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Abstract
The main purpose of this study is to respond to an important question in the field of structural engineering: is the seismic 
collapse capacity of optimally designed concentrically steel braced frames acceptable or not? The present work includes 
two phases: performance-based design optimization and seismic collapse safety assessment. In the first phase, three nature-
inspired metaheuristic algorithms, namely improved fireworks algorithm, center of mass optimization, and enhanced col-
liding-bodies optimization are employed to carry out the optimization task. In the second phase, seismic collapse capacity 
of the optimally designed concentrically steel braced frames is evaluated by performing incremental dynamic analysis and 
generating fragility curves. Two design examples of 5- and 10-story concentrically steel braced frames with two different 
topologies of braces are presented. The numerical results indicate that the center of mass optimization algorithm outperforms 
the other algorithms. However, all of the optimal designs found by all algorithms are of acceptable seismic collapse safety.

Keywords  Performance-based design · Optimization · Incremental dynamic analysis · Seismic safety · Fragility 
assessment · Concentrically braced frame

1  Introduction

The implementation of classic performance-based design 
(PBD) is based on the selection of a set of performance 
objectives defined in terms of performance levels and 
seismic hazards [1]. In the framework of PBD, structural 
responses evaluated with the aid of nonlinear structural 
analysis need to be compared with acceptable limits which 
are known as acceptance criteria. These limits are catego-
rized into two groups, inter-story drift (global level) and 
component demand limits (local level). In recent years, PBD 
methodologies have been incorporated in the structural opti-
mization processes, and a few studies have been conducted 
in this area. Fragiadakis et al. [2] have done an overview 
of procedures for seismic assessment of structures. They 
have mentioned that to decrease the seismic risks, engineers 
should estimate the seismic safety of structures. Gholizadeh 

and Fattahi [3] have proposed a multi-objective metaheuris-
tic algorithm to optimize steel frames considering seismic 
collapse safety of the frames. Hassanzadeh and Gholiza-
deh [4] proposed a methodology to determine the optimal 
placement of the braces in concentrically steel braced frames 
(CBFs) in the framework of PBD. Degertekin et al. [5] pro-
posed a school-based optimization algorithm for the design 
of steel frames in the context of PBD.

One of the major concerns in the field of structural engi-
neering is to assess the seismic safety of the structures and 
one of the best ways to achieve this is the implementation of 
incremental dynamic analysis (IDA). The basic principles of 
IDA were presented by Bertero [6]. It was then introduced 
to the seismic hazard analysis of nonlinear systems, mainly 
for drift demand evaluation of frame structures [7]. Cor-
nell and Vamvatsikos [8, 9] presented the principles for the 
IDA procedure and verified its efficiency on steel moment 
frames. Brunesi et al. [10] investigated the progressive col-
lapse assessment of low-rise reinforced concrete frames by 
implementing fragility analysis.

CBFs are commonly used lateral-load resisting structural 
systems in seismic prone regions. During the last decades, 
extensive studies have been achieved on the different aspects 
of these structures [11, 12]. In recent years, metaheuristic 

 *	 Saeed Gholizadeh 
	 s.gholizadeh@urmia.ac.ir

1	 Department of Civil Engineering, Urmia University, Urmia, 
Iran

2	 Civil Engineering Department, Faculty of Engineering, 
Antalya Bilim University, Antalya, Turkey

http://orcid.org/0000-0001-7001-2697
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-01096-7&domain=pdf


986	 Engineering with Computers (2022) 38:985–997

1 3

algorithms, which are more applicable and efficient than 
gradient-based methods, have been utilized to tackle sophis-
ticated structural optimization problems. The present study 
deals with the PBD optimization of CBF structures using 
three physics-based metaheuristic algorithms. For this pur-
pose, improved fireworks algorithm (IFWA) [13], center of 
mass optimization (CMO) [14], and enhanced colliding-
bodies optimization (ECBO) [15] are employed in the pre-
sent work. To assess the seismic collapse safety of optimally 
designed CBFs, fragility curves are generated by performing 
IDA based on the methodology of FEMA-P695 [16]. Two 
design examples including 5- and 10-story concentrically 
steel braced frames with two different patterns of place-
ment of braces in the frames are illustrated. The obtained 
results demonstrate that all the performance-based optimally 
designed CBFs have acceptable seismic collapse capacity.

