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Abstract
Design of real engineering structures can benefit from an optimization step in which various parameters can be determined 
to satisfy a given set of requirements and constraints. Optimization of spatial assemblies such as truss or frame structures 
involves sizing optimization to minimize the mass of the structure. Optimization of tensegrity structures is more challenging 
as prestress levels should be optimized as well. In this paper, sizing and prestress optimization of Class-2 tensegrity booms 
are addressed using a particle swarm optimization approach. Nonlinear finite-element models of tensegrity structures and 
solution methods provide a starting point. Furthermore, a continuum beam modeling technique for tensegrity structures 
with repeating units is also useful. The particle swarm optimization algorithm is described and two numerical examples are 
presented. The first example studies the design and single-objective optimization of a deployable Class-2 tensegrity boom 
with reinforcing cables to maximize the bending stiffness-to-mass ratio. The results indicate that the optimum structure is 
capable of competing well with the state-of-the-art deployable booms in terms of stiffness-to-mass ratio. The second exam-
ple investigates a multi-objective optimization problem of a Class-2 tensegrity boom. The objective functions are selected 
as minimization of the mass and tip displacement, respectively. The objective functions are at least partially conflicting; 
therefore, Pareto-optimal solutions are obtained to guide future design decisions. The results show the potential of tensegrity 
structures for implementation as space structures and the robustness of the particle swarm optimization algorithm, even for 
multi-objective optimization problems.
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1 Introduction

Tensegrity structures are self-equilibrated spatial assem-
blages of one-dimensional tension and compression carry-
ing elements, cables and struts. While capable of carrying 
external loads, in their basic form, force balance at each con-
nection point (node) is satisfied by the introduced prestress. 
Although the “classical” definition of tensegrity involves 
struts connected to other struts only via cables, other defini-
tions allow struts connected at nodes for better structural 
performance[1]. To distinguish between the classical and 

other kinds of tensegrity structures, a categorization based 
on the maximum number of struts connected to each other 
at a node is suggested[2]. Tensegrity structures that have k 
struts in contact are called Class-k tensegrities, while clas-
sical tensegrities having no strut-to-strut connection are 
called Class-1. The main performance difference between 
these classes is increased stiffness resulting from strut-to-
strut contact—thus, Class-k structures typically yield higher 
stiffness.

The invention of tensegrity structures dates back to the 
1950s, accomplished by Kenneth Snelson (in collabora-
tion with Buckminster Fuller). Over the years, the atten-
tion given to tensegrity structures has grown and they have 
found applications in civil engineering, mechanical engi-
neering, bio-medical engineering, and mathematics. Fur-
thermore, systematic methods have been developed to study 
the mechanics of tensegrity structures and engineers began 
to exploit their unique features for lightweight applica-
tions[2–5]. The unique features of tensegrity structures such 
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as light weight, reconfigurability, deployability, and ability 
to withstand large deformations have the potential to provide 
novel solutions to many engineering problems. Since tenseg-
rity structures are composed only of axial load-carrying ele-
ments, bending loads are (ideally) not experienced by these 
elements individually and instead structures deform as a 
whole. Furthermore, their stiffness can be adjusted by vary-
ing the prestress levels[6]. Therefore, tensegrity structures 
have potential to provide solutions for a variety of structural 
problems.

The design of tensegrity structures not only involves form 
finding under internal loads, towards which considerable 
effort has pursued better ways to obtain solutions[7–11], 
but also requires determination of the response of the struc-
ture to external loads. Once the structural configuration is 
determined by form finding, kinematic and static properties 
can be investigated to analyze the performance of tensegrity 
structures.

Design of a real engineering structure can benefit from an 
optimization step to use materials efficiently and effectively. 
The most commonly studied optimization problems in the 
structural engineering field are the minimization of mass 
under a given set of constraints, which is also known as siz-
ing optimization. However, despite the fact that tensegrity 
structures have been studied for some time, the majority of 
the research is devoted to form finding and deployment, and 
only a few studies have addressed structural design optimi-
zation. Furthermore, these optimization studies are mostly 
related to controllability and deployment. The research on 
sizing and structural optimization of tensegrity structures 
for minimum mass with adequate stiffness is quite limited.

Structural optimization of tensegrity structures was first 
considered by De Jager and Skelton[12]. They investigated 
the stiffness of tensegrity structures symbolically and con-
ducted optimization studies. Masic and Skelton[13] used a 
gradient method to select initial prestress levels for LQR 
performance of tensegrity structures and showed that a 
linear decrease in the objective function is attainable with 
proper selection of prestress levels. Masic et al.[14] utilized 
nonlinear programming to optimize the stiffness-to-mass 
ratio of tensegrity structures. They concluded that there are 
three ways to increase the stiffness-to-mass ratio: increasing 
prestress levels, adding extra elements to lock infinitesimal 
mechanisms, and changing the topology to a Class-2 tenseg-
rity structure.

Considering the nonlinear behavior of tensegrity struc-
tures, which limits the use of classical optimization tech-
niques, and significant improvement in computational 
capabilities over time, the trend in optimization methods 
shifted to numerical optimization techniques. Raja and 
Narayanan[15] employed a genetic algorithm to simultane-
ously optimize the geometry and the control performance 
of a two-bay three-strut tensegrity structure. Ali et al.[3] 

also utilized a genetic algorithm to optimize the design of a 
tensegrity footbridge for finding a cost-effective design that 
satisfies a set of given static and dynamic requirements. Lee 
and Lee[16] also used a genetic algorithm-based optimiza-
tion technique to maximize the fundamental natural frequen-
cies of different tensegrity configurations appeared in the 
literature. Their work can be described as a prestress optimi-
zation as the member cross sections are pre-defined and the 
only design variable is the prestress level. Another genetic 
algorithm-based design was performed by Dalilsafaei et al.
[4] to achieve sizing and prestress optimization of tensegrity 
structures. Class-1 and Class-2 tensegrity structures and a 
truss structure having the same dimensions were optimized 
and compared.

