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Abstract
In this article, thermal buckling and resonance frequency of a composite cylindrical nanoshell reinforced with graphene 
nanoplatelets (GNP) under bi-directional thermal loading are presented. The temperature-dependent material properties 
of piece-wise GNP-reinforced composites (GNPRC) are assumed to be graded in the thickness direction of a cylindrical 
nanoshell. Also, Halphin-Tsai nanomechanical model is used to surmise the effective material properties of each layer. The 
size-dependent GNPRC nanoshell is analyzed using modified couple stress parameter (FMCS). For the first time, in the pre-
sented study show that bi-directional thermal buckling occurs if the percent of relative frequency change tends to 30%. The 
novelty of the current study is in considering the effects of bi-directional thermal loading in addition of FMCS on relative 
frequency, resonance frequencies, thermal buckling, and dynamic deflection of the GNPRC nanoshell. The governing equa-
tions and boundary conditions are developed using Hamilton’s principle and solved with the aid of analytical method. The 
results show that, various bi-directionasl thermal loading and other geometrical and mechanical properties have important 
role on resonance frequency, relative frequency change, thermal buckling, and dynamic deflection of the GNPRC cylindri-
cal nanoshell. The results of the current study are useful suggestions for design of materials science, micro-mechanical and 
nano-mechanical systems such as microactuators and microsensors.
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1  Introduction

According to the recent progressions in science and technol-
ogy [1–8], novel and new research aspects have considerable 
attention [9–17]. Some applications of GPL reinforcement 
are reported in Ref. [18]. In addition, the properties of GPL 
reinforcements make them an appropriate choice to be used 

in chemistry, physics, electrical engineering, materials sci-
ence [19] and engineering applications [20–29].

Rafiee et al. [30] compared the mechanical properties of 
epoxy nanocomposites refined with 1% value fraction of sin-
gle-walled carbon nanotubes (SWNT), multi-walled carbon 
nanotube (MWNT) and GPL with each other. Their results 
show that, Young’s modulus, ultimate tensile strength, frac-
ture toughness, fracture energy, and fatigue resistance of the 
GPLs are greater than the other materials. So, GPL rein-
forcement can be replaced by SWNTs and MWNTs in many 
applications (Fig. 1).

In addition, Yavari et al. [31] reported microstructure of 
epoxy/GNP nanocomposites. The grains with the Brighter 
background is epoxy and the bounded which reinforcement 
the epoxy is GNP (Fig. 2).

Researches demonstrated that subjoining very mea-
ger amount of graphene into primary polymer matrix can 
desperately improve its mechanical, thermal and electrical 
properties. It is worth to mention that nanostructures rein-
forced by GPL are more applicable in engineering design, 
so focus on dynamic modeling of the nanostructure with 
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GPL reinforcement is useful and important. In addition, 
this material can be used in electrical devices such as those 
mentioned in Refs. [32–35]. Furthermore, polymer matrix 
reinforced by various types of nanofillers has a wide range 
of applications such as field effect transistors, electrome-
chanical actuators, biosensors and chemical sensors, solar 
cells, photoconductor and superconductor devices. There-
fore, investigation of their mechanical characteristics is of 
great interest for engineering design and manufacture. Many 
researchers [36–41] studied the behavior and stability of the 
FG multilayer composite and isotropic materials. Feg et al. 
[42] investigated nonlinear bending behavior of a novel glass 
made of multi-layer polymer composite beams reinforced by 
GPLs. They reported that beams with a high weight frac-
tion of GPLs and symmetric distribution are less sensitive 
to the nonlinear deformation. In addition, current nano-
structure can be used in smart systems. The experiments 
and researches show that size effects play an important role 

in mechanical properties. Thus, neglecting these effects may 
lead to inaccurate responses. It should be mentioned that, 
the size effect is not considered in the classical continuum 
theories, so these theories are not appropriate for micro and 
nano scales. Therefore, some methods, such as: molecular 
dynamic (MD) simulations, FE method and non-classical 
continuum theory are used to study nanostructures. MD sim-
ulation includes complicated and time-consuming calcula-
tions which are not efficient. In contrast, simple and efficient, 
higher order continuum mechanic theories, have recently 
attracted researcher’s attentions. As studying the mechanical 
behaviors of nanoshells relate to submicron dimensions, they 
could not be correctly predicted by the classical theory. Thus 
taking into consideration the size effect, higher order contin-
uum theories are used. These theories include the nonlocal 
elasticity theory, the modified couple stress theory, and non-
local strain gradient theory. A Bernoulli–Euler nanobeam 
model considering nonhomogeneous temperature fields, 
based on Eringen’s nonlocal elasticity theory was proposed 
by Ref. [43]. They presented a thermodynamically consistent 
and reliable nonlocal nanobeam model that can be used in 
non-homogenous and non-isothermal environments. Bend-
ing analysis of armchair carbon nanotubes using gradient 
elasticity theory was examined by Ref. [44]. In this article, 
as an important result, influences of small-size effects on 
the Young’s modulus were investigated. Exact solutions of 
inflected functionally graded nanobeams with integral elas-
ticity were investigated by Ref. [45]. The solutions of the 
stress-driven integral method indicate that the stiffness of 
nanobeams increases at smaller scales due to size effects.

