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Abstract
In this article, we present two conservative and fourth-order compact finite-difference schemes for solving the generalized 
Rosenau–Kawahara–RLW equation. The proposed schemes are energy-conserved, convergent, and unconditionally stable, 
and the numerical convergence orders in both l

2
-norm and l∞-norm are of O(�2 + h4) . Numerical experiments demonstrate 

that the present schemes are efficient and reliable.
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1  Introduction

Nonlinear phenomena play important roles in various fields 
of science and engineering. In recent years, there has been a 
growing interest in the computation of nonlinear wave phe-
nomena using different mathematical models. These models 
include the KdV equation  [1–3], the Benjamin–Bona–Mah-
ony equation or RLW equation [4–6], the Rosenau equation 
[7, 8], the Rosenau–RLW equation [9, 10], the Kawahara 
equation [11, 12], the Rosenau–Kawahara equation [13], and 
many others [14–17].

In this article, we consider the following initial-boundary 
value problem of the generalized Rosenau–Kawahara–RLW 
equation: [18]:

where Ω = [xl, xr] , 0 ≤ t ≤ T  , � , � , � , and � are real positive 
constants, � and � are positive constants, p ≥ 1 is a positive 
integer, and u0(x) is a given smooth function. It should be 
pointed out that, here, u(x, t) represents the wave profile, 
which has the following asymptotic values [19]:

Thus, the boundary conditions (3) are meaningful for the 
solitary solution of Eq. (1).

It is easy to verify that the problem (1)–(3) has the fol-
lowing conservation law [20, 21]:

Lemma 1.1  (See [20]) Suppose that u0 ∈ H2
0
(Ω) , and then, 

the solution u(x, t) of the problem (1)–(3) satisfies:

(1)
ut + 𝛼ux + 𝛽upux + 𝛾uxxx − 𝛿uxxt + 𝜆uxxxxt

− 𝜃uxxxxx = 0, x ∈ Ω, 0 < t ≤ T ,

(2)u(x, 0) = u0(x), x ∈ Ω,

(3)
u(xl, t) = ux(xl, t) = 0,

u(xr, t) = ux(xr, t) = uxx(xr, t) = 0,

(4)u → 0, �
nu∕�xn → 0, as x → ±∞, n ≥ 1.

E(t) = ∫
xr

xl

(u2 + 𝛿u2
x
+ 𝜆u2

xx
)dx = ‖u‖2

L2

+ 𝛿‖ux‖2L2 + 𝜆‖uxx‖2L2
= ‖u0‖2L2 + 𝛿‖(u0)x‖2L2
+ 𝜆‖(u0)xx‖2L2 = E(0), 𝛿 > 0, 𝜆 > 0, t ∈ [0, T].
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Theorem 1.2  Suppose that u0 ∈ H2
0
(Ω) , and then, the prob-

lem (1)–(3) is well posed.

Proof  Assume that u1 and u2 are two solutions of the problem 
(1)–(3) satisfying the initial conditions u(1)

0
 and u(2)

0
 , respec-

tively. Let � = u1 − u2 , and then, � satisfies:

Multiplying Eq. (5) by � , and then, integrating it over [xl, xr] , 
we obtain:

Using the integration by parts and the boundary conditions 
(6), we have:

Letting:

Substituting Eqs. (8)–(10) into Eq. (7), we obtain:

‖u‖L2 ≤ C, ‖ux‖L2 ≤ C, ‖uxx‖L2 ≤ C,

‖u‖L∞ ≤ C, ‖ux‖L∞ ≤ C.

(5)

�t + ��x + �[u
p

1
(u1)x − u

p

2
(u2)x] + ��xxx − ��xxt + ��xxxxt − ��xxxxx = 0,

�(x, 0) = u
(1)

0
− u

(2)

0
, x ∈ Ω,

(6)

�(x
l
, t) = �

x
(x

l
, t) = 0, �(x

r
, t) = �

x
(x

r
, t)

= �
xx
(x

r
, t) = 0, t ∈ [0, T].

(7)
∫

xr

xl

�

(
�t − ��xxt + ��xxxxt

)
dx − � ∫

xr

xl

��xxxxxdx

= −∫
xr

xl

�

(
��x + �[u

p

1
(u1)x − u

p

2
(u2)x] + ��xxx

)
dx.

(8)∫
xr

xl

��xdx =
1

2
(�2)

|||||

xr

xl

= 0,

(9)

∫
xr

xl

��xxxdx = (��xx)

|||||

xr

xl

− ∫
xr

xl

�xx�xdx = −
1

2
(�x)

2
|||||

xr

xl

= 0,

(10)

∫
xr

xl

��xxxxxdx = (��xxxx)

|||||

xr

xl

− ∫
xr

xl

�xxxxd� = −∫
xr

xl

�xd(�xxx)

= −(�x�xxx)

|||||

xr

xl

+ ∫
xr

xl

�xxx�xxdx

=
1

2
(�xx)

2
|||||

xr

xl

= −
1

2
[�xx(xl, t)]

2.

G(t) = ∫
xr

xl

(𝜂2 + 𝛿𝜂
2
x
+ 𝜆𝜂

2
xx
)dx, 𝛿 > 0, 𝜆 > 0, t ∈ [0, T].

By Lemma 1.1 and the Cauchy–Schwarz inequality, we 
obtain:

where C is a constant. Substituting the above two inequali-
ties into Eq. (11), we obtain:

Since � is a positive constant, we have:

This leads to:

Thus, if u(1)
0

= u
(2)

0
 , we have �(x, 0) = 0 and, hence, G(0) = 0 , 

implying that G(t) = 0 . By the Sobolev inequality, we obtain 
‖�‖L∞ = 0 and u1 = u2 . Furthermore, if

we obtain G(0) < 𝜀 and hence:

implying that the solution is continuously dependent on the 
initial condition. We conclude that the problem (1)–(3) is 
well posed. This completes the proof. 	�  ◻

(11)

dG(t)

dt
+ �[�xx(xl, t)]

2dx

= −2� ∫
xr

xl

�[u
p

1
(u1)x − u

p

2
(u2)x]dx

= −2� ∫
xr

xl

�[u
p

1
(� + u2)x − u

p

2
(u2)x]dx

= −2� ∫
xr

xl

�u
p

1
�xdx − 2� ∫

xr

xl

�(u
p

1
− u

p

2
)(u2)xdx

= −2� ∫
xr

xl

�u
p

1
�xdx − 2� ∫

xr

xl

[
�
2(u2)x

p−1∑
k=0

(u1)
p−1−k(u2)

k

]
dx.

|||||�
xr

xl

�u
p

1
�xdx

|||||
≤ C �

xr

xl

|�| ⋅ |�x|dx ≤ C

[
�

xr

xl

�
2dx + �

xr

xl

(�x)
2dx

]
,

|||||�
xr

xl

[
�
2(u2)x

p−1∑
k=0

(u1)
p−1−k(u2)

k

]
dx
|||||
≤ C �

xr

xl

�
2dx,

dG(t)

dt
+ 𝜃[𝜂xx(xl, t)]

2dx ≤ C

[
�

xr

xl

𝜂
2dx + �

xr

xl

(𝜂x)
2dx

]
, 𝜃 > 0.

dG(t)

dt
≤ CG(t), t ∈ [0, T].

G(t) ≤ eCTG(0), 0 ≤ t ≤ T .

𝜂(x, 0) < 𝜀, 𝜂x(x, 0) < 𝜀, 𝜂xx(x, 0) < 𝜀,

G(t) ≤ eCTG(0) ≤ �eCT , 0 ≤ t ≤ T ,
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For the generalized Rosenau–Kawahara–RLW equa-
tion (1), He and Pan [18] presented a second-order accu-
rate implicit difference scheme, which is energy-conserved 
and unconditionally stable. Wang and Dai [20] proposed a 
fourth-order accurate conservative finite-difference scheme 
and their numerical analysis showed that the method can 
be applied to study the solitary wave traveling in a long 
time. Ghiloufi et al. [21] proposed two conservative finite-
difference schemes for the Rosenau–Kawahara–RLW equa-
tion, and both schemes are fourth-order convergent in space 
variables. However, the above finite-difference schemes in 
Refs. [20, 21], although they have the fourth-order numerical 
precision, employ a nine-point discrete method. Thus, the 
purpose of this paper is to establish two new conservative 
high-order compact finite-difference schemes for solving 
the generalized Rosenau–Kawahara–RLW equation. The 
coefficient matrices of these new schemes are both seven-
diagonal. And we rigorously prove that the two schemes 
are unconditionally stable and conserve the energy in the 
discrete sense.

The outline is as follows. In Sect. 2, a nonlinear conserva-
tive difference scheme for the problem (1)–(3) is described 
in detail, and corresponding conservation, stability, and 
convergence are proved. In Sect. 3, a three-time-level lin-
earized compact finite-difference scheme is constructed. 
The discrete conservative law, the unique solvability, the 
prior error estimates, and the unconditional convergence 

of the difference scheme are shown. In Sect. 4, an iterative 
algorithm for the nonlinear compact scheme is given and its 
convergence is proved. In Sect. 5, we present some numeri-
cal examples to show the performance of the schemes and 
confirm our theoretical analysis. Finally, conclusions are 
drawn in the last section.

2 � Nonlinear compact difference scheme

In this section, we propose a two-time-level nonlinear and con-
servative fourth-order compact finite-difference scheme for the 
problem (1)–(3).

2.1 � Construction of nonlinear‑implicit scheme

We first define the solution domain to be [xl, xr] × [0, T] , which 
is covered by a uniform grid (xj, tn) , where:

At each point (xj, tn) , the symbol u(xj, tn) is denoted as the 
exact solution, while the associated numerical solution is 
represented by Un

j
≈ u(xj, t

n) . The following notations are 
introduced for the simplicity:

xj = xl + jh, tn = n�, h = (xr − xl)∕J,

� = T∕N, 0 ≤ j ≤ J, 0 ≤ n ≤ N.