Another aspect of optimization for tensegrity structures is 
topology optimization, which combines sizing optimization 
with form finding. Kanno[17, 18] used mixed-integer linear 
programming to investigate Class-1 tensegrity structures to 
minimize the strain energy at the equilibrium state under 
self-weight and external loads, respectively, starting with 
initial tensegrity shapes. Marzari[19] addressed topology 
optimization of two-dimensional cantilevered tensegrity 
structures for minimum mass and, in most cases, found that 
tensegrity structures can yield lighter structures with proper 
material selection for cables. In another study by Xu et al.
[20], topology optimization of tensegrity structures with 
buckling constraints was considered. Their aim was to min-
imize the mass of the structure using mixed-integer linear 
programming. However, some of the design variables were 
selected from a set of given values or some predetermined 
values were used rather than searching for the optimum 
design variables.

Depending on the design requirements, in certain engi-
neering problems, more than one quantity may be the 
subject of optimization. Such optimization problems are 
called multi-objective optimization, and from a structural 
engineering point of view, the objective functions may be 
related to combinations of mass, stiffness, controllability, 
etc. Such multi-objective optimization problems may be cast 
into single-objective form by different approaches. These 
approaches include conversion of objective functions to 
constraints until only one objective function remains and 
combination of objective functions into a single one through 
prioritization and assignment of weight coefficients.

Zhang and Ohsaki studied a multi-objective optimization 
problem for a given tensegrity configuration and obtained 
Pareto-optimal solutions[21]. They attempted to maximize 
the stiffness of the structure while minimizing the devia-
tion of element forces. However, in their study, no real engi-
neering constraints such as cable yielding or strut buckling 
were considered. Multi-objective optimization of tenseg-
rity structures was pursued by Ashwear et al.[22] with an 
aim to design a tensegrity structure with a relatively high 
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fundamental natural frequency, with the others well sepa-
rated for structural health monitoring purposes. However, 
the constraints considered in their study included neither 
cable yielding nor strut buckling. More recently, Xu et al.
[23] used mixed integer linear programming formulation to 
investigate multi-objective topology optimization of tenseg-
rity structures for enhanced controllability.

For practical aerospace engineering applications, it is a 
challenging and critical task to design structures that com-
ply with the given requirements, while reasonable structural 
failure modes are taken into account. In this study, sizing and 
prestress optimization of tensegrity booms with given topol-
ogies are studied for space applications, including practical 
constraints such as cable yielding and strut buckling. Particle 
swarm optimization (PSO) is used to pursue optimization of 
tensegrity booms while considering their nonlinear behavior. 
Two numerical examples are considered, one with a single-
objective function and another with multiple objective func-
tions. This paper serves the following purposes: designing 
a tensegrity structure with a given topology for space boom 
applications, assessing how the optimized structure com-
pares with more conventional state-of-the-art booms, and 
evaluating the robustness of PSO in large-scale optimization 
problems. To achieve these goals, many practical, reason-
able, and realistic constraints are taken into account.

The first example attempts to maximize the bending 
stiffness-to-mass ratio of a tensegrity boom with given 
global or large-scale dimensions. A representative deploy-
able space boom is selected, and its geometry is used to 
guide the design and optimization of a tensegrity alternative. 
The effective bending stiffness of the boom is evaluated by 
continuum beam modeling. The second example examines 
another tensegrity structure and considers two objective 
functions that conflict with each other: minimum mass and 
minimum lateral tip displacement. The multi-objective opti-
mization yielded Pareto-optimal solutions that can be used 
to provide insight in the design decision-making process.

This paper is organized as follows: first, analysis methods 
for tensegrity structures are explained along with the funda-
mental assumptions. Then, the continuum beam modeling 
approach is briefly described. The optimization method uti-
lized in this study, particle swarm optimization, is outlined 
and selection of the parameters is explained. Numerical 
examples for both the single- and multi-objective function 
cases are given, and the results are presented and discussed.

2  Analysis of tensegrity structures

Tensegrity structures inherently exhibit geometric nonlinear-
ity and can experience large displacements. The prestress 
state contributes to the overall stiffness of the structure, 
which can vary with changes in orientation and geometry[5, 

24, 25]. Therefore, nonlinear modeling and analyses con-
sidering geometric nonlinearity are required to analyze the 
behavior and deflection of tensegrity structures under exter-
nal loads.

The nonlinear structural analysis scheme used employs a 
modified Newton–Raphson procedure to solve the equilib-
rium equations incrementally[6]. The fundamental assump-
tions are listed as follows:

– Materials exhibit linear elastic behavior.
– Elements carry solely axial loads.
– Cables and struts are capable of only carrying tension 

and compression, respectively (unilateral element behav-
ior).

– External loads act only at the nodes and the self-weight 
of the structure is neglected.

The assumptions listed above indicate that tensegrity struc-
tures can be modeled in a way similar to truss structures 
except for the inherent geometric nonlinearity associated 
with member preloads. This modeling approach has been 
employed by several researchers and shown to be accurate[6, 
24–27]. The equilibrium equations relating the tangent stiff-
ness matrix and the displacement vector to the external load 
vector can be represented as follows:

where KT , U, P, and F denote the tangent stiffness matrix, 
the displacement vector, the external load vector, and the 
internal load vector, respectively. Additionally, � stands for 
the iterative changes.