A key issue in various engineering field is that the predic-
tion of the properties, behavior, and performance of different 
systems is an important aspect [46–55]. For this regard, in 
field of the dynamic/static responses of the size-dependent 
GPLRC nanostructures, sahmani et al. [56] studied nonlinear 
instability of GPLRC nanoshells under the hydrostatic pres-
sure using nonlocal elasticity theory and MSGT. In another 

Fig. 1   Ultimate tensile strength 
and Young modulus for the 
baseline epoxy and GNP/epoxy, 
MWNT/epoxy, and SWNT/
epoxy nanocomposites [30]

Fig. 2   Microstructure of epoxy nanocomposites refined with GNP 
[31]
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work [57], they investigated nonlinear instability of axially 
loaded GPLRC nanoshells based on nonlocal strain gradi-
ent elasticity theory. It should be noted that, MSGT is an 
high order continuum theory which employs three length 
scale parameters [58]. These parameters are very useful in 
modeling of nano structures which are introduced in results 
section. In addition, in the field of forced vibration analysis 
of structures, Song et al. [59] investigated free and forced 
vibration of FG polymer composite plates reinforced by 
GPLs. They studied the effects of GPL distribution pat-
tern, weight function, geometry and size, as well as, the 
total number of layers on the dynamic characteristics of the 
plates. Forced vibration of an orthotropic double-nanoplate 
system using nonlocal theory was examined by Atanasov 
et al. [60]. In their research, employing an analytical method 
the dynamic responses of the orthotropic double-nanoplate 
system for different external transversal loads were studied. 
Also, Du et al. [61] investigated nonlinear forced vibration 
of infinitely long FG cylindrical shells using the Lagrangian 
theory and multiple scale method. An interesting result of 
their work is that, power-law exponents have important role 
on the amplitude response of the FG cylindrical shells. Li 
et al. [62] focused on the coupled vibration characteristics of 
a spinning and axially moving composite thin-walled beam. 
In their work, some interesting conclusions about the critical 
axial speed and critical spinning angular speed were drawn. 
Another important factor in the design of composite nano-
structures is porosity which occurs during manufacturing 
process. Therefore, these phenomena must be considered 
in the simulation and modeling of nanostructures. Barati 
et al. [63] studied forced vibration analysis of heterogeneous 
nanoporous plates using generalized nonlocal strain gradient 
theory. They showed that the forced vibration characteris-
tics of a nanoplate are strongly influenced by the excita-
tion frequency, porosities, nonlocal parameter and dynamic 
load location. Free and forced vibration characteristics of 
FG porous beams with non-uniform porosity distribution 
were studied by Chen et al. [64]. They examined both sym-
metric and asymmetric porosity distributions in this work. 
Chen et al. [65] conducted a study on nonlinear free vibra-
tion behavior of a porous moderately thick beam. They used 
Ritz method and von Kármán type nonlinear strain–displace-
ment relations for deriving the equation system. Accord-
ing to their results, porosity coefficient, slenderness ratio, 
thickness ratio and other parameters play important roles in 
the nonlinear vibration characteristics of the porous moder-
ately thick beam. In another work, Chen et al. [66] examined 
nonlinear vibration and post-buckling behaviors of GPLRC 
porous nanocomposite beam. Moreover, the influences of 
both porosity coefficient and GPL weight fraction on static 
and dynamic behaviors of the GPLRC porous nanocompos-
ite were shown in their work. Y.H. Dong et al. [67] studied 

