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Abstract
In this paper, we develop an efficient finite difference/spectral method to solve a coupled system of nonlinear multi-term 
time-space fractional diffusion equations. In general, the solutions of such equations typically exhibit a weak singularity at 
the initial time. Based on the L1 formula on nonuniform meshes for time stepping and the Legendre–Galerkin spectral method 
for space discretization, a fully discrete numerical scheme is constructed. Taking into account the initial weak singularity 
of the solution, the convergence of the method is proved. The optimal error estimate is obtained by providing a generalized 
discrete form of the fractional Grönwall inequality which enables us to overcome the difficulties caused by the sum of Caputo 
time-fractional derivatives and and the positivity of the reaction term over the nonuniform time mesh. The error estimate 
reveals how to select an appropriate mesh parameter to obtain the temporal optimal convergence. Furthermore, numerical 
experiments are presented to confirm the theoretical claims.

Keywords Galerkin–Legendre spectral approximation · L1-type schemes · Multi-term time-space fractional diffusion · 
Nonsmooth solution · Discrete fractional Grönwall inequality

1 Introduction

In the last decades, fractional differential equations have 
been extensively studied because of their powerful poten-
tial to depict many processes in science and engineering. 
Compared with the integer-order differential equations, the 
fractional differential equations can provide a much more 
accurate and adequate description of the physical processes 
involving memory and hereditary properties. Though some 
fractional differential equations with special form, e.g., lin-
ear equations, can be solved by analytical methods, e.g., the 

Laplace transform method, the Mellin transform method or 
the Fourier transform method, the analytical solutions of 
many generalized fractional differential equations (e.g., non-
linear fractional differential equations and multi-term frac-
tional differential equations) are rather difficult to obtain. 
Hence, developing numerical methods is of great importance 
in practical applications. The specific nature of the fractional 
operators involves computational challenges which, if not 
properly addressed, may lead to unreliable or even wrong 
results. The numerical methods for solving fractional dif-
ferential equations can be broadly divided into two classes. 

(a) Fractional differential equations with smooth solutions 
Unfortunately, The majority of numerical methods 
developed in the literature are just methods that were 
devised originally for standard integer-order operators 
then applied in a naive way to their fractional-order 
counterparts without a proper knowledge of the fea-
tures of fractional-order problems leading unexpected 
results. There have been various numerical methods 
to solve fractional differential equations, such as finite 
element methods [17], finite difference methods [7, 25], 
and spectral methods [3, 11].
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(b) Fractional differential equations with nonsmooth 
solutions Solutions of fractional differential equations 
typically exhibit weak singularities [8]. This topic is 
discussed in more detail in the survey chapter [35]. 
This singularity is a consequence of the weakly sin-
gular behavior of the kernels of fractional integral and 
derivatives. From a physical perspective, its importance 
is related to the natural emergence of completely mono-
tone relaxation functions in models whose dynamics 
is governed by these operators. It is shown in [34] that 
imposing excessive smoothness requirements on the 
solutions to a partial differential equation (e.g., for the 
sake of simplifying the error analysis or for obtain-
ing a higher convergence order) has drastic implica-
tions regarding the class of admissible problems. Up 
to now, a few numerical methods have been proposed 
for fractional differential equations with non-smooth 
solutions, such as the use of nonuniform grids (see, e.g. 
[15, 44]), the nonpolynomial/singular basis (see, e.g. 
[2, 41]), nonsmooth transformations [43], and Lubich’s 
correction method (see, e.g. [45, 48]). Lubich’s method 
consists of adding suitable correction terms to the cor-
responding numerical approximation, which makes the 
new approximation exact for low regularity terms of the 
solutions while still maintaining high accuracy for high 
regularity terms.