The tangent stiffness matrix consists of linear and geo-
metric stiffness matrices. The linear stiffness matrix is the 
same stiffness matrix used for linear analyses of truss struc-
tures, while the geometric stiffness matrix originates from 
prestress. Expressions for the stiffness matrices, derivations 
of which can be found in several studies[6, 24, 26], are given 
as follows:

where KL and KNL are the linear and geometric stiffness 
matrices, respectively. Ei , Ai , Li , and Fi denote the modu-
lus of elasticity, the cross-sectional area, the length of the 
element, and the prestress force carried by the element, 
respectively. The tangent stiffness matrix can be obtained 

(1)KT�U = P − F,

(2)KL =
EiAi

Li

�
I1 − I1
−I1 I1

�
; I1 =

⎡⎢⎢⎣

1 0 0

0 0 0

0 0 0

⎤⎥⎥⎦
,

(3)KNL =
Fi

Li

�
I3 − I3
−I3 I3

�
; I3 =

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦
,
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as follows where the superscript (�) denotes a transformation 
from local to global coordinates:

The geometric stiffness matrix is invariant to coordinate 
transformation and identified as ‘isotropic’, and thus, no 
transformation is required[26, 28]. The geometric stiffness 
matrix is linear in the prestress; however, due to large defor-
mations or displacements, it can vary remarkably and results 
in notable effective changes in stiffness. From the stiffness 
matrix formulation, its contribution to the tangent stiffness 
matrix is evident, indicating the important role prestress lev-
els play. The prestress levels can be adjusted to regulate the 
stiffness levels of tensegrities to some extent[6, 22, 29, 30] 
and to delay cable slackening as noted by Skelton et al.[31].

Once the tangent stiffness of each element is calculated, 
the traditional finite-element assembly process can be car-
ried out to obtain the global stiffness matrix. Then, Eq. (1) 
can be solved iteratively with linear response assumption 
around the equilibrium state for small external load changes. 
Since the slope of the linear response is different in each 
iteration, the collection of these reveals an overall nonlinear 
response.

For complex structures with a large number of elements 
that exhibit nonlinear behavior, structural analyses can be 
tedious to formulate and may take a long time to solve. One 
approach to alleviating this complexity and computational 
expense is the use of continuum beam modeling. Such con-
tinuum beam modeling works best for long lattice beam-
like structures. The goal is to determine a set of effective 
beam stiffness properties such as axial (EA), bending (EI), 
and torsional rigidities (GJ). This modeling approach allows 
relatively rapid evaluation of the stiffness of the long lattice 
structures and quick comparison of alternative structures.

Tensegrity booms with many repeating bays can thus be 
modeled as three-dimensional continuum beams and their 
effective stiffness properties can be obtained. This mode-
ling technique reduces the number of degrees of freedom 
considerably and the effective stiffness properties can be 
used to estimate the global behavior rapidly and accurately. 
One of the methods for continuum beam modeling is called 
energy equivalency, and it establishes a relation between the 
actual structure and the continuum beam model, so that they 
exhibit the same strain energy when deformed the same.

Continuum beam modeling methods have been developed 
initially by Noor et al.[32] for simple lattice trusses. Then, 
Dow et al.[33] developed a numerical approach that uses the 
displacement field developed by Noor and the truss finite-ele-
ment stiffness matrix. Later, Kebiche et al.[34] adapted Dow’s 
numerical approach to prestressed structures by including the 
geometric stiffness. More recent work by Yildiz and Lesieu-
tre[35] modified the approach suggested by Kebiche et al. to 

(4)KT = K
�

L
+ KNL,

make it more straightforward for application to tensegrity 
structures. In this paper, the method developed by Yildiz and 
Lesieutre is implemented to evaluate the effective stiffness 
properties. The method begins with the approximation of the 
displacement field, and represents the stiffness matrix of the 
structure in terms of strains and strain derivatives. Depending 
on the repeating unit of the lattice structure, the strain param-
eters that are not exhibited by the structure are eliminated, and 
after a parameter transformation step, the stiffness matrix is 
reduced to the size of a continuum beam, written in terms of 
associated strain terms. Then, the diagonal and off-diagonal 
terms represent the effective stiffness properties and the cou-
pling terms.

3  Particle swarm optimization

Optimization of tensegrity structures can potentially be very 
complex due to their nonlinear behavior. Static analyses under 
external loads require numerical solution methods such as non-
linear finite-element analyses with a modified Newton–Raph-
son algorithm to account for the geometric nonlinearity and 
the effect of prestress. Therefore, employing the traditional 
optimization techniques such as gradient methods is exces-
sively expensive in terms of computational effort, and it may 
even be effectively impossible when considering all design 
variables and a vast number of constraints simultaneously.

To tackle the optimization of such nonlinear problems, heu-
ristic optimization algorithms are gaining favor. Among a vari-
ety of heuristic optimization techniques, in this work, particle 
swarm optimization is used. PSO is a method developed by 
Eberhart and Kennedy which is similar to genetic algorithms, 
as it starts with a population in the search space and seeks 
an optimum solution[36]. To achieve that, a fitness function 
(objective function) is iteratively evaluated and potential solu-
tions are updated based on the current best solutions across the 
population. It does not involve any gradient calculation and has 
proven to work robustly in many situations[37–40].