free vibration characteristics of a GPLRC porous nanocom-
posite cylindrical shell with spinning motion. Finally, they 
represented the effect of initial hoop tension on vibration 
characteristics of the spinning GPLRC porous nanocompos-
ite cylindrical shell. Yang et al. [68] investigated buckling 
and free vibration characteristics of GPLRC nanocomposite 
plates with porosity. Recently, Chen et al. [69] focused on 
dynamic response and energy absorption of FG two-dimen-
sional porous structures in the framework of finite element 
analysis. Li et al. [70] investigated free vibration character-
istics of a spinning composite thin-walled beam under the 
hydrothermal environment. Their governing equations and 
boundary conditions were solved using Galerkin’s method. 
In their result, the effects of spinning motion and hydro-
thermal environment on natural frequency and critical spin-
ning angular speed of the beam were examined. In another 
work, Li et al. [71] investigated parametric instability of a 
FG cylindrical thin shell under the thermal environment. In 
other work [72], they studied parametric resonance of a FG 
cylindrical thin shell with periodic rotating angular speeds in 
the thermal environment. They also demonstrated that con-
stant of rotating angular speed, material heterogeneity and 
thermal effects have remarkable influence on vibration char-
acteristics, instability regions and critical rotating speeds 
of the shell. Nonlinear vibration of FG cylindrical shells in 
thermal environments was studied by Ref. [73]. Du et al. 
[74] analyzed nonlinear vibration of FG circular cylindrical 
shells in thermal environment. Their results showed that, 
temperature and volume fractions of composition play an 
important role in the exact resonance condition and bifur-
cation characteristics of FG cylindrical shells. Also, some 
researchers tried to predict the static and dynamic proper-
ties of different structures and materials via neural network 
solution [75–89].

To the best of our knowledge, no studies have been 
reported in the literature for investigation of bi-directional 
thermal buckling using relative frequency changes. For 
the first time, in the present study show that bi-directional 
thermal buckling occurs if the percent of relative frequency 
change tends to 30%. The novelty of the current study is 
consideration of GNPRC, bi-directional, thermal loading, 
dynamic load and size effects implemented on proposed 
model using FMCS. Because of high accuracy and efficiency 
of the analytical method, it is employed to solve the govern-
ing equations of the problem. The governing equations and 
boundary conditions have been developed using minimum 
potential energy which solved with the aid of the analytical 
method. Finally, using the mentioned continuum mechanics 
theory, the investigation has been made into the influence of 
the bi-directional thermal loading and GNP distribution pat-
tern on the thermal buckling, resonance frequency, relative 
frequency change and dynamic deflection.
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2 � Multilayer polymer composites reinforced 
GNPs formulation

A cylindrical nanoshell in bi-directional thermal environ-
ment and under dynamic load is modeled. The thickness, 
length, and the middle surface radius of the cylindrical shell 
are denoted by h, L, and R, respectively. In addition, q0 is 
the transverse force due to applied dynamic load (Fig. 3).

The cylindrical nanoshell is made of composite material. 
The volume fraction functions of these four patterns of GPL 
are represented by [90, 91]

where k is number of layers of the nanoshell, NL is the total 
number of layers and V∗

GPL
 is the total volume fraction of 

GNPs. The relation between V∗
GPL

 and their weight fraction 
gGPL can be expressed by [92–97]:

in which �GPL and �m are the mass densities of GNPs and 
the polymer matrix. Based on Halpin–Tsai model, the elas-
tic modulus of composites reinforced randomly with GNPs 
approximated by [98–100]:

where E is effective modulus of composites reinforced with 
GNPs and EL and ET are the longitudinal and transverse 
module for a unidirectional lamina. In Eq.  (6) the GNP 
geometry factors ( �L and �T ) and other parameters are given 
by [101, 102]:

where ℤGPLℤGPL,hGPL,bGPL are the average length, thickness 
and width of the GNPs. Using rule of mixture, mechanical 

(1)Pattern 1 ∶ U − GPLRC (UD) ∶ VGPL(k) = V∗
GPL

(2)

Pattern 2 ∶ X − GPLRC (FG − X) ∶

V
GPL

(k) = 2V
∗
GPL

|
|2k − N

L
− 1||∕NL

(3)

Pattern 3 ∶ O − GPLRC (FG − O) ∶

V
GPL

(k) = 2V
∗
GPL

[

1 −
(
|
|2k − N

L
− 1||∕NL

)]

(4)
Pattern 4 ∶ A − GPLRC (FG − A) ∶ VGPL(k) = 2V∗

GPL
(2k − 1)∕NL

(5)V∗
GPL

=
gGPL

gGPL + (�GPL∕�m)(1 − gGPL)

(6)
E =

3

8
EL +

5

8
ET ,

EL =
1 + �LnLVGPL

1 − nLVGPL

Em, ET =
1 + �TnTVGPL

1 − nTVGPL

Em

(7)
�L = 2(ℤGPL∕hGPL), �t = 2(bGPL∕hGPL),

nL =
(EGPL∕Em) − 1

(EGPL∕Em) + �L
, nT =

(EGPL∕Em) − 1

(EGPL∕Em) + �T

properties of the GNP/ polymer nanocomposite are 
expressed as [103]:

The mechanical properties of the FG-GNPR cylindrical 
shell with different types of distributions can be obtained 
by [104]:

3 � Mathematical modelling

Based on the first order shear deformation theory [105] 
(FSDT), the displacement field of cylindrical shell along 
the three directions of x, θ, z is as follows:

where,u0(x, �, z) , v0(x, �, z)) and w0(x, �, z)) represent the dis-
placements in axial-, circumferential- and radial-directions, 
respectively. �x(x, �, t) and ��(x, �, t) are the rotations of the 
normal to the element middle plane about the circumfer-
ential and axial-directions. In addition, the three-dimen-
sional stress–strain relations can be expressed as follows 
[106–109]:

In Eq. (10) the stiffness coefficients are obtained by Ref. 
[110–112]. Also, �i and ΔT  are thermal expansions (in x,� 
and z directions) and temperature changes, respectively. For 
the equations of the motion and boundary conditions, the 
extended Hamilton’s principle states that [113–117]:

Strain energy of FMCS parameter cylindrical nanoshell 
is expressed as follows [118, 119]:

(8)

E = EGPLVGPL + EMVM ,

� = �GPLVGPL + �MVM ,

� = �GPLVGPL + �MVM ,

� = �GPLVGPL + �MVM .

(9)

u(x, �, z, t) = u0(x, �, t) + z�x(x, �, t)

v(x, �, z, t) = v0(x, �, t) + z��(x, �, t)

w(x, �, z, t) = w0(x, �, t)

(10)
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(11)∫
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t1

(�T − �U + �W1 − �W2)dt = 0
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In Eq. (12) �ij and �ij represent the components of a strain 
tensor and stress tensor, which are expressed in Ref. [110]. 
In addition, � s

ij
 and mij are the components of a symmetric 

rotation gradient tensor and higher order stress tensor, which 
can be expressed as:

where �i and ll respectively represent the extremely small 
rotation vector and MCS parameter, which is related to sym-
metric rotation gradients can be expressed as follows:

Moreover, the non-zero components of symmetric rota-
tion gradient tensor are obtained as follows:

(12)U =
1

2 ∭
V

(�ij�ij + ms
ij
� s
ij
)Rdxd�dz

(13)
� s
ij
=

1

2
(�i,j + �j,i)

ms
ij
= 2l2�� s

ij

(14)l = lGPLVGPL + lMVM

(15)
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Finally, the classical and non-classical strain energies of 
the current study based on FMCS parameter are expressed 
as follows:

where parameters used in above equation are defined as:
(16)
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Fig. 3   Geometry of cylindrical FG nanoshell under dynamic load and thermal environment
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Furthermore, the kinetic energy of the FG-GRCs cylin-
drical nanoshell using MCS parameter can be expressed as 
[120]:

(17)

(Nxx,N�� ,Nx�) = ∫
h∕2

−h∕2

(�xx, ��� , �x�)dz,

(Mxx,M�� ,Mx�) = ∫
h∕2

−h∕2

(�xx, ��� , �x�)zdz,

(Qxz,Qz�) = ∫
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�
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�
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⎫

⎪

⎪

⎬

⎪

⎪
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Rdz dx d�

For the composite layer reinforced with uniform (UD) of 
FG distribution of GPLs, Fourier heat conduction relation 
can be formulated as:

In addition, thermal surface boundary conditions are as 
follows:

The work done by applied forces can be written as:

In which qdynamic is the transverse force due to applied 
dynamic load. Substituting Eqs. (10), (16), (17) into Eq. (9) 
and integrating by part, the equations of motion and bound-
ary conditions of the GNP cylindrical nanoshell in ther-
mal environment using MCS parameter can be obtained as 
follows:

(19)

1

z
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�

�z

(

z
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�z
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In addition, governing equations and boundary conditions 
are given in Appendix A.