2 � Formulation of PBD optimization problem

Performance objectives of the present study are as follows: 
immediate occupancy (IO), life safety (LS) and collapse pre-
vention (CP) performance levels correspond, respectively, 
to 50%, 10%, and 2% probability of exceedance in 50 years. 
Moreover, pushover analysis, based on the displacement 
coefficient method [1], is implemented to evaluate the seis-
mic structural response of CBFs, in which target displace-
ment is defined as follows:

where �t is the target displacement, C0 is a modification fac-
tor linking spectral displacement for an equivalent SDOF 
system to the roof displacement of a multistory structure, 
and C1 and C2 are modification factors to consider the effects 
of inelastic system degradation and P − Δ effects, respec-
tively [1]. Furthermore, Te represents the effective funda-
mental period, g is gravity acceleration, and Sa is spectral 
acceleration.

In this study, OpenSees Platform [17] is utilized to per-
form pushover and incremental dynamic analyses and other 
required computer programs in the optimization process are 
coded in MATLAB [18].

Design variables For the PBD optimization problem 
of CBFs, the vector of design variables, X, is defined as 
follows:

where xCi, xBj, and xBRk are sizing design variables of ith 
group of columns, jth group of beams and kth group of 

(1)�t = C0C1C2Sa
T2
e

4�2
g,

(2)
X = {xC1 … xCi … xCnc xB1 … xBj … xBnb xBR1 … xBRk … xBRnbr}

T

braces, respectively; nc, nb and nbr, respectively, denote the 
number of columns, the number of beams and the number of 
braces included in the structure.

Design constraints Geometric, strength, and PBD con-
straints are considered during the optimization process of 
CBFs. The geometric constraints are checked to ensure 
the consistency of dimensions of beams and columns in 
all framing joints [14]. As per the strength constraints, all 
structural elements must be checked for the gravity load 
combinations based on LRFD-AISC [19]. To check the 
PBD constraints, pushover analysis is conducted to evalu-
ate the structural response at each performance level. The 
inter-story drift constraint (gISD) for each hazard level can 
be defined as follows:

where ISD is the maximum inter-story drift at each perfor-
mance level and ISDall is its acceptance limit.

The plastic rotation constraint (gPR) for the deforma-
tion-controlled columns at each performance level is for-
mulated as follows:

where θ and θall are, respectively, maximum plastic rotation 
and permissible plastic rotation demands at each perfor-
mance level according to ASCE 41-13 [1].

The following constraint for the force-controlled col-
umns (gFC) should be satisfied:

where PUF and MUF are axial force and moment of column 
due to the combination of gravity and seismic loads at each 
performance level, respectively. Pcl and Mcl are, respec-
tively, lower-bound compression and moment strength of 
the column.

The axial deformation constraint (gAD) of the braces at 
each performance level is expressed as follows:

where Δ and Δall are, respectively, the absolute axial defor-
mation of the braces and its permissible values at each per-
formance level according to ASCE 41-13 [1].

Equation (6) is additionally employed to control the 
axial deformation of the columns in tension.

Objective function The main purpose of this study is 
to minimize the structural weight of the CBFs, and the 
objective function is formulated as:

(3)gISD =
ISD

ISDall
− 1,

(4)gPR =
�

�all
− 1

(5)gFC =
PUF

Pcl

+
MUF

Mcl

− 1,

(6)gAD =
Δ

Δall

− 1
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where W is structural weight; ρi and Vi are the weight den-
sity and volume of ith element, respectively; and ne is the 
number of elements.