The PSO algorithm randomly generates a population in the 
search space (design space) in which each individual design is 
called a particle. Then, each particle is assigned a position and 
a velocity which are used to determine its iteratively updated 
position via simple mathematical expressions. The fitness 
function is evaluated for each particle to determine the best 
individual and global positions in the swarm. The velocity and 
position of each particle are then updated using the following 
expressions:

(5)
vk+1
i,j

=w × vk
i,j
+ c1 × r1 × (pk

i,j
− xk

i,j
) + c2 × r2 × (gk

j
− xk

i,j
),

(6)xk+1
i,j

=xk
i,j
+ vk+1

i,j
,
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where xk
i,j

 and vk
i,j

 are the ith particle’s position and velocity 
components in the jth direction, respectively. The superscript 
k represents the iteration number, while r1 and r2 are random 
numbers between (0, 1). pi,j is the jth component of the best 
position of the ith particle, while gj is the jth component of 
the best position achieved by the whole swarm up to the kth 
iteration. w is the inertia weight, suggested by Shi and Eber-
hart[41] which scales the effect of the particle’s velocity 
from the previous iteration to regulate between local or 
global minima. In a subsequent study, Eberhart and Shi[42] 
stated that a using a linearly decreasing inertia weight from 
0.9 to 0.4 improves the algorithm performance. Additionally, 
the parameters c1 and c2 were set to 2 initially by Eberhart 
and Kennedy. Assigning higher values to c1 or c2 makes par-
ticles tend more towards the best individual position or the 
best global position, respectively.

For constrained optimization problems, several 
approaches have been suggested in the literature for heuristic 
techniques. In this study, the penalty approach is employed, 
which adds a relatively large number to the fitness function 
if any of the constraints are violated. By doing so, solutions 
that violate any constraints would be worse compared to 
other ones and thus avoided. Additionally, the particles vio-
lating the boundary of the design space due to their veloci-
ties were relocated at the boundary. The main drawback of 
the PSO in large-scale and complex problems can be identi-
fied as the particles converging to local minima prematurely 
due to initial random scattering. To avoid such cases, the 
population size should be selected sufficiently large and the 
analyses should be repeated at least a few times.

PSO can also be adapted to treat multi-objective optimi-
zation problems that have conflicting objective functions. 
Several variations are suggested by researchers[43–45], 
while two fundamental methods, namely weighted sum 
and �-constraint, require very minor modifications prior to 
application of optimization methods. The first one assigns 
weights (preferably with a sum of 1.0) to the individual 
objective functions to generate a single-objective function, 
while the second one converts individual objective functions 
into constraints until a single-objective function remains. 
Very recently, a PSO application to tensegrity structures 
appeared in the literature that determines the optimal feasi-
ble prestress modes using weighted sum method[46]. In this 
study, both the weighted sum and �-constraint methods are 
utilized to increase confidence in the results.

4  Numerical examples

In this section, sizing and prestress optimization of tenseg-
rity booms is addressed. The main focus is minimizing mass 
and increasing stiffness by determining the cross-sectional 
areas and the prestress levels of the elements. A high stiff-
ness-to-mass ratio is of great importance for tensegrity struc-
tures used in civil and aerospace applications. The tensegrity 
structures considered in this work are Class-2 cylindrical 
tensegrity booms—as they yield greater stiffness-to-mass 
ratio as compared to Class-1 cylindrical tensegrity booms[1, 
3, 5, 47].

Class-2 cylindrical tensegrity booms are built by stacking 
tensegrity units on top of each other. To generate a self-
equilibrated cylindrical tensegrity unit, a twist angle between 
the top and bottom faces is required, and its direction can 
be reversed with each subsequent tensegrity unit to reduce 
twist-extension and bending-twist couplings. The twist angle 
has a unique value, � = (�∕2) − (�∕n) , where n is the num-
ber of struts in each bay. However, previous studies showed 
that addition of extra elements called reinforcing cables 
can provide design flexibility to the twist angle and define 
a feasible range such as � = (�∕2 − �∕n,�∕2) rather than a 
unique value, while increasing stiffness as the infinitesimal 
mechanisms are locked[48–50]. While it is not addressed in 
detail in this work, stability is an important consideration 
in the design and analysis of tensegrity structures. Class-2 
cylindrical boom configurations considered in this work can 
be shown to be prestress-stable but not superstable[51].

A close investigation of Class-2 cylindrical tensegrity 
booms shows that elements within the structures can be clas-
sified based on the prestress forces which they carry. The top 
and bottom cables, vertical cables, saddle cables, optional 
reinforcing cables, and struts are shown with black, blue, 
green, orange, and red lines on a two-bay Class-2 cylindri-
cal tensegrity boom in Fig. 1. Figure 2 shows the twist angle 
using a top view of the boom.

The first optimization problem is selected as maximiza-
tion of bending stiffness-to-mass ratio, a single-objective 
problem. This is somewhat similar to the work by Ash-
wear et al.[22] in which the first vibration mode of the 
structure investigated was a bending mode. In such cases, 

Fig. 1  Two-bay tensegrity boom
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the corresponding natural frequency can be considered an 
indication of bending stiffness-to-mass ratio. On the other 
hand, the second is a multi-objective optimization prob-
lem that aims to minimize the mass and the tip displace-
ment under loads simultaneously. For both optimization 
problems, the population size is selected as 200, and three 
analyses with 100 iterations are performed. The tensegrity 
booms to be optimized are chosen to consist of three struts 
per bay, since this configuration exhibits the least number 
of mechanisms[52]. A representative multi-bay Class-2 
tensegrity boom is shown in Fig. 3.

