.4686e−07 1.0989e−02 9.7971e−03 3.0829e−02 9.5089e−03 37.1176
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Minimize:

Subject to:

v⃗ =
[
v1v2v3v4

]
= [hltb],

f
(
v⃗
)
= 1.10471v2

1
v2 + 0.04811v3v4

(
14.0 + v2

)
,

c1
(
v⃗
)
= 𝜏

(
v⃗
)
− 𝜏max ≤ 0,

c2
(
v⃗
)
= 𝜎

(
v⃗
)
− 𝜎max ≤ 0,

c3
(
v⃗
)
v = 𝛿(v) − 𝛿max ≤ 0,

c4
(
v⃗
)
= v1 − v4 ≤ 0,

where  0.1 ≤ v1 ≤ 2  ,  0.1 ≤ v2 ≤ 10  ,  0.1 ≤ v3 ≤ 10  , 
0.1 ≤ v4 ≤ 2,

c5
(
v⃗
)
= P − Pc

(
v⃗
)
≤ 0,

c6
(
v⃗
)
= 0.125 − v1 ≤ 0,

c7
(
v⃗
)
= 1.10471v2

1
+ 0.04811v3v4

(
14.0 + v2

)
− 5.0 ≤ 0,

(31)𝜏
(
v⃗
)
=

√
(𝜏�)2 + 2𝜏�𝜏��

v2

2R
+ (𝜏��)2,

�� =
P√
2v1v2

,

The best results have been written in bold

Table 7  (continued)

Algorithm Best Median Average Worst STD AET(s)

 SHO 2.8207e+00 2.9578e+00 2.9515e+00 2.9969e+00 3.0610e−02 6.52049
 SSA 3.5914e−10 6.2849e−10 6.0388e−03 2.1023e−02 7.5831e−03 3.75444
 AEO 2.4805e−10 1.4115e−05 2.1509e−03 1.1122e−03 4.0586e−03 5.81502
 HMPA 1.3497e−32 1.3497e−32 1.3843e−32 1.8428e−32 1.0386e−33 32.0575

Fig. 14  Box plots of the obtained results from the algorithms on the multimodal test functions
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��� =
MR

J
,

M = P
(
L +

v2

2

)
,

R =

√
v2
2

4
+

(
v1 + v3

2

)2

,

J = 2

�√
2v1v2

�
v2
2

4
+

�
v1 + v3

2

�2
��

,

𝜎
(
v⃗
)
=

6PL

v4v
2
3

,

L = 14 inch,  E = 30 × 106  ps i ,  G = 12 × 106  ps i , 
�max = 0.25 inch, �max = 13, 600 psi, �max = 30, 000 psi.

In Table 15, the statistical analysis of the algorithms is 
conveyed. Moreover, the best points and their corresponding 
fitness values obtained by the algorithms on this problem are 
provided in Table 16.

𝛿
(
v⃗
)
=

6PL3

Ev3
3
v4
,

Pc

(
v⃗
)
=

4.013E

√
v2
3
v6
4

36

L2

(
1 −

v3

2L

√
E

4G

)
, P = 6000 lb.,

Fig. 15  Convergence graphs of the algorithms on the multimodal test functions

Table 8  Wilcoxon signed-rank test results of the HMPA versus the competitor algorithms with 5% significance level on the multimodal test 
functions

HMPA vs.HHO HMPA vs.HHO HMPA vs.MFO HMPA vs.ALO HMPA vs.SHO HMPA vs.SSA HMPA vs.AEO

P value R P value R P value R P value R P value R P value R P value R

TF8 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.169e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 +
TF9 – = 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + – =
TF10 – = 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + – =
TF11 – = 1.229e−05 + 1.229e−05 + 1.229e−05 + – = 1.229e−05 + – =
TF12 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 +
TF13 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 +
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For further comparison of the algorithms, the conver-
gence rates of the algorithms are plotted in Fig. 21.

In view of the attained outcomes, HMPA outstrips other 
competitor algorithms.

7.2  Speed reducer design problem

This subsection describes the speed reducer design problem 
with the objective of minimizing the weight of reducer. The 
speed reducer design problem is a constrained mixed-integer 
optimization problem and has seven design variables: face 
width (b), the module of teeth (m), number of teeth in the 
pinion (z), length of the first shaft between bearings ( l1 ), 
length of the second shaft between bearings ( l2 ), the diam-
eter of first shafts ( d1 ), and the diameter of the second shafts 
( d2 ). The constraints of this problem are bending stress of 
the gear teeth, surface stress, transverse deflections of the 
shafts, and stresses in the shafts. The schematic view of this 
problem is represented in Fig. 22.

The constraints and the mathematical formulation of the 
problem are as follows:

Consider:

Minimize:

v⃗ =
[
v1, v2, v3, v4, v5, v6, v7

]
=
[
b,m, z, l1, l2, d1, d2

]
,

Subject to:

f

(
V⃗

)
=0.7854v

1
v
2

2
(3.3333v2

3
+ 14.9334v

3
− 43.0934)

− 1.508v
1

(
v
2

6
+ v

2

7

)
+ 7.4777

(
v
3

6
+ v

3

7

)

0.7854
(
v
4
v
2

6
+ v

5
v
2

7

)
,

c21
(
v⃗
)
=

27

v1v
2
2
v3

− 1 ≤ 0,

c2
(
v⃗
)
=

397.5

v1v
2
2
v3
3

− 1 ≤ 0,

c3
(
v⃗
)
=

1.93v3
4

v2v
4
6
v3

− 1 ≤ 0,

c4
(
v⃗
)
=

1.93v3
5

v2v
4
7
v3

− 1 ≤ 0,

c5
(
v⃗
)
=

[(
745

(
v4∕v2v3

))2
+ 16.9 × 106

]0.5

110v3
6

− 1 ≤ 0,

Table 9  Details of the fixed-dimension test functions

Function dim Range Fmin

TF14
f (x) =

�
1

500
+

25∑
i=1

1

i+
∑2

j=1 (xj−aj,i)
6

�−1 2 [−65.53, 65.53]d 0.9980

TF15
f (x) =

d∑
i=1

����ai −
x1(b2i +bix2)
b2
i
+bix3+x4

����
2 4 [−5, 5]d 0.0003075

TF16 f (x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
2 [−5, 5]d − 1.0316

TF17
f (x) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos x1 + 10

2 [−5, 10]d × [0, 15]d 0.398

TF18 f (x) =
[
1 +

(
x1 + x2 + 1

)2(
19 − 14x1 + 3x2

1
− 14x2 + 6x1x2 + 3x2

2

)]

×
[
30 +

(
2x1 − 3x2

)2
×
(
18 − 32x1 + 12x2

1
+ 48x2 − 36x1x2 + 27x2

2

)]
2 [−2, 2]d 3.0000

TF19
f (x) = −

4∑
i=1

ai exp

�
−

3∑
j=1

bij
�
xj − pij

�2
�

3 [0, 1]d − 3.86278

TF20
f (x) = −

4∑
i=1

ai exp

�
−

6∑
j=1

bij
�
xj − pij

�2
�

6 [0, 1]d − 3.322

TF21
f (x) = −

5∑
i=1

���
�
xi − ai

��
xi − ai

�T
+ ci

���
−1 4 [0, 10]d − 10.1532

TF22
f (x) = −

7∑
i=1

���
�
xi − ai

��
xi − ai

�T
+ ci

���
−1 4 [0, 10]d − 10.4028

TF23
f (x) = −

10∑
i=1

���
�
xi − ai

��
xi − ai

�T
+ ci

���
−1 4 [0, 10]d − 10.5363
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Table 10  Statistical results obtained by the algorithms on the fix-dimension test functions

Algorithm Best Median Average Worst STD AET(s)

TF14
 HHO 0.9980038 0.9980038 1.0311387 1.9920301 1.8148e−01 27.9639
 FFA 0.9980038 0.9980038 0.9980038 0.9980038 1.0037e−16 14.7672
 MFO 0.9980038 0.9980038 2.5751488 10.763180 2.4194e+00 9.48120
 ALO 0.9980038 0.9980038 1.1968092 1.9920309 4.0580e−01 11.7720
 SHO 1.1223405 10.961674 9.4804071 12.670505 3.8393e+00 6.89156
 SSA 0.9980038 0.9980038 0.9980038 0.9980038 2.0396e−16 8.08868
 AEO 0.9980038 0.9980038 0.9980038 0.9980038 9.0649e−17 13.1220
 HMPA 0.9980038 0.9980038 0.9980038 0.9980038 3.2762e−17 42.0783

TF15
 HHO 3.0748e−04 3.0821e−04 3.0967e−04 3.2299e−04 3.4418e−06 11.5508
 FFA 3.4164e−04 5.7085e−04 5.5956e−04 7.6631e−04 1.1990e−04 8.34289
 MFO 3.8217e−04 7.8265e−04 9.6961e−04 1.6553e−03 3.6358e−04 1.74772
 ALO 3.0761e−04 7.5594e−04 1.5660e−03 2.0363e−02 3.9244e−03 16.7860
 SHO 3.0838e−04 3.1318e−04 3.1401e−04 3.2239e−04 3.7531e−06 4.72453
 SSA 3.0785e−04 6.9851e−04 1.5429e−03 2.0363e−02 3.9296e−03 2.59825
 AEO 3.0748e−04 3.0748e−04 3.0748e−04 3.0748e−04 2.5761e−19 3.13725
 HMPA 3.0748e−04 3.0748e−04 3.0748e−04 3.0748e−04 1.7670e−19 19.4520

TF16
 HHO − 1.031628 − 1.031628 − 1.031628 − 1.031628 1.7561e−15 10.7233
 FFA − 1.031628 − 1.031628 − 1.031628 − 1.031628 6.7227e−16 7.58313
 MFO − 1.031628 − 1.031628 − 1.031628 − 1.031628 6.7986e−16 1.42358
 ALO − 1.031628 − 1.031628 − 1.031628 − 1.031628 3.5739e−14 8.67291
 SHO − 1.030881 − 1.016558 −0.983392 − 0.467304 1.0399e−01 2.30476
 SSA − 1.031628 − 1.031628 − 1.031628 − 1.031628 1.3613e−14 1.88688
 AEO − 1.031628 − 1.031628 − 1.031628 − 1.031628 5.5762e−16 2.80716
 HMPA − 1.031628 − 1.031628 − 1.031628 − 1.031628 1.7986e−17 15.9482