To implement the design constraints in the optimization 
process, the exterior penalty function method (EPFM) [20] 
is utilized. In this case, the pseudo-objective function, Φ, 
is represented as follows:

where rp and ng are a penalty coefficient and the number of 
design constraints, respectively.

3 � Metaheuristic algorithms

In this work, three different metaheuristic algorithms, 
improved fireworks algorithm, center of mass optimization, 
and enhanced colliding-bodies optimization are used as the 
optimizers. The basic concepts of these metaheuristic algo-
rithms are explained below.

3.1 � Improved fireworks algorithm

Fireworks algorithm (FWA) is based on the simulation of 
fireworks explosion to a kind of search process [21]. The 
sky, including fireworks, refers to a response domain, and 
the sparks explosion represents evaluation and searches for 
answers. The updating process, the selection and generation 
of next stage fireworks, are repeated until the best solution is 
found. Various studies have been conducted to improve this 
algorithm [22] and one of them is an improved fireworks algo-
rithm (IFWA) summarized as follows:

	 i.	 A total number of n fireworks are randomly initial-
ized and their objective values are calculated. The best 
positions are selected as the next stage firework.

	 ii.	 The explosion amplitude, A0, and the number of sparks 
are specified. The best number of sparks is determined 
by sensitivity analysis and the amplitude is taken as 
a function of lower and upper bounds of design vari-
ables (i.e., XL and XU) as follows:

	 iii.	 The spark generation is achieved as follows:

(7)W(X) =

ne∑

i=1

�i × Vi,

(8)Φ
(
X, rp

)
= W(X) ×

(

1 + rp

ng∑

m=1

(
max

{
0, gm(X)

})2
)

,

(9)A0 = 0.5
(
XL + XU

)

(10)
X̂(t + 1) = X(t + 1) + R

1
(t) ⋅ A(t) + R

2
(t) ⋅ (X(t + 1) − X(t))

		    where R1 and R2 are random value vectors in [− 1, 
+1] interval; X(t) is a firework in iteration t.

	 iv.	 If the best spark in current iteration ( X̂fittest(t) ) is bet-
ter than the corresponding firework, X(t), it will be 
selected as the next step firework, and its amplitude 
will be expanded by an amplification factor (CA):

		    Otherwise, it will not be updated and the explosion 
amplitude will contract by a reduction coefficient (CR) 
to narrow down the search domain: 

		    The values of CA and CR are of the most important 
components in IFWA, which should be determined by 
sensitivity analysis.

	 v.	 The search for optimum solution process is carried out 
until a termination criterion is satisfied.

3.2 � Center of mass optimization

Center of mass optimization (CMO) algorithm is inspired 
by the theory of the center of mass. As the mass of search 
agents are smaller, their distance to the center of mass will 
be larger and vice versa. The mass of ith particle, Xi, is deter-
mined as follows:

In each iteration, particles are sorted and divided into 
two groups based on their masses. The sorted particles in 
the first group are paired with their corresponding ones in 
the second group. The ability to establish a suitable balance 
between exploration and exploitation is one of the essential 
characteristics of the CMO algorithm. The particles’ posi-
tion updating in the CMO algorithm is as follows:

	 i.	 A controlling parameter (CP) whose value is decreased 
from 1.0 in the first iteration to 0.0 in the last iteration 
(tmax) is defined as follows:

	 ii.	 For each pair of particles, in iteration t, the position of 
center of mass (XC) and the distance (D) of the parti-
cles are evaluated as follows:

(11)A(t + 1) = CA ⋅ A(t)

(12)A(t + 1) = CR ⋅ A(t)

(13)mi =
1

Φ
(
Xi, rp

) .