Table 1   Comparison of errors and temporal convergence order with various � and h = 0.05 at T = 4 for Example 5.1

� Scheme A Rate
�

CPU Scheme B Rate
�

CPU

0.4 3.327729E−02 – 1.014 4.737335E−02 – 0.322
0.2 8.340172E−03 1.996388 1.272 1.190285E−02 1.992768 0.399
0.1 2.106104E−03 1.985500 1.881 2.992169E−03 1.992043 0.756

� Nonlinear [21] Rate
�

CPU Linear [21] Rate
�

CPU

0.4 4.229686E−02 – 32.272 6.903704E−02 – 9.940
0.2 1.087472E−02 1.959572 60.132 1.747506E−02 1.982072 14.850
0.1 2.738395E−03 1.989575 96.653 4.392520E−03 1.992177 29.656

Table 2   Comparison of errors and spatial convergence order with various h and � = 0.0002 at T = 4 for Example 5.1

h Scheme A Rate
h

CPU Scheme B Rate
h

CPU

0.8 1.163633E−03 – 29.075 1.158113E−03 – 12.425
0.4 7.236478E−05 4.007205 56.919 7.221965E−05 4.003241 22.670
0.2 4.545498E−06 3.992777 125.432 4.547780E−06 3.989157 56.744

 h Nonlinear [21] Rate
h

CPU Linear [21] Rate
h

CPU

0.8 1.786716E−03 – 75.261 1.786723E−03 – 24.132
0.4 1.160013E−04 3.945096 242.745 1.160089E−04 3.945008 90.677
0.2 7.408240E−06 3.968867 2253.152 7.410765E−06 3.968469 533.263
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To get the high-order scheme, we use the following two 
fourth-order compact finite-difference operators [22]:

For the discretization of the first-order derivative ux and the 
second-order derivative uxx of the function u(x, t), we have 
the following formulas [23]:

Omitting the small terms O(h4) , we obtain:

We now introduce the vector and matrix notations as:

where [, ]T is the transpose of the vector  [, ]. Thus, the cor-
responding matrix form is:

Since M1 and M2 are two real symmetric positive definite 
matrices, there exist two real symmetric positive definite 
matrices H1 and H2 , such that [24]:

̄Un
j
=

1

2
(Un+1

j
+ Un−1

j
), U

n+
1

2

j
=

1

2
(Un+1

j
+ Un

j
),

(Un
j
)t̂ =

1

2𝜏
(Un+1

j
− Un−1

j
), (Un

j
)t̃ =

1

𝜏

(Un+1
j

− Un
j
),

(Un
j
)x̃ =

1

h
(Un

j+1
− Un

j
), (Un

j
)x̄ =

1

h
(Un

j
− Un

j−1
), (Un

j
)x̂ =

1

2h
(Un

j+1
− Un

j−1
),

⟨Un,Vn⟩ = h

J−1�
j=1

Un
j
Vn
j
, ‖Un‖2 = ⟨Un,Un⟩, ‖Un‖∞ = max

0≤j≤J �U
n
j
�.

AxU
n
j
= Un

j
+

h2

12
(Un

j
)x̃x̄ =

1

12
(Un

j−1
+ 10Un

j
+ Un

j+1
),

BxU
n
j
= Un

j
+

h2

6
(Un

j
)x̃x̄ =

1

6
(Un

j−1
+ 4Un

j
+ Un

j+1
), 1 ≤ j ≤ J, 0 ≤ n ≤ N.

ux(xj, t
n) = B

−1
x
(Un

j
)x̂ + O(h4), uxx(xj, t

n) = A
−1
x
(Un

j
)x̃x̄ + O(h4).

ux(xj, t
n) ≈ B

−1
x
(Un

j
)x̂, uxx(xj, t

n) ≈ A
−1
x
(Un

j
)x̃x̄.

U = (U1,U2,… ,UJ−1)
T,

Λhux = [ux(x1), ux(x2),… , ux(xJ−1)]
T,

Λhuxx = [uxx(x1), uxx(x2),… , uxx(xJ−1)]
T,

M1 =
1

12

⎛⎜⎜⎜⎜⎜⎝

10 1 0 ⋯ 0

1 10 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ 1 10 1

0 ⋯ 0 1 10

⎞⎟⎟⎟⎟⎟⎠(J−1)×(J−1)

,

M2 =
1

6

⎛⎜⎜⎜⎜⎜⎝

4 1 0 ⋯ 0

1 4 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ 1 4 1

0 ⋯ 0 1 4

⎞⎟⎟⎟⎟⎟⎠(J−1)×(J−1)

,

Λhux ≈ M−1
2
Ux̂, Λhuxx ≈ M−1

1
Ux̃x̄.

Introducing the new functions y, z, w, d, g, and � , Eq. (1) 
can be written as:

Therefore, the original problem (1)–(3) is changed to an 
equivalent system of the second-order differential equa-
tions (12)–(14). Using the above notations, we construct the 
nonlinear compact difference scheme for solving the system 
(12)–(14) as follows:

From Eqs. (15)–(19), we have:

H1 = M−1
1
, H2 = M−1

2
.

(12)yt = z + d, d = �ux, w = uxx,

(13)g = wxx, z = �� + �wx − �gx,

(14)� =
1

p + 1
(up+1)x, y = −u + �w − �g.

(15)(Yn
j
)t̃ = Z

n+
1

2

j
+ D

n+
1

2

j
, BxD

n+
1

2

j
= 𝛼(U

n+
1

2

j
)x̂,

(16)AxW
n+

1

2

j
= (U

n+
1

2

j
)x̃x̄, AxG

n+
1

2

j
= (W

n+
1

2

j
)x̃x̄,

(17)BxZ
n+

1

2

j
= 𝛽𝜙(U

n+
1

2

j
,U

n+
1

2

j
) + 𝛾(W

n+
1

2

j
)x̂ − 𝜃(G

n+
1

2

j
)x̂,

(18)

𝜙(U
n+

1

2

j
,U

n+
1

2

j
) =

1

p + 2

{
(U

n+
1

2

j
)p(U

n+
1

2

j
)x̂ + [(U

n+
1

2

j
)p+1]x̂

}
,

(19)Yn
j
= −Un

j
+ �Wn

j
− �Gn

j
.
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Thus, the compact finite-difference scheme (20) can be 
rewritten in the following matrix form:

where

The initial condition (2) is discretized as:

It should be pointed out that since Un
0
= (Un

0
)x̂ = 0 , 

Un
J
= (Un

J
)x̂ = (Un

J
)x̃x̄ = 0 from Eq. (3) and �nu∕�xn → 0 as 

x → ±∞ in Eq. (4), n ≥ 1 , we may assume:

for simplicity, where j = −1, J + 1 are ghost points. We fur-
ther denote:

Hence, Un ∈ RJ
0
 , 0 ≤ n ≤ N.

2.2 � Auxiliary lemmas

To analyze the discrete conservative properties for the 
compact finite-difference scheme (5)–(7), the following 
lemmas should be introduced.

Lemma 2.1   [25, 26] For any two mesh functions U,V ∈ RJ
0
 , 

we have:

Lemma 2.2   [20] For any mesh function Un ∈ RJ
0
 , we have:

(20)
Bx(U

n
j
)t̃ + 𝛼(U

n+
1

2

j
)x̂ + 𝛽𝜙(U

n+
1

2

j
,U

n+
1

2

j
) + 𝛾A

−1
x
(U

n+
1

2

j
)x̃x̄x̂ − 𝛿A

−1
x
Bx(U

n
j
)x̃x̄t̃

+ 𝜆(A−1
x
)2Bx(U

n
j
)x̃x̄x̃x̄t̃ − 𝜃(A−1

x
)2(U

n+
1

2

j
)x̃x̄x̃x̄x̂ = 0, n ≥ 1, j = 2,… , J − 2.

(21)
Un

t̃
+ 𝛼H2U

n+
1

2

x̂
+ 𝛽H2Φ(U

n+
1

2 ,Un+
1

2 ) + 𝛾H1H2U
n+

1

2

x̃x̄x̂
− 𝛿H1U

n
x̃x̄t̃

+ 𝜆H2
1
Un

x̃x̄x̃x̄t̃

− 𝜃H2
1
H2U

n+
1

2

x̃x̄x̃x̄x̂
= 0, n = 0, 1, 2,… ,N − 1,

Φ(U
n+

1

2 ,Un+
1

2 ) =

[
�(U

n+
1

2

1
,U

n+
1

2

1
),�(U

n+
1

2

2
,U

n+
1

2

2
),… ,�(U

n+
1

2

J
,U

n+
1

2

J
)

]T
.

(22)U0
j
= u0(xj), j = 0, 1, 2,… , J.

(23)
Un

−1
= Un

0
= Un

1
= 0, Un

J−1
= Un

J
= Un

J+1
= 0, n = 0, 1,… ,N,

RJ
0
= {U = (Un

j
)j∈Z|Un

−1
= Un

0
= Un

1
= 0, Un

J−1
= Un

J
= Un

J+1
= 0, n = 0, 1,… ,N}.

⟨Ux̃,V⟩ = −⟨U,Vx̄⟩, ⟨Ux̂,V⟩ = −⟨U,Vx̂⟩,
⟨Ux̃x̄,U⟩ = −‖Ux̃‖2, ⟨Ux̃x̃x̄x̄,U⟩ = ‖Ux̃x̄‖2, ⟨Ux̃x̄,V⟩ = −⟨Ux̃,Vx̃⟩ = ⟨U,Vx̃x̄⟩.

Lemma 2.3   [18] For any discrete function Un on the finite 
interval [xl, xr] , there exist two positive constants C1 and C2 , 
such that:

Lemma 2.4   [27] The eigenvalues of the matrices M1 and M2 
are, respectively, in the following forms:

Lemma 2.5   [24] For any real value symmetric positive defi-
nite matrices H and for U,V ∈ RJ

0
 , we have:

⟨Un
t̃
, 2Un+

1

2 ⟩ = ‖Un‖2
t̃
, ⟨Un

t̂
, 2 ̄Un⟩ = ‖Un‖2

t̂
,

⟨Un
x̃x̄t̃
, 2Un+

1

2 ⟩ = −‖Un
x̃
‖2
t̃
, ⟨Un

x̃x̄t̂
, 2 ̄Un⟩ = −‖Un

x̃
‖2
t̂
,

⟨Un
x̃x̃x̄x̄t̃

, 2Un+
1

2 ⟩ = ‖Un
x̃x̄
‖2
t̃
, ⟨Un

x̃x̃x̄x̄t̂
, 2 ̄Un⟩ = ‖Un

x̃x̄
‖2
t̂
.

‖Un‖∞ ≤ C1‖Un‖ + C2‖Un
x̃
‖, n = 0, 1, 2,… ,N.

�
M

1
,i
=

1

6

(
5 + cos

i�

J + 1

)
, �

M
2
,i
=

1

3

(
2 + cos

i�

J + 1

)
,

i = 1, 2,… , J.
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where ℜ is obtained by the Cholesky decomposition of H, 
denoted as H = ℜTℜ.

Lemma 2.6  For any mesh function U ∈ RJ
0
 , we have:

where ℜi is obtained by the Cholesky decomposition of Hi , 
denoted as Hi = ℜT

i
ℜi , i = 1, 2.

Proof  It follows from Lemma 2.4 that the eigenvalues of the 
matrices M1 and M2 satisfy:

This implies that:

Thus, we obtain:

where �(Hi) is the spectral radius of the matrices Hi , i = 1, 2 . 
Note that:

It follows from Eq. (24) that:

This completes the proof. 	� ◻

Lemma 2.7   [24] For any mesh function U ∈ RJ
0
 , we have:

Lemma 2.8   [24] For any mesh function U ∈ RJ
0
 , we have:

Lemma 2.9  For any two mesh functions U,V ∈ RJ
0
 , we have:

⟨HUx̂,V⟩ = −⟨HU,Vx̂⟩ = −⟨U,HVx̂⟩,
⟨HUx̃x̄,V⟩ = −⟨HUx̃,Vx̃⟩ = −⟨ℜUx̃,ℜVx̃⟩,
⟨HUx̃x̄,U⟩ = −⟨ℜUx̃,ℜUx̃⟩ = −‖ℜUx̃‖2,

‖U‖2 ≤ ⟨H1U,U⟩ = ‖ℜ1U‖2 ≤ 3

2
‖U‖2, ‖U‖2 ≤ ⟨H2U,U⟩ = ‖ℜ2U‖2 ≤ 3‖U‖2,

2

3
≤ �M1,i

≤ 1,
1

3
≤ �M2,i

≤ 1, i = 1, 2,… , J.

1 ≤ �H1,i
≤ 3

2
, 1 ≤ �H2,i

≤ 3, i = 1, 2,… , J.