TF17
 HHO 0.3978873 0.3978873 0.3978873 0.3978873 4.3137e−14 10.4722
 FFA 0.3978873 0.3978873 0.3978873 0.3978873 2.0616e−10 7.39044
 MFO 0.3978873 0.3978873 0.3978873 0.3978873 0.0000e+00 1.22944
 ALO 0.3978873 0.3978873 0.3978873 0.3978873 2.7683e−14 8.62536
 SHO 0.3978909 0.3980961 0.4909601 1.6411045 2.7390e−01 2.25536
 SSA 0.3978873 0.3978873 0.3978873 0.3978873 1.7709e−14 1.79611
 AEO 0.3978873 0.3978873 0.3978873 0.3978873 0.0000e+00 2.66134
 HMPA 0.3978873 0.3978873 0.3978873 0.3978873 0.0000e+00 15.1148

TF18
 HHO 3.00000 3.00000 3.00000 3.00000 3.1266e−10 12.4338
 FFA 3.00000 3.00000 3.00000 3.00000 4.5325e−16 5.65878
 MFO 3.00000 3.00000 3.00000 3.00000 1.0571e−15 1.22416
 ALO 3.00000 3.00000 3.00000 3.00000 2.9394e−13 8.41208
 SHO 3.21886 6.86716 12.3416 92.3854 1.6717e+01 1.26389
 SSA 3.00000 3.00000 3.00000 3.00000 5.2572e−14 1.79820
 AEO 3.00000 3.00000 3.00000 3.00000 1.1609e−15 2.65212
 HMPA 3.00000 3.00000 3.00000 3.00000 1.0571e−16 16.1714

TF19
 HHO − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 8.3536e−15 14.8745
 FFA − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 2.2662e−15 7.37115
 MFO − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 2.2662e−15 2.30769
 ALO − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 1.0842e−14 12.5300
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c6
(
v⃗
)
=

[(
745

(
v5∕v2v3

))2
+ 1575 × 105

]0.5

110v3
7

− 1 ≤ 0,

c7
(
v⃗
)
=

v2v3

40
− 1 ≤ 0,

c8
(
v⃗
)
=

5v2

v1
− 1 ≤ 0,

c9
(
v⃗
)
=

v1

12v2
− 1 ≤ 0,

The best results have been written in bold

Table 10  (continued)

Algorithm Best Median Average Worst STD AET(s)

 SHO − 3.8541670 − 3.8020345 − 3.7871695 − 3.2442490 1.0891e−01 2.40778
 SSA − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 1.4968e−14 2.45123
 AEO − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 2.2662e−15 5.18880
 HMPA − 3.8627821 − 3.8627821 − 3.8627821 − 3.8627821 2.2662e−15 20.7901

TF20
 HHO − 3.3220 − 3.3220 − 3.2704 − 3.2030 5.9929e−02 14.6737
 FFA − 3.3220 − 3.3220 − 3.3220 − 3.3218 3.1962e−05 9.16350
 MFO − 3.3220 − 3.2031 − 3.2144 − 3.1376 4.2567e−02 2.80983
 ALO − 3.3220 − 3.3220 − 3.2744 − 3.2031 5.9446e−02 23.2390
 SHO − 3.0783 − 2.8243 − 2.8067 − 2.3738 1.7356e−01 3.08541
 SSA − 3.3220 − 3.2031 − 3.2363 − 3.2030 5.4486e−02 2.68150
 AEO − 3.3220 − 3.2031 − 3.2554 − 3.2031 6.0234e+00 7.27492
 HMPA − 3.3220 − 3.3220 − 3.3220 − 3.3220 1.2094e−15 23.2660

TF21
 HHO − 10.1532 − 5.0552 − 6.4146 − 5.0552 2.2929e+00 17.2298
 FFA − 10.1532 − 10.1532 − 10.1386 − 9.8938 5.4091e−02 9.73391
 MFO − 10.1532 − 10.1532 − 7.1414 − 2.6304 3.3140e+00 4.25316
 ALO − 10.1532 − 5.1007 − 7.2143 − 2.6828 2.7001e+00 16.3979
 SHO − 8.4183 − 3.9158 − 4.1620 − 2.2293 1.1867e+00 2.38617
 SSA − 10.1532 − 10.1532 − 9.3534 − 2.6828 2.2467e+00 3.72830
 AEO − 10.1532 − 10.1532 − 10.1532 − 10.1532 5.2545e−15 6.36178
 HMPA − 10.1532 − 10.1532 − 10.1532 − 10.1532 1.5268e−15 25.6961

TF22
 HHO − 10.4029 − 5.0877 − 7.2138 − 5.0876 2.6484e+00 18.9138
 FFA − 10.4029 − 10.4029 − 10.4029 − 10.4029 6.9698e−09 10.5352
 MFO − 10.4029 − 10.4029 − 8.2214 − 2.7519 3.2929e+00 4.93459
 ALO − 10.4029 − 10.4029 − 7.9244 − 2.7519 2.8987e+00 16.4637
 SHO − 7.8734 − 4.3919 − 4.5252 − 2.4446 1.3691e+00 2.81735
 SSA − 10.4029 − 10.4029 − 9.7908 − 2.7519 2.1184e+00 4.16656
 AEO − 10.4029 − 10.4029 − 10.4029 − 10.4029 3.1611e−15 8.08289
 HMPA − 10.4029 − 10.4029 − 10.4029 − 10.4029 1.8129e−15 26.4040

TF23
 HHO − 10.5364 − 5.1285 − 7.2916 − 5.1284 2.6946e+00 21.4889
 FFA − 10.5364 − 10.5364 − 10.5364 − 10.5364 2.3972e−09 13.7422
 MFO − 10.5364 − 10.5364 − 9.4746 − 2.42733 2.5357e+00 5.90012
 ALO − 10.5364 − 5.1756 − 6.8125 − 2.4217 3.4641e+00 17.0362
 SHO − 9.4316 − 4.5497 − 4.6808 − 2.5519 1.6647e+00 3.36700
 SSA − 10.5364 − 10.5364 − 10.3220 − 5.1756 1.0721e+00 5.00898
 AEO − 10.5364 − 10.5364 − 10.5364 − 10.5364 1.8130e−15 9.21528
 HMPA − 10.5364 − 10.5364 − 10.5364 − 10.5364 9.8035e−16 28.6922
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where 2.6 ≤ v1 ≤ 3.6 ,  7.3 ≤ v5 ≤ 8.3 ,  0.7 ≤ v2 ≤ 0.8 , 
2.9 ≤ v6 ≤ 3.9 , 17 ≤ v3 ≤ 28 , 5.0 ≤ v7 ≤ 5.5 , 7.3 ≤ v4 ≤ 8.3.

c10
(
v⃗
)
=

1.5v6 + 1.9

v4
− 1 ≤ 0,

(32)c11
(
v⃗
)
=

1.1v7 + 1.9

v5
− 1 ≤ 0,

The statistical results of the algorithms on the speed 
reducer design problem are presented in Table 17. Besides, 
the best-obtained points are represented in Table 18, and 
the convergence graphs of the algorithms are illustrated in 
Fig. 23.

As reported in Tables 17, 18, and Fig. 23, the HMPA 
algorithm outdid the other algorithms.

Fig. 16  Box plots of the obtained results from the algorithms on the fix-dimension test functions
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7.3  Pressure vessel design problem

The third constrained problem is the pressure vessel design 
problem, which tries to minimize the costs of material, form-
ing, and welding of a cylindrical vessel. The design vari-
ables of this problem are: the thickness of the shell ( Ts ), the 
thickness of the head ( Th ), inner radius ( R ), and length of 
the cylindrical section without the head ( L ). The pressure 
vessel, along with the design variables, has been presented 
in Fig. 24.

The constraints and the mathematical formulation of the 
problem are as follows:Consider:

Minimize:

Subject to:

v⃗ =
[
v1, v2, v3, v4

]
=
[
Ts, Th,R, L

]
,

f
(
v⃗
)
= 0.6224v1v3v4 + 1.7781v2v

2
3
+ 3.1661v2

1
v4 + 19.84v2

1
v3,

Fig. 17  Convergence graphs of the algorithms on the fix-dimension test functions
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Table 11  Wilcoxon signed-rank test results of the HMPA versus the competitor algorithms with 5% significance level on the fix-dimension test 
functions

HMPA vs. HHO HMPA vs. FFA HMPA vs.MFO HMPA vs. ALO HMPA vs. SHO HMPA vs. SSA HMPA vs. AEO

P value R P value R P value R P value R P value R P value R P value R

TF14 8.390e−05 + 1.620e−06 + 8.556e−02 – 1.562e−02 + 1.169e−05 + – = 2.726e−06 +
TF15 1.229e−05 + 1.229e−05 + 1.216e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 1.242e−04 +
TF16 9.765e−04 + – = – = 5.835e−05 + 1.229e−05 + 2.201e−05 + – =
TF17 1.916e−04 + 0.500 – – = 1.216e−05 + 1.229e−05 + 1.846e−04 + – =
TF18 1.216e−05 + 7.812e−03 + 9.765e−04 + 1.227e−05 + 1.229e−05 + 1.218e−05 + 1.953e−03 +
TF19 3.841e−05 + – = – = 8.796e−06 + 1.229e−05 + 1.608e−05 + – =
TF20 1.229e−05 + 3.088e−05 + 1.622e−05 + 1.229e−05 + 1.229e−05 + 1.229e−05 + 6.489e−04 +
TF21 1.187e−05 + 6.103e−05 + 4.882e−04 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – =
TF22 1.154e−05 + 3.125e−02 + 7.812e−03 + 1.229e−05 + 1.229e−05 + 1.229e−05 + – =
TF23 1.201e−05 + 1.953e−02 + 1.250e−01 – 1.229e−05 + 1.229e−05 + 1.229e−05 + – =