(14)CP(t) = exp(−5t∕tmax)

(15)XC(t) =
mg1Xg1(t) + mg2Xg2(t)

mg1 + mg2

(16)D(t) =
||
|
Xg1(t) − Xg2(t)

||
|
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where Xg1 and Xg2 are particles in the first and second 
groups, respectively, and mg1 and mg2 are their cor-
responding masses.

	 iii.	 In exploration stage, the updating of the position of 
each pair of particles is accomplished as follows:

where R1 to R4 are the vectors of random numbers 
within the range of [0, 1]; Xbest is the best solution.

	 iv.	 In exploitation stage, the position of each pair of par-
ticles is updated as follows:

where R5 and R6 are the vectors of random numbers 
generated in the range [0, 1].

3.3 � Enhanced colliding‑bodies optimization

The most important feature of enhanced colliding-bodies 
optimization (ECBO) is that this metaheuristic algorithm 
has no internal parameter to be tuned. The ECBO uses a 
mutation operator to reduce the risk of getting stuck in local 
optima. Moreover, it has a memory to remember some of 
the historically best solutions during the search process. The 
mass of each particle is defined by Eq. (13) and the sorted 
particles based on their masses are divided into stationary 
(S) and moving (M) groups. The particles in the group S are 
paired with those in the group M.

The main steps of the ECBO algorithm are as follows:

	 i.	 The velocities of particles S and M groups are evalu-
ated according to the following formula:

	 ii.	 The updating of position of bodies in both S and M 
groups is implemented using the following formula:

(17)If Dt > CP =

{
Xg1(t + 1) = Xg1(t) − R1(t).

(
XC(t) − Xg1(t)

)
+ R2(t).

(
Xbest(t) − Xg1(t)

)

Xg2(t + 1) = Xg2(t) + R3(t).
(
XC(t) − Xg2(t)

)
+ R4(t).

(
Xbest(t) − Xg2(t)

)

(18)

If Dt ≤ CP =

{
Xg1(t + 1) = Xg1(t) + R

5
(t).

(
Xg1(t) − Xg2(t)

)

Xg2(t + 1) = Xg2(t) + R
6
(t).

(
Xg1(t) − Xg2(t)

)

(19)VS(t + 1) =

(
(1 + �)mM

mS + mM

)

VM(t)

(20)VM(t + 1) =

((
mM + �mS

)

mS + mM

)

VM(t)

(21)� = 1 −
t

tmax

(22)XS(t + 1) = XS(t) + RS(t).VS(t + 1)

where RS and RM are vectors of random numbers 
selected from the range of [− 1, 1].

	 iii.	 To improve the behavior of algorithm, a parameter is 

introduced to decide whether to change a component 
of intended CB or not. The parameter pro, which is a 
constant value between 0 and 1 is compared with a 
random number rni which is taken from interval (0,1), 
and if rni < pro, a random component of the ith CB is 
selected to regenerate.

	 iv.	 To save some previously found CBs positions and their 
corresponding masses, a colliding memory (CM) is 
defined. The content of CM is updated continuously 
as the optimization proceeds.

4 � Collapse safety assessment of CBFs

In this study, the seismic collapse safety of optimally 
designed CBFs is evaluated using the procedures outlined 
in FEMA-P695. Therefore, numerous response-history anal-
yses must be performed for a number of far-field ground 
motions given in FEMA-P695 which are scaled to maximum 
considered earthquake (MCE). The 5% damped spectral 
acceleration is utilized as the intensity measure (IM), and 
the maximum inter-story drift is selected as the engineering 
demand parameter (EDP). After obtaining the IDA curves, 
the fragility curves must be extracted to be subsequently 
used in the collapse safety assessment procedure.

The collapse margin ratio (CMR) is defined as the ratio of 
median collapse probability where half of the records cause 
collapse to the spectral acceleration of the MCE intensity 
level.

The adjusted collapse margin ratio (ACMR) is defined to 
consider the probabilistic scattering in the ground records 
which can seriously affect the collapse margin ratio. The 
ACMR can be calculated as follows:

where SSF is the spectral shape factor and its values are 
given in Table 7-1 of FEMA-P695.