The optimization problems presented in this study con-
sider the Canister Astromast as a representative deployable 
space structure and use its global geometry[53]. It is 14 m 
long with a radius of 0.254 m. As the design loads for the 
Canister Astromast are not public information and may 
depend on the mission, the loading scenario in this study 
is determined based on the following information: Garrett 
and Pike[54] stated that the loads acting on a spacecraft 
due to its operating equipment are typically between 0.001 
and 10 N. Therefore, to test the limits of Class-2 cylin-
drical tensegrity booms as deployable space booms, in 
the first optimization problem, lateral loads of 20 N are 
applied at the three nodes at the tip of the structure, result-
ing in 60 N. On the other hand, the second optimization 
problem addresses a vertical civil engineering structure 
subjected to 10 N of lateral loads at the tip which may 

represent mild wind conditions. Furthermore, for both 
optimization problems, the constraints are defined as: uni-
lateral element behavior and cable slackness (cables carry 
only tension; struts always carry compression); stress limit 
for cables; and global (Euler) and local (wall) buckling 
of struts.

4.1  Class‑2 tensegrity boom—single‑objective 
function

In this example, the tensegrity boom is chosen to be a 
Class-2 tensegrity with reinforcing cables. The objective 
function is maximization of the bending stiffness-to-mass 
ratio. The bending stiffness and the other effective stiffness 
properties of the boom are determined using the modified 
energy equivalency method[35]. Lateral loads of 20 N in 
the y direction are applied at the top nodes, while the bot-
tom nodes are fixed. Unless such a realistic loading scenario 
is applied to the structure, the optimization algorithm con-
verges to a solution with low prestress levels and low cable 
cross-sectional areas to minimize the mass. This behavior 
can be explained by the lesser influence of prestress on 
the stiffness compared to axial stiffness ( EiAi ) of the ele-
ments[28]. However, when a lateral load is applied, the 
cables can go slack easily. To prevent cable slackness in the 
results, a realistic loading scenario must be considered, even 
though it has little direct influence on the determination of 
effective stiffness properties.

Struts are assumed to be hollow tubes, while the cables 
have solid cross sections. The design variables are chosen as: 
radii of four different groups of cables; inner and outer radii 
of struts; prestress coefficient; twist angle; and the number of 
bays, resulting in nine total design variables. The cables are 
assumed to be made of Kevlar 49 resin-impregnated strands, 
since it provides a great tensile strength of �Y = 3600 MPa. 
The modulus of elasticity of Kevlar 49 is E = 124 GPa, and 
the density is � = 1440 kg/m3. For struts, unidirectional 
Mitsubishi K13C2U UHN/epoxy (60% fiber volume frac-
tion) is chosen due to its low density and high modulus of 
elasticity[4, 55]. The modulus of elasticity, Poisson’s ratio, 
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Fig. 2  Top view of the boom

Fig. 3  A multi-bay tensegrity 
boom
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and the density are E = 536 GPa, � = 0.39 , � = 1840 kg/m3. 
These materials might be considered to be representative of 
an aerospace structure.

The lower and upper bounds of the cable radii, inner and 
outer strut radii, and the prestress coefficient are selected as 
2 and 10 mm, 1 and 30 mm, and, 0.1 and 20 N/mm, respec-
tively. The twist angle bounds are determined to be 62◦ and 
88◦  since struts collide at 60◦ and vertical cables become 
slack at 90◦ . As the geometry of the structure changes based 
on the twist angle selection, normalized force-density values 
carried by each element to satisfy force balance are deter-
mined by the force finding method developed by Tran and 
Lee[56]. These normalized force-density values can be mul-
tiplied by the prestress coefficient, which is a scaling factor, 
and the length of the elements to find the actual prestress 
forces carried by the elements. The prestress forces in ele-
ments can be found as follows:

where F is a column vector which stores the prestress force 
values in each element. Ps is the prestress coefficient, L is 
a diagonal matrix of member lengths, and q is the force-
density vector.

Based on the preceding information, the optimization 
problem can be stated as follows:

where EI , M, and X, denote the bending rigidity, the mass of 
the boom, and the configuration, respectively. �ci , Tsti , Peu , 
�sti , and �cr are the axial stress in the ith cable, the compres-
sion force in the ith strut, the Euler buckling load, the axial 
stress in the ith strut, and the critical stress for wall buckling, 
respectively. The Euler buckling load and the critical stress 
for wall buckling can be expressed as follows[57]:

where � is a correlation coefficient defined as follows:

(7)F = PsLq,

(8)

min
X

− EI(X, q(X))∕M(X)

subject to − q(X) < 0, for cables

𝜎ci ≤ 𝜎Y , for cables

q(X) < 0, for struts

Tsti ≤ Peu, for struts

𝜎sti ≤ 𝜎cr, for struts ,

(9)Peu =
�2EI

L2
,

(10)�cr =
�E√

3(1 − �2)

ro − ri

ro
,

(11)� =1 − 0.901(1 − e−�),

where ri and ro represent the inner and outer strut radii, 
respectively.

Initial results revealed that the maximum bending stiff-
ness-to-mass ratio is obtained using only a few bays. How-
ever, this requires very long struts which may not be feasible 
for a space application as it would hinder compact stowing 
for launch. Considering the limited cargo volume of launch 
vehicles, an increased number of bays would allow shorter 
struts. Therefore, to develop better insight and understanding 
on how the bending stiffness-to-mass ratio is affected by the 
number of bays, further optimization analyses are conducted 
for fixed numbers of bays.