(24)1 ≤ ‖H1‖ = �(H1) ≤ 3

2
, 1 ≤ ‖H2‖ = �(H2) ≤ 3,

⟨HiU,U⟩ = ⟨ℜiU,ℜiU⟩ = ‖ℜiU‖2, i = 1, 2.

‖U‖2 ≤ ⟨H1U,U⟩ = ‖ℜ1U‖2 ≤ ‖H1‖⟨U,U⟩ ≤ 3

2
‖U‖2,

‖U‖2 ≤ ⟨H2U,U⟩ = ‖ℜ2U‖2 ≤ ‖H2‖⟨U,U⟩ ≤ 3‖U‖2.

‖Ux̂‖2 ≤ ‖Ux̃‖2, ‖Ux̃‖2 = ‖Ux̄‖2,
‖ℜ2U‖2 ≤ C‖ℜ1U‖2, ‖U‖2 ≤ ‖H1U‖2 ≤ C‖U‖2.

⟨H2Ux̂,U⟩ = 0, ⟨H1H2Ux̃x̄x̂,U⟩ = 0, ⟨H2Φ(U, ̄U), ̄U⟩ = 0.

⟨H2
1
Ux̃x̄x̃x̄,V⟩ = ⟨H1Ux̃x̄,H1Vx̃x̄⟩, ⟨H2

1
Ux̃x̄x̃x̄,U⟩ = ‖H1Ux̃x̄‖2.

Proof  For U,V ∈ RJ
0
 , from Lemma 2.1, we have:

Furthermore, we obtain:

This completes the proof. 	� ◻

Lemma 2.10  For any mesh function U ∈ RJ
0
 , we have:

Proof  For U ∈ RJ
0
 , from Lemmas 2.1 and 2.5, we have:

and then, we have ⟨H2
1
H2Ux̃x̄x̃x̄x̂,U⟩ = 0 . This completes the 

proof. 	�  ◻

2.3 � Discrete conservative law

We now analyze the discrete conservation for the nonlinear 
compact finite-difference scheme (21)–(23).

Theorem  2.11  The nonlinear compact finite-difference 
scheme (21)–(23) is conservative in the sense of the discrete 
energy, that is:

where 𝛿 > 0 , 𝜆 > 0 , n = 0, 1, 2,… ,N.

Proof  Computing the discrete inner product of Eq. (21) with 
2 Un+

1

2 and using Lemmas 2.2, 2.5, 2.8, and 2.10, we obtain:

⟨H2
1
Ux̃x̄x̃x̄,V⟩ = ⟨H2

1
Ux̃x̄,Vx̃x̄⟩ = ⟨H1Ux̃x̄,H1Vx̃x̄⟩.

⟨H2
1
Ux̃x̄x̃x̄,U⟩ = ⟨H1Ux̃x̄,H1Ux̃x̄⟩ = ‖H1Ux̃x̄‖2.

⟨H2
1
H2Ux̃x̄x̃x̄x̂,U⟩ = 0.

⟨H2
1
H2Ux̃x̄x̃x̄x̂,U⟩ = −⟨Ux̃x̄x̃x̄,H

2
1
H2Ux̂⟩ = −⟨(Ux̃x̄)x̃x̄,H

2
1
H2Ux̂⟩

= −⟨Ux̃x̄,H
2
1
H2Ux̃x̄x̂⟩ = −⟨U,H2

1
H2Ux̃x̄x̃x̄x̂⟩

= −⟨H2
1
H2Ux̃x̄x̃x̄x̂,U⟩,

En
1
≡ ‖Un‖2 + 𝛿‖ℜ1U

n
x̃
‖2 + 𝜆‖H1U

n
x̃x̄
‖2

= En−1
1

= ⋯ = E0
1
≡ ‖U0‖2 + 𝛿‖ℜ1U

0
x̃
‖2 + 𝜆‖H1U

0
x̃x̄
‖2,

⟨Un
t̃
, 2Un+

1

2 ⟩ = 1

𝜏

(‖Un+1‖2 − ‖Un‖2),
⟨H1U

n
x̃x̄t̃
, 2Un+

1

2 ⟩ = −
1

𝜏

(‖ℜ1U
n+1
x̃

‖2 − ‖ℜ1U
n
x̃
‖2),

⟨H2
1
Un

x̃x̄x̃x̄t̃
, 2Un+

1

2 ⟩ = 1

𝜏

(‖H1U
n+1
x̃x̄

‖2 − ‖H1U
n
x̃x̄
‖2),

⟨H1H2U
n+

1

2

x̃x̄x̂
,Un+

1

2 ⟩ = 0, ⟨H2
1
H2U

n+
1

2

x̃x̄x̃x̄x̂
,Un+

1

2 ⟩ = 0,

⟨H2U
n+

1

2

x̂
,Un+

1

2 ⟩ = 0, ⟨H2Φ(U
n+

1

2 ,Un+
1

2 ),Un+
1

2 ⟩ = 0.
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Therefore, we have:

Consequently, we obtain En
1
= En−1

1
= ⋯ = E0

1
 . This com-

pletes the proof. 	�  ◻

2.4 � A priori estimates

Theorem 2.12  Suppose that u0 ∈ H2
0
([xl, xr]) , and then, the 

solution Un of the compact finite-difference scheme (21)–(23) 
satisfies:

which yield ‖Un‖∞ ≤ C and ‖Un
x̃
‖∞ ≤ C for any 0 ≤ n ≤ N.

Proof  By the assumption that � and � are positive constants, 
from Lemmas 2.6, 2.7 and Theorem 2.11, it yields:

Therefore, we obtain:

By Lemma 2.3, we obtain ‖Un‖∞ ≤ ̃C , ‖Un
x̃
‖∞ ≤ ̃C , where:

This completes the proof. 	� ◻

1

𝜏

‖Un+1‖2 + 𝛿

𝜏

‖ℜ1U
n+1
x̃

‖2 + 𝜆

𝜏

‖H1U
n+1
x̃x̄

‖2

=
1

𝜏

‖Un‖2 + 𝛿

𝜏

‖ℜ1U
n
x̃
‖2 + 𝜆

𝜏

‖H1U
n
x̃x̄
‖2, 𝛿 > 0, 𝜆 > 0.

‖Un‖ ≤
�

E0
1
, ‖Un

x̃
‖ ≤

�
E0
1

𝛿

, ‖Un
x̃x̄
‖ ≤

�
E0
1

𝜆

, 𝛿 > 0, 𝜆 > 0,

‖Un‖2 + 𝛿‖Un
x̃
‖2 + 𝜆‖Un

x̃x̄
‖2 ≤ ‖Un‖2 + 𝛿‖ℜ1U

n
x̃
‖2 + 𝜆‖H1U

n
x̃x̄
‖2 = E0

1
.

‖Un‖ ≤
�

E0
1
, ‖Un

x̃
‖ ≤

�
E0
1

𝛿

, ‖Un
x̃x̄
‖ ≤

�
E0
1

𝜆

, 𝛿 > 0, 𝜆 > 0.

̃C = max

{
C1

√
E0
1
+ C2

√
E0
1

𝛿

, C1

√
E0
1

𝛿

+ C2

√
E0
1

𝜆

}
, 𝛿 > 0, 𝜆 > 0.

2.5 � Solvability

To prove the solvability of the nonlinear compact finite-
difference scheme in Eqs. (21)–(23), the following variant 
of Brouwer fixed point theorem will be used.

Lemma 2.13   [28–30] Let (H, ⟨⋅, ⋅⟩) be a finite-dimensional 
inner product space, ‖ ⋅ ‖ be the associated norm, and 
g ∶ H → H be continuous. Assume that:

Then, there exists a z∗ ∈ H , such that g(z∗) = 0 and ‖z∗‖ ≤ �.

Theorem 2.14  The compact finite-difference scheme (21)–
(23) is solvable.

Proof  We know U0 exists. To prove the theorem by using 
mathematical induction, we assume that U1,… ,Un exist. 
For n ≥ 1 , we rewrite Eq. (21) in the form of:

Let g ∶ RJ
0
→ RJ

0
 defined by:

Then, g is obviously continuous. Taking the inner product of 
Eq. (25) with V and using Lemmas 2.5, 2.8–2.10, we obtain:

Thus, from Eqs. (26) and (27) and Young’s inequality, we 
obtain:

∃𝜉 > 0, ∀z ∈ H, ‖z‖ = 𝜉, ⟨g(z), z⟩ > 0.

2(Un+
1

2 − Un) + 𝛽H2Φ(U
n+

1

2 ,Un+
1

2 ) + 𝛾H1H2U
n+

1

2

x̃x̄x̂
− 2𝛿H1(U

n+
1

2 − Un)x̃x̄

+ 𝛼H2U
n+

1

2

x̂
+ 2𝜆H2

1
(U

n+
1

2 − Un)x̃x̄x̃x̄ − 𝜃H2
1
H2U

n+
1

2

x̃x̄x̃x̄x̂
= 0.

(25)

g(V) = 2(V − Un) + 𝛽H2Φ(V ,V) + 𝛾H1H2Vx̃x̄x̂ − 2𝛿H1(V − Un)x̃x̄

+ 𝛼H2Vx̂ + 2𝜆H2
1
(V − Un)x̃x̄x̃x̄ − 𝜃H2

1
H2Vx̃x̄x̃x̄x̂ = 0.

(26)
⟨H2Vx̂,V⟩ = 0, ⟨H1H2Vx̃x̄x̂,V⟩ = 0, ⟨H1Vx̃x̄,V⟩ = −‖ℜ1Vx̃‖2,

(27)⟨H2Φ(V ,V),V⟩ = 0, ⟨H2
1
H2Vx̃x̄x̃x̄x̂,V⟩ = 0, ⟨H2

1
Vx̃x̄x̃x̄,V⟩ = ‖H1Vx̃x̄‖2.
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Hence, for:

then we have ⟨g(V),V⟩ > 0 , and from Lemma 2.13, we 
deduce the existence of V∗ ∈ RJ

0
 , such that g(V∗) = 0 . Thus, 

the existence of Un+1 = 2V∗ − Un is obtained. This com-
pletes the proof. 	�  ◻

2.6 � Convergence and stability

Define the grid function un
j
= u(xj, t

n) , �n
j
= un

j
− Un

j
 and:

and then, the truncation errors of the scheme (21)–(23) 
satisfy:

⟨g(V),V⟩ = 2‖V‖2 − 2⟨Un,V⟩ + 2𝛿‖ℜ1Vx̃‖2 + 2𝛿⟨H1U
n
x̃x̄
,V⟩

+ 2𝜆‖H1Vx̃x̄‖2 − 2𝜆⟨H1U
n
x̃x̄
,H1Vx̃x̄⟩

≥ 2‖V‖2 − (‖Un‖2 + ‖V‖2) + 2𝛿‖ℜ1Vx̃‖2 − 𝛿(‖ℜ1U
n
x̃
‖2 + ‖ℜ1Vx̃‖2)

+ 2𝜆‖H1Vx̃x̄‖2 − 2𝜆(
1

4
‖H1U

n
x̃x̄
‖2 + ‖H1Vx̃x̄‖2)

≥ ‖V‖2 − (‖Un‖2 + 𝛿‖ℜ1U
n
x̃
‖2 + 𝜆

2
‖H1U

n
x̃x̄
‖2), 𝛿 > 0, 𝜆 > 0.