To take into account various sources of uncertainty, such 
as record-to-record ( �RTR ), design requirements ( �DR ), test 

(23)XM(t + 1) = XM(t) + RM(t).VM(t + 1)

(24)CMR =
IM50%

IMMCE

.

(25)ACMR = SSF × CMR,
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data ( �DT ), and modeling ( �MDL ), the total system collapse 
uncertainty, �TOT is incorporated into the global collapse 
prediction procedure as calculated below:

In this study, the values of �RTR , �DR , �DT , and �MDL are 
taken as 0.4, 0.1, 0.2, and 0.2, respectively [4].

5 � Numerical results

The CBF structures are modeled following pinned-ended 
braces and beams. The nonlinear behavior of columns is 
modeled by a simple bilinear stress–strain relationship with 
strain hardening (0.3% of the elastic modulus). Moreover, 
for braces the uniaxial phenomenological model is consid-
ered in accordance with FEMA-274 [23]. In this work, the 
following collapse criteria are considered for incremental 
dynamic analysis [4]:

•	 The maximum inter-story drift reaches 0.05.
•	 For an IDA curve a local slope decreases to a value less 

than 0.2 of the elastic slope
•	 The nonlinear time-history structural analysis does not 

converge.

In this study, two design examples including three-bays, 
5- and 10-story CBFs with two different placements of 
braces, in the middle span (MS), and the side spans (SS), 
are considered as shown in Fig. 1. For these examples, 
30 independent PBD optimization runs are carried out by 

(26)�TOT =

√
�2
RTR

+ �2
DR

+ �2
DT

+ �2
MDL

.

IFWA, ECBO and CMO metaheuristics and the results are 
compared in terms of convergence rate and the best, average, 
and standard deviation (SD) of optimized weight.

The modulus of elasticity and the yield stress are, respec-
tively, 200 GPa and 344.74 MPa. The dead and live loads 
applied on beams are 2500 and 1000 kg/m, respectively. 
During the optimization process, the sections of beams, col-
umns and beams are selected from the database of W-shaped 
steel sections listed in Table 1.

5.1 � 5‑story CBF

Table 2 compares the optimal designs of 5-story CBF found 
by different metaheuristic algorithms. For all the methods, 
the number of particles and maximum number of iterations 
are 30 and 250, respectively. Convergence histories of best 
optimization runs for all algorithms are compared in Fig. 2.

It can be observed that CMO in both the MS and SS opti-
mization cases outperforms IFWA and ECBO in terms of 
best weight, average weight and convergence rate.

The values of Δ/Δall of braces and inter-story drift profiles 
at different performance levels are, respectively, depicted 
in Figs. 3 and 4 for the best MS and SS designs found by 
IFWA. These results indicate that the axial deformation con-
straint of braces at IO performance level dominates the opti-
mal designs for both the MS and SS models. Furthermore, 
the inter-story drifts and other responses are much less than 
their acceptable limits.

The IDA and collapse fragility curves of the optimal 
designs found by IFWA, CMO, and ECBO algorithms for 
MS and SS 5-story CBF are presented in Figs. 5, 6 and 7, 
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Fig. 1   Three-bays, 5- and 10-story CBFs and their grouping details
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Table 1   Database of steel sections