Multi-term time fractional differential equations are moti-
vated by their flexibility to describe complex multirate 
physical processes, see, e.g. [6, 26, 36]. They are proposed 
to improve the modeling accuracy in depicting the anoma-
lous diffusion process, successfully capturing power-law 
frequency dependence [18], adequately modeling various 
types of viscoelastic damping [4], properly simulating 
the unsteady flow of a fractional Maxwell fluid [37] and 
Oldroyd-B fluid [12]. Coupled systems of fractional-order 
differential equations equipped with received considerable 
attention in anomalous diffusion [33]. To gain insights 
into the behavior of the solution of such models, there 
has been substantial interest in deriving a closed form 
solution. Daftardar-Gejji et al. [5] obtained the linear and 
non-linear diffusion-wave equations of fractional order 
by Adomian decomposition method. Existence, unique-
ness and a priori estimates for a class of these equations 
were obtained by Luchko [27] based on an appropriate 
maximum principle and the Fourier method. Ding et al. 
[9] presented the analytical solutions for the multi-term 
time-space fractional advection–diffusion equations with 
mixed boundary conditions. Ming et al. [28] proposed 
Analytical solutions of multi-term time fractional differ-
ential equations and application to unsteady flows of gen-
eralized viscoelastic fluid. Li et al. [22] investigated the 
well-posedness and the long-time asymptotic behaviour 

for initial-boundary value problems of multi-term time-
fractional diffusion equations. Using Luchko’s Theorem 
and the equivalent relationship between the Laplacian 
operator and the Riesz fractional derivative, Jiang et al. 
[16] proposed some new analytic techniques to solve three 
types of multi-term time-space Caputo–Riesz fractional 
advection diffusion equations with nonhomogeneous Dir-
ichlet boundary conditions.

The analytical solutions obtained in these studies are for 
the linear case and involve special functions and infinite 
series, and thus are inconvenient for numerical evaluation. 
Hence, efficient and accurate numerical approaches are 
demanded to deal with this model, especially the nonlinear 
case. Dehghan et al. [7] developed high-order finite differ-
ence method and Galerkin spectral method for the numerical 
solution of multi-term time-fractional differential equations. 
Alikhanov [1] investigated the finite difference methods for 
the Dirichlet and Robin boundary value problems of a multi-
term variable-distributed order diffusion equation. Wang and 
Wen [39] proposed high-order compact exponential finite 
difference method for the multi-term time-fractional diffu-
sion equation, based on the L1 formula on a general nonu-
niform time mesh. Wei [40] proposed and analyzed a fully 
discrete local discontinuous Galerkin method for a class of 
multi-term time fractional diffusion equations. Wang et al. 
[38] proposed an efficient spectral Galerkin method using 
the L2 − 1� formula for time discretization and the Leg-
endre–Galerkin spectral method for space discretization to 
solve the three-dimensional multi-term time-space fractional 
diffusion equation. Zaky [42] developed a Legendre spectral 
tau method to handle the multi-term time-fractional diffu-
sion equations. Fu et al. [13] presented a semi-analytical 
boundary-only collocation technique for solving multi-term 
time-fractional diffusion-wave equations. Shi et al. [32] 
studied nonconforming quasi-Wilson finite element fully-
discrete approximation for two dimensional multi-term time 
fractional diffusion-wave equation on regular and anisotropic 
meshes. Hendy [14] constructed a fully implicit difference 
scheme for the numerical solution of the multi-term time-
space fractional advection–diffusion model.

The L1-type schemes have a wide range of applicability 
in solving fractional differential equations in time [29]. Most 
reports on L1-type methods refer to the efficiency analysis of 
numerical schemes for linear fractional differential equations 
[24], whereas only few works have discussed the stability 
and the convergence of L1-type schemes for nonlinear time-
fractional differential equations [14, 20, 21]. These results 
are for the single-order fractional problems. It is observed 
that a direct application of the discrete fractional Grönwall 
inequality proposed in [24] for the analysis of nonlinear 
multi-term time fractional diffusion equations discretization 
on nonuniform graded mesh cannot be achieved, motivating 
us to consider this case of study.
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Our aim in this paper is twofold. First, we provide a novel 
discrete fractional Grönwall inequality for the numerical 
analysis of nonlinear multi-term time fractional differential 
equations equations using L1-type schemes on a nonuni-
form graded mesh. Second, we continue our work [15, 44] 
and propose and analyze an efficient numerical method for 
the following coupled system of nonlinear multi-term time-
space fractional diffusion equations:

where F1 and F2 are nonlinear functions, and Ω = (a, b) ⊂ ℝ 
and I = (0, T] ⊂ ℝ are the space and time domains, respec-
tively. The parameters � , � are positive constants. the param-
eter qm is strictly positive. The boundary of Ω is denoted 
by �Ω , �i(x) is a known sufficiently smooth function, and 
𝜕𝛽r𝜓

