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Abstract
Blasting is the cheapest and most common method of rock excavation. The basic purpose of blasting is to breakage and dis-
placement of rock mass and, on the other hand, it has some undesirable and inevitable effects such as flyrock. In this study, 
a novel hybrid artificial neural network (ANN) based on the adaptive musical inspired optimization method is proposed for 
accurate prediction of blast-induced flyrock. The dynamical adjusting process was adaptively introduced to enhance the ability 
of harmony search algorithm to obtain the optimum relationship between input variables, i.e., spacing, burden, stemming, 
powder factor and density of rock and output variable, i.e., flyrock. Two adjusting processes were used to update the new posi-
tion of particles. The statistical information of the harmony memory was implemented in the proposed hybrid ANN coupled 
with adaptive dynamical harmony search (ANN-ADHS). The capacity for agreement, tendency, and accuracy of the proposed 
ANN-ADHS was compared with that of the ANN and two hybrid ANN models coupled by harmony search (ANN-HS) and 
particle swarm optimization (ANN-PSO) models using comparative statistics such as root mean square error (RMSE). The 
results confirmed viability and effectiveness of the ANN-ADHS model (with RMSE = 17.871 m and correlation coefficient 
(R2) = 0.929) and showed its capacity for better predictive performance compared to ANN-HS (with RMSE = 22.362 m and 
R2= 0.871), ANN-PSO (with RMSE = 24.286 m and R2= 0.832), and ANN (with RMSE = 24.319 m and R2= 0.831).
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1 Introduction

In general, blasting operations conducted during surface 
mining projects may lead to the fragmentation of overburden 
and exposure of ore benches [1]. During blasting operations, 
with every explosion, a huge quantity of energy is released 
in the form of heat, gas, pressure, and stress waves. Such 
massive energy is not completely converted into mechanical 

energy for breaking the rock mass. Only 20–30% of this 
energy is applied to rock fragmentation and the remain-
ing part merely goes for generating negative effects such 
as flyrock, ground vibration, air blast, noise, etc. (Figure 1) 
[2–11]. According to Trivedi et al. [3] and Little and Blair 
[12], flyrock is produced when the energy released by the 
explosion takes the least resistance path to travel. This inci-
dent can bring about serious threat to the safety of people 
living nearby and buildings located in the vicinity of the 
site [3, 13].

The most important factors that lead to flyrock event 
include over-charging of the blast holes, inadequate burden, 
insufficient stemming, imprecision in design of blast-hole 
patterns, anomaly in the rock structure geology, back-break, 
improper drilling, and carelessness [3, 14, 15]. Based on 
findings of Bajpayee et al. [16, 17], if the geo-mechanical 
strength of the adjacent rock mass is imbalanced, it results in 
the movement of explosive energy towards the paths, where 
it faces the least resistance. This condition causes flyrock 
to be propelled beyond the estimated blast area. According 
to Richards and Moore [18], basic mechanisms of flyrock 
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incidence in bench blasting are cratering, rifling, and face 
burst. As maintained by Rehak et al. [15] and Bajpayee et al. 
[17], flyrock is one of the most frequent incidences caus-
ing fatal accidents in open cast mines in India. Verakis and 
Lobb [19] stated that flyrock and lack of security in blast 
region are responsible for roughly 68% of the injuries that 
occur in the opencast mines. On the other hand, accord-
ing to Kecojevic and Radomsky [20], during the past three 
decades, improper blasting shelter, not evacuating the blast 
region from people, and insufficient guarding of the access 
roads have accounted for 45.64% of the fatal and non-fatal 
events in surface coal mining. Literature contains a number 
of empirical models proposed by different researchers [21, 
22] for the aim of solving the intimidating problem of fly-
rock. The most significant drawback of these models is that 
they have failed to involve all factors that can have impact 
on the flyrock launch velocity or throw. This weakness has 
made them incapable of entirely solving the flyrock problem.

Today, advanced artificial intelligence (AI)-based tools 
are extensively applied to many situations, including the 
problem of decision making under uncertain conditions 
and with uncertain information [23–39]. AI has a stochastic 
characteristic that makes it effectively applicable to numer-
ous fields of study, e.g., Information Technology, data analy-
sis, decision making, and predictive models [40].