‖V‖2 = ‖Un‖2 + 𝛿‖ℜ1U
n
x̃
‖2 + 𝜆

2
‖H1U

n
x̃x̄
‖2 + 1,

Vn = (un
1
, un

2
,… , un

J
)T, Ωn = (�n

1
,�n

2
,… ,�n

J
)T, Rn = (rn

1
, rn

2
,… , rn

J
)T,

(28)
Vn
t̃
+ 𝛼H2V

n+
1

2

x̂
+ 𝛽H2Φ(V

n+
1

2 ,Vn+
1

2 ) + 𝛾H1H2V
n+

1

2

x̃x̄x̂
− 𝛿H1V

n
x̃x̄t̃

+ 𝜆H2
1
Vn
x̃x̄x̃x̄t̃

− 𝜃H2
1
H2V

n+
1

2

x̃x̄x̃x̄x̂
= Rn, n = 0, 1, 2,… ,N − 1,

(29)V0 =

(
u0(x1), u0(x2),… , u0(xJ)

)T

,

(30)
un
−1

= un
0
= un

1
= 0, un

J−1
= un

J
= un

J+1
= 0, n = 0, 1,… ,N.

According to the Taylor expansion, we have:

Subtracting Eqs. (28)–(30) from Eqs. (21)–(23) and letting 
Ωn = Vn − Un , we obtain the following error equation:

where Ω0 = 0.

Lemma 2.15  (See [24]) Assume that {Sn} is a non-negative 
sequence and satisfies:

where A and B are non-negative constants. Then, Sn satisfies 

Sn ≤ AeBn� , n = 0, 1,….

Lemma 2.16  For Ωn+
1

2 = (�
n+

1

2

1
,�

n+
1

2

2
,… ,�

n+
1

2

J
)T , we have:

Proof  According to Lemma 2.1, we obtain:

∣ rn
j
∣≤ C(�2 + h4), j = 1, 2,… , J, n = 0, 1,… ,N.

(31)
Rn = Ωn

t̃
+ 𝛼H2Ω

n+
1

2

x̂
+ 𝛽H2[Φ(V

n+
1

2 ,Vn+
1

2 ) − Φ(U
n+

1

2 ,Un+
1

2 )] + 𝛾H1H2Ω
n+

1

2

x̃x̄x̂

− 𝛿H1Ω
n
x̃x̄t̃

+ 𝜆H2
1
Ωn

x̃x̄x̃x̄t̃
− 𝜃H2

1
H2Ω

n+
1

2

x̃x̄x̃x̄x̂
, n = 1, 2,… ,N − 1,

S0 ≤ A, Sn ≤ A + B�

n−1∑
i=0

Si, n = 1, 2,… ,

⟨H2[Φ(V
n+

1

2 ,Vn+
1

2 ) − Φ(U
n+

1

2 ,Un+
1

2 )],Ωn+
1

2 ⟩
≤ C(‖ℜ2Ω

n+1
x̃

‖2 + ‖ℜ2Ω
n
x̃
‖2 + ‖ℜ2Ω

n+1‖2 + ‖ℜ2Ω
n‖2).
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Note that:

and

It follows from the Cauchy–Schwarz inequality, Lemma 2.7, 
and Eqs. (32)–(34), and we obtain:

Thus, applying Lemma 2.5, we have:

(32)

⟨[
𝜙

(
v
n+

1

2 , vn+
1

2

)
− 𝜙

(
u
n+

1

2 , un+
1

2

)]
,𝜔n+

1

2

⟩

=
h

p + 2

J−1∑
j=1

{(
v
n+

1

2

j

)p(
v
n+

1

2

j

)

x̂

−

(
u
n+

1

2

j

)p(
u
n+

1

2

j

)

x̂

}
𝜔

n+
1

2

j

+
h

p + 2

J−1∑
j=1

{[(
v
n+

1

2

j

)p

v
n+

1

2

j

]

x̂

−

[(
u
n+

1

2

j

)p

u
n+

1

2

j

]

x̂

}
𝜔

n+
1

2

j

=
h

p + 2

J−1∑
j=1

{(
v
n+

1

2

j

)p(
v
n+

1

2

j

)

x̂

−

(
u
n+

1

2

j

)p(
u
n+

1

2

j

)

x̂

}
𝜔

n+
1

2

j

−
h

p + 2

J−1∑
j=1

{(
v
n+

1

2

j

)p

v
n+

1

2

j
−

(
u
n+

1

2

j

)p

u
n+

1

2

j

}(
𝜔

n+
1

2

j

)

x̂

=
h

p + 2

J−1∑
j=1

{[(
v
n+

1

2

j

)p(
𝜔

n+
1

2

j

)

x̂

𝜔

n+
1

2

j

]
+

([(
v
n+

1

2

j

)p

−

(
u
n+

1

2

j

)p](
u
n+

1

2

j

)

x̂

𝜔

n+
1

2

j

)}

−
h

p + 2

J−1∑
j=1

[(
v
n+

1

2

j

)p

𝜔

n+
1

2

j

(
𝜔

n+
1

2

j

)

x̂

]

−
h

p + 2

J−1∑
j=1

([(
v
n+

1

2

j

)p

−

(
u
n+

1

2

j

)p]
u
n+

1

2

j

(
𝜔

n+
1

2

j

)

x̂

)
.

(33)

J−1∑
j=1

{[(
v
n+

1

2

j

)p

−

(
u
n+

1

2

j

)p](
u
n+

1

2

j

)

x̂

𝜔

n+
1

2

j

}

=

J∑
j=1

{ p−1∑
k=0

[(
v
n+

1

2

j

)p−1−k(
u
n+

1

2

j

)k]
𝜔

n+
1

2

j

(
u
n+

1

2

j

)

x̂

𝜔

n+
1

2

j

}
,

(34)

J−1∑
j=1

{[(
v
n+

1

2

j

)p

−

(
u
n+

1

2

j

)p

]u
n+

1

2

j

(
𝜔

n+
1

2

j

)

x̂

}

=

J∑
j=1

{ p−1∑
k=0

[(
v
n+

1

2

j

)p−1−k(
u
n+

1

2

j

)k]
𝜔

n+
1

2

j
u
n+

1

2

j

(
𝜔

n+
1

2

j

)

x̂

}
.

����
��

𝜙

�
v
n+

1

2 , vn+
1

2

�
− 𝜙

�
u
n+

1

2 , un+
1

2

��
,𝜔n+

1

2

�����
≤ C

�
‖𝜔n+

1

2

x̂
‖2 + ‖𝜔n+

1

2 ‖2
�

≤ C
�‖𝜔n+1

x̃
‖2 + ‖𝜔n

x̃
‖2 + ‖𝜔n+1‖2 + ‖𝜔n‖2�.

This completes the proof. 	� ◻

Theorem 2.17  Assume that u0 is sufficiently smooth and 
u(x, t) ∈ C

9,3
x,t ([xl, xr] × [0, T]) , and then, the solution Un of 

the compact finite-difference scheme (21)–(23) converges to 
the solution of the problem (1)–(3) with the convergence rate 
of O(�2 + h4) in the sense of ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norms.

Proof  Taking the inner product of Eq. (31) with 2 Ωn+
1

2 and 
using Lemmas 2.2, 2.8–2.10, we have:

�
H2

�
Φ

�
V
n+

1

2 ,Vn+
1

2

�
− Φ

�
U

n+
1

2 ,Un+
1

2

��
,Ωn+

1

2

�

≤ C

�
‖ℜ2Ω

n+
1

2

x̃
‖2 + ‖ℜ2Ω

n+
1

2 ‖2
�

≤ C(‖ℜ2Ω
n+1
x̃

‖2 + ‖ℜ2Ω
n
x̃
‖2 + ‖ℜ2Ω

n+1‖2 + ‖ℜ2Ω
n‖2).
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According to Lemmas 2.6, 2.7, and 2.16, we obtain:

Furthermore, we have:

Substituting Eqs. (36) and (37) into Eq. (35) gives:

Setting:

we can obtain from Eq. (38) that:

Hence, we obtain:

If � is sufficiently small, such that 1 − C𝜏 > 0 , then we 
obtain:

Summarizing Eq. (39) from 1 to n, we obtain:

where

(35)
⟨Rn, 2Ωn+

1

2 ⟩ = ‖Ωn‖2
t̃
+ 𝛿‖ℜ1Ω

n
x̃
‖2
t̃
+ 𝜆‖H1Ω

n
x̃x̄
‖2
t̃

+ 𝛽⟨H2[Φ(V
n+

1

2 ,Vn+
1

2 ) − Φ(U
n+

1

2 ,Un+
1

2 )], 2Ωn+
1

2 ⟩.

(36)

⟨H2[Φ(V
n+

1

2 ,Vn+
1

2 ) − Φ(U
n+

1

2 ,Un+
1

2 )], 2Ωn+
1

2 ⟩
≤ C(‖ℜ1Ω

n+1
x̃

‖2 + ‖ℜ1Ω
n
x̃
‖2 + ‖ℜ1Ω

n+1‖2 + ‖ℜ1Ω
n‖2)

≤ C(‖ℜ1Ω
n+1
x̃

‖2 + ‖ℜ1Ω
n
x̃
‖2 + ‖Ωn+1‖2 + ‖Ωn‖2).

(37)⟨Rn, 2Ωn+
1

2 ⟩ ≤ ‖Rn‖2 + 1

2
(‖Ωn+1‖2 + ‖Ωn‖2).

(38)
‖Ωn+1‖2 − ‖Ωn‖2 + 𝛿(‖ℜ1Ω

n+1
x̃

‖2 − ‖ℜ1Ω
n
x̃
‖2) + 𝜆(‖H1Ω

n+1
x̃x̄

‖2 − ‖H1Ω
n
x̃x̄
‖2)

≤ C𝜏(‖ℜ1Ω
n+1
x̃

‖2 + ‖ℜ1Ω
n
x̃
‖2) + ‖H1Ω

n+1
x̃x̄

‖2 + ‖H1Ω
n
x̃x̄
‖2)

+ 𝜏‖Rn‖2 + C𝜏(‖Ωn+1‖2 + ‖Ωn‖2).

Bn
1
≡ ‖Ωn‖2 + 𝛿‖ℜ1Ω

n
x̃
‖2 + 𝜆‖H1Ω

n
x̃x̄
‖2,

Bn
1
− Bn−1

1
≤ �‖Rn‖2 + C�(Bn

1
+ Bn−1

1
).

(1 − C�)(Bn
1
− Bn−1

1
) ≤ �‖Rn‖2 + 2C�Bn−1

1
.

(39)Bn
1
− Bn−1

1
≤ C�‖Rn‖2 + 2C�Bn−1

1
.

Bn
1
≤ B0

1
+ C�

n�
l=1

‖Rl‖2 + 2C�

n�
l=1

Bl−1
1

,

�

n�
l=1

‖Rl‖2 ≤ n� max
1≤l≤n ‖R

l‖2 ≤ CT(�2 + h4)2.

Since �0
j
= 0 , j = 1, 2,… , J , we have B0

1
= 0 . Therefore, 

from Lemma 2.15, we obtain Bn
1
≤ C(�2 + h4)2 . This yields:

From Lemmas 2.6 and 2.7, we obtain:

According to Lemma  2.3,  we conclude that 
‖Ωn‖∞ ≤ C(�2 + h4) . This completes the proof. 	�  ◻

Theorem 2.18  Under the conditions of Theorem 2.17, the 
solution Un of compact finite-difference scheme (21)–(23) is 
unconditionally stable in the sense of ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norms.