Table 12  Brief description of 
CEC 2017 test functions

Function dim Range Fmin

TF24 Shifted and rotated bent cigar function 30 [−100, 100]d 100
TF25 Shifted and rotated Rosenbrock’s function 30 [−100, 100]d 300
TF26 Shifted and rotated Rastrigin’s function 30 [−100, 100]d 400
TF27 Shifted and rotated expanded Scaffer’s F6 function 30 [−100, 100]d 500
TF28 Shifted and rotated Lunacek Bi_Rastrigin function 30 [−100, 100]d 600
TF29 Shifted and rotated non-continuous Rastrigin’s function 30 [−100, 100]d 700
TF30 Shifted and rotated levy function 30 [−100, 100]d 800
TF31 Shifted and rotated Schwefel’s function 30 [−100, 100]d 900
TF32 Hybrid function 1 (N = 3) 30 [−100, 100]d 1000
TF33 Hybrid Function 2 (N = 3) 30 [−100, 100]d 1100
TF34 Hybrid function 3 (N = 3) 30 [−100, 100]d 1200
TF35 Hybrid function 4 (N = 4) 30 [−100, 100]d 1300
TF36 Hybrid function 5 (N = 4) 30 [−100, 100]d 1400
TF37 Hybrid function 6 (N = 4) 30 [−100, 100]d 1500
TF38 Hybrid function 6 (N = 5) 30 [−100, 100]d 1600
TF39 Hybrid function 6 (N = 5) 30 [−100, 100]d 1700
TF40 Hybrid function 6 (N = 5) 30 [−100, 100]d 1800
TF41 Hybrid function 6 (N = 6) 30 [−100, 100]d 1900
TF42 Composition function 1 (N = 3) 30 [−100, 100]d 2000
TF43 Composition function 2 (N = 3) 30 [−100, 100]d 2100
TF44 Composition function 4 (N = 4) 30 [−100, 100]d 2300
TF45 Composition function 5 (N = 5) 30 [−100, 100]d 2400
TF46 Composition function 6 (N = 5) 30 [−100, 100]d 2500
TF47 Composition function 7 (N = 6) 30 [−100, 100]d 2600
TF48 Composition function 8 (N = 6) 30 [−100, 100]d 2700
TF49 Composition function 9 (N = 3) 30 [−100, 100]d 2800
TF50 Composition function 10 (N = 3) 30 [−100, 100]d 2900
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Table 13  Statistical results obtained by the algorithms on CEC 2017 test functions

Algorithm Best Median Average Worst STD AET(s)

TF26
 HHO 5.2851E+02 5.9844E+02 6.9812E+02 1.1995E+03 2.1782E+02 15.8323
 FFA 4.8832E+02 5.1741E+02 5.1820E+02 5.4829E+02 1.4317E+01 14.1702
 MFO 5.2663E+02 6.6314E+02 8.1250E+02 1.8954E+03 3.5212E+02 2.43557
 ALO 4.6438E+02 5.0741E+02 5.0147E+02 5.3446E+02 2.0234E+01 110.469
 SHO 1.5259E+04 2.3217E+04 2.2840E+04 2.8384E+04 4.5147E+03 2.32570
 SSA 4.2657E+02 5.0134E+02 4.9694E+02 5.2189E+02 2.4320E+01 3.16385
 AEO 4.0036E+02 4.7320E+02 4.7880E+02 5.3674E+02 2.9245E+01 3.50411
 HMPA 4.0000E+02 4.0000E+02 4.0134E+02 4.0408E+02 1.9547E+00 31.1044

TF27
 HHO 7.0127E+02 7.3836E+02 7.3976E+02 8.0170E+02 2.7410E+01 19.6034
 FFA 6.4729E+02 7.2288E+02 7.1991E+02 7.5358E+02 2.4956E+01 14.5966
 MFO 6.1569E+02 6.8613E+02 6.8802E+02 7.4663E+02 3.8541E+01 2.56790
 ALO 6.0845E+02 6.6218E+02 6.5889E+02 7.4675E+02 4.3389E+01 113.621
 SHO 9.5833E+02 9.9409E+02 1.0021E+03 1.0637E+03 2.8945E+01 2.46781
 SSA 6.0348E+02 6.7412E+02 6.7140E+02 7.7162E+02 5.2914E+01 3.27216
 AEO 5.9353E+02 6.4728E+02 6.5716E+02 7.0497E+02 3.6742E+01 3.81752
 HMPA 5.8457E+02 6.1939E+02 6.2112E+02 6.6218E+02 2.2740E+01 22.1301

TF28
 HHO 6.4960E+02 6.6279E+02 6.6254E+02 6.7250E+02 6.4861E+00 21.3844
 FFA 6.1832E+02 6.2712E+02 6.2859E+02 6.4706E+02 7.0332E+00 16.0577
 MFO 6.1576E+02 6.3054E+02 6.3190E+02 6.6038E+02 1.1950E+01 3.18820
 ALO 6.3038E+02 6.3900E+02 6.4051E+02 6.4863E+02 7.1439E+00 116.903
 SHO 6.9222E+02 7.1164E+02 7.1415E+02 7.3781E+02 1.0747E+01 2.96765
 SSA 6.2835E+02 6.4305E+02 6.4594E+02 6.6327E+02 1.1373E+01 3.85836
 AEO 6.1408E+02 6.2815E+02 6.2789E+02 6.4299E+02 7.9484E+00 4.81158
 HMPA 6.0183E+02 6.0495E+02 6.0608E+02 6.1362E+02 4.0804E+00 39.9061

TF29
 HHO 1.1752E+03 1.2993E+03 1.2911E+03 1.3530E+03 5.1586E+01 19.7190
 FFA 8.7079E+02 9.2371E+02 9.2858E+02 9.9168E+02 3.1452E+01 15.0084
 MFO 9.2020E+02 1.0617E+03 1.0826E+03 1.3801E+03 1.2319E+02 2.66821
 ALO 8.7067E+02 9.4843E+02 9.7113E+02 1.1185E+03 8.4615E+01 115.969
 SHO 1.4613E+03 1.5078E+03 1.5044E+03 1.5475E+03 2.6611E+01 2.49729
 SSA 8.3456E+02 9.1513E+02 9.1796E+02 1.0268E+03 5.7163E+01 3.53884
 AEO 9.3878E+02 1.0475E+03 1.0638E+03 1.2434E+03 7.3718E+01 3.87875
 HMPA 8.2657E+02 8.9295E+02 9.0195E+02 9.8979E+02 5.1817E+01 22.0181

TF30
 HHO 9.1734E+02 9.6102E+02 9.5691E+02 9.8853E+02 2.0085E+01 19.9156
 FFA 9.4376E+02 1.0252E+03 1.0171E+03 1.0468E+03 2.5747E+01 14.8146
 MFO 9.3395E+02 9.7214E+02 9.8625E+02 1.0641E+03 4.1989E+01 2.61049
 ALO 8.9253E+02 9.3631E+02 9.3291E+02 9.6417E+02 2.2967E+01 110.245
 SHO 1.1820E+03 1.2138E+03 1.2176E+03 1.2834E+03 2.6568E+01 2.44799
 SSA 8.8159E+02 9.1939E+02 9.2623E+02 9.9999E+02 3.3238E+01 3.37167
 AEO 8.8358E+02 9.2043E+02 9.1953E+02 9.5820E+02 2.0747E+01 3.81102
 HMPA 8.6268E+02 9.0547E+02 9.0050E+02 9.3631E+02 1.9834E+01 21.8930

TF31
 HHO 4.2823E+03 6.4143E+03 6.1568E+03 7.8172E+03 1.0629E+03 19.9806
 FFA 1.7734E+03 2.1754E+03 2.5644E+03 4.1370E+03 7.8543E+02 14.6522
 MFO 4.4520E+03 6.1356E+03 6.4804E+03 9.8972E+03 1.7172E+03 2.70074
 ALO 2.1647E+03 3.6415E+03 3.6596E+03 5.0195E+03 1.1124E+03 114.103
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Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

 SHO 1.4251E+04 1.8415E+04 1.8036E+04 2.4345E+04 2.7006E+03 2.44823
 SSA 1.8412E+03 4.1709E+03 3.8954E+03 5.9951E+03 1.4977E+03 3.33507
 AEO 2.2969E+03 3.8949E+03 3.9434E+03 5.4852E+03 8.7724E+02 3.75233
 HMPA 1.3723E+03 1.8717E+03 1.8684E+03 2.4695E+03 3.8689E+02 33.2729

TF32
 HHO 3.8632E+03 5.4339E+03 5.3625E+03 6.5528E+03 7.3759E+02 20.1298
 FFA 7.4054E+03 8.3095E+03 8.2173E+03 8.7239E+03 3.8854E+02 15.1163
 MFO 4.2581E+03 5.8617E+03 5.6805E+03 6.6004E+03 6.3990E+02 2.76346
 ALO 4.9647E+03 5.5585E+03 5.6633E+03 6.6959E+03 6.5105E+02 126.094
 SHO 9.4404E+03 1.0276E+04 1.0297E+04 1.0923E+04 4.3678E+02 2.86138
 SSA 3.3949E+03 5.0643E+03 5.0392E+03 6.9092E+03 9.0401E+02 3.62277
 AEO 3.4927E+03 4.5905E+03 4.6758E+03 5.7705E+03 6.2264E+02 4.04666
 HMPA 3.6890E+03 4.1453E+03 4.2707E+03 5.0227E+03 4.2924E+02 34.8360

TF24
 HHO 7.0660E+06 1.1812E+07 1.2071E+07 1.8773E+07 3.2686E+06 14.8938
 FFA 1.8036E+05 1.5006E+06 5.1794E+06 2.1457E+07 6.7848E+06 15.3813
 MFO 1.0268E+09 8.0565E+09 1.0165E+10 2.2682E+10 7.0301E+09 2.35240
 ALO 7.0085E+02 5.8299E+03 5.3492E+03 1.0586E+04 3.5490E+03 99.4014
 SHO 6.1500E+10 7.0135E+10 6.9855E+10 7.6328E+10 4.1859E+09 3.34776
 SSA 1.1807E+02 5.6556E+03 6.5510E+03 2.0277E+04 5.7999E+03 4.08626
 AEO 1.0102E+02 1.4595E+03 4.0323E+03 1.7754E+04 4.8968E+03 5.03689
 HMPA 1.0019E+02 1.3486E+02 2.2475E+02 1.0159E+03 2.3776E+02 30.0016

TF25
 HHO 1.1968E+04 1.9641E+04 1.9307E+04 2.6527E+04 3.6315E+03 18.1841
 FFA 5.4140E+04 9.1655E+04 8.7786E+04 1.1087E+05 1.6820E+04 14.3679
 MFO 2.5347E+04 1.0374E+05 1.1807E+05 1.9680E+05 4.7432E+04 2.42526
 ALO 6.6728E+04 8.2285E+04 1.0037E+05 1.6615E+05 3.5977E+04 104.998
 SHO 9.2292E+04 2.3093E+05 3.9077E+05 1.3258E+06 3.6257E+05 2.30629
 SSA 3.0651E+03 6.6836E+03 6.9876E+03 1.1305E+04 2.4893E+03 3.22374
 AEO 3.0842E+02 3.2189E+02 3.5693E+02 7.3510E+02 1.0625E+02 4.20227
 HMPA 3.0000E+02 3.0000E+02 3.0000E+02 3.0000E+02 5.1514E−11 30.7030