It is highly complex to predict flyrock, since it requires to 
inspect numerous variables. Consequently, literature lacks a 
single method that can be comprehensive enough to perform 
such complicated task. Every model proposed in this regard 
involves some variables and overlooks some others [41]. 
Thus, for an effective and accurate prediction of flyrock, 
innovative methods on the basis of AI are required. Rezaei 
et al. [41] introduced a fuzzy interface system (FIS) to esti-
mate the flyrock. In another study, artificial neural network 
(ANN) and FIS were developed by Ghasemi et al. [42] to 
predict flyrock. Their findings confirmed the effectiveness of 

both techniques in the flyrock estimation. To the same end, 
Monjezi et al. [43] integrated ANN and genetic algorithm 
(GA). In another project, support vector machine (SVM) and 
statistical models were developed by Khandelwal and Mon-
jezi [44] for the purpose of introducing a novel model appli-
cable to flyrock estimation. According to their results, SVM 
outperformed the statistical models in regard to predicting 
flyrock. Marto et al. [45] combined the advantages of both 
ANN and imperialist competitive algorithm (ICA) to have 
an accurate prediction of flyrock. They made use of ICA to 
optimize ANN. In their experiments, the hybrid ICA-ANN 
model worked better than ANN regarding the flyrock esti-
mation. In another research in this field, Jahed Armaghani 
et al. [46] utilized the adaptive neuro-fuzzy inference system 
(ANFIS) to estimate flyrock, and their findings confirmed 
the effectiveness of ANFIS in terms of predicting flyrock. 
Nikafshan Rad et al. [47] integrated the recurrent fuzzy neu-
ral network (RFNN) with GA for the purpose of estimating 
flyrock. They also made use of ANN and a hybridized model 
of ANN and GA. Their findings showed that RFNN-GA 
could outperform ANN and ANN-GA regarding the preci-
sion level.

Lu et al. [48] presented an outlier robust extreme learn-
ing machine (ORELM) to predict flyrock, and compared 
its results with ANN and regression models. Their results 
confirmed the acceptability of the proposed ORELM model 
in this field. A biogeography-based optimization (BBO) 
algorithm was combined with ELM to predict flyrock in 
the study conducted by Murlidhar et al. [49]. In their study, 
the particle swarm optimization (PSO) algorithm was also 
used to train ELM. They concluded that the accuracy of 
the BBO-ELM model was better that PSO-ELM and ELM 
models. Han et al. [50] offered the random forest (RF) model 
to select the most effective parameters on the flyrock. Then, 
they used a Bayesian network (BN) to develop a probabilis-
tic predictive model to predict flyrock. Their results showed 

Fig. 1  Blasting phenomena [11]
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the effectiveness of RF and BN models in the flyrock predic-
tion field. In another study conducted by Zhou et al. [51], 
the Monte Carlo (MC) simulation and nonlinear models 
were implemented to estimate the flyrcok distance. Their 
analyses indicated the superiority of the proposed models 
in predicting the flyrock. The multiple discriminant analysis 
(MDA) model was developed by Hudaverdi and Akyidiz 
[52] to predict flyrock. According to their results, the MDA 
model can be introduced as a new and reliable model to pre-
dict blast-induced flyrock. Recently, Jahed Armaghani et al. 
[53] predicted the flyrock using a combination of gray wolf 
optimization (GWO) and support vector regression (SVR). 
In addition, two models, including multivariate adaptive 
regression splines (MARS) and principle component regres-
sion (PCR), were used for comparison aims. They showed 
that GWO was an excellent algorithm to improve the SVR 
performance, and its accuracy was found better than the 
MARS and PCR models.

In the present paper, a novel ANN coupled with adaptive 
dynamical harmony search (ANN-ADHS) is proposed to 
predict flyrock. The capability of ANN-ADHS is compared 
with the ANN and two hybrid ANN models coupled by the 
harmony search (ANN-HS) and PSO (ANN-PSO) models. 
To the best of our knowledge, any research has not as yet 
tested the efficiency of ANN-ADHS model in predicting the 
flyrock in different time scales.

2  Data for modeling process

To achieve the objectives defined for this study, a field study 
was conducted at three quarry sites of granite rock located 
near the city of Johor, Malaysia, including the Ulu Tiram, 
Pengerang, and Masai quarry sites (see Fig. 2). In all of the 
above-mentioned sites, rock strength ranges between 30 and 
110 MPa. The aggregate applied to construction purposes is 
produced in these sites using the drilling and blasting meth-
ods. The blast holes used are of the size of 75, 115, and 
150 mm in diameter.