4 � Solution procedure

In this section, analytical method is implemented to solve the 
governing equations of MSGT-based on GPLRC nanoshell. 
In addition, in this research, the proposed model is simply 
supported in x = 0, L and � = �∕2, 3�∕2 . Thus, the displace-
ment fields can be calculated as:

where 
{

U0mn,V0mn,W0mn,Ψxmn,Ψ�mn

}

 are the unknown Fou-
rier coefficients that need to be determined for each n and 
m values. Also, n and m are the circumferential and axial 
wave numbers, respectively. For vibration analysis of the 
structure, by substituting Eq. (21) into governing equations, 
one obtains [121–126]:

It should be noted that stiffness and mass components 
are given in Appendix A. In Eq. (22), �ex is the excitation 
frequency and applied dynamic load ( qdynamic ) is defined as:

Solution of Eq. (23) gives the dynamic deflection and 
excitation frequency of the porous FG-GPLRC cylindri-
cal nanoshell. The dimensionless excitation frequency and 
forced vibration amplitude are defined as:
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5 � Temperature field

To satisfy temperature boundary conditions, Eq. (18), fol-
lowing Fourier series solution to Eqs. (30), (31) is assumed

where Pm =
m�

L
 . Thermal conductivity coefficients regard-

ing to each GPLs distribution pattern can be determined as
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Temperature gradient of radial coordinate for UD pattern of 
GPLs can be obtained by implementing Eqs. (25) and (26) 
in Eq. (17) as follows

where q = Pm

√
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and B1 ,C1 are constants of integration 

which can be obtained from thermal surface boundary con-
ditions at the inner and outer surfaces of layer reinforced 
with UD pattern of GPLs (More information is presented in 
Appendix B). From Eqs. (25), (27, 28, 29), heat conduction 
differential equation, Eq. (17) would be reduced to Heun’s 
differential equation as following
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Here A1 ,A2,... ,A6 are constant coefficients depending on 
the pattern of GPLs distribution (see Appendix B). Analyti-
cal solution is determined for Eq. (31) according to subse-
quent relation

where B2 and C2 are constant coefficients of integration 
which would be computed from thermal surface bound-
ary conditions applied at the inner and outer surface of the 
layer reinforced with FG distribution patterns of GPLs (see 
Appendix B). By employing Eq. (25) and (32) leads to the 
following heat conduction equation in the form of modified 
Bessel differential equation

Here ma = pm

√
kax

kaz
 . Solution to Eq. (33) for the actuator 

layers are as

where Io, Ko are modified Bessel function of the first kind 
and second kind of zero order, respectively; B3, C3 are con-
stant of integration which are determined from surface tem-
perature boundary condition (Appendix B).

6 � Results and discussion

In the result section, the GNP cylindrical nanoshell in a ther-
mal environment under various thermal loading is modeled 
for the simply supported boundary conditions. After the 
modeling of the current structure using FMCS parameter, 
the effects of GNP distribution pattern, modified couple 
stress parameter, length to radius ratio, mode number, and 
thermal environment on resonance frequency and dynamic 
deflection are studied. In the next section will be shown that, 
these elements have important role on the dynamic behav-
ior of the presented structure. However, results section of 
our paper are divided into two sections. In the first section, 
validation of our model with the aid of previous papers of 

(34)

T(z) = HeunC

�

2A1

A2

�

−
A4

A2

, 0, 0,
A1

A3
2

�

A1A4 − A2A3

�

, 0,−
A2

A1

r

�

e
−

�

−
A4

A2 ×

⎧

⎪

⎨

⎪
⎩

B2 ∫
ro

ri

e
2

�

−
A4

A2
z

z
�

A2z + A1

�
�

HeunC
�

2A1

A2

�

−
A4

A2

, 0, 0,
A1

A3
2

�

A1A4 − A2A3

�

, 0,−
A2

A1

z
��2

dz + C2

⎫

⎪

⎬

⎪
⎭

(35)z2
�2Ta

�z2
+ z

�Ta

�z
−
(

m2
a
z2
)

Ta = 0

(36)Ta(z) = B3Io
(

maz
)

+ C3Ko

(

maz
)

the literature is presented. In the second section, effects of 
various thermal loading and some various parameters on 
the resonance frequency, thermal buckling and dynamic 
deflection of a GNP nanoshell in thermal environments are 

presented.

6.1 � Model validation

Table 1 illustrates a comparison study between the results of 
this paper and literatures of the simply supported nanoshell 
with considering modified couple stress theory. Beni et al. 
[127] investigated vibrational analysis of the FG cylindrical 
thin nanoshell using modified couple stress theory. It can 
be seen there is good agreement between the dimensionless 
natural frequency of the current study and the results of Ref. 
[127]. As another verification for this work, according to 
Fig. 4, it is revealed that the suggested modeling can provide 
good agreement with MD simulation. Figure 4 shows that, as 
l = R/3, the results of the current research are very similar to 
those of MD simulation. The material properties of SWNT 
are presented in Table 2.  