Columns Beams Bracings

No Profile No Profile No Profile No Profile No Profile No Profile

1 W14 × 48 13 W14 × 257 1 W12 × 19 13 W21 × 50 1 HSS3 × 3 × 0.188 13 HSS5 × 5 × 0.500
2 W14 × 53 14 W14 × 283 2 W12 × 22 14 W21 × 57 2 HSS3 × 3 × 0.250 14 HSS6 × 6 × 0.500
3 W14 × 68 15 W14 × 311 3 W12 × 35 15 W24 × 55 3 HSS3 × 3 × 0.313 15 HSS6 × 6 × 0.625
4 W14 × 74 16 W14 × 342 4 W12 × 50 16 W21 × 68 4 HSS3 × 3 × 0.375 16 HSS8 × 8 × 0.500
5 W14 × 82 17 W14 × 370 5 W18 × 35 17 W24 × 62 5 HSS3-1/2 × 3–1/2 × 0.313 17 HSS7 × 7 × 0.625
6 W14 × 132 18 W14 × 398 6 W16 × 45 18 W24 × 76 6 HSS3-1/2 × 3–1/2 × 0.375 18 HSS8 × 8 × 0.625
7 W14 × 145 19 W14 × 426 7 W18 × 40 19 W24 × 84 7 HSS4 × 4 × 0.375 19 HSS9 × 9 × 0.625
8 W14 × 159 20 W14 × 455 8 W16 × 50 20 W27 × 94 8 HSS4-1/2 × 4–1/2 × 0.375 20 HSS10 × 10 × 0.625
9 W14 × 176 21 W14 × 500 9 W18 × 46 21 W27 × 102 9 HSS4 × 4 × 0.500 21 HSS10 × 10 × 0.750
10 W14 × 193 22 W14 × 550 10 W16 × 57 22 W27 × 114 10 HSS5 × 5 × 0.375 22 HSS12 × 12 × 0.750
11 W14 × 211 23 W14 × 605 11 W18 × 50 23 W30 × 108 11 HSS4-1/2 × 4–1/2 × 0.500 23 HSS14 × 14 × 0.875
12 W14 × 233 24 W14 × 665 12 W21 × 44 24 W30 × 116 12 HSS6 × 6 × 0.375

Table 2   Optimal designs for 5-story CBF

Variables Middle span (MS) Side spans (SS)

IFWA CMO ECBO IFWA CMO ECBO

C1 W14 × 48 W14 × 48 W14 × 48 W14 × 82 W14 × 53 W14 × 82
C2 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 68
C3 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 68
C4 W14 × 132 W14 × 132 W14 × 132 W14 × 82 W14 × 68 W14 × 82
C5 W14 × 53 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 53
C6 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 53
Bm1 W12 × 35 W12 × 35 W12 × 35 W12 × 35 W12 × 35 W12 × 35
Br1 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS10 × 10 × 0.625 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375
Br2 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375
Br3 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375
Br4 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375
Br5 HSS6 × 6 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375 HSS4 × 4 × 0.375 HSS4 × 4 × 0.375 HSS4 × 4 × 0.375
Best (kg) 12,635.8 12,459.2 12,897.7 13,222.7 12,469.1 13,900.9
Average (kg) 14,035.9 13,933.4 14,471.9 14,084.5 14,140.1 14,671.5
SD (kg) 1032.5 1091.0 1281.2 732.9 768.6 582.6
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Fig. 2   Convergence histories of IFWA, CMO, and ECBO for a MS and b SS 5-story CBFs
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respectively. The details of seismic assessment results are 
also presented in Table 3.

The results of the seismic assessment for 5-story CBFs 
demonstrate that the ACMR values for all optimal 5-story 
CBFs are much higher than permissible ACMR, which 
proves that optimal designs have considerable collapse 
safety. Furthermore, the solutions found by the CMO algo-
rithm have the least structural weight and also have remarka-
ble collapse capacity. It is worth-mentioning that the optimal 
SS 5-story CBF found by the ECBO algorithm has the high-
est ACMR, but it is not chosen as the best solution because 
it has the highest structural weight.

5.2 � 10‑story CBF

The optimal designs of 10-story CBF found by IFWA, 
CMO, and ECBO algorithms are given in Table 4. In this 
example, 50 particles at 250 iterations are considered for 

all the algorithms during the optimization process. Fig-
ure 8 depicts the convergence curves of these metaheuris-
tic algorithms during the optimization process.

The results demonstrate the superiority of CMO over 
the IFWA and ECBO in terms of best weight, average 
weight and convergence rate in both the MS and SS opti-
mization cases.