The explosive material mainly applied to blasting opera-
tions is ammonium nitrate/fuel oil (ANFO) as well as dyna-
mite that is generally utilized for blast initiation. To stem 
the blast holes, fine gravels are used in these sites. In all the 
sites, flyrock inevitably takes place; thus, an accurate esti-
mation of flyrock for controlling the negative environmen-
tal impacts is of high importance. To this end, 82 blasting 
operations were inspected for the aim of measuring the five 
most effective variables on flyrock, i.e., spacing, burden, 
stemming, powder factor, and density. For each blast, the 
bench surface was colored, and to check the projection of 
flyrock, three video cameras were installed. Next, the videos 
were checked to determine the locations of the maximum 
rock projections; the flyrock distances were then measured 
using a measuring tape. In the modeling processes of the 
proposed models, the gathered datasets were divided into 
training (80% of the whole datasets) and testing (20% of 

Fig. 2  View of the fields investigated in this research
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the whole datasets) datasets. The statistical properties of the 
data for modeling process is listed in Table 1. Furthermore, 
Fig. 3 shows the sensitivity degree of input parameters on 
the output (flyrock). This figure shows that the spacing (with 
36%) and powder factor (with 27%) are the most sensitivity 
parameters on the flyrock in the studied cases.

3  Hybrid ANN model crumpled by ADHS

The input variables presented in Table 1 are utilized to pro-
vide a nonlinear relation for flyrock distance. The ANN 
model is used to connect input variables into flyrock dis-
tance as output variable with a nonlinear mathematical form. 
ANN can provide a nonlinear relation using three layers, i.e., 
input, hidden, and output layers, which are plotted in Fig. 4. 
In ANN, the nonlinear function is defined based on the fol-
lowing relations [54]:

where b and bj represent bias for output and the j-th hidden 
node, respectively, wj and wji, respectively, denote weights 
for output and hidden nodes which are used to connect the 
j-th hidden node to output node and to connect the i-th input 
node to the j-th hidden node, respectively, and φj represents 
nonlinear map as sigmoid function that is utilized for trans-
ferring the j-th hidden node. As can be seen in Fig. 2, the 
M-neuron in hidden layer can provide a nonlinear relation 
using the sigmoid function in this study.

(1)

Y = b +

M�

j=1

w
j
�j

�j =
1

1 + exp[−(bj +
n∑
i=1

w
ji
xi)]

,

The capability of the ANN model strongly depends on the 
weights (wj and wji) and biases (b and bj). Consequently, pro-
viding the best connection between input and output layers 
causes the highest capacity for an accurate and robust pre-
diction, which is obtained by optimum conditions of weights 
and biases. Therefore, the learning approach plays a vital 
role in establishing a robust and accurate model. The back-
propagation (BP) approach of MLNN is a popular training 
method applicable to determining the weights and biases. 
The metaheuristic optimization methods can be used to train 
ANN [55–59] for searching optimum coefficient vector of 
weights and biases θ = [b, w]. The ANN can be trained using 
optimization algorithms by minimizing the error between 
the observed and predicted data as below [55]:

Table 1  Statistical properties of 
the data for modeling process in 
the testing and training phases

Variables Train (56 data)

Xmin Xmax Mean STD COV Skewness R

Spacing (m) 2.65 3.9 3.368 0.422 0.125 − 0.417 − 0.716
Burden (m) 1.5 3.15 2.371 0.495 0.209 0.314 0.097
Stemming (m) 1.7 3.6 2.160 0.406 0.188 1.708 0.018
Powder Factor (kg/m3) 0.67 1.05 0.877 0.115 0.132 0.010 − 0.206
density (g/cm3) 2.3 2.8 2.576 0.166 0.065 − 0.254 0.143
Flyrock Distance (m) 61 324 213.684 67.780 0.317 − 0.534 1

Test (26 data)
Spacing (m) 2.65 4.000 3.23 0.401 0.124 0.233 − 0.395
Burden(m) 1.95 3.2 2.522 0.420 0.167 0.050 − 0.129
Stemming(m) 1.7 3.3 2.198 0.392 0.178 1.207 − 0.421
Powder Factor(kg/m3) 0.67 1.05 0.9216 0.106 0.115 − 0.723 − 0.634
density (g/cm3) 2.3 2.8 2.582 0.174 0.067 − 0.345 0.364
Flyrock Distance (m) 173 334 246.84 47.745 0.193 0.225 1

Fig. 3  Sensitivity degree of input variables on the output (flyrock)
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where N and O are the number of training data and observed 
flyrock, respectively. In this work, a novel hybrid AI-based 
ANN coupled with an optimization algorithm using adap-
tive music-inspired approach is proposed for approximating 
the flyrock.