TF26
 HHO 5.2851E+02 5.9844E+02 6.9812E+02 1.1995E+03 2.1782E+02 15.8323
 FFA 4.8832E+02 5.1741E+02 5.1820E+02 5.4829E+02 1.4317E+01 14.1702
 MFO 5.2663E+02 6.6314E+02 8.1250E+02 1.8954E+03 3.5212E+02 2.43557
 ALO 4.6438E+02 5.0741E+02 5.0147E+02 5.3446E+02 2.0234E+01 110.469
 SHO 1.5259E+04 2.3217E+04 2.2840E+04 2.8384E+04 4.5147E+03 2.32570
 SSA 4.2657E+02 5.0134E+02 4.9694E+02 5.2189E+02 2.4320E+01 3.16385
 AEO 4.0036E+02 4.7320E+02 4.7880E+02 5.3674E+02 2.9245E+01 3.50411
 HMPA 4.0000E+02 4.0000E+02 4.0134E+02 4.0408E+02 1.9547E+00 31.1044

TF27
 HHO 7.0127E+02 7.3836E+02 7.3976E+02 8.0170E+02 2.7410E+01 19.6034
 FFA 6.4729E+02 7.2288E+02 7.1991E+02 7.5358E+02 2.4956E+01 14.5966
 MFO 6.1569E+02 6.8613E+02 6.8802E+02 7.4663E+02 3.8541E+01 2.56790
 ALO 6.0845E+02 6.6218E+02 6.5889E+02 7.4675E+02 4.3389E+01 113.621
 SHO 9.5833E+02 9.9409E+02 1.0021E+03 1.0637E+03 2.8945E+01 2.46781
 SSA 6.0348E+02 6.7412E+02 6.7140E+02 7.7162E+02 5.2914E+01 3.27216
 AEO 5.9353E+02 6.4728E+02 6.5716E+02 7.0497E+02 3.6742E+01 3.81752
 HMPA 5.8457E+02 6.1939E+02 6.2112E+02 6.6218E+02 2.2740E+01 22.1301
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Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

TF28
 HHO 6.4960E+02 6.6279E+02 6.6254E+02 6.7250E+02 6.4861E+00 21.3844
 FFA 6.1832E+02 6.2712E+02 6.2859E+02 6.4706E+02 7.0332E+00 16.0577
 MFO 6.1576E+02 6.3054E+02 6.3190E+02 6.6038E+02 1.1950E+01 3.18820
 ALO 6.3038E+02 6.3900E+02 6.4051E+02 6.4863E+02 7.1439E+00 116.903
 SHO 6.9222E+02 7.1164E+02 7.1415E+02 7.3781E+02 1.0747E+01 2.96765
 SSA 6.2835E+02 6.4305E+02 6.4594E+02 6.6327E+02 1.1373E+01 3.85836
 AEO 6.1408E+02 6.2815E+02 6.2789E+02 6.4299E+02 7.9484E+00 4.81158
 HMPA 6.0183E+02 6.0495E+02 6.0608E+02 6.1362E+02 4.0804E+00 39.9061

TF29
 HHO 1.1752E+03 1.2993E+03 1.2911E+03 1.3530E+03 5.1586E+01 19.7190
 FFA 8.7079E+02 9.2371E+02 9.2858E+02 9.9168E+02 3.1452E+01 15.0084
 MFO 9.2020E+02 1.0617E+03 1.0826E+03 1.3801E+03 1.2319E+02 2.66821
 ALO 8.7067E+02 9.4843E+02 9.7113E+02 1.1185E+03 8.4615E+01 115.969
 SHO 1.4613E+03 1.5078E+03 1.5044E+03 1.5475E+03 2.6611E+01 2.49729
 SSA 8.3456E+02 9.1513E+02 9.1796E+02 1.0268E+03 5.7163E+01 3.53884
 AEO 9.3878E+02 1.0475E+03 1.0638E+03 1.2434E+03 7.3718E+01 3.87875
 HMPA 8.2657E+02 8.9295E+02 9.0195E+02 9.8979E+02 5.1817E+01 22.0181

TF30
 HHO 9.1734E+02 9.6102E+02 9.5691E+02 9.8853E+02 2.0085E+01 19.9156
 FFA 9.4376E+02 1.0252E+03 1.0171E+03 1.0468E+03 2.5747E+01 14.8146
 MFO 9.3395E+02 9.7214E+02 9.8625E+02 1.0641E+03 4.1989E+01 2.61049
 ALO 8.9253E+02 9.3631E+02 9.3291E+02 9.6417E+02 2.2967E+01 110.245
 SHO 1.1820E+03 1.2138E+03 1.2176E+03 1.2834E+03 2.6568E+01 2.44799
 SSA 8.8159E+02 9.1939E+02 9.2623E+02 9.9999E+02 3.3238E+01 3.37167
 AEO 8.8358E+02 9.2043E+02 9.1953E+02 9.5820E+02 2.0747E+01 3.81102
 HMPA 8.6268E+02 9.0547E+02 9.0050E+02 9.3631E+02 1.9834E+01 21.8930

TF31
 HHO 4.2823E+03 6.4143E+03 6.1568E+03 7.8172E+03 1.0629E+03 19.9806
 FFA 1.7734E+03 2.1754E+03 2.5644E+03 4.1370E+03 7.8543E+02 14.6522
 MFO 4.4520E+03 6.1356E+03 6.4804E+03 9.8972E+03 1.7172E+03 2.70074
 ALO 2.1647E+03 3.6415E+03 3.6596E+03 5.0195E+03 1.1124E+03 114.103
 SHO 1.4251E+04 1.8415E+04 1.8036E+04 2.4345E+04 2.7006E+03 2.44823
 SSA 1.8412E+03 4.1709E+03 3.8954E+03 5.9951E+03 1.4977E+03 3.33507
 AEO 2.2969E+03 3.8949E+03 3.9434E+03 5.4852E+03 8.7724E+02 3.75233
 HMPA 1.3723E+03 1.8717E+03 1.8684E+03 2.4695E+03 3.8689E+02 33.2729

TF32
 HHO 3.8632E+03 5.4339E+03 5.3625E+03 6.5528E+03 7.3759E+02 20.1298
 FFA 7.4054E+03 8.3095E+03 8.2173E+03 8.7239E+03 3.8854E+02 15.1163
 MFO 4.2581E+03 5.8617E+03 5.6805E+03 6.6004E+03 6.3990E+02 2.76346
 ALO 4.9647E+03 5.5585E+03 5.6633E+03 6.6959E+03 6.5105E+02 126.094
 SHO 9.4404E+03 1.0276E+04 1.0297E+04 1.0923E+04 4.3678E+02 2.86138
 SSA 3.3949E+03 5.0643E+03 5.0392E+03 6.9092E+03 9.0401E+02 3.62277
 AEO 3.4927E+03 4.5905E+03 4.6758E+03 5.7705E+03 6.2264E+02 4.04666
 HMPA 3.6890E+03 4.1453E+03 4.2707E+03 5.0227E+03 4.2924E+02 34.8360

TF33
 HHO 1.1714E+03 1.2724E+03 1.3124E+03 1.6036E+03 1.1976E+02 19.9884
 FFA 1.2110E+03 1.2795E+03 1.2687E+03 1.3389E+03 3.7938E+01 13.8295
 MFO 1.3779E+03 1.9018E+03 3.0933E+03 6.5291E+03 1.9940E+03 2.53544
 ALO 1.2142E+03 1.3074E+03 1.3136E+03 1.4276E+03 6.6189E+01 124.533
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Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

 SHO 1.1418E+04 2.4514E+04 2.6712E+04 6.2226E+04 1.4439E+04 2.45820
 SSA 1.2152E+03 1.2609E+03 1.2708E+03 1.3507E+03 4.0338E+01 3.32137
 AEO 1.1706E+03 1.2211E+03 1.2161E+03 1.3065E+03 3.7475E+01 3.71565
 HMPA 1.1507E+03 1.1647E+03 1.1792E+03 1.2204E+03 2.5963E+01 36.7320

TF34
 HHO 6.4765E+06 3.8401E+07 6.2315E+07 2.4845E+08 6.7357E+07 17.6107
 FFA 2.1116E+05 2.1720E+06 2.6205E+06 5.5573E+06 1.6063E+06 15.5679
 MFO 1.3111E+06 1.5167E+07 7.8928E+07 4.6158E+08 1.5515E+08 2.66538
 ALO 2.8048E+06 1.0133E+07 1.5311E+07 4.9656E+07 1.5130E+07 116.909
 SHO 9.3942E+09 2.0259E+10 1.9001E+10 2.3664E+10 3.6130E+09 2.96889
 SSA 7.6561E+05 3.7392E+06 4.3085E+06 1.0968E+07 2.9482E+06 3.35389
 AEO 2.9425E+04 1.2834E+05 1.9255E+05 8.7355E+05 2.3492E+05 4.15805
 HMPA 4.7200E+03 1.0798E+04 1.0193E+04 1.7369E+04 4.1273E+03 32.1631

TF35
 HHO 3.6576E+04 1.0812E+05 5.6150E+05 4.3468E+06 1.1895E+06 19.9234
 FFA 1.7683E+03 2.5838E+04 1.0181E+05 1.0094E+06 2.5530E+05 16.0314
 MFO 2.4158E+04 1.2137E+05 1.0814E+07 7.1750E+07 2.4808E+07 2.63315
 ALO 3.9668E+04 9.1251E+04 9.7310E+04 1.9056E+05 4.8663E+04 112.641
 SHO 7.8618E+09 1.9013E+10 1.8824E+10 2.8536E+10 5.7367E+09 2.92168
 SSA 1.9746E+04 5.4260E+04 6.9553E+04 2.0206E+05 4.6376E+04 3.56639
 AEO 1.9265E+03 2.1753E+04 2.4581E+04 6.0971E+04 2.0688E+04 4.19475
 HMPA 1.4475E+03 2.6474E+03 5.2429E+03 1.0622E+04 3.7779E+03 33.1602