Proof  Suppose that there are solutions Un
j
∈ RJ

0
 and ̃Un

j
∈ RJ

0
 , 

which both satisfy the nonlinear finite-difference scheme in 
Eqs. (21)–(23), such that U0

j
= u0(xj) and ̃U0

j
= ũ0(xj) . Set 

Fn
j
= Un

j
− ̃Un

j
 , 0 ≤ j ≤ J , 0 ≤ n ≤ N . Using a similar proof 

as that for Theorem 2.17, we conclude that:

This completes the proof. 	� ◻

2.7 � Uniqueness

We now show the uniqueness of the numerical solution.

Theorem 2.19  The compact finite-difference scheme (21)–
(23) has a unique solution.

Proof  Assume that both Un and ̃Un satisfy the scheme (21)–
(23), and let Θn = Un − ̃Un , and then, we obtain:

‖Ωn‖ ≤ C(𝜏2 + h
4), ‖ℜ

1
Ωn

x̃
‖ ≤ C(𝜏2 + h

4),

‖H
1
Ωn

x̃x̄
‖ ≤ C(𝜏2 + h

4).

‖Ωn
x̃
‖ ≤ C(𝜏2 + h4), ‖Ωn

x̃x̄
‖ ≤ C(𝜏2 + h4).

‖Fn‖ ≤ C‖F0‖, ‖Fn‖∞ ≤ C‖F0‖∞.

(40)
Θn

t̃
+ 𝛼H2Θ

n+
1

2

x̂
+ 𝛽H2[Φ(U

n+
1

2 ,Un+
1

2 ) − Φ( ̃U
n+

1

2 , ̃Un+
1

2 )] + 𝛾H1H2Θ
n+

1

2

x̃x̄x̂

− 𝛿H1Θ
n
x̃x̄t̃

+ 𝜆H2
1
Θn

x̃x̄x̃x̄t̃
− 𝜃H2

1
H2Θ

n+
1

2

x̃x̄x̃x̄x̂
, n = 0, 1, 2,… ,N − 1,

(41)Θ0
j
= 0, 0 ≤ j ≤ J,
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Taking the inner product of Eq. (40) with 2Θn+
1

2 and using 
Lemmas 2.8–2.10, we obtain:

From Lemmas 2.6, 2.7 and 2.16, we have:

Applying Lemmas 2.6, 2.7, 2.15, and Eq. (42), we obtain 
that for � small enough:

This yields Θn+1 = 0 ; that is, Eq. (21) only admits a zero 
solution. Therefore, the compact finite-difference scheme 
in Eqs. (21)–(23) determines Un+1 uniquely. This completes 
the proof. 	�  ◻

3 � Linearized compact difference scheme

3.1 � Construction of linearized compact difference 
scheme

In this section, we construct a linearized compact finite-
difference scheme for solving the system (12)–(14):

From Eqs. (43)–(47), we have:

(42)
Θn

−1
= Θn

0
= Θn

1
= 0, Θn

J−1
= Θn

J
= Θn

J+1
= 0, n = 0, 1,… ,N.

‖Θn‖2
t̃
+ 𝛿‖ℜ1Θ

n
x̃
‖2
t̃
+ 𝜆‖H1Θ

n
x̃x̄
‖2
t̃

+ 𝛽⟨H2[Φ(U
n+

1

2 ,Un+
1

2 ) − Φ( ̃U
n+

1

2 , ̃Un+
1

2 )], 2Θn+
1

2 ⟩ = 0.

‖Θn‖2
t̃
+ 𝛿‖ℜ1Θ

n
x̃
‖2
t̃
+ 𝜆‖H1Θ

n
x̃x̄
‖2
t̃

≤ C(‖ℜ1Θ
n+1
x̃

‖2 + ‖ℜ1Θ
n
x̃
‖2 + ‖Θn+1‖2 + ‖Θn‖2)

≤ C(‖Θn+1
x̃

‖2 + ‖Θn
x̃
‖2 + ‖Θn+1‖2 + ‖Θn‖2).

‖Θn‖2 + 𝛿‖Θn
x̃
‖2 + 𝜆‖Θn

x̃x̄
‖2 = 0, 𝛿 > 0, 𝜆 > 0.

(43)(Yn
j
)t̂ =

̄Zn
j
+ ̄Dn

j
, Bx

̄Dn
j
= 𝛼( ̄Un

j
)x̂,

(44)Ax
̄Wn
j
= ( ̄Un

j
)x̃x̄, Ax

̄Gn
j
= ( ̄Wn

j
)x̃x̄,

(45)Bx
̄Zn
j
= 𝛽𝜙(Un

j
, ̄Un

j
) + 𝛾( ̄Wn

j
)x̂ − 𝜃( ̄Gn

j
)x̂,

(46)𝜙(Un
j
, ̄Un

j
) =

1

p + 2
{(Un

j
)p( ̄Un

j
)x̂ + [(Un

j
)p ̄Un

j
]x̂},

(47)Yn
j
= −Un

j
+ �Wn

j
− �Gn

j
.

where j = 1, 2,… , J , n = 1, 2,… ,N − 1 . Since the scheme 
(48) is a three-time-level method, to start the computation, 
we may get U1 by the following two levels in time method 
(21) as:

The compact finite-difference scheme (48)–(49) can be 
rewritten in the following matrix form:

and the initial-boundary conditions are discretized as:

where:

3.2 � Conservation

Theorem 3.1  The finite-difference scheme (50)–(53) is con-
servative in the sense of the discrete energy, that is:

where 𝛿 > 0 , 𝜆 > 0 , n = 0, 1, 2,… ,N − 1.

Proof  Computing the discrete inner product of Eq. (50) with 
2 ̄Un , and from Lemmas 2.2, 2.5, 2.8–2.10, we obtain:

(48)

Bx(U
n
j
)t̂ + 𝛼( ̄Un

j
)x̂ + 𝛽𝜙(Un

j
, ̄Un

j
) + 𝛾A

−1
x
( ̄Un

j
)x̃x̄x̂ − 𝛿A

−1
x
Bx(U

n
j
)x̃x̄t̂

+ 𝜆(A−1
x
)2Bx(U

n
j
)x̃x̄x̃x̄t̂ − 𝜃(A−1

x
)2( ̄Un

j
)x̃x̄x̃x̄x̂ = 0,

(49)

Bx(U
0
j
)t̃ + 𝛼(U

1

2

j
)x̂ + 𝛽𝜙(U

1

2

j
,U

1

2

j
) + 𝛾A

−1
x
(U

1

2

j
)x̃x̄x̂ − 𝛿A

−1
x
Bx(U

0
j
)x̃x̄t̃

+ 𝜆(A−1
x
)2Bx(U

0
j
)x̃x̄x̃x̄t̃ − 𝜃(A−1

x
)2(U

1

2

j
)x̃x̄x̃x̄x̂ = 0, j = 1, 2,… , J.

(50)

Un

t̂
+ 𝛼H2

̄Un
x̂
+ 𝛽H2Φ(Un, ̄Un) + 𝛾H1H2

̄Un
x̃x̄x̂

− 𝛿H1U
n

x̃x̄t̂
+ 𝜆H2

1
Un

x̃x̄x̃x̄t̂

− 𝜃H2
1
H2

̄Un
x̃x̄x̃x̄x̂

= 0, n = 1, 2,… ,N − 1,

(51)

U0
t̃
+ 𝛼H2U

1

2

x̂
+ 𝛽H2Φ(U

1

2 ,U
1

2 ) + 𝛾H1H2U
1

2

x̃x̄x̂
− 𝛿H1U

0
x̃x̄t̃

+ 𝜆H2
1
U0

x̃x̄x̃x̄t̃

− 𝜃H2
1
H2U

1

2

x̃x̄x̃x̄x̂
= 0,

(52)U0
j
= u0(xj), j = 0, 1, 2,… , J,

(53)
Un

−1
= Un

0
= Un

1
= 0, Un

J−1
= Un

J
= Un

J+1
= 0, n = 0, 1,… ,N,

Φ(Un, ̄Un) =

[
𝜙(Un

1
, ̄Un

1
),𝜙(Un

2
, ̄Un

2
),… ,𝜙(Un

n
, ̄Un

n
)

]T
.

En
2
≡ 1

2
(‖Un+1‖2 + ‖Un‖2) + 𝛿

2
(‖ℜ1U

n+1
x̃

‖2 + ‖ℜ1U
n
x̃
‖2) + 𝜆

2
(‖H1U

n+1
x̃x̄

‖2 + ‖H1U
n
x̃x̄
‖2)

= En−1
2

= ⋯ = E0
2
≡ ‖U0‖2 + 𝛿‖ℜ1U

0
x̃
‖2 + 𝜆‖H1U

0
x̃x̄
‖2,
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Consequently, we obtain En
2
= En−1

2
= ⋯ = E0

2
 . Similarly, 

taking the inner product of Eq. (51) with 2U
1

2 yields to:

Thus, we obtain:

This completes the proof. 	� ◻

3.3 � Unique solvability

Theorem  3.2  The linearized compact finite-difference 
scheme (50)–(53) has a unique solution.

Proof  By the mathematical induction, it is obvious that U0 
and U1 are uniquely solvable by Eqs. (52) and (51), respec-
tively. Now, suppose that U0 , U1,… ,Un are uniquely solved. 

1

2𝜏
‖Un+1‖2 + 𝛿

2𝜏
‖ℜ1U

n+1
x̃

‖2 + 𝜆

2𝜏
‖H1U

n+1
x̃x̄

‖2 = 1

2𝜏
‖Un−1‖2 + 𝛿

2𝜏
‖ℜ1U

n−1
x̃

‖2 + 𝜆

2𝜏
‖H1U

n−1
x̃x̄

‖2.

1

𝜏

‖U1‖2 + 𝛿

𝜏

‖ℜ1U
1
x̃
‖2 + 𝜆

𝜏

‖H1U
1
x̃x̄
‖2 = 1

𝜏

‖U0‖2 + 𝛿

𝜏

‖ℜ1U
0
x̃
‖2 + 𝜆

𝜏

‖H1U
0
x̃x̄
‖2.

E0
2
= ‖U0‖2 + 𝛿‖ℜ1U

0
x̃
‖2 + 𝜆‖H1U

0
x̃x̄
‖2, 𝛿 > 0, 𝜆 > 0.

Taking the inner product of Eq. (54) with Un+1 , we obtain 
from Lemmas 2.1, 2.8–2.10 that:

This yields Un+1 = 0 ; that is, Eq. (50) only admits a zero 
solution. Therefore, there exists a unique solution Un+1 that 
satisfies Eqs. (50)–(53). This completes the proof. 	�  ◻

3.4 � A priori estimates

Theorem 3.3  Suppose that u0 ∈ H2
0
([xl, xr]) , and then, the 

solution Un of the compact finite-difference scheme (50)–(53) 
satisfies:

which yield ‖Un‖∞ ≤ C and ‖Un
x̃
‖∞ ≤ C for any 0 ≤ n ≤ N.