In ADHS, a modified adjusting approach is presented 
based on the information of harmony memory at every itera-
tion. The new position of harmony elements is dynamically 
updated using two random adjusting procedures. Through 
the first procedure, the harmony elements are adjusted using 
the maximum and minimum values for each random vari-
able in harmony memory by a dynamic harmony memory 
considering rate (HMCR), which is computed as follows:

where k is the current iteration and NI is the total number 
of iterations. Whereas, the best memory of the variable is 
tuned using an adjusting step size, which is computed based 
on the information of harmony elements through the second 
random procedure. Through the second adjusting procedure, 
the dynamical pitch adjusting rate (PAR) is used to adopt the 
best harmony memory as follows:

(2)min MSE =
1

N

M∑

i=1

[O
i
− Y

i
]2,

(3)HMCR(k) = 0.95 + 0.1 ×

√
k

NI
− (

k

NI
)
2

,

(4)PAR(k) = 0.3 + 0.6 × [1 −
√
1 − k∕NI].

Using two dynamical relations presented in Eqs. (3) and 
(4), the new updating position for unknown coefficient vec-
tor is randomly given by the following schemes:

where �old and �new denote the old and new elements of har-
mony memory, respectively. r1, r2, r3 ∈ [0, 1] are random 
numbers between 0 and 1. �max

i
 and �min

i
 are maximum 

and minimum coefficients, respectively, for the i-th input 
variable in the harmony elements. �

U
 and �

U
 , respectively, 

denote upper and lower bounds of unknown coefficients, 
where �U = 1 and �U = −1 . In Eq. (5), bw(k) and �(k) are the 
dynamical bandwidth and controlling factor, respectively, 
proposed by the following relations:

where exp represents the exponential operator. In Eq. (7), 
bwi(k) is computed based on information of the harmony 
memory such as maximum and minimum harmony ele-
ments. The dynamical bandwidth is decreased based on the 

(5)𝜃new =

{
𝜃old ± 𝛾(k) × bwi(k) r1 ≤ HMCR(k)

𝜃L + r3 × (𝜃
U
− 𝜃

L
) r1 > 1 − HMCR(k)

(6)

𝜃new =

{
𝜃old ± 𝛾(k) × [𝜃max

i
− 𝜃min

i
] r2 ≤ PAR (k)

𝜃L + r3 × (𝜃
U
− 𝜃

L
) r2 > 1−PAR (k)

,

(7)bwi(k) =
�max
i

− �min
i

+ 0.0001

10
exp

[
−
10k

NI

]

(8)�(k) =

√
1 −

k

NI
,

Fig. 4  Structure of the ANN 
model for flyrock prediction
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increment of iterations, while it is controlled by the factor 
�(k) at the final iteration. During the second adjusting pro-
cess using Eq. (6), the movement of each harmony from the 
previous position is controlled by the coefficient 

√
1 − k∕NI . 

Therefore, a smaller value is given for �(k) × [�max
i

− �min
i

] 
at the final iteration; thus, a fixed position is obtained using 
this adjusting process. Unlike HS, the new position for har-
mony elements of the unknown coefficients is adjusted using 
two random steps with dynamical parameters. The algorithm 
of HS formulated by adjusting processes using Eqs. (5) and 
(6) is presented as follows:

The framework for training the ANN models using the 
ADHS optimization process is presented in Fig. 5. As can 
be seen in this figure, this method can be applied simply 
with three random strategies to update the new harmony 
elements: selection from the design domain, adjustment 
using HMCR, and adjustment using PAR factors. In the 
current study, this framework is used in a MATLAB code 
with number of harmony memory size (HMS) of 10, hidden 
nodes of M = 7, NI = 2000, and θ0= 1 − 2r, i.e., r ∈ [0, 1] . 
The predicted results obtained by the proposed ANN-ADHS 

are compared with those of the traditional ANN model with 
M = 7, ANN coupled with harmony search (HS) optimi-
zation (ANN-HS) with parameters of HMS = 10, M = 7, 
NI = 2000, HMCR = 0.95, PAR = 0.35, and bw = 0.005, and 
particle swarm optimization (PSO) with particle size of 10, 
M = 7, NI = 2000, c1= c2 = 2, ηmax = 0.9, ηmin = 0.3, V0 = 0.3r 
and θ0= 1 − 2r [59].