TF36
 HHO 1.4892E+04 1.2175E+05 2.4672E+05 1.0730E+06 3.1714E+05 19.5099
 FFA 1.2409E+04 4.3502E+04 5.4282E+04 1.4279E+05 3.8391E+04 15.9659
 MFO 9.3260E+03 7.9603E+04 3.0301E+05 2.5152E+06 6.3957E+05 3.07173
 ALO 4.3461E+03 3.3145E+04 3.3301E+04 8.3884E+04 2.3460E+04 104.363
 SHO 3.4074E+06 2.3696E+07 2.5545E+07 6.0603E+07 1.7353E+07 2.72007
 SSA 1.9275E+03 2.8063E+04 2.3559E+04 4.3978E+04 1.3647E+04 3.73166
 AEO 1.5146E+03 1.8572E+03 2.2853E+03 4.4152E+03 9.7344E+02 4.21999
 HMPA 1.4670E+03 1.5297E+03 1.5259E+03 1.5820E+03 3.0228E+01 33.4333

TF37
 HHO 1.9320E+04 4.7232E+04 4.9351E+04 1.0700E+05 2.5382E+04 19.8232
 FFA 1.6355E+03 3.5973E+03 5.8624E+03 2.6599E+04 6.8290E+03 15.0107
 MFO 4.2101E+03 3.1608E+04 8.0818E+04 6.9519E+05 1.7197E+05 2.93092
 ALO 1.4838E+04 4.5407E+04 5.2125E+04 1.3183E+05 3.6481E+04 105.503
 SHO 3.3402E+08 2.2581E+09 2.2635E+09 3.5625E+09 9.7537E+08 2.68491
 SSA 1.3105E+04 3.1637E+04 3.5277E+04 8.3794E+04 2.1111E+04 3.26063
 AEO 1.6624E+03 2.4058E+03 4.3985E+03 1.6495E+04 3.8787E+03 3.71769
 HMPA 1.6326E+03 1.8959E+03 2.6322E+03 5.5289E+03 1.2333E+03 31.5056

TF38
 HHO 2.7015E+03 3.5391E+03 3.4868E+03 4.7026E+03 5.4740E+02 17.8063
 FFA 2.6038E+03 3.2874E+03 3.2279E+03 3.5461E+03 2.5032E+02 15.4890
 MFO 2.3191E+03 3.1954E+03 3.1150E+03 3.8368E+03 4.8282E+02 3.23290
 ALO 2.3676E+03 3.0916E+03 3.0338E+03 3.5363E+03 3.1157E+02 105.194
 SHO 6.0726E+03 8.0244E+03 8.0803E+03 1.4007E+04 1.9024E+03 2.45452
 SSA 2.1704E+03 2.7308E+03 2.7702E+03 3.4452E+03 3.6274E+02 3.29262
 AEO 2.2060E+03 2.7909E+03 2.7710E+03 3.2985E+03 2.9654E+02 3.94091
 HMPA 2.1610E+03 2.3899E+03 2.4128E+03 3.0243E+03 2.1313E+02 32.7070
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Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

TF39
 HHO 2.2070E+03 2.6427E+03 2.6291E+03 3.1238E+03 2.5702E+02 25.8047
 FFA 1.9316E+03 2.2074E+03 2.1819E+03 2.3675E+03 1.5077E+02 17.1872
 MFO 1.9689E+03 2.4571E+03 2.4632E+03 3.0306E+03 2.7028E+02 3.77024
 ALO 2.1984E+03 2.4414E+03 2.5311E+03 2.9536E+03 2.8670E+02 107.047
 SHO 4.3217E+03 5.9785E+03 7.9344E+03 2.1213E+04 4.3622E+03 3.09623
 SSA 1.8131E+03 2.0295E+03 2.1393E+03 2.6878E+03 2.6655E+02 4.03814
 AEO 1.7923E+03 2.0146E+03 2.0662E+03 2.3774E+03 1.9977E+02 4.60560
 HMPA 1.7707E+03 1.9016E+03 1.9078E+03 2.1189E+03 1.0369E+02 37.7248

TF40
 HHO 1.2374E+05 4.9850E+05 1.5443E+06 1.0464E+07 2.7070E+06 20.1311
 FFA 3.6616E+05 1.9617E+06 2.0267E+06 3.2729E+06 8.3839E+05 15.5899
 MFO 4.4664E+05 1.4358E+06 4.7102E+06 3.1263E+07 8.1203E+06 2.99143
 ALO 4.4356E+04 3.3470E+05 4.8015E+05 1.3975E+06 4.5928E+05 104.960
 SHO 1.7617E+07 2.8945E+08 3.3691E+08 1.0453E+09 2.9779E+08 2.52062
 SSA 3.7754E+04 1.7356E+05 3.0662E+05 1.0042E+06 3.2300E+05 3.49448
 AEO 1.4350E+04 3.7096E+04 4.0178E+04 9.3230E+04 2.3387E+04 3.89934
 HMPA 2.2734E+03 6.4666E+03 9.0710E+03 2.5429E+04 7.3285E+03 33.0094

TF41
 HHO 1.0849E+04 5.0450E+04 9.4969E+04 3.9887E+05 1.1255E+05 29.5037
 FFA 2.4018E+03 5.7116E+03 1.0964E+04 3.9468E+04 1.0307E+04 24.0426
 MFO 7.3841E+03 1.3409E+05 8.7179E+05 8.4464E+06 2.1498E+06 5.99880
 ALO 3.0261E+05 1.8317E+06 1.6004E+06 3.3165E+06 9.4629E+05 107.302
 SHO 4.2796E+08 2.3790E+09 2.4434E+09 3.7433E+09 8.4368E+08 5.69980
 SSA 2.6032E+04 7.2814E+05 7.4242E+05 2.0138E+06 4.5913E+05 6.41244
 AEO 2.0103E+03 3.6301E+03 6.4578E+03 1.8914E+04 5.1480E+03 8.31978
 HMPA 1.9462E+03 2.0817E+03 2.1862E+03 2.9972E+03 2.9330E+02 62.6533

TF42
 HHO 2.3600E+03 2.7711E+03 2.7058E+03 3.0062E+03 2.0799E+02 23.4922
 FFA 2.2401E+03 2.5770E+03 2.5598E+03 2.8344E+03 1.7658E+02 17.9635
 MFO 2.3635E+03 2.6880E+03 2.7265E+03 2.9771E+03 2.0133E+02 3.79620
 ALO 2.4725E+03 2.6598E+03 2.7151E+03 2.9712E+03 1.6718E+02 105.497
 SHO 3.2635E+03 3.5243E+03 3.5456E+03 3.8009E+03 1.7784E+02 4.19834
 SSA 2.2512E+03 2.4474E+03 2.4505E+03 2.6807E+03 1.3542E+02 5.08997
 AEO 2.2001E+03 2.4385E+03 2.4849E+03 2.9573E+03 2.1907E+02 4.77589
 HMPA 2.1845E+03 2.2183E+03 2.2397E+03 2.4052E+03 6.0285E+01 50.6334

TF43
 HHO 2.4371E+03 2.5177E+03 2.5178E+03 2.5957E+03 4.3912E+01 21.8738
 FFA 2.4178E+03 2.5117E+03 2.4983E+03 2.5417E+03 3.6299E+01 14.7403
 MFO 2.4297E+03 2.4765E+03 2.4825E+03 2.5595E+03 3.9605E+01 3.93610
 ALO 2.3992E+03 2.4408E+03 2.4374E+03 2.4837E+03 2.7730E+01 118.807
 SHO 2.8030E+03 2.8718E+03 2.8791E+03 2.9528E+03 4.0815E+01 4.35214
 SSA 2.3719E+03 2.4289E+03 2.4249E+03 2.4648E+03 2.4336E+01 4.13002
 AEO 2.3675E+03 2.4432E+03 2.4334E+03 2.4849E+03 3.9092E+01 5.17950
 HMPA 2.3658E+03 2.3886E+03 2.3939E+03 2.4368E+03 2.0169E+01 35.7019

TF44
 HHO 2.9795E+03 3.1393E+03 3.1245E+03 3.2605E+03 9.2593E+01 24.2599
 FFA 2.7847E+03 2.8326E+03 2.8328E+03 2.8835E+03 2.8571E+01 15.5739
 MFO 2.7615E+03 2.8105E+03 2.8038E+03 2.8492E+03 2.2224E+01 4.37430
 ALO 2.7509E+03 2.7983E+03 2.7966E+03 2.8307E+03 2.7871E+01 113.154
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Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

 SHO 3.3732E+03 3.8165E+03 3.7769E+03 4.1579E+03 1.8321E+02 4.27944
 SSA 2.7553E+03 2.8008E+03 2.8029E+03 2.8628E+03 3.5510E+01 4.73158
 AEO 2.8143E+03 2.9009E+03 2.8941E+03 2.9686E+03 4.6566E+01 5.82847
 HMPA 2.7531E+03 2.7739E+03 2.7755E+03 2.8213E+03 3.1040E+01 49.7142

TF45
 HHO 3.1051E+03 3.3003E+03 3.3079E+03 3.4588E+03 9.4410E+01 22.6299
 FFA 2.9814E+03 3.0347E+03 3.0281E+03 3.0518E+03 2.0932E+01 15.5121
 MFO 2.9358E+03 2.9871E+03 2.9862E+03 3.0204E+03 2.6615E+01 4.50950
 ALO 2.9179E+03 2.9701E+03 2.9635E+03 2.9933E+03 2.2960E+01 111.221
 SHO 3.7414E+03 4.0015E+03 4.0689E+03 4.6696E+03 2.5510E+02 4.28989
 SSA 2.8906E+03 2.9806E+03 2.9706E+03 3.1062E+03 5.1070E+01 4.79790
 AEO 2.9428E+03 3.0420E+03 3.0510E+03 3.1443E+03 6.6806E+01 6.17258
 HMPA 2.8832E+03 2.9700E+03 2.9629E+03 3.0106E+03 2.2731E+01 45.8348

TF46
 HHO 2.8968E+03 2.9454E+03 2.9370E+03 2.9943E+03 3.0010E+01 22.4255
 FFA 2.8902E+03 2.9040E+03 2.9047E+03 2.9251E+03 1.0384E+01 14.7527
 MFO 2.9090E+03 3.1827E+03 3.2139E+03 3.6624E+03 2.2959E+02 5.22712
 ALO 2.8902E+03 2.9181E+03 2.9191E+03 2.9507E+03 1.8838E+01 114.352
 SHO 5.4075E+03 6.3295E+03 6.4985E+03 9.1569E+03 9.0311E+02 3.55661
 SSA 2.8837E+03 2.9228E+03 2.9181E+03 2.9535E+03 2.5960E+01 4.45614
 AEO 2.8841E+03 2.8903E+03 2.8998E+03 2.9377E+03 1.8428E+01 5.74323
 HMPA 2.8834E+03 2.8839E+03 2.8892E+03 2.9316E+03 1.4649E+01 44.6638