Proof  By the assumption that � and � are positive constants, 
from Lemmas 2.6, 2.7, and Theorem 3.1, we obtain:

Therefore, we obtain:

(54)

1

2𝜏
Un+1 + 𝛼H2U

n+1
x̂

+ 𝛽H2Φ(Un,Un+1) + 𝛾H1H2U
n+1
x̃x̄x̂

−
𝛿

2𝜏
H1U

n+1
x̃x̄

+
𝜆

2𝜏
H2

1
Un+1

x̃x̄x̃x̄
− 𝜃H2

1
H2U

n+1
x̃x̄x̃x̄x̂

= 0, n = 1, 2,… ,N − 1.

1

2𝜏
‖Un+1‖2 + 𝛿

2𝜏
‖ℜ1U

n+1
x̃

‖2 + 𝜆

2𝜏
‖H1U

n+1
x̃x̄

‖2 = 0, 𝛿 > 0, 𝜆 > 0.

‖Un‖ ≤
�

2E0
2
, ‖Un

x̃
‖ ≤

�
2E0

2

𝛿

, ‖Un
x̃x̄
‖ ≤

�
2E0

2

𝜆

, 𝛿 > 0, 𝜆 > 0,

‖Un+1‖2 + ‖Un‖2 + 𝛿(‖Un+1
x̃

‖2 + ‖Un
x̃
‖2) + 𝜆(‖Un+1

x̃x̄
‖2 + ‖Un

x̃x̄
‖2)

≤ ‖Un+1‖2 + ‖Un‖2 + 𝛿(‖ℜ1U
n+1
x̃

‖2 + ‖ℜ1U
n
x̃
‖2) + 𝜆(‖H1U

n+1
x̃x̄

‖2 + ‖H1U
n
x̃x̄
‖2)

= 2En
2
= ⋯ = 2E0

2
.

‖Un‖ ≤
�

2E0
2
, ‖Un

x̃
‖ ≤

�
2E0

2

𝛿

, ‖Un
x̃x̄
‖ ≤

�
2E0

2

𝜆

, 𝛿 > 0, 𝜆 > 0.

Then, Eq. (50) is a linear system about Un+1 . By considering 
Eq. (50) for Un+1 , we have:
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By Lemma 2.3, we obtain ‖Un‖∞ ≤ ̄C , ‖Un
x̃
‖∞ ≤ ̄C , where:

This completes the proof. 	� ◻

3.5 � Convergence and stability

Lemma 3.4  For Ωn = (�n
1
,�n

2
,… ,�n

J
)T , we have:

̄C = max
{
C1

√
2E0

2
+ C2

√
2E0

2

𝛿

, C1

√
2E0

2

𝛿

+ C2

√
2E0

2

𝜆

}
.

⟨H2[Φ(Vn, ̄Vn) − Φ(Un, ̄Un)], ̄Ωn⟩
≤ C(‖ℜ2Ω

n+1
x̃

‖2 + ‖ℜ2Ω
n−1
x̃

‖2 + ‖ℜ2Ω
n+1‖2 + ‖ℜ2Ω

n‖2 + ‖ℜ2Ω
n−1‖2).

the compact finite-difference scheme (50)–(53) converges to 
the solution of the problem (1)–(3) with the convergence rate 
of O(�2 + h4) in the sense of ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norms.

Proof  The truncation error equations of the compact finite-
difference scheme in Eqs. (50)–(53) are:

Taking the inner product of Eq. (55) with 2 ̄Ωn and using 
Lemmas 2.2, 2.9, and 2.10, we have:

According to the Cauchy–Schwarz inequality and Lem-
mas 2.6, 2.7, and 3.4, we obtain:

and

(55)
Rn = Ωn

t̂
+ 𝛼H2

̄Ωn
x̂
+ 𝛽H2[Φ(Vn, ̄Vn) − Φ(Un, ̄Un)] + 𝛾H1H2

̄Ωn
x̃x̄x̂

− 𝛿H1Ω
n

x̃x̄t̂

+ 𝜆H2
1
Ωn

x̃x̄x̃x̄t̂
− 𝜃H2

1
H2

̄Ωn
x̃x̄x̃x̄x̂

, n = 1, 2,… ,N − 1,

(56)
R0 = Ω0

t̃
+ 𝛼H2Ω

1

2

x̂
+ 𝛽H2[Φ(V

1

2 ,V
1

2 ) − Φ(U
1

2 ,U
1

2 )] + 𝛾H1H2Ω
1

2

x̃x̄x̂
− 𝛿H1Ω

0
x̃x̄t̃

+ 𝜆H2
1
Ω0

x̃x̄x̃x̄t̃
− 𝜃H2

1
H2Ω

1

2

x̃x̄x̃x̄x̂
.

(57)
2⟨Rn, ̄Ωn⟩ = ‖Ωn‖2

t̂
+ 𝛿‖ℜ1Ω

n
x̃
‖2
t̂
+ 𝜆‖H1Ω

n
x̃x̄
‖2
t̂

+ 𝛽⟨H2[Φ(Vn, ̄Vn) − Φ(Un, ̄Un)], 2 ̄Ωn⟩.

(58)
⟨H2[Φ(Vn, ̄Vn) − Φ(Un, ̄Un)], 2 ̄Ωn⟩

≤ C(‖ℜ1Ω
n+1
x̃

‖2 + ‖ℜ1Ω
n−1
x̃

‖2 + ‖ℜ1Ω
n+1‖2 + ‖ℜ1Ω

n‖2 + ‖ℜ1Ω
n−1‖2)

≤ C(‖ℜ1Ω
n+1
x̃

‖2 + ‖ℜ1Ω
n−1
x̃

‖2 + ‖Ωn+1‖2 + ‖Ωn‖2 + ‖Ωn−1‖2),

Proof  Similar to Lemma 2.16, we obtain:

⟨H2(Φ(Vn, ̄Vn) − Φ(Un, ̄Un)), ̄Ωn⟩
≤ C(‖ℜ2

̄Ωn
x̃
‖2 + ‖ℜ2

̄Ωn‖2 + ‖ℜ2Ω
n‖2)

≤ C(‖ℜ2Ω
n+1
x̃

‖2 + ‖ℜ2Ω
n−1
x̃

‖2 + ‖ℜ2Ω
n+1‖2 + ‖ℜ2Ω

n‖2 + ‖ℜ2Ω
n−1‖2).

This completes the proof. 	� ◻

Theorem 3.5  Assume that u0 is sufficiently smooth and 
u(x, t) ∈ C

9,3
x,t ([xl, xr] × [0, T]) , and then, the solution Un of 
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Substituting Eqs. (58) and (59) into Eq. (57) gives:

Setting

we can obtain from Eq. (60) that:

Hence, we obtain:

If � is sufficiently small, such that 1 − C𝜏 > 0 , then we 
obtain:

Summarizing Eq. (61) from 1 to n, we obtain:

where

Since �0
j
= 0 , j = 1, 2,… , J , we have from Lemma 2.6 that:

(59)⟨Rn, 2 ̄Ωn⟩ ≤ 1

2
‖Rn‖2 + ‖Ωn+1‖2 + ‖Ωn−1‖2.

(60)
‖Ωn+1‖2 − ‖Ωn−1‖2 + 𝛿(‖ℜ1Ω

n+1
x̃

‖2 − ‖ℜ1Ω
n−1
x̃

‖2) + 𝜆(‖H1Ω
n+1
x̃x̄

‖2 − ‖H1Ω
n−1
x̃x̄

‖2)
≤ 2𝜏‖Rn‖2 + C𝜏(‖Ωn+1‖2 + ‖Ωn‖2 + ‖Ωn−1‖2) + ‖ℜ1Ω

n+1
x̃

‖2 + ‖ℜ1Ω
n
x̃
‖2 + ‖ℜ1Ω

n−1
x̃

‖2)
+ C𝜏(‖H1Ω

n+1
x̃x̄

‖2 + ‖H1Ω
n
x̃x̄
‖2 + ‖H1Ω

n−1
x̃x̄

‖2).

B
n

2
≡ ‖Ωn+1‖2 + ‖Ωn‖2 + 𝛿(‖ℜ

1
Ωn+1

x̃
‖2 + ‖ℜ

1
Ωn

x̃
‖2)

+ 𝜆(‖H
1
Ωn+1

x̃x̄
‖2 + ‖H

1
Ωn

x̃x̄
‖2),

Bn
2
− Bn−1

2
≤ 2�‖Rn‖2 + C�(Bn

2
+ Bn−1

2
).

(1 − C�)(Bn
2
− Bn−1

2
) ≤ 2�‖Rn‖2 + 2C�Bn−1

2
.

(61)Bn
2
− Bn−1

2
≤ C�‖Rn‖2 + C�Bn−1

2
.

Bn
2
≤ B0

2
+ C�

n�
l=1

‖Rl‖2 + C�

n�
l=1

Bl−1
2

,

�

n�
l=1

‖Rl‖2 ≤ n� max
1≤l≤n ‖R

l‖2 ≤ CT(�2 + h4)2.

where 𝛿 > 0 , 𝜆 > 0 . Taking the inner product of Eq. (56) 
with 2 Ω

1

2 , and using a similar argument in Theorem 2.17, 
we obtain B0

2
≤ C(�2 + h4)2 . Therefore, from Lemma 2.16, 

we obtain Bn
2
≤ C(�2 + h4)2 . This yield:

From Lemmas 2.6 and 2.7, we obtain:

According to Lemma  2.3,  we conclude that 
‖Ωn‖∞ ≤ C(�2 + h4) . This completes the proof. 	�  ◻

Using a similar argument, we can prove stability of the 
difference solution (50)–(53).

Theorem 3.6  Under the conditions of Theorem 3.5, the 
solution Un of compact finite-difference scheme (50)–(53) is 
unconditionally stable in the sense of ‖ ⋅ ‖ and ‖ ⋅ ‖∞ norms.

4 � Iterative algorithm

In this section, we give an approximate solution of nonlin-
ear system (21)–(23) using an iterative method such as the 
techniques in Refs. [31, 32]. For fixed n, Eq. (20) can be 
written as follows:

which can be computed by the following iterative method:

B
0

2
=‖Ω1‖2 + 𝛿‖ℜ

1
Ω1

x̃
‖2 + 𝜆‖H

1
Ω1

x̃x̄
‖2

≤ C(‖Ω1‖2 + 𝛿‖Ω1

x̃
‖2 + 𝜆‖Ω1

x̃x̄
‖2),

‖Ωn‖ ≤ C(𝜏2 + h
4), ‖ℜ

1
Ωn

x̃
‖ ≤ C(𝜏2 + h

4),

‖H
1
Ωn

x̃x̄
‖ ≤ C(𝜏2 + h

4).

‖Ωn
x̃
‖ ≤ C(𝜏2 + h4), ‖Ωn

x̃x̄
‖ ≤ C(𝜏2 + h4).

(62)

2

𝜏

Bx

(
U

n+
1

2

j
− Un

j

)
+ 𝛼

(
U

n+
1

2

j

)

x̂

+ 𝛽𝜙

(
U

n+
1

2

j
,U

n+
1

2

j

)
+ 𝛾A

−1
x

(
U

n+
1

2

j

)

x̃x̄x̂

−
2

𝜏

𝛿A
−1
x
Bx

[(
U

n+
1

2

j

)

x̃x̄

−

(
Un

j

)
x̃x̄

]
+

2

𝜏

𝜆

(
A

−1
x

)2
Bx

[(
U

n+
1

2

j

)

x̃x̄x̃x̄

− (Un
j
)x̃x̄x̃x̄

]

− 𝜃

(
A

−1
x

)2(
U

n+
1

2

j

)

x̃x̄x̃x̄x̂

= 0, n ≥ 1, j = 2,… , J − 2,
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where:

Theorem 4.1  The iterative method (63) converges to the 
solution of the nonlinear compact difference scheme (20).