For the optimal design found by CMO, Fig. 9 shows the 
values of Δ/Δall for braces at different performance levels 
indicating that for both the optimal MS and SS models 
the axial deformation constraint of braces at IO level is 
the active constraint. Moreover, Fig. 10 shows the inter-
story drifts along with the height of the structures. It can 
be seen that the inter-story drift constraints at all perfor-
mance levels are not active. However, for the MS model 
the maximum inter-story drift at IO level is close to the 
limit value. The other constraints are not active in this 
optimization problem.
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Fig. 7   Collapse fragility curves 
for MS and SS models of opti-
mal 5-story CBFs

0

0.2

0.4

0.6

0.8

1

0 5 10 15

C
ol

la
ps

e 
Pr

ob
ab

ili
ty

Sa (T1,5%) (g)

CMO
IFWA
ECBO

0

0.2

0.4

0.6

0.8

1

0 5 10 15

C
ol

la
ps

e 
Pr

ob
ab

ili
ty

Sa (T1,5%) (g)

CMO
IFWA
ECBO

Table 3   Details of seismic 
assessment of optimal 5-story 
CBFs

Optimal 
designs

Weight (kg) IMMCE (g) IM50% (g) CMR SSF ACMR Acceptable 
ACMR [14]

Pass/fail

MS IFWA 12,635.8 1.44 6.38 4.43 1.13 5.01 1.52 Pass
CMO 12,459.2 1.44 6.35 4.41 1.13 4.98 1.52 Pass
ECBO 12,897.7 1.44 6.22 4.32 1.13 4.88 1.52 Pass

SS IFWA 13,222.7 1.44 4.74 3.29 1.15 3.78 1.52 Pass
CMO 12,469.1 1.44 4.72 3.28 1.15 3.77 1.52 Pass
ECBO 13,900.9 1.44 6.35 4.41 1.15 5.07 1.52 Pass
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For the optimal designs of 10-story CBF found by 
IFWA, CMO, and ECBO algorithms, the IDA and col-
lapse fragility curves are shown in Figs. 11, 12 and 13, 
respectively. Moreover, Table 5 summarizes the details of 
seismic assessment results.

It can be observed from Table 5 that for the optimal 
10-story CBFs the computed ACMR values are higher 
than the acceptable one specified by FEMA-P695. This 
means that these optimally designed structures are of 
acceptable seismic collapse safety. In addition, the results 

demonstrate that the ACMR values of SS models of the 
optimal 10-story CBFs are higher than those of the MS 
models.

6 � Conclusions

The present paper is devoted to assess the seismic collapse 
capacity of optimally designed steel concentrically braced 
frames in the context of performance-based design. To 

Table 4   Optimal designs for 10-story CBF

Variables Middle span (MS) Side spans (SS)