TF47
 HHO 5.6644E+03 7.3900E+03 7.5637E+03 8.9686E+03 8.7055E+02 25.6150
 FFA 3.3820E+03 4.4314E+03 4.4154E+03 5.5343E+03 6.1176E+02 15.6537
 MFO 5.2765E+03 5.6007E+03 5.7090E+03 6.3986E+03 3.8334E+02 4.77885
 ALO 5.1205E+03 5.4498E+03 5.6854E+03 6.5456E+03 5.5555E+02 107.987
 SHO 1.0506E+04 1.2350E+04 1.2436E+04 1.4842E+04 1.0513E+03 4.10250
 SSA 2.8000E+03 4.7860E+03 4.6396E+03 5.9489E+03 1.0105E+03 4.82164
 AEO 2.9000E+03 5.8930E+03 5.8174E+03 7.0528E+03 9.1279E+02 6.36252
 HMPA 2.8000E+03 2.9000E+03 3.7630E+03 5.7144E+03 1.1538E+03 50.3818

TF48
 HHO 3.5064E+03 3.7938E+03 3.7760E+03 4.1286E+03 1.7126E+02 24.5471
 FFA 3.2042E+03 3.2173E+03 3.2179E+03 3.2330E+03 8.5027E+00 16.7282
 MFO 3.2172E+03 3.2376E+03 3.2455E+03 3.3138E+03 2.7613E+01 5.09697
 ALO 3.2964E+03 3.3500E+03 3.3775E+03 3.5366E+03 8.4895E+01 113.169
 SHO 4.2306E+03 4.8897E+03 4.8919E+03 5.9053E+03 3.5548E+02 4.90668
 SSA 3.2127E+03 3.2458E+03 3.2465E+03 3.2811E+03 2.3030E+01 5.09324
 AEO 3.2130E+03 3.2958E+03 3.3013E+03 3.3813E+03 5.0762E+01 6.94347
 HMPA 3.1966E+03 3.2125E+03 3.2084E+03 3.2254E+03 2.2281E+00 65.8691

TF49
 HHO 3.2407E+03 3.3342E+03 3.3521E+03 3.4847E+03 7.2555E+01 16.6886
 FFA 3.2579E+03 3.2826E+03 3.2857E+03 3.3332E+03 2.0590E+01 15.4609
 MFO 3.3295E+03 3.6595E+03 3.8997E+03 5.1571E+03 5.8271E+02 4.82535
 ALO 3.2204E+03 3.2661E+03 3.2600E+03 3.2870E+03 2.2998E+01 111.541
 SHO 7.2420E+03 8.8289E+03 8.6822E+03 9.1619E+03 4.7743E+02 3.94904
 SSA 3.1991E+03 3.2203E+03 3.2303E+03 3.2665E+03 2.4860E+01 4.93789
 AEO 3.1917E+03 3.2121E+03 3.2181E+03 3.2834E+03 2.6232E+01 6.48561
 HMPA 3.1000E+03 3.1000E+03 3.1000E+03 3.1000E+03 2.8451E−12 38.7265
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w h e r e  0 ≤ v1 ≤ 99  ,  0 ≤ v2 ≤ 99  ,  10 ≤ v3 ≤ 200  , 
10 ≤ v4 ≤ 200.

The obtained results on this problem are presented statis-
tically in Table 19, and the best solutions found by the algo-
rithms are provided in Table 20. Besides, the convergence 
graphs of the algorithms are shown in Fig. 25.

The results show that the HMPA algorithm obtained bet-
ter results, and converged more quickly in comparison with 
other algorithms.

7.4  Tension/compression spring design problem

The tension/compression spring design problem is another 
constrained engineering problem to minimize tension/com-
pression spring weight. There are three design variables in 
this problem: wire diameter (d), mean coil diameter (D), 
and the number of active coils (P), which have been shown 
in Fig. 26.

The constraints and the mathematical formulation of the 
problem are as below:Consider:

Minimize:

Subject to:

c1
(
v⃗
)
= −v1 + 0.0193v3 ≤ 0,

c2
(
v⃗
)
= −v3 + 0.00954v3 ≤ 0,

c3
(
v⃗
)
= −𝜋v2

3
v4 −

4

3
𝜋v3

3
+ 1, 296, 000 ≤ 0,

(33)c4
(
v⃗
)
= v4 − 240 ≤ 0,

v⃗ =
[
v1, v2, v3

]
= [d,D,P],

f
(
v⃗
)
=
(
v3 + 2

)
v2v

2
1
,

where 0.05 ≤ v1 ≤ 2.0 , 0.25 ≤ v2 ≤ 1.3 , 2.0 ≤ v3 ≤ 15.0.
Tables 21 and 22 give the statistical results and the best 

points obtained by the algorithms, respectively. Furthermore, 
Fig. 27 depicts the convergence graphs of the algorithms.

The results state that HMPA is the preeminent algorithm 
among the competitor algorithms.

7.5  Gear train design problem

Gear train design problem is an unconstrained real-life engi-
neering problem with the aim of finding the optimal number 
of teeth in the gears between the driver and driveshafts. As 
depicted in Fig. 28, this problem has four gears:Td , Tb , Ta , 
and Tf . It is evident that the number of teeth in the gears 
must be an integer.

The objective and mathematical formulation of this prob-
lem are as follows:Consider:

Objective is to minimize:

c1
(
v⃗
)
= 1 −

v3
2
v3

71785v4
1

≤ 0,

c2
(
v⃗
)
=

4v2
2
− v1v2

12, 566
(
v2v

3
1
− v4

1

) +
1

5108v2
1

≤ 0,

c3
(
v⃗
)
= 1 −

140.45v1

v2
2
v3

≤ 0,

(34)c4
(
v⃗
)
=

v1 + v2

1.5
− 1 ≤ 0,

v⃗ =
[
v1, v2, v3, v4

]
=
[
Td, Tb, Ta, Tf

]
,

(35)f
(
v⃗
)
=

[
1

6.931
−

v1v2

v3v4

]2
,

Table 13  (continued)

Algorithm Best Median Average Worst STD AET(s)

TF50
 HHO 3.9032E+03 4.7476E+03 4.7919E+03 6.1943E+03 6.0114E+02 20.8169
 FFA 3.7184E+03 4.1061E+03 4.1277E+03 4.5588E+03 2.2814E+02 15.0199
 MFO 3.7075E+03 4.0231E+03 4.0983E+03 4.6535E+03 2.9183E+02 4.48715
 ALO 4.1460E+03 4.3790E+03 4.4660E+03 5.1809E+03 3.2793E+02 118.043
 SHO 7.1167E+03 1.4124E+04 1.6157E+04 5.3542E+04 1.1888E+04 3.61199
 SSA 3.7774E+03 4.1017E+03 4.1372E+03 4.6079E+03 2.5934E+02 4.56063
 AEO 3.7034E+03 4.0792E+03 4.0080E+03 4.4793E+03 2.3105E+02 5.94408
 HMPA 3.3476E+03 3.6811E+03 3.6687E+03 4.0678E+03 1.9049E+02 39.9666

The best results have been written in bold
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w h e r e  12 ≤ v1 ≤ 60  ,  12 ≤ v2 ≤ 60  ,  12 ≤ v3 ≤ 60  , 
12 ≤ v4 ≤ 60.

The statistical results of the algorithms and the best solu-
tions are expressed in Table 23 and Table 24, respectively. In 
addition, the result of convergence evaluation is illustrated 
in Fig. 29.

The results demonstrate that the HMPA has been more 
triumphant in solving gear train design problem.

7.6  Spread spectrum radar poly‑phase design 
problem

Spread spectrum radar poly-phase design problem is a com-
plex continuous optimization problem to minimize the enve-
lope module of the compressed radar pulse at the receiver 
output. The objective and the mathematical formulation of 
this problem are as below:Objective is to minimize:

Fig. 18  Box plots of the obtained results from the algorithms on CEC 2017 test functions
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Fig. 18  (continued)
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Fig. 19  Convergence graphs of the algorithms on CEC 2017 test functions
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where N = 10 , m = 2N − 1 , v⃗ =
(
v1, v2,… , vN

)
∈ R

N |0 ≤ vi

≤ 2�, i = 1, 2,… ,N  ,  f2i−1
�
v⃗
�
=

N∑
j=i

cos

j∑
k=�2i−j−1�+1

vk , i = 1, 2,… ,N  , 

(36)F
(
v⃗
)
= max

{
f1
(
v⃗
)
, f2

(
v⃗
)
,… , f2m

(
v⃗
)}

,
f2i
�
v⃗
�
= 0.5

N∑
j=i+1

cos
j∑

k=�2i−j�+1
vk  ,  i = 1, 2,… ,N − 1  , 

fm+i
(
v⃗
)
= −fi

(
v⃗
)
, i = 1, 2,… ,m.

Tables 25 and 26 represent the statistical results, and the 
solutions found by the algorithms, respectively. Figure 30 
presents the convergence rates of the algorithms on this 
problem.