6.2 � Parametric results

In this section, analytical results are indicated for simply 
supported a GNP cylindrical nanoshell in thermal environ-
ments under various thermal loadings. In the present paper, 
the GNP nanostructure with a total thickness hGNP = 1.5 nm, 
length of aGNP = 2.5 mμ and Radius of RGNP = 0.75 mμ . 
Table 3 is included mechanical properties of GNP. Now, in 
this section, the effects of different parameters on the exci-
tation frequency, dimensionless amplitude and relative fre-
quency changes of the structure are investigated.

Temperature dependent of the GNP materials is shown 
as follow [129]:

�m = 45(1 + 0.0005ΔT) × 10−6∕K  and E = (3.52  −   
0.0034T) GPa, in which T = T0 + ΔT .

Figure 5 shows thermal buckling mode shape of GNP 
CNTRC cylindrical nanoshell versus the dimensionless 
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cylindrical shell length. To have a better view of the mode 
shapes, the vertical displacement of the nanoshell is normal-
ized according to the maximum displacement of the thermal 
buckling mode shape.

6.3 � The effect of different parameters on relative 
frequency change

The percentage value in parentheses denotes the relative fre-
quency increase (�C − �M) , where �C and �M are natural 
frequencies with and without GPL, respectively. Figure 6 
shows the relative frequency changes of the FG-GPLRC 
cylindrical nanoshell with different total number of layers 
(NL). As expected, the fundamental frequencies of the struc-
ture with GPL distribution pattern 1 are not affected by NL 
since they are homogeneous. For the cylindrical nanoshells 
with pattern 2 in which GPLs are non-uniformly dispersed, 
their fundamental frequencies decrease with increasing the 
total number of layers to NL = 7, then they remain almost 
unchanged when NL is further increased. In contrast, this 
trend is reversed for GPL distribution pattern 3. Among 
the three non-uniform patterns considered, the fundamen-
tal frequency of the structure with GPL patterns 1 and 4 is 
least affected by the change in NL. According to this figure 
by increasing the number of layers (1 < NL < 7) the natural 
frequency and stability of the nanostructure change (for non-
uniform GPL distribution patterns 2 and 3). It is observed 
that, in the non-uniform GPL distribution pattern 3, by 
increasing of the number of layers, the natural frequency and 
stability of the nanostructure increase. Also, for the other 
uniform and non-uniform distribution patterns, number of 
layers of the GPL is not important. The other amazing result 
is that, by increasing the number of layers in the non-uni-
form GPL distribution pattern 2, the natural frequency and 
stability decrease.

Figure 7 shows the effects of mode number and weight 
function on the relative frequency change of the GNP 
cylindrical nanoshell. Based on Fig. 7, an increase in the 
mode number causes to improve in the relative frequency 
and decreases the stability of the structure. The amazing 
results is that; weight function has direct effect on relative 
frequency change of the GNP cylindrical nanoshell. This 
is because, by increasing the weight function, the structure 
become softer and it is a reason for increasing the relative 
frequency change.

In Table 4, the effects of different GNP distribution pat-
tern, FMCS parameter, and thermal distribution on natu-
ral frequency of the GNP-nanosturacture are shown. It can 
be seen from the table that as GNP distribution pattern 
increases from 1 to 4, the behavior of the natural frequency 
depends on the type of pattern. For example, the patterns 
2 and 3 of the GNP have the higher and lower natural fre-
quency. For better comprehensive, the GPL with pattern 2 

has higher stability in comparison with other patterns. It is 
observed that by increasing the FMCS parameter to radius 
ratio (l/R), the natural frequency increases. Also, the results 
show that the nonlinear temperature change (NLT) has 
higher effect on natural frequency in comparison with the 
linear temperature change (LT).

Figures 8 and 9 show the effects of MCS and classic theo-
ries on the relative frequency changes of the GNP cylindri-
cal nanoshell, respectively. According to these figures, an 
increase in the temperature change causes to improve in the 
relative frequency and decrease the stability of the structure. 
Relative frequency increases smoothly when the temperature 
change increases. At a certain value of temperature change, 
a notable increase in relative frequency of the structure is 
observed. The reason of this phenomena is that, the buckling 
at this temperature occurs. The amazing results is that, MCS 
theory has higher effect on critical temperature of the struc-
ture in comparison with classic theory. So, for modelling of 
the nanostructures should be attention to the size-dependent 
theories specially MCS theory. Also, weight function has 
direct effect on relative frequency changes of the GNP cylin-
drical nanoshell. This is because, by increasing the weight 
function, the structure become softer and it is a reason for 
increasing the relative frequency change.