4  Results and discussion

The accuracy and agreements of the proposed hybrid AI-
based adaptive music-inspired intelligent models are com-
pared with those of ANN, ANN-HS, and ANN-PSO using 
five comparative statistics, i.e., the mean absolute error 
(MAE), root mean square error (RMSE), modified agreement 
index (d), and modified Nash and Sutcliffe efficiency (NSE) 
and maximum relative errors (ax (RE). This error matrix is 
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implemented to illustrate the agreement and accuracy level 
of the proposed models. The comparative statistics were 
evaluated using the following relations [60–72]:

(9)RMSE =

√√√√ 1

N

N∑

i=1

[S
i
− Y

i
]2

where N denotes the number of data, Si and Yi are the i-
th data points for the observed and predicted sets, respec-
tively, and S̄ stands for the average of observed data points. 
The RMSE and MAE values for each model are tended to 
zero; thus, it can be said that the predicted model provides 
accurate predictions with minimum errors. In Eq. (11), d 

(10)MAE =
1

N

N∑

i=1

|S
i
− Y

i
|

(11)d = 1 −

N∑
i=1

�Si − Yi�

N∑
i=1

�Si − S̄� + �Yi − S̄�
, 0 < d ≤ 1

(12)NSE = 1 −

N∑
i=1

�Si − Yi�

N∑
i=1

�Si − S̄�
, −∞ < NSE ≤ 1

(13)Max(RE) = max

{|Si − Yi|
Si

× 100, i = 1, 2, ...,N

}

Fig. 5  Framework of ANN-
ADHS for training the AI-based 
data driven model

Fig. 6  MSE of different optimization methods for training the ANN 
models
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varies from 0 to 1 with no-correlation with the perfect fit-
ness. The NSE in Eq. (12) presents the goodness-of-fitness 
of the model, where NSE = 1 indicates perfect agreement 
predictions. If Max (RE) is close to zero, then the predicted 
results using an AI-based model show the highest tendency.

Three optimization algorithms based on the training 
approach of ANN coupled with HS, PSO, and the proposed 
ADHS are compared in Fig. 6. In this figure, MSE is plot-
ted corresponding to the iteration of different optimization 
methods. It can be given form Fig. 6, the MSE of PSO and 
HS are provided similar to a value of 0.023. However, the 
ADHS shows the lowest MSE (0.006). This clearly shows 
the superiority of ADHS compared to PSO and HS algo-
rithms. In addition, the highly convergence rate is obtained 

Table 2  Comparative statistics 
for different ANN models in the 
training and testing phases

Methods Train Test

MAE RMSE d NSE Max(RE) MAE RMSE d NSE Max(RE)

ANN 11.289 14.517 0.893 0.791 41.956 19.177 24.319 0.751 0.521 50.399
ANN-PSO 11.248 14.470 0.894 0.791 41.760 19.174 24.286 0.751 0.521 50.170
ANN-HS 8.460 10.804 0.920 0.843 25.528 18.038 22.362 0.746 0.549 41.441
ANN-ADHS 4.535 5.850 0.958 0.916 15.800 14.784 17.871 0.803 0.630 32.836

Fig. 7  MAE/NSE ratio of different ANN models in the training and 
testing phases

Fig. 8  Scatterplot of different 
ANN models in the training and 
testing phases
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using the adjusting process proposed by the dynamical adap-
tive formulation in ANN-based ADHS optimization proce-
dure. Two dynamical adjusting processes in ANN-ADHS 
extracted from the information of harmony elements can 
provide acceptable weights and biases compared to ANN-
PSO and ANN-HS.

The performances of different hybrid intelligent mod-
els, i.e., ANN-PSO, ANN-HS, and ANN-SDHS in terms 

of accuracy (i.e., the lowest MAE and RMSE), tendency 
(i.e., the lowest Max (RE)), and agreement (i.e., the highest 
d and NSE) are compared for the testing and training data-
base in Table 2. It is worth mentioning that 56 and 26 data-
sets were used in training and testing phases, respectively. 
Table 2 shows that the lowest MAE, RMSE, and Max (RE) 
values were obtained by the ANN-ADHS model. In addi-
tion, the highest d and NSE values were also obtained from 

Fig. 9  Observed and predicted 
results of the samples in the 
testing and training phases
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the ANN-ADHS model. These values clearly indicated the 
superiority of the ANN-ADHS model in predicting flyrock 
compared to the others.