Fig. 19  (continued)
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Table 14  Wilcoxon signed-rank test results of the HMPA versus the competitor algorithms with 5% significance level on CEC 2017 test func-
tions

HMPA vs. HHO HMPA vs. FFA HMPA vs.MFO HMPA vs. ALO HMPA vs. SHO HMPA vs. SSA HMPA vs. AEO

P value R P value R P value R P value R P value R P value R P value R

TF24 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.221E−04 + 1.221E−04 +
TF25 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 +
TF26 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.221E−04 +
TF27 6.104E−05 + 6.104E−05 + 6.104E−05 + 8.362E−03 + 6.104E−05 + 1.526E−03 + 1.025E−02 +
TF28 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 +
TF29 6.104E−05 + 1.688E−01 – 1.831E−04 + 2.625E−03 + 6.104E−05 + 5.245E−01 – 1.221E−04 +
TF30 1.831E−04 + 6.104E−05 + 6.104E−05 + 1.526E−03 + 6.104E−05 + 1.245E−02 + 4.272E−03 +
TF31 6.104E−05 + 5.371E−03 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 4.272E−04 + 6.104E−05 +
TF32 1.221E−04 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 2.155E−02 + 1.245E−02 +
TF33 1.221E−04 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 2.625E−03 +
TF34 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 +
TF35 6.104E−05 + 1.025E−02 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 8.362E−03 +
TF36 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.221E−04 +
FT37 6.104E−05 + 1.514E−01 – 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.205E−01 –
TF38 1.221E−04 + 1.221E−04 + 1.221E−04 + 1.221E−04 + 6.104E−05 + 1.508E−02 + 3.357E−03 +
TF39 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.714E−03 + 3.534E−02 +
TF40 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.221E−04 +
TF41 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 1.526E−03 +
TF42 6.104E−05 + 1.831E−04 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−04 +
TF43 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−04 + 6.104E−05 + 5.371E−03 + 2.014E−03 +
TF44 6.104E−05 + 5.536E−02 – 9.341E−01 – 6.387E−01 – 6.104E−05 + 8.040E−01 – 3.052E−04 +
TF45 6.104E−05 + 6.104E−04 + 9.460E−02 – 9.341E−01 – 6.104E−05 + 5.614E−01 – 5.371E−03 +
TF46 8.545E−04 + 6.714E−03 + 6.104E−05 + 1.221E−04 + 6.104E−05 + 2.625E−03 + 8.362E−03 +
TF47 6.104E−05 + 8.325E−02 – 6.104E−05 + 6.104E−05 + 6.104E−05 + 2.557E−02 + 6.104E−05 +
TF48 6.104E−05 + 1.831E−04 + 9.460E−02 – 6.104E−05 + 6.104E−05 + 2.078E−01 – 2.625E−03 +
TF49 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 + 6.104E−05 +
TF50 6.104E−05 + 1.221E−04 + 3.052E−04 + 6.104E−05 + 6.104E−05 + 1.831E−04 + 4.272E−04 +

Fig. 20  Welded beam design problem

Table 15  Statistical results of the algorithms on the welded beam 
design problem

Algorithm Best Worst Mean Std.

HMPA 1.695247 1.695247 1.695247 0.0000e+00
HHO 1.722109 1.970076 1.818944 0.057866
FFA 1.695503 1.986527 1.752352 0.079615
MFO 1.695247 1.873179 1.716946 0.052377
ALO 1.695426 1.859499 1.723084 0.054830
SHO 1.817368 2.252941 1.972993 0.119536
SSA 1.700480 1.867176 1.739649 0.052245
AEO 1.695247 1.712678 1.696428 0.004495
TSA 1.709622 1.910382 1.851006 0.003245
MRFO 1.695247 1.695247 1.695247 4.9068e−09
SCA 1.759173 1.873408 1.817657 0.027543
WOA 1.722972 1.931557 1.836738 0.060294
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It can be inferred from the statistical results of Tables 25 
and 26 that the HMPA obtained better results, and consider-
ing the graphs of Fig. 30, the HMPA converged prier com-
petitor algorithms.

7.7  Optimal thermo‑hydraulic performance 
of an artificially roughened air heater problem

In this subsection, the performance of the algorithms is 
tested on a maximization problem, contrariwise, other sub-
sections that deal with minimization issues. Optimal thermo-
hydraulic performance of an artificially roughened air heater 
problem is a maximization design problem intended to max-
imize the heat transfer rate and maintaining the slightest 
amount of frictions losses. This problem consists of three 
variables: relative roughness pitch (p/e), relative roughness 
height (e/D), and Reynolds number (Re) that have been illus-
trated in Fig. 31.

The objective and the mathematical formulation of this 
problem are as below:Consider:

Objective is to maximize:

where R
M
= 0.95v

0.53

2
 , GH = 4.5

(
e+
)0.28

(0.7)0.57 , e+ = v1v3

√
f

2
 , 

f =
fs+fr

2
 , fs = 0.079v−0.25

3
 , fr =

2(
0.95v0.53

3
+2.5 ln

(
1

2
v1

)2

−3.75

)2  , 

0.02 ≤ v1 ≤ 0.8 , 10 ≤ v2 ≤ 40 , 3000 ≤ v3 ≤ 20000.

v⃗ =
[
v1, v2, v3

]
=
[
e∕D, p∕e, Re

]
,

� = 2.51 ln(e+) + 5.5 − 0.1RM − GH,

Table 16  The best-obtained results on the welded beam design prob-
lem

Algo. Optimum variables Optimal fitness

h l t b

HMPA 0.205729 3.253120 9.036623 0.205729 1.695247
HHO 0.195173 3.441696 9.071659 0.207203 1.722109
FFA 0.201977 3.276407 9.036130 0.208602 1.695503
MFO 0.205729 3.253120 9.036623 0.205729 1.695247
ALO 0.205540 3.256487 9.036624 0.205729 1.695426
SHO 0.173653 3.722985 9.809483 0.202454 1.817368
SSA 0.207176 3.236116 9.005000 0.207177 1.700480
AEO 0.205729 3.253120 9.036623 0.205729 1.695247
TSA 0.192162 3.512430 9.036612 0.205730 1.709622
MRFO 0.205729 3.470488 9.036623 0.205729 1.724852
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
WOA 0.183843 3.701841 9.028197 0.206113 1.722972

Fig. 21  Convergence graphs of the algorithms on the welded beam 
design problem

Fig. 22  Speed reducer design problem

Table 17  Statistical results of the algorithms on the speed reducer 
design problem

Algorithm Best Worst Mean Std.

HMPA 2895.3333 2895.3333 2895.3333 0.0000e+00
HHO 2918.9686 3065.9907 2978.6833 47.3050
FFA 2895.3356 2901.7623 2896.6489 2.01160
MFO 2895.3333 2906.4217 2896.0725 2.86300
ALO 2895.3335 2895.7423 2895.4296 0.15658
SHO 2996.5819 3087.6335 3038.3867 31.9255
SSA 2895.4881 2963.1217 2917.3115 19.7195
AEO 2895.3333 2895.6742 2895.3627 0.08808
TSA 2904.3056 2999.9241 2930.0140 13.5527
MRFO 2895.3333 2895.3333 2895.3333 5.8308e−07
SCA 3030.5630 3104.7790 3065.9172 18.0742
WOA 2899.7256 2995.8775 2917.5164 18.6605
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Analogously, the statistical results are written in Table 27, 
and the best-obtained solutions are provided in Table 28. 
Furthermore, the convergence graphs are illustrated in 
Fig. 32.

Table 18  The best-obtained 
results of the algorithms on the 
speed reducer design problem

Algorithms Optimum variables Optimal fitness

b m z l
1

l
2

d
1

d
2

HMPA 3.50000 0.70000 17.00000 7.30000 7.80000 2.90000 5.28668 2895.3333
HHO 3.50843 0.70156 17.00000 7.50689 8.10234 2.92636 5.28678 2918.9686
FFA 3.50001 0.70000 17.00000 7.00001 7.80000 2.90000 5.28668 2895.3356
MFO 3.50000 0.70000 17.00000 7.00000 7.80000 3.90000 5.28668 2895.3333
ALO 3.50000 0.70000 17.00000 7.30000 7.80000 2.90001 5.28668 2895.3335
SHO 3.54721 0.70141 17.25842 7.81773 7.82436 2.95651 5.31054 2996.5819
SSA 3.50002 0.70000 17.00000 7.30049 7.80607 2.90005 5.28668 2895.4881
AEO 3.50000 0.70000 17.00000 7.30000 7.80000 2.90000 5.28668 2895.3333
TSA 3.50107 0.70010 17.00000 7.63893 7.84218 2.92479 5.28682 2904.3056
MRFO 3.50000 0.70000 17.00000 7.30000 7.80000 2.90000 5.28668 2895.3333
SCA 3.50875 0.70000 17.00000 7.30000 7.80000 3.46102 5.28921 3030.5630
WOA 3.50287 0.70000 17.00000 7.48038 7.88865 2.90000 5.28671 2899.7256

Fig. 23  Convergence graphs of the algorithms on the speed reducer 
design problem

Fig. 24  Pressure vessel design problem

Table 19  Statistical results of the algorithms on the pressure vessel 
design problem

Algorithm Best Worst Mean Std.

HMPA 5885.3327 5885.3327 5885.3327 1.959e−12
HHO 5966.5840 6814.2746 6358.6139 311.815
FFA 5885.9743 6453.3521 5973.1010 149.432
MFO 5885.3327 8344.0911 6228.1824 1.010e + 03
ALO 5898.5516 6346.4962 6029.3359 180.245
SHO 5887.5773 5972.3207 5910.2141 14.8130
SSA 5888.7418 6239.0690 5960.6682 107.021
AEO 5885.3328 6509.7504 6020.4548 177.599
TSA 5892.2241 6139.5159 5943.1839 63.1080
MRFO 5885.5215 5892.2159 5886.9095 1.93356
SCA 6239.0690 6652.3541 6426.5906 131.609
WOA 6066.7024 6745.1734 6318.0960 97.9601

Table 20  The best-obtained results on the pressure vessel design 
problem

Algo. Optimum variables Optimal fitness

Ts Th R L

HMPA 0.778168 0.384649 40.31961 200.0000 5885.3327
HHO 0.822947 0.406761 42.63744 170.0701 5966.5840
FFA 0.778342 0.384856 40.32862 199.8597 5885.9743
MFO 0.778168 0.384649 40.31961 200.0000 5885.3327
ALO 0.785817 0.388430 40.71595 194.5557 5898.5516
SHO 0.780152 0.385631 40.42242 198.5739 5887.5773
SSA 0.780152 0.385631 40.42242 198.5739 5888.7418
AEO 0.778168 0.384649 40.31962 199.9999 5885.3328
TSA 0.778415 0.385684 40.38315 199.1565 5892.2241
MRFO 0.778217 0.384681 40.32240 199.9643 5885.5215
SCA 0.946210 0.467712 49.02644 106.2619 6239.0690
WOA 0.799025 0.437658 41.60884 182.7994 6066.7024
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According to the statistical results, it can be subsumed 
that most of the algorithms obtained optimal solution of the 
problem, and their results are close to each other. Similarly, 
given Fig. 32, the convergence rate of HMPA is relatively 
frail than several competitor algorithms.

8  Conclusion and future perspectives

This paper presents an innovative hybrid multi-population 
algorithm called HMPA. In HMPA, the initial population is 

Fig. 25  Convergence graphs of the algorithms on the speed reducer 
design problem

Fig. 26  Tension/compression spring design problem

Table 21  Statistical results of the algorithms on the tension/compres-
sion spring design problem

Algorithm Best Worst Mean Std.