6.4 � The effects of different parameter on excitation 
frequency and dimensionless amplitude

In Fig. 10, the effect of weight function on dynamic deflec-
tion and resonance frequency was presented for the GNP/
nanostructure. Also, in this figure, different values’ func-
tion (gGNP) effects are examined. It is evident that, dynamic 
deflection of the GNP cylindrical nanoshell is affiliated 
by the value of excitation frequency of dynamic load. 
By increasing the excitation frequency can see smoothly 
increase for dynamic deflection. At a specific value of exci-
tation frequency, a remarkable increase in deflection of GNP 
cylindrical nanoshell is observed. The reason is that the reso-
nance phenomena occurs if the dynamic deflection tends to 
infinity. With decreasing the weight function, it is observed 
that, resonance frequency of the GNP cylindrical nanoshell 

Table 1   Comparison of dimensionless first three natural frequen-
cies of isotropic homogeneous nanoshells, with different thicknesses, 
L/R = 10 and m = 1

h/R n Ref. [127]
(l = 0)

Present
(l = 0)

Ref. [127]
(l = h)

Present study
(l = h)

0.02 1 0.1954 0.19536215 0.1955 0.19543206
2 0.2532 0.25271274 0.2575 0.25731258
3 0.2772 0.27580092 0.3067 0.30621690

0.05 1 0.1959 0.19542305 0.1963 0.19585782
2 0.2623 0.25884786 0.2869 0.28543902
3 0.3220 0.31407326 0.4586 0.45457555
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decreases. The reason for this issue is that, stiffness, reso-
nance frequency and stability of a structure improved due to 
increasing weight function.

In Fig. 11, the effect of different GNP distribution pat-
tern on dynamic deflection and resonance frequency of the 
GNP nanosturacture is shown. It can be seen from the graph 
that as GNP distribution pattern increases from 1 to 4, the 
resonance frequency increases, this leads to an increase in 

the instability of structure. In other words, A-GNPRC gives 
larger resonance frequency than other patterns. Also, the 
resonance frequency of the structure, in the pattern 4 is more 
similar to pattern 3. The reason of this issue is in the math-
ematical function which is presented in previous section.

In Fig. 12, the effects of FMCS parameter on forced 
vibration of GNP cylindrical nanoshell for X-GNPRC pat-
tern are presented. As an important result, can see that the 
FMCS parameter has significantly effect on the resonance 
frequency of the structure. It can be seen from the diagram, 
by improving the FMCS parameter the resonance frequency 
of the structure increases. Also, this phenomenon improves 
the stability of the GNP cylindrical nanoshell. It should be 
mentioned that, as the FMCS parameter is equal to zero, the 
classic theory occurs.

For investigation of radius-to-thickness ratio (R/h) and 
temperature change effects on resonance frequency of 
the GNP cylindrical nanoshell Figs. 13 and 14 is drawn, 
respectively. According to Fig. 13, it can be observed that 
by increasing the R/h ratio, the resonance frequency and 
stability decline. As it mentioned earlier, by increasing the 
temperature difference, the stability and resonance frequency 
decrease.

Fig. 4   Comparison of the natural frequency of cylindrical nanoshell with the results obtained by MD simulation [128]

Table 2   The material properties of single-walled carbon nanotube

E �� H ��

1.06 TPa 0.19 0.34 nm 2300 kg/m3

Table 3   Material properties of the epoxy and GNP [129]

Material properties: Epoxy GNP

Young’s modulus (GPa) 3 1010
Density (kg m−3) 1200 1062.5
Poisson’s ratio 0.34 0.186
Thermal expansion coefficient(10–6/K) 60 5
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7 � Conclusion

This article presents the size-dependent free and forced 
vibration characteristics of a composite cylindrical nanoshell 
reinforced with GNP under bi-directional thermal loading. 

The size-dependent GNP nanoshell is analyzed using FMCS 
parameter. The equations of motion and non-classic bound-
ary conditions are derived using the Hamilton’s principle. 
Also, the results of current model were validated with those 
obtained by molecular dynamics (MD) simulation. The 

Fig. 5   The thermal buckling 
mode shapes of the cylindrical 
microshell in this study

Fig. 6   Effect of total number 
of layers NL on the percentage 
fundamental frequency change 
for different patterns of GNP/
epoxy ( ΔT = 10K , l = R/3, 
Pattern2, L/R = 10, R/h = 10 and 
n = m = 1)
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influence of some key parameters such as, various thermal 
loading, GNP distribution pattern, modified couple stress 
parameter, length to radius ratio, mode number and thermal 
environment on the resonance frequency, relative frequency 
change and dynamic deflection of the GNP nanoshell were 
studied. In this study, the following main results can be 
achieved:

(1)	 The results show that the nonlinear temperature 
changes (NLT) have higher effect on the natural fre-
quency in comparison with the linear temperature 
changes (LT).1) The results show that the nonlinear 
temperature changes (NLT) have higher effect on the 
natural frequency in comparison with the linear tem-
perature changes (LT).