To more reliably compare the prediction performance of 
the models, the MAE to NSE ratios (MAE/NSE) were com-
pared for different ANN models trained by the traditional 
algorithm, HS, PSO, and ADHS. The lowest MAE/NSE 
shows the model with the best level of accuracy and agree-
ment. The MAE/NSE ratios for different BP optimization 
methods are plotted in Fig. 7 for both training and testing 
predicted data. Generally, the MAE/NSE for ANN, ANN-
HS, and ANN-PSO showed similar values for both testing 
and training phases. According to Fig. 7, the ANN-ADHS 
provides the best predictions among the other models, while 
the ANN-HS shows the worst results. To evaluate the ten-
dency of the proposed BP using ADHS in ANN model for 
flyrock prediction, the predicted results with respect to the 
observed flyrock is plotted and presented as scatter points 
for training and testing phases in Table 2. The correlation 
coefficient (R2) between the predicted and observed data was 
implemented to compare the obtained results. If  R2 tends to 
1, the predicted model provides the perfect prediction with 
top tendency. As can be seen in Fig. 8, the maximum R2 val-
ues for both training and testing phases were obtained by the 
ANN-ADHS model. In other words, the ANN-ADHS model 
outperformed the others in terms of flyrock prediction. The 

ANN-HS, ANN-PSO, and ANN models were ranked next, 
respectively.

Furthermore, a view of the predicted flyrock values for 
all 82 datasets (both training and testing phases) using all 
the predictive models is illustrated in Fig. 9. According to 
this figure, the ANN-ADHS model, with the R2 of 0.991 and 
0.929 in training and testing phases, respectively, was found 
as the most accurate model in predicting the flyrock in the 
cases studied in this paper. The ratios of the uncertainties of 
the predicted ANN models to the predicted data of flyrock 
distance (O/Y) are presented in Fig. 10. The average (Mean) 
and standard deviation (STD) are presented in Fig. 10 for the 
investigated models. In general, the model has a perfect pre-
diction when STD and Mean are tended to 0 and 1, respec-
tively. The model with the lowest STD can be introduced as 
a predictive model with the minimum uncertainty that can 
offer the most reliable prediction. As can be seen in Fig. 10, 
the proposed ANN-ADHS provides the lowest STD (0.049). 
This means that this model has the lowest uncertainty of 
predictions among the other models, i.e., ANN, ANN-HS, 
and ANN-PSO. The HS-based training algorithm of ANN 
shows a STD value (0.075) better than that of ANN (0.091) 
and ANN-PSO (0.09).

Fig. 10  Uncertainty (O/Y) of 
different models
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5  Conclusion

Control of the flyrock induced by blasting is always a chal-
lenge for engineers working in surface mines. The aim of 
this study is to propose a novel and accurate model, namely 
the ANN-ADHS model, for flyrock prediction. To the best 
of our knowledge, no research has tested the efficiency of 
the ANN-ADHS model in terms of predicting flyrock in dif-
ferent time scales as yet. To achieve the objectives defined 
for this research, three quarry sites located near the city of 
Johor, Malaysia, were investigated and the required data-
sets were measured. The predictive models were first trained 
using 56 datasets and then tested and verified using 26 data-
sets. After the modeling process, the performance of the 
models was evaluated using five comparative statistics, i.e., 
MAE, RMSE, d, NSE, and R2. The conclusions of this study 
are as follow:

• The ANN-ADHS model was found superior to the other 
models investigated in this study (i.e., ANN-HS, ANN-
PSO, and ANN) regarding the prediction of flyrock. R2 of 
testing in ANN-ADHS model was about 0.93, while that 
value of ANN-HS, ANN-PSO, and ANN models were 
about 0.871, 0.832, and 0.831, respectively. Accordingly, 
the ANN-ADHS model was found capable of providing 
greatest accuracy in the field of flyrock prediction.

• The ADHS was found a powerful algorithm for improv-
ing the ANN performance, and also it showed its high 
capacity for being generalized.

• The ANN-ADHS model proposed in this study can be 
applied to predicting other blasting impacts such as 
ground vibration and air overpressure.
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