HMPA 0.01266535 0.01268822 0.01267299 6.6537e−06
HHO 0.01266658 0.01369246 0.01308014 3.6809e−04
FFA 0.01266991 0.01321315 0.01275611 1.3438e−04
MFO 0.01268891 0.01515373 0.01331337 7.8862e−04
ALO 0.01271178 0.01737642 0.01349741 1.4539e−03
SHO 0.01274521 0.01319101 0.01300044 1.2909e−04
SSA 0.01296200 0.01319258 0.01314063 7.3959e−05
AEO 0.01266776 0.01354632 0.01290087 2.6881e−04
TSA 0.01266545 0.01298145 0.01276719 9.6949e−05
MRFO 0.01266605 0.01276648 0.01270041 3.2869e−05
SCA 0.01276188 0.01299844 0.01299772 1.5449e−04
WOA 0.01277431 0.01319508 0.01386738 1.4226e−03

Table 22  The best-obtained results of the algorithms on the tension/
compression spring design problem

Algorithms Optimum variables Optimal fitness

d D P

HMPA 0.051608 0.354788 11.40295 0.01266535
HHO 0.051865 0.360985 11.04386 0.01266658
FFA 0.052306 0.317326 10.33072 0.01266991
MFO 0.052839 0.385022 9.803924 0.01268891
ALO 0.053307 0.396903 9.270784 0.01271178
SHO 0.050900 0.336987 12.59796 0.01274521
SSA 0.050000 0.313764 14.52448 0.01296200
AEO 0.051318 0.347858 11.82792 0.01266776
TSA 0.051798 0.359368 11.13524 0.01266545
MRFO 0.051902 0.361863 10.99356 0.01266605
SCA 0.050804 0.334702 12.77230 0.01277431
WOA 0.054179 0.419654 8.369768 0.01277431

Fig. 27  Convergence graphs of the algorithms on the tension/com-
pression spring design problem

Fig. 28  Gear train design problem
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portioned into three sub-population. The sub-populations 
use an information exchange method to trade the solutions 
according to the

predefined principles. Furthermore, artificial ecosystem-
based optimization (AEO), and Harris Hawks optimization 
(HHO) algorithms, which are the most recently developed 
powerful population-based optimization algorithms, are 
utilized in a hybrid model. Afterwards, some enhancement 
techniques are appended to the proposed framework to 
increase the potencies of the different aspects of the algo-
rithm. In each round, solutions of the sub-populations are 
updated by only two techniques.

The HMPA is tested on fifty test functions, and the results 
are compared statistically and visually with well-known 

state-of-the-art algorithms. The experimental results reveal 
that the HMPA has extraordinary exploitation, explora-
tion, and local optima departure capabilities. Moreover, 
the obtained results are inferentially corroborated using a 
nonparametric test called the Wilcoxon signed-rank test to 
investigate the conjectured dominance of the HMPA. The 
test divulges that the HMPA has a significant difference with 
the competitor algorithms.

In addition, HMPA is applied to seven constrained and 
unconstrained real-world engineering problems for further 
investigation of HMPA’s performance. The results dem-
onstrated that HMPA could solve real-life problems more 
efficiently.

Table 23  Statistical results of the algorithms on the gear train design 
problem

Algorithm Best Worst Mean Std.

HMPA 2.7008e−12 2.3078e−11 4.0593e−12 5.2613e−12
HHO 2.7008e−12 2.3576e−09 8.6138e−10 1.0305e−09
FFA 2.7008e−12 1.1661e−10 2.7609e−11 3.4165e−11
MFO 9.9215e−10 2.7264e−08 5.5686e−09 8.7883e−09
ALO 8.8876e−10 1.8273e−08 8.3759e−09 7.8885e−09
SHO 2.3576e−09 1.0138e−06 1.7103e−07 3.0813e−07
SSA 9.9398e−11 1.1172e−08 3.5192e−09 4.2704e−09
AEO 2.7008e−12 1.0935e−09 2.4320e−10 4.1048e−10
TSA 2.7008e−12 9.7456e−10 8.7312e−11 2.4695e−10
MRFO 2.7008e−12 3.0675e−10 3.1122e−11 7.6915e−11
SCA 1.5450e−10 2.3576e−09 1.2606e−09 6.3148e−10
WOA 2.7008e−12 2.3576e−09 6.5324e−10 7.3375e−10

Table 24  The best obtained results of the algorithms on the gear train 
design problem

Algo. Optimum variables Optimal fitness

T
d

T
b

T
a

T
f

HMPA 19 16 43 49 2.7008e−12
HHO 16 19 43 49 2.7008e−12
FFA 19 16 43 49 2.7008e−12
MFO 12 26 46 47 9.9215e−10
ALO 37 12 54 57 8.8876e−10
SHO 26 15 52 52 2.3576e−09
SSA 13 31 49 57 9.9398e−11
AEO 19 16 49 43 2.7008e−12
TSA 16 19 49 43 2.7008e−12
MRFO 16 19 49 43 2.7008e−12
SCA 21 13 43 44 1.5450e−10
WOA 16 19 49 43 2.7008e−12

Fig. 29  Convergence graphs of the algorithms on the gear train 
design problem

Table 25  Statistical results of the algorithms on the spread spectrum 
radar poly-phase code design problem

Algorithm Best Worst Mean Std.

HMPA 2.863416 2.863416 2.863416 2.3382e−14
HHO 3.257884 4.507490 3.526011 3.1943e−01
FFA 2.864468 2.888421 2.875406 7.5426e−03
MFO 2.863416 3.008403 2.876389 3.8691e−02
ALO 2.863560 3.018374 2.932862 6.7822e−02
SHO 4.536872 4.855013 4.681426 1.1242e−01
SSA 2.863433 2.975245 2.880561 3.7375e−02
AEO 2.863440 3.008360 2.901156 6.4030e−02
TSA 2.872764 3.034620 2.958065 7.7604e−03
MRFO 2.863419 3.008958 2.883453 4.9997e−02
SCA 2.965197 4.584032 3.962797 3.1820e−01
WOA 2.867564 4.862673 3.686272 5.3895e−01
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Table 26  The best-obtained results of the algorithms on spread spectrum radar poly-phase code design problem

Algo. Optimum variables Optimal fitness

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
10

HMPA 2.378e−16 2.321e−15 3.743e−15 2.633e−16 2.004e−16 2.3634 4.988e−16 2.3634 2.3634 3.1416 2.863416
HHO 6.096e−02 8.548e−02 7.719e−02 0.4609 0.6706 1.2141 0.1029 2.5747 2.7304 3.0550 3.257884
FFA 8.086e−06 1.524e−03 6.911e−07 2.874e−05 2.210e−05 2.3612 0.0000 2.3644 2.3644 3.0967 2.864468
MFO 0.0000 0.0000 0.0000 2.3634 0.0000 0.0000 0.0000 2.3634 2.3634 3.1415 2.863416
ALO 0.0000 0.0000 0.0000 2.3635 3.239e−08 1.658e−06 0.0000 2.3635 2.3635 3.1714 2.863560
SHO 2.048e−01 8.613e−03 7.718e−01 3.938e−01 1.0705 9.494e−01 3.639e−03 4.0332 2.2355 2.4063 4.536872
SSA 2.740e−06 0.0000 0.0000 0.0000 6.032e−07 2.3634 0.0000 2.3634 2.3634 3.1515 2.863433
AEO 3.910e−05 4.318e−07 5.425e−08 2.3633 5.716e−10 2.202e−07 3.723e−07 2.3633 2.3634 3.1425 2.863440
TSA 2.3386 4.741e−03 1.984e−03 7.323e−03 4.685e−03 2.757e−03 2.573e−11 2.3727 2.3727 3.1273 2.872764
MRFO 9.708e−07 1.999e−07 5.719e−07 2.049e−06 7.840e−07 2.3634 2.983e−07 2.3634 2.3634 3.1448 2.863419
SCA 0.0000 0.0000 0.0000 0.0000 2.4371 0.0000 0.0000 2.1083 2.4651 3.2531 2.965197
WOA 2.3511 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.3670 2.3675 3.1858 2.867564

Fig. 30  Convergence graphs of the algorithms on the spread spectrum 
radar poly-phase code design problem

Fig. 31  Optimal thermo-hydraulic performance of an artificially 
roughened air heater problem

Table 27  Statistical results of the algorithms on optimal thermo-
hydraulic performance of an artificially roughened air heater problem

Algorithm Best Worst Mean Std.

HMPA 4.21421995 4.21421995 4.21421995 1.5439e−10
HHO 4.21419764 4.21411714 4.21414264 7.3895e−06
FFA 4.21415627 4.21400125 4.21414305 2.9800e−06
MFO 4.21421995 4.21421995 4.21421995 9.1935e−09
ALO 4.21421995 4.21421995 4.21421995 5.9211e−09
SHO 4.21317361 4.21301246 4.21308535 3.1382e−04
SSA 4.21421995 4.21421995 4.21421995 6.7139e−09
AEO 4.21421995 4.21421995 4.21421995 9.1935e−09
TSA 4.21418159 4.21418005 4.21418039 9.9041e−06
MRFO 4.21421995 4.21421995 4.21421995 8.6485e−09
SCA 4.21421982 4.21421955 4.21421964 3.3404e−08
WOA 4.21421995 4.21421995 4.21421995 8.2229e−09

Table 28  The best-obtained results of the algorithms on optimal 
thermo-hydraulic performance of an artificially roughened air heater 
problem

Algorithms Optimum variables Optimal fitness

e/D p∕e Re

HMPA 0.0600275 10.0002477 8803.1182 4.21421995
HHO 0.0811927 10.0000000 6344.0528 4.21419764
FFA 0.0614347 10.0021481 8576.8218 4.21415627
MFO 0.0665755 10.0000000 7899.1271 4.21418545
ALO 0.1379706 10.0000000 3408.1774 4.21418545
SHO 0.0524155 10.0317549 10858.295 4.21317361
SSA 0.0855700 10.0000000 5917.3500 4.21418545
AEO 0.0505278 10.0000000 10844.342 4.21421995
TSA 0.0642137 10.0010959 8163.6449 4.21418159
MRFO 0.0953062 10.0000000 5226.2444 4.21421995
SCA 0.1539215 10.0000000 3000.0000 4.21421982
WOA 0.0910979 10.0000000 5505.5379 4.21421995
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It is a question of future research to investigate the discre-
tization and binarization of the HMPA. Besides, the HMPA 
can be extended to solve multi-objective problems.
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