IFWA CMO ECBO IFWA CMO ECBO

C1 W14 × 48 W14 × 48 W14 × 48 W14 × 193 W14 × 193 W14 × 193
C2 W14 × 48 W14 × 48 W14 × 48 W14 × 132 W14 × 145 W14 × 145
C3 W14 × 48 W14 × 48 W14 × 48 W14 × 82 W14 × 82 W14 × 132
C4 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48
C5 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48
C6 W14 × 311 W14 × 311 W14 × 311 W14 × 211 W14 × 193 W14 × 193
C7 W14 × 257 W14 × 257 W14 × 233 W14 × 145 W14 × 145 W14 × 145
C8 W14 × 145 W14 × 132 W14 × 145 W14 × 132 W14 × 82 W14 × 132
C9 W14 × 68 W14 × 68 W14 × 68 W14 × 48 W14 × 48 W14 × 48
C10 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48 W14 × 48
Bm1 W12 × 35 W12 × 35 W12 × 35 W12 × 35 W12 × 35 W12 × 35
Br1 HSS8 × 8 × 0.625 HSS8 × 8 × 0.625 HSS8 × 8 × 0.625 HSS6 × 6 × 0.625 HSS6 × 6 × 0.625 HSS6 × 6 × 0.625
Br2 HSS8 × 8 × 0.625 HSS8 × 8 × 0.625 HSS8 × 8 × 0.625 HSS6 × 6 × 0.500 HSS6 × 6 × 0.625 HSS6 × 6 × 0.500
Br3 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500
Br4 HSS8 × 8 × 0.625 HSS8 × 8 × 0.625 HSS10 × 10 × 0.625 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500
Br5 HSS8 × 8 × 0.500 HSS8 × 8 × 0.625 HSS8 × 8 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.625 HSS6 × 6 × 0.500
Br6 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS7 × 7 × 0.625 HSS6 × 6 × 0.500 HSS7 × 7 × 0.625 HSS6 × 6 × 0.375
Br7 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375
Br8 HSS8 × 8 × 0.500 HSS8 × 8 × 0.500 HSS10 × 10 × 0.625 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375 HSS6 × 6 × 0.375
Br9 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.500 HSS6 × 6 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375
Br10 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375 HSS6 × 6 × 0.375 HSS4 × 4 × 0.375 HSS5 × 5 × 0.375 HSS5 × 5 × 0.375
Best (kg) 34,772.4 34,603.7 35,154.7 37,617.0 37,607.7 38,406.9
Average (kg) 40,025.6 38,562.2 39,513.6 39,852.0 39,438.0 39,683.4
SD (kg) 4038.5 3389.2 3418.6 1128.1 1061.5 834.4

Fig. 8   Convergence histories of 
IFWA, CMO, and ECBO for a 
MS and b SS 10-story CBFs
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perform the optimization task three efficient metaheuristic 
algorithms, namely improved fireworks algorithm (IFWA), 
center of mass optimization (CMO), and enhanced collid-
ing-bodies optimization (ECBO), are utilized. Incremen-
tal dynamic analysis (IDA) is performed to generate the 
seismic collapse fragility curves to compute the adjusted 
collapse margin ratio (ACMR) of optimally designed 
concentrically braced frames. Two illustrative examples 
of three-bays, 5- and 10-story frames with two different 
topologies of bracing systems, namely in the middle span 

(MS), and the side spans (SS), are presented and the main 
findings of the present work are summarized as follows:

•	 CMO outperforms IFWA and ECBO in terms of opti-
mal weight and convergence rate in the both MS and 
SS models of the 5- and 10-story frames.

•	 Axial deformation constraints of braces at IO perfor-
mance level are active constraints in all the presented 
numerical examples.
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Fig. 9   Δ/Δall of braces for optimum designs found by IFWA for a MS and b SS 10-story CBFs
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Fig. 10   Inter-story drift profile of optimum designs found by IFWA for a MS and b SS 10-story CBFs
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Fig. 11   IDA curves for MS model of optimal 10-story CBFs found by a IFWA, b CMO and c ECBO
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Fig. 12   IDA curves for SS model of optimal 10-story CBFs found by a IFWA, b CMO and c ECBO
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•	 The MS and SS models of optimal 5- and 10-story 
braced frames found by all algorithms have acceptable 
seismic collapse capacity.

•	 Mean ACMR values of MS and SS models of optimally 
designed 5-story braced frame are, respectively, 4.96 and 
4.21, which are significantly larger than the acceptable 
ACMR of 1.52.

•	 For the MS and SS models of optimally designed 
10-story braced frame, mean ACMR values are, respec-
tively, 2.22 and 2.75, which are larger than the acceptable 
ACMR of 1.52.

•	 For the optimal 5-story braced frames, the mean ACMR 
of MS model is higher than that of SS model. This means 
that the MS model is of higher seismic collapse capacity 
compared to the SS model. Conversely, in the case of 
10-story braced frames the SS model has higher seismic 
collapse safety than the MS model.
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