The total number of design variables are reduced by one 
once the number of bays is fixed, and the optimization analy-
ses are conducted with an even number of bays to eliminate 
any potential couplings, between 2 and 50. Selecting such 
a wide range for the number of bays and carrying out opti-
mization analyses within could provide better insight in the 
design of deployable tensegrity structures for space applica-
tions in which the length of the struts is very important for 
stowage for launch. Figures 4, 5, 6, 7, 8, 9 show the bend-
ing rigidity, the bending rigidity per unit mass, the torsional 
rigidity, the torsional rigidity per unit mass, the total mass, 

(12)� =
1

16

√
ro

ro − ri
,
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and the tip deflection, respectively. The results are also tabu-
lated in Table 1.

The optimization results show that the maximum bend-
ing rigidity per unit mass is achieved when the number of 
bays equals 8, while the minimum mass occurs with 14 
bays. The results also reveal that it is possible to design a 
competitive tensegrity structure with much greater bending 
rigidity-to-mass ratio than that of the Canister Astromast, 
which has a bending rigidity-to-mass ratio of 1.25×103  Nm2/
kg. Increasing the number of bays for the stowing purposes 
decreases the bending rigidity and bending rigidity-to-mass 
ratio which can be attributed to the fact that the struts are 
less aligned with the long axis of the boom.

The design variables for the optimum solutions are given 
in the Appendix. The design variables reveal that the outer 
radius of the struts tends to converge to the extreme bound to 
avoid strut buckling by increasing the moment of inertia and 
maximizing the Euler buckling load. Additionally, the struts 
get thinner as the number of bays increases, implying that 
the struts are the major load-carrying elements of the tenseg-
rity booms with fewer bays. In all cases, the radius of the 
reinforcing cables is found to be the upper bound, meaning 
that they are also key in resisting bending loads. In addition, 
tensegrity booms with a few bays have small cross-sectional 
top and bottom cables, while the vertical cables have large 
cross sections. This behavior is reversed when the number 
of bays increases. Furthermore, the twist angle is close 
to its lower bound for tensegrity booms with fewer bays, 
while it approaches the upper bound for increased numbers 
of bays. The prestress coefficient is found to increase with 
increasing numbers of bays to keep the axial forces in the 
(shorter) cables at similar levels to prevent cable slackening 
and increase overall stiffness.

4.2  Class‑2 tensegrity boom—multi‑objective 
function

In this second optimization example, the tensegrity boom 
considered is selected to be a 20-bay three-strut Class-2 
tensegrity boom with no reinforcing cables exhibiting the 
same global dimensions as in the previous example. There-
fore, the twist angle is set to � = �∕6 to ensure a self-equili-
brated geometry. The optimization problem is defined to be 
multi-objective, aiming to minimize both the mass of the 
boom and the tip displacement at the same time. These two 
objective functions conflict with each other, and therefore, 
there is no single optimum solution. Yet, a set of optimum 
solutions can be found in such cases. These solutions are 
called Pareto-optimal solutions and none of the objective 
functions can be improved without making the others worse. 
With no further information beyond than the objective func-
tion values, a comparison of the Pareto-optimal solutions is 
ill-defined and they are all considered to be valid.

Since reinforcing cables are not present in this tenseg-
rity boom example and the twist angle has a unique value, 
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the radius of the reinforcing cables and the twist angle are 
no longer design variables. Therefore, the design variables 
are: the radii of three different groups of cables; the inner 
and outer radii of the struts (assuming hollow struts); and 
the prestress coefficient. The upper and lower bounds of the 
design variables are the same as in the first example with one 
exception: the lower bounds of the cable radii are chosen as 
1 mm. The same constraint set stated for the first optimiza-
tion problem is directly applied to this problem.

The cables and struts are assumed to be made of steel 
and aluminum, respectively. The modulus of elasticity of the 
cables and struts are E = 210 GPa and E = 70 GPa, respec-
tively. The density of the cables and struts are � = 7850 kg/
m3 and � = 2700 kg/m3, respectively. The Poisson’s ratio of 
the struts are assumed to be � = 0.32 . These materials might 
be considered to be representative of civil structures. The 
tensegrity boom is designed to be a vertical tower, fixed at 
the bottom, and lateral loads of 10 N are applied at the top 
nodes in the y direction to simulate mild wind conditions. 
The self-weight of the structure is neglected, since it acts in 
the orthogonal direction to the applied loads and, therefore, 
it has a little effect on the tip deflection.

Several methods have been suggested by researchers 
to address multi-objective optimization problems. These 

methods can be represented in four different categories 
which are reviewed extensively by Cui et al.[58]. In this 
study, two of these methods, namely weighted sum and �
-constraint methods, are used and a Pareto-optimal set is 
obtained.

The weighted sum method assigns positive weights ( wi ) 
to individual objective functions based on their importance 
in the optimization, and generates a single-objective func-
tion. Then, by varying these weights, optimization analyses 
can be performed repeatedly to obtain Pareto-optimal solu-
tions. This multi-objective (two-objective) optimization can 
be formulated as follows:

(13)

min
X

w1d(X, q(X)) + w2M(X)

subject to − q(X) < 0, for cables

�ci ≤ �Y , for cables

q(X) < 0, for struts

Tsti ≤ Peu, for struts

�sti ≤ �cr, for struts

where w1 + w2 = 1,

Table 1  Bending and torsional 
stiffnesses of the booms 
optimized for EI/Mass

Number 
of bays

EI  [Nm2] GJ  [Nm2] Mass [kg] EI/mass  [Nm2/kg] GJ/mass  
 [Nm2/kg]

Tip displacement 
[mm]