(2)	 It was observed that the resonance frequency is 
increased when the modified couple stress parameter 
and weight function increase and decreased when the 
temperature difference increases.

(3)	 The results show that A-GNP gives larger resonance 
frequency than other patterns.

(4)	 The results show that an increase in the temperature 
change causes an increase in the relative frequency 
change and decrease the stability of the structure.

(5)	 With an increase in the radius-to-thickness ratio the 
resonance frequency and stability of the GNP cylindri-
cal nanoshell tends to increase.

Appendix A

The components of the matrices in Eq. (24):
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Fig. 7   Effect of weight function 
on the percentage fundamental 
frequency change for different 
mode numbers ( ΔT = 10K , 
l = R/3, Pattern2, L/R = 10, 
R/h = 10)
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Table 4   The effects of different 
FMCS parameter to radius ratio, 
pattern of GNP and temperature 
on natural frequency (GHz) 
of the GNPRC nanoshell 
with L/R = 10, R/h = 10, 
gGPL = 1% and different thermal 
distributions

ΔT  = 20 ΔT  = 40 ΔT  = 60

LT NLT LT NLT LT NLT

Pattern 1 l/R
0 1.948752 1.982586 1.904938 1.973578 1.859902 1.964363
1/3 2.070645 2.102498 2.028391 2.092946 1.985038 2.083173
1/2 2.184729 2.214933 2.143707 2.204870 2.101676 2.194574
2/3 2.302991 2.331662 2.263052 2.321068 2.222178 2.310231

Pattern 2 l/R
0 1.947517 1.981282 1.903786 1.972283 1.858836 1.963078
1/3 2.069517 2.101302 2.027344 2.091759 1.984077 2.081997
½ 2.183646 2.213784 2.142704 2.203735 2.100757 2.193447
2/3 2.301909 2.330516 2.262047 2.319933 2.221255 2.309107

Pattern 3 l/R
0 1.951057 1.984761 1.907392 1.975764 1.862513 1.966560
1/3 2.072872 2.104606 2.030755 2.095065 1.987547 2.085304
1/2 1.186938 2.217031 2.146045 2.206980 2.104149 2.196697
2/3 2.305233 2.333800 2.265415 2.323218 2.224670 2.312393

Pattern 4 l/R
0 1.949577 1.983336 1.905848 1.974335 1.860901 1.965126
1/3 2.073030 2.104788 2.030885 2.095243 1.987647 2.085479
1/2 2.188392 2.218488 2.147493 2.208434 2.105592 2.198148
2/3 2.307948 2.336501 2.268143 2.325918 2.227411 2.315091

Fig. 8   The effects of tempera-
ture change and classical theory 
on the relative frequency change 
for different weight function and 
linear temperature change (LT) 
(Pattern4, L/R = 10, R/h = 10 
and n = m = 1)
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Fig. 9   The effects of tempera-
ture change and MCS theory on 
the relative frequency change 
for different weight function and 
linear temperature change (LT) 
(Pattern4, L/R = 10, R/h = 10 
and n = m = 1)

Fig. 10   Dynamic deflection 
and resonance frequency of the 
cylindrical nanoshell for differ-
ent weight function ( ΔT = 20K , 
l = R/3, Pattern2, L/R = 10, 
R/h = 10 and n = m = 1)
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Fig. 11   Dynamic deflection 
and resonance frequency of the 
cylindrical nanoshell for differ-
ent GNP distribution patterns 
( ΔT = 20K , l = R/3, L/R = 10, 
R/h = 10 and n = m = 1)

Fig. 12   Dynamic deflection 
and resonance frequency of 
the cylindrical nanoshell for 
different modified couple stress 
parameter ( ΔT = 20K , Pat-
tern2, L/R = 10, R/h = 10 and 
n = m = 1)
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Fig. 13   Dynamic deflection and 
resonance frequencies of the 
cylindrical nanoshell for dif-
ferent radius to thickness ratios 
( ΔT = 0K , l = R/3, Pattern4, 
L/R = 10 and n = m = 1)

Fig. 14   Dynamic deflection 
and resonance frequencies of 
the cylindrical nanoshell for 
different temperature changes 
(l = R/3, Pattern4, L/R = 10, 
R/h = 10 and n = m = 1)
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Appendix B
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