Proof  Let

when n = 0 , we have:

(63)

2

𝜏

B
x
(U

n+
1

2
(i+1)

j
− U

n

j
) + 𝛼(U

n+
1

2
(i+1)

j
)
x̂
+ 𝛽𝜙(U

n+
1

2
(i)

j
,U

n+
1

2
(i)

j
)

+ 𝛾A
−1

x
(U

n+
1

2
(i+1)

j
)
x̃x̄x̂

−
2

𝜏

𝛿A
−1

x
B
x
[(U

n+
1

2
(i+1)

j
)
x̃x̄
− (Un

j
)
x̃x̄
]

+
2

𝜏

𝜆(A−1

x
)2B

x
[(U

n+
1

2
(i+1)

j
)
x̃x̄x̃x̄

− (Un

j
)
x̃x̄x̃x̄

]

− 𝜃(A−1

x
)2(U

n+
1

2
(i+1)

j
)
x̃x̄x̃x̄x̂

= 0, n ≥ 1,

i = 0, 1, 2,… , j = 2,… , J − 2,

U
n+

1

2
(0)

j
=

{
U0

j
, n = 0,

3

2
Un

j
−

1

2
Un−1

j
, n ≥ 1.

�

n+
1

2
(i)

j
= U

n+
1

2

j
− U

n+
1

2
(i)

j
, i = 0, 1, 2,… , j = 2,… , J − 2,

If n ≥ 1 , we have:

From Eqs. (64), (65), we have:

Therefore, for sufficiently small h and � , we have:

Now, suppose that ‖�n+ 1

2
(i)‖∞ ≤ 1

2
 . It follows from Theo-

rem 2.11 that:

Subtracting Eq. (63) from Eq. (62), we obtain:

(64)

�

n+
1

2
(0)

j
= U

n+
1

2

j
− U

n+
1

2
(0)

j
=

1

2
(Un+1

j
+ Un

j
) − Un

j
=

1

2
(Un+1

j
− Un

j
)

=
1

2
(Un+1

j
− vn+1

j
) +

1

2
(vn+1

j
− vn

j
) +

1

2
(vn

j
− Un

j
)

=
1

2
[O(�2 + h4) + O(�) + O(�2 + h4)] = O(� + h4).

(65)

�

n+
1

2
(0)

j
= U

n+
1

2

j
− U

n+
1

2
(0)

j

=
1

2
(Un+1

j
+ Un

j
) − −(

3

2
Un

j
−

1

2
Un−1

j
) =

1

2
(Un+1

j
− 2Un

j
+ Un−1

j
)

=
1

2
(Un+1

j
− vn+1

j
) +

1

2
(vn+1

j
− 2vn

j
+ vn−1

j
) − −(Un

j
− vn

j
) +

1

2
(Un−1

j
− vn−1

j
)

= O(�2 + h4) + O(�2) + O(�2 + h4) + O(�2 + h4) = O(�2 + h4).

‖�n+ 1

2
(0)‖∞ =

�
O(� + h4), n = 0,

O(�2 + h4), n ≥ 1.

‖�n+ 1

2
(0)‖∞ ≤ 1

2
, n = 0, 1, 2,… ,N − 1.

‖Un+
1

2
(i)‖∞ = ‖Un+

1

2 − �
n+

1

2
(i)‖∞ ≤ ‖Un+

1

2 ‖∞ + ‖�n+ 1

2
(i)‖∞ ≤ C.
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Fig. 1   Absolute error distribution of Example 5.1 computed by Scheme A (left) and Scheme B (right) with h = 0.125 and � = h
2 at T = 4
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Fig. 2   Numerical solutions of Example 5.1 computed by Scheme A (left) and Scheme B (right) with h = 0.25 and � = 0.1
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Fig. 3   Discrete energy for long-time simulations of Example 5.2 computed by Scheme A (left) and Scheme B (right) when h = 0.1 and � = 0.01

Table 3   Discrete conservative 
energy computed by Scheme A 
and Scheme B with h = 0.1 and 
� = 0.01

T E
n

1
|En

1
− E

0

1
|∕|E0

1
| E

n

2
|En

2
− E

0

1
|∕|E0

2
|

0 25.804900860483 – 25.804676511394 –
1 25.804901020881 6.21579680024E−09 25.804676542982 1.22411719608E−09
2 25.804901181559 1.24424427389E−08 25.804676770300 1.00333170106E−08
4 25.804901503857 2.49322435191E−08 25.804677029566 2.00805484975E−08
6 25.804901827284 3.74657971585E−08 25.804677289046 3.01360867338E−08
8 25.804902151586 5.00332343583E−08 25.804677548535 4.01919873363E−08
10 25.804902476740 6.26337253456E−08 25.804677807937 5.02445189795E−08
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Table 4   Conserved quantities and error values at T = 1

I(t) I
n (Scheme A) |I(t) − I

n|∕I(t) (Scheme A)

I
1

16.60435184896979 16.60435186312659 8.525955576365196E−10
I
2

11.95361386780281 11.95361818097003 3.608253761929561E−07

I(t) I
n (Scheme B) |I(t) − I

n|∕I(t) (Scheme B)

I
1

16.60435184896979 16.60435003735091 1.091050647342242E−07
I
2

11.95361386780281 11.95360645467725 6.201576897581938E−07
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Fig. 4   Spatial convergence order (left) and temporal convergence order (right) of Example 5.2 with different h and � at T = 4
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Fig. 5   Absolute error distribution of Example 5.2 computed by Scheme A (left) and Scheme B (right) with h = 0.125 and � = h
2 at T = 4
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which can be rewritten into the following matrix form:

Computing the inner product of Eq. (66) with �n+
1

2
(i+1) and 

using Lemmas 2.1, 2.2, 2.5, 2.8–2.10, we obtain:

2

𝜏

Bx𝜀
n+

1

2
(i+1)

j
+ 𝛼(𝜀

n+
1

2
(i+1)

j
)x̂ + 𝛽

[
𝜙(U

n+
1

2

j
,U

n+
1

2

j
) − 𝜙(U

n+
1

2
(i)

j
,U

n+
1

2
(i)

j
)

]

+ 𝛾A
−1
x
(𝜀

n+
1

2
(i+1)

j
)x̃x̄x̂ −

2

𝜏

𝛿A
−1
x
Bx(𝜀

n+
1

2
(i+1)

j
)x̃x̄ +

2

𝜏

𝜆(A−1
x
)2Bx(𝜀

n+
1

2
(i+1)

j
)x̃x̄x̃x̄

− 𝜃(A−1
x
)2(𝜀

n+
1

2
(i+1)

j
)x̃x̄x̃x̄x̂ = 0, n ≥ 1, i = 0, 1, 2,… ,

(66)

2

𝜏

𝜀
n+

1

2
(i+1)

+ 𝛼H2(𝜀
n+

1

2
(i+1)

)x̂ + 𝛽H2

[
Φ(U

n+
1

2 ,Un+
1

2 ) − Φ(U
n+

1

2
(i),Un+

1

2
(i)
)

]

+ 𝛾H1H2(𝜀
n+

1

2
(i+1)

)x̃x̄x̂ −
2

𝜏

𝛿H1(𝜀
n+

1

2
(i+1)

)x̃x̄ +
2

𝜏

𝜆H2
1
(𝜀

n+
1

2
(i+1)

)x̃x̄x̃x̄

− 𝜃H2
1
H2(𝜀

n+
1

2
(i+1)

)x̃x̄x̃x̄x̂ = 0, n ≥ 1, i = 0, 1, 2,… .

(67)⟨�n+ 1

2
(i+1), �n+

1

2
(i+1)⟩ = ‖�n+ 1

2
(i+1)‖2,

(68)⟨H2𝜀
n+

1

2
(i+1)

x̂
, 𝜀n+

1

2
(i+1)⟩ = 0,

(69)⟨H1H2𝜀
n+

1

2
(i+1)

x̃x̄x̂
, 𝜀n+

1

2
(i+1)⟩ = 0,

(70)⟨H1𝜀
n+

1

2
(i+1)

x̃x̄
, 𝜀n+

1

2
(i+1)⟩ = −‖ℜ1𝜀

n+
1

2
(i+1)

x̃
‖2,

(71)⟨H2
1
𝜀

n+
1

2
(i+1)

x̃x̄x̃x̄
, 𝜀n+

1

2
(i+1)⟩ = ‖H1𝜀

n+
1

2
(i+1)

x̃x̄
‖2,

As shown by Thomee and Murthy [33], we obtain:

Thus, from Eq. (73), Lemma 2.6 and the Cauchy–Schwarz 
inequality, we have:

From Eqs. (66)–(72) and (74), we obtain:

(72)⟨H2
1
H2𝜀

n+
1

2
(i+1)

x̃x̄x̃x̄x̂
, 𝜀n+

1

2
(i+1)⟩ = 0.

(73)
‖[Φ(U

n+
1

2 ,Un+
1

2 ) − Φ(U
n+

1

2
(i),Un+

1

2
(i)
)]‖ ≤ Ch−1‖�n+ 1

2
(i)‖.

(74)

⟨H2[Φ(U
n+

1

2 ,Un+
1

2 ) − Φ(U
n+

1

2
(i),Un+

1

2
(i)
)], �n+

1

2
(i+1)⟩

≤ C{‖[Φ(U
n+

1

2 ,Un+
1

2 ) − Φ(U
n+

1

2
(i),Un+

1

2
(i)
)]‖2 + ‖�n+ 1

2
(i+1)‖2}

≤ C(h−1‖�n+ 1

2
(i)‖2 + ‖�n+ 1

2
(i+1)‖2).
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Fig. 6   Numerical solutions of Example 5.2 computed by Scheme A (left) and Scheme B (right) with h = 0.25 and � = 0.1
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(75)

‖𝜀n+ 1

2
(i+1)‖2 + 𝛿‖ℜ1𝜀

n+
1

2
(i+1)

x̃
‖2 + 𝜆‖H1𝜀

n+
1

2
(i+1)

x̃x̄
‖2

≤ C𝜏⟨H2[Φ(U
n+

1

2
(i),Un+

1

2
(i)
) − Φ(U

n+
1

2 ,Un+
1

2 )], 𝜀n+
1

2
(i+1)⟩

≤ C𝜏(h−1‖𝜀n+ 1

2
(i)‖2 + ‖𝜀n+ 1

2
(i+1)‖2),

which yields:

hence, for 1 − C� ≥ 1

2
 , we obtain:

(1 − C�)‖�n+ 1

2
(i+1)‖2 ≤ C�h−1‖�n+ 1

2
(i)‖2;

Fig. 7   Wave surface of Examples 5.1 and 5.2 computed by Scheme A and Scheme B with x
l
= −40 , x

r
= 60 at T = 10

Table 5   Invariants In of the 
scheme at different times

T I
n

1
 (Scheme A) I

n

2
 (Scheme A) I

n

1
 (Scheme B) I

n

2
 (Scheme B)

0 16.604351863126 11.953961402834 16.604281724673 11.953528188892
5 16.604351867620 11.953955582727 16.604434238999 11.954007524776
10 16.604351871818 11.953950544056 16.604444810036 11.954007289659
15 16.604351878535 11.953944677808 16.604246635121 11.953496800609
20 16.604351884429 11.953939706565 16.604236265093 11.953488999159
25 16.604351889075 11.953934821470 16.604226070513 11.953481957198
30 16.604351893595 11.953929262430 16.604489293334 11.954001890803
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It follows from Lemma 2.6 and Eqs. (75)–(76) that:

(76)‖�n+ 1

2
(i+1)‖2 ≤ 2C�h−1‖�n+ 1

2
(i)‖2.