2 5.43×106 1.48×104 104.938 5.17×104 1.41×102 9.693
4 5.57×106 5.97×104 54.340 1.03×105 1.10×103 9.902
6 5.44×106 1.32×105 46.076 1.18×105 2.86×103 10.214
8 5.32×106 2.31×105 44.026 1.21×105 5.26×103 10.498
10 4.67×106 3.08×105 39.779 1.17×105 7.73×103 12.020
12 3.94×106 3.01×105 34.710 1.13×105 8.66×103 14.373
14 3.49×106 2.97×105 32.175 1.09×105 9.24×103 16.403
16 3.47×106 4.07×105 33.572 1.04×105 1.21×104 16.746
18 3.34×106 4.69×105 34.251 9.74×104 1.37×104 17.612
20 3.13×106 4.75×105 35.129 8.90×104 1.35×104 19.005
22 3.04×106 6.10×105 35.826 8.48×104 1.70×104 20.094
24 2.83×106 5.93×105 36.532 7.75×104 1.62×104 22.173
26 2.71×106 6.85×105 37.455 7.23×104 1.83×104 23.781
28 2.64×106 8.87×105 39.453 6.68×104 2.25×104 24.255
30 2.43×106 8.12×105 39.412 6.16×104 2.06×104 27.143
32 2.25×106 9.09×105 39.854 5.65×104 2.28×104 30.134
34 2.13×106 9.48×105 41.211 5.16×104 2.30×104 32.244
36 1.98×106 1.05×106 42.401 4.68×104 2.48×104 35.038
38 1.91×106 1.24×106 45.371 4.22×104 2.74×104 36.562
40 1.79×106 1.10×106 45.889 3.90×104 2.41×104 39.714
42 1.68×106 1.11×106 47.112 3.56×104 2.36×104 44.818
44 1.58×106 1.17×106 48.878 3.22×104 2.38×104 49.024
46 1.44×106 1.19×106 48.901 2.94×104 2.43×104 53.643
48 1.25×106 1.28×106 48.374 2.58×104 2.65×104 60.810
50 1.19×106 1.07×106 48.962 2.44×104 2.19×104 63.845
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where d represents the tip displacement. The assigned 
weights are then varied between 0 and 1 to obtain Pareto-
optimal solutions. The case where w1 = 1 and w2 = 0 is not 
considered as it would return the design variables equal to 
their upper bounds, which is not a practical result.

Alternatively, the �-constraint method suggested by Haimes 
et al.[59] converts the objective functions into inequality con-
straints except for one, which is then used as the single-objec-
tive function. In this study, the objective function associated 
with the minimization of mass is converted into a constraint 
with an upper bound of � . Then, the optimization problem is 
written as follows:

 Then, the � value is varied between 15 and 150 kg, and the 
optimization analyses are repeated to obtain Pareto-optimal 
solutions. Representing these Pareto-optimal solution sets 
visually show the Pareto frontier which can be used for 
design decision-making purposes as noted by Zhang and 
Ohsaki[21].

Figure 10 shows the sets of Pareto-optimal solutions along 
with the Pareto frontier. It also reveals the nonlinear trade-
off between the two objective functions: minimum mass and 
minimum tip displacement. The Pareto frontier shows that the 
heavier the designed boom, the smaller the tip displacement 
and vice versa. This plot can be used for decision-making pur-
poses for a given design problem. Treating the multi-objective 
optimization problem with two different methods and obtain-
ing results that demonstrate similar trends also increases the 
reliability of the results. The mass and tip displacement values 
of the optimized booms are shown in Table 2, while the associ-
ated design variables can be found in the Appendix.

The design variables reveal that in all cases, the radius 
of the top and bottom cables takes the lower bound value, 
indicating that they do not play an important role in resist-
ing the lateral loads. Additionally, the outer radii of the struts 
are found to converge to the upper bound to maximize the 
moment of inertia and thus the buckling load. In addition, the 
radii of the vertical and saddle cables increase with increasing 
displacement weight, w1 , or increasing � values. For increased 
mass weight, w2 , or smaller � values, the optimum outer and 
inner radii of the struts are found to be the same in differ-
ent cases, which can be interpreted as pursuing the smallest 
possible cross-sectional area and moment of inertia that will 

(14)

min
X

d(X, q(X))

subject to M(X) ≤ �

−q(X) < 0, for cables

�ci ≤ �Y , for cables

q(X) < 0, for struts

Tsti ≤ Peu, for struts

�sti ≤ �cr, for struts,

prevent buckling. Furthermore, similar to the first example, 
the prestress coefficient increases with increased importance 
of minimum displacement to increase overall stiffness and pre-
vent cable slackening.

5  Conclusions

Tensegrity structures offer the potential for lightweight solu-
tions to a wide range of engineering problems. However, 
optimization is needed to guide the design of tensegrity 
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Table 2  Mass and tip displacement values of the optimized booms

Displacement 
weight w

1

Mass weight 
w
2

Mass [kg] Tip displacement 
[mm]

0 1 13.136 254.732
0.1 0.9 19.308 98.687
0.2 0.8 24.210 69.225
0.3 0.7 28.809 55.151
0.4 0.6 33.595 46.196
0.5 0.5 39.328 39.233
0.6 0.4 48.143 32.036
0.7 0.3 60.019 25.688
0.8 0.2 78.543 19.626
0.9 0.1 117.788 13.085

Mass constraint � Mass [kg] Tip displacement 
[mm]

≤ 15 kg 15 167.552
≤ 25 kg 25 66.217
≤ 50 kg 50 30.844
≤ 75 kg 75 20.553
≤100 kg 100 15.413
≤125 kg 125 12.331
≤150 kg 150 10.275



1461Engineering with Computers (2022) 38:1451–1464 

1 3

structures that are capable of resisting external loads effec-
tively without losing their lightweight feature. To address 
this need, the optimization of tensegrity structures was inves-
tigated using the particle swarm optimization algorithm.