(77)

‖𝜀n+
1

2
(i+1)

x̃
‖2 ≤ ‖ℜ1𝜀

n+
1

2
(i+1)

x̃
‖2

≤ C𝜏(h−1‖𝜀n+ 1

2
(i)‖2 + ‖𝜀n+ 1

2
(i+1)‖2) ≤ C𝜏h−1‖𝜀n+ 1

2
(i)‖2.

Table 6   Comparison of error 
values for the invariant In

2

T Scheme A Scheme B B-spline method [34]

5 1.7631915617E−04 1.7355102877019E−04 5.29918728551E−03
10 3.3644835342E−04 3.3157677136027E−04 6.03518532620E−03
15 4.7934468186E−04 4.7295621947192E−04 2.04933295955E−03
20 6.0481156124E−04 5.9740725738314E−04 7.25266964973E−03
25 7.1321896009E−04 7.0521788806528E−04 1.36977191137E−02
30 8.0528054841E−04 7.9702910659994E−04 1.32281178304E−02
35 8.8190892624E−04 8.7369075390440E−04 8.15824940756E−03
40 9.4415384659E−04 9.3619669976300E−04 3.48677246251E−03

Fig. 8   Wave surface of Examples 5.1 and 5.2 computed by Scheme A and Scheme B with x
l
= −40 , x

r
= 160 at T = 20
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Fig. 9   Interaction of two solitary waves of Example 5.3 computed by Scheme A and Scheme B with x
l
= −200 , x

r
= 300 at T = 0 , 5, 10, 15, 20, 

and 25, respectively
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Applying Lemma 2.4 with Eqs. (76)–(77), we obtain:

Therefore, if � is sufficiently small, such that � ≤ h

4CL
 , we 

have:

Therefore, the iterative algorithm is convergent. This com-
pletes the proof. 	�  ◻

5 � Numerical experiments

In this section, we present some numerical experiments 
to validate our theoretical results. For convenience, we 
denote the nonlinear compact difference scheme (21)–(23) 
as Scheme A and the linearized compact difference scheme 
(50)–(53) as Scheme B. The generalized Rosenau–Kawa-
hara–RLW equation (1) has the following invariant quanti-
ties [34]:

which are computed to check the conversation of the numeri-
cal algorithm.

Example 5.1  We considered the parameters � = 1 , � = 1 , 
� = 2 , � = 1 , � = 1 , � = 1 , and p = 2 in Eq. (1), which gives 
the following Rosenau–Kawahara–RLW equation [18, 20]

where the exact solution is:

In this case, we chose xl = −40 and xr = 60 . First, 
to investigate the accuracy of the present schemes, 
we computed the ‖ ⋅ ‖∞ norm error of the numeri-
cal solutions (78)–(80). If �  is sufficiently small, 

‖�n+ 1

2
(i+1)‖2

∞
≤ C�h−1‖�n+ 1

2
(i)‖2 ≤ C�Lh−1‖�n+ 1

2
(i)‖2

∞
.

‖�n+ 1

2
(i+1)‖∞ ≤ 1

2
‖�n+ 1

2
(i)‖∞ ≤ ⋯ ≤ 1

2i+1
‖�n+ 1

2
(0)‖∞ → 0, i → +∞.

I1(t) = ∫
+∞

−∞

udx ≈ In
1
= h

J∑
j=0

Un
j
,

I2(t) = ∫
+∞

−∞

1

2
u2dx ≈ In

2
=

h

2

J∑
j=0

(Un
j
)2,

(78)ut + ux + u2ux + 2uxxx − uxxt + uxxxxt − uxxxxx = 0,

(79)u(x, 0) =
3

4

√
370 − 5

√
10�

5
√
37 − 29

sech 2
�
�√

37 − 5

4
x
�
,

(80)

u(x, t) =
3

4

√
370 − 5

√
10�

5
√
37 − 29

sech 2
�
�√

37 − 5

4

�
x −

33 − 5
√
37

5
√
37 − 29

t
��

.

then e(h, �) = O(hq1 + �
q2) ≈ O(hq1 ) .  Consequent ly, 

e(2h, �)∕e(h, �) ≈ 2q1 and, hence, q1 ≈ log2[e(2h, �)∕e(h, �)] 
is the convergence order with respect to h. Likewise, if h is 
sufficiently small, q2 ≈ log2[e(h, 2�)∕e(h, �)] is the conver-
gence rate with respect to � . In our computation, we calcu-
lated the convergence orders based on the following formula 
as: [15, 21]:

Tables 1 and 2 give the comparison of error results and CPU 
times between the present schemes and the non-compact 
methods in [21]. From Tables 1 and 2, we can see that the 
convergence orders of the present schemes are equal to 
O(�2 + h4) , which confirms the theoretical order of conver-
gence obtained in Theorems 2.17 and 3.5. Furthermore, we 
observe that the errors from the present schemes are much 
smaller than that obtained based on the methods in [21]. 
Also, the present schemes have relatively less computational 
cost than the methods in [21] do. Thus, we can conclude that 
the present two compact schemes are more effective than the 
schemes in [21].

To show that the two compact difference schemes have 
the energy conservative properties, we then listed the con-
servative invariants En

1
 and En

2
 at various times in Table 3, 

where h = 0.1 , � = 0.01 . The obtained results in Table 3 ver-
ify that the present schemes preserve the discrete conserva-
tive properties very well as time increases. Moreover, we can 
see from Table 3 that both En

1
 and En

2
 are conserved in our 

simulations with at least five-digit correctness after decimal 
point. This confirms the theoretical conservation shown in 
Theorems 2.11 and 3.1. In Table 4, we listed the theoreti-
cal values I(t), numerical approximations In , and the corre-
sponding error values |I(t) − In|∕I(t) for the two conserved 
quantities, where [xl, xr] = [−30, 30] , T = 1 , h = 0.125 , and 
� = h2 . In Fig. 1, we drew the absolute error distributions 
with h = 0.125 , � = h2 at T = 4 . From Table 4 and Fig. 1, 
we can see that this numerical approximations are in good 
agreement with the analytical solutions. Then, we plotted 
the motion of solitary wave with h = 0.25 and � = 0.1 at 
different time levels in Fig. 2. From Fig. 2, we see that the 
agreement between forms of approximate solutions at T = 0 
and T = 20 , 40 is excellent. The values of the invariants In

1
 

and In
2
 at different times are listed in Table 5. The numeri-

cal results in Fig. 2 and Table 5 indicate that the present 
schemes can preserve the discrete conservation properties. 
Thus, the present schemes are effective for studying the soli-
tary wave traveling at long time.

Example 5.2  We considered the parameters � = 1 , � = 1 , 
� = 2 , � = 1 , � = 1 , � = 1 , and p = 4 in Eq. (1), which gives 
the following Rosenau–Kawahara–RLW equation [18, 20]:

Rateh = log2

(
e(2h, �)

e(h, �)

)
, Rate

�
= log2

(
e(h, 2�)

e(h, �)

)
.
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where the exact solution is:

First, we displayed some values of discrete energy of 
Scheme A and Scheme B in Fig. 3, where h = 0.1 , � = 0.01 . 
The obtained results in From Fig. 3 also verify that the 
present two schemes are conservative perfectly for energy. 
Then, the spatial and temporal convergence orders for 
numerical solutions with different h and � at T = 4 are shown 
in Fig. 4, where the case of h = 0.8 , 0.4, 0.2, � = 0.0002 is 
plotted in Fig. 4a, and the case of h = 0.05 , � = 0.4 , 0.2, 0.1 
is plotted in Fig. 4b. From Fig. 4, we can also see that the 
convergence orders for both schemes are fourth-order accu-
racy in space and second-order accuracy in time. The abso-
lute error distributions with h = 0.125 , � = h2 at T = 4 are 
plotted in Fig. 5. These indicate that numerical solutions are 
very accurate as compared with the exact solutions. The pro-
files of the solitary waves with h = 0.25 , � = h2 at different 
time levels T = 0 , 30, 60 are plotted in Fig. 6. From Fig. 6, 
we can see that the waves at T = 30 and 60 agree with the 
ones at T = 0 quite well, which also demonstrates the accu-
racy and efficiency of the present schemes. The surfaces of 
the waves with h = 0.1 , � = h2 at T = 10 and 20 are drawn in 
Figs. 7 and 8, respectively. We can see that the waves travel 
from left to right direction without changing their shapes.

Example 5.3  We considered the interaction of two solitary 
waves using the following initial condition [34]:

where:

for i = 1,2, x̄i is arbitrary constant.

(81)ut + ux + u4ux + 2uxxx − uxxt + uxxxxt − uxxxxx = 0,

(82)

u(x, 0) =

�
40(

√
127 − 10)2

3(10
√
127 − 109)

� 1

4

sech

��√
127 − 10

3
x

�
,

(83)u(x, t) =

�
40(

√
127 − 10)2

3(10
√
127 − 109)

� 1

4

sech

��√
127 − 10

3

�
x −

118 − 10
√
127

10
√
127 − 109

t

��
.

(84)u(x, 0) =

2�
i=1

Ai sech
4

p [p
√
𝜇(x − x̄i)],

Ai =

�8�2(�ci + �)(p + 1)(p + 2)(3p + 4)(p + 4)

�

� 1

p

,

� =

√
� − (� + ��)(p2 + 4p + 8)

(�� − ��)(p + 2)2
,

� = (�� + �)2(p2 + 4p + 8)2 + 16(�� − ��)(�� + �)(p + 2)2,

Here, we chose the parameters � = 5 , � = 10 , � = 0.2 , 
� = 0.1 , � = 7 , � = 0.1 , and p = 2 in Eq. (1), which gives the 
following Rosenau–Kawahara–RLW equation:

In this case, the exact solution is unknown. We calculated 
the solution on the domain [−250, 500] × [0, 40] , with 

x̄1 = −10 , x̄2 = 20 , c1 = 1.5 , c2 = 0.3 , h = 0.1 , and � = 0.1 . 
Table 6 presents a comparison of the numerical errors of the 
invariants obtained by the present methods with those pro-
vided by B-spline collocation method [34], in which one can 
see that the present methods are more accurate than B-spline 
collocation method in Ref. [34]. Finally, the interactions of 
these two solitary waves at different time levels are plotted 
in Fig. 9. We can see that the larger wave catches up with the 
smaller wave during the time evolution of the solitary waves, 
and after the interaction, the two solitary waves regain their 
original shapes again.

6 � Conclusion

We have developed two conservative and fourth-order compact 
finite-difference schemes for the generalized Rosenau–Kawa-
hara–RLW equation. Both schemes have been shown to be 
second-order convergent in time and fourth-order conver-
gent in space. Conservation of the discrete energy, existence, 
uniqueness, and unconditional stability of the numerical solu-
tions are proved. Numerical experiments show that the present 
schemes provide accurate numerical solutions which coincide 
with the theoretical results.
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