A model of tensegrity structures was described in which 
individual struts and cables are modeled using one-dimen-
sional two-noded axial load-carrying finite elements. The 
linear and geometric stiffness matrices, which originate from 
the axial stiffness and the prestress in the elements, were 
provided, and the assembly of the global stiffness matrix fol-
lowed. A computational nonlinear analysis scheme to study 
the behavior tensegrity structures under external loads was 
described. Continuum beam modeling was used for rapid 
estimation and evaluation of the global stiffness properties 
of prestressed lattice structures.

Since the behavior of tensegrity structures is generally 
nonlinear in nature, the traditional optimization techniques 
are very difficult to implement. Therefore, a heuristic opti-
mization technique, the particle swarm optimization algo-
rithm was employed in this research. The PSO algorithm 
was described, along with variations appropriate for the 
treatment of multi-objective optimization problems.

Two numerical examples focusing on sizing and prestress 
optimization of tensegrity structures were presented. The 
first example investigated the single-objective optimization 
of three-strut multi-bay tensegrity booms with an aim to 
maximize the bending stiffness-to-mass ratio. The bend-
ing stiffness of the booms was evaluated by the modified 
energy equivalency method under a set of constraints that 
include realistic challenges such as cable slackness and 
yielding, and strut buckling. The second example addressed 
the multi-objective optimization of tensegrity booms under 
external lateral loads with conflicting objectives: minimi-
zation of mass and minimization of tip displacement. The 

multi-objective optimization problem was treated by two 
different methods, namely weighted sum and �-constraint.

The optimization results revealed that it is possible to 
design tensegrity booms which exhibit greater bending stiff-
ness-to-mass ratio than that of the representative deployable 
space boom, the Canister Astromast. The multi-objective 
optimization results showed the robustness of the particle 
swarm optimization technique: application of the weighted 
sum and �-constraint approaches both yielded similar results.

The use of PSO in the optimization of nonlinear tenseg-
rity structures showed that a complete design and optimi-
zation of a tensegrity boom with a given set of realistic 
constraints can be achieved. The nature of the optimization 
problem is non-convex and, thus, global optima cannot be 
guaranteed. However, repeated analyses with similar results 
assure that PSO works robustly even for challenging multi-
objective design optimization problems. While the problems 
considered involve Class-2 tensegrity structures, the proce-
dure can be readily adapted to other tensegrity classes and 
larger multi-objective optimization problems. For example, 
Pareto frontiers could be represented by multi-dimensional 
surfaces rather than curves in the case of a multi-objective 
optimization with three or more objective functions and 
higher numbers of objective functions could require more 
complex visualization techniques. Overall, PSO can be a 
very powerful tool for future optimization problems related 
to the design of optimum tensegrity structures for aerospace 
and civil applications.

Appendix

See Tables 3 and 4.
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Table 3  Design variables for the first optimization problem

Number 
of bays

Radius of top and 
bottom cables 
[mm]

Radius of 
vertical cables 
[mm]

Radius of 
saddle cables 
[mm]

Radius of rein-
forcing cables 
[mm]

Outer radius 
of struts 
[mm]

Inner radius 
of struts 
[mm]

Prestress  
coefficient  
[N/mm]

Twist angle 
[degree]

2 2.000 9.616 7.250 10.000 30.000 24.914 0.122 62.000
4 3.498 10.000 3.697 10.000 30.000 28.903 0.295 62.000
6 4.543 9.961 4.214 10.000 30.000 29.511 0.460 62.000
8 5.605 10.000 4.726 10.000 30.000 29.714 0.624 62.000
10 6.166 8.934 4.844 10.000 30.000 29.783 0.892 69.829
12 6.266 7.188 4.406 10.000 30.000 29.774 1.592 80.875
14 6.593 6.114 4.265 10.000 30.000 29.783 2.310 84.317
16 7.874 6.481 4.636 9.986 30.000 29.814 2.710 84.281
18 7.967 6.353 4.880 10.000 30.000 29.806 3.724 85.639
20 8.010 5.867 4.934 10.000 30.000 29.724 6.756 87.680
22 9.260 6.272 5.133 10.000 30.000 29.811 5.505 86.527
24 9.721 5.800 5.019 10.000 30.000 29.740 8.986 87.943
26 10.000 5.965 5.124 10.000 30.000 29.765 9.274 87.785
28 10.000 6.545 5.778 10.000 30.000 29.846 6.709 86.237
30 10.000 6.016 5.565 10.000 30.000 29.792 10.184 87.642
32 10.000 6.160 5.561 10.000 30.000 29.831 8.932 86.991
34 10.000 6.134 5.710 10.000 30.000 29.820 10.346 87.266
36 10.000 6.301 5.866 10.000 30.000 29.847 9.302 86.648
38 9.988 6.762 6.136 10.000 30.000 29.858 9.101 86.234
40 9.999 6.273 6.106 10.000 30.000 29.804 13.454 87.458
42 10.000 6.231 5.809 9.996 30.000 29.756 17.726 87.998
44 10.000 6.323 5.795 10.000 30.000 29.740 19.683 88.000
46 10.000 6.289 5.932 10.000 30.000 29.790 16.375 87.559
48 9.947 6.372 6.123 9.849 30.000 29.860 10.978 85.960
50 10.000 5.910 6.163 9.445 30.000 29.761 20.000 87.877
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