𝜕t𝛽r
(1 > 𝛽m > ⋯ > 𝛽2 > 𝛽1 > 0) represents the Caputo 

fractional derivative. The Caputo fractional derivative �
�r�

�t�r
 

is defined as [29, 30]

where Γ(⋅) denotes the Gamma function. The Riesz space 
fractional derivative of order � with respect to x ∈ Ω , 
namely ��

�|x|�  , is defined as [29, 30]

c� =
−1

2 cos
��

2

 , aD�
x
� and xD�

b
� are the left- and right-Rie-

mann–Liouville derivatives of order � , defined as [29, 30]

The paper is organized as follows. In Sect. 2, some defini-
tions and lemmas on the spaces of fractional derivatives are 
introduced. In Sect. 3, we develop the L1 spectral Galerkin 

(1.1)

m∑

r=1

qr
��r�1

�t�r
− �

���1

�|x|�

= �F1(�1,�2) + f1(x, t), x ∈ Ω, t ∈ I,

(1.2)

m∑

r=1

qr
��r�2

�t�r
− �

���2

�|x|�

= �F2(�1,�2) + f2(x, t), x ∈ Ω, t ∈ I,

(1.3)�i(x, 0) = �i(x), x ∈ Ω, i ∈ {1, 2},

(1.4)�i(x, t) = 0, x ∈ �Ω, t ∈ I,

(1.5)
��r

�t�r
f (x, t) =

1

Γ
(
1 − �r

) ∫
t

0

(t − s)−�r
�f (x, s)

�s
ds,

(1.6)
��f (x)

�|x|�
∶= c�

(
aD

�
x
f (x) + xD

�
b
f (x)

)
,

(1.7)aD
�
x
f (x) =

1

Γ(2 − �)

�2

�x2∫
x

a

f (�)d�

(x − �)�−1
,

(1.8)xD
�
b
f (x) =

1

Γ(2 − �)

�2

�x2 ∫
b

x

f (�)d�

(� − x)�−1
.

scheme for a coupled system of nonlinear multi-term time-
space fractional diffusion equations. The convergence is rig-
orously proved in Sect. 4 by providing a generalized discrete 
form for the fractional Grönwall inequality which enables 
us to overcome the difficulties caused by the sum of Caputo 
time-fractional derivatives and the positivity of the reac-
tion term over the nonuniform time mesh. In Sect. 5, the 
numerical experiments are shown to confirm the theoretical 
analysis, and the conclusions follow in Sect. 6.

2  Preliminaries

In this section, based on Ervin and Roop [10], we present 
some definitions and lemmas on the spaces of fractional 
derivatives, which are useful for the rigorous analysis of 
convergence.

We write (⋅, ⋅) for the inner product on the space L2(Ω) 
with the L2norm ‖ ⋅ ‖L2(Ω) . For convenience, we denote 
‖ ⋅ ‖L2(Ω) as ‖ ⋅ ‖.

Definition 1 (Left fractional derivative space) For 𝜂 > 0 , 
we define the semi-norm

and the norm

and denote J�
L
(Ω) and J�

L,0
(Ω) as the closure of C∞(Ω) and 

C∞
0
(Ω) with respect to ‖⋅‖J�

L
(Ω) , respectively.

Definition 2 (Right fractional space) For 𝜂 > 0 , we define 
the semi-norm

and the norm

and denote J�
R
 and J�

R,0
 as the closure of C∞(Ω) and C∞

0
(Ω) 

with respect to ‖⋅‖J�
R
(Ω) , respectively.

Definition 3 (Symmetric fractional derivative space) Let 
𝜂 > 0 and � ≠ n −

1

2
, n ∈ ℕ , we define the semi-norm

and the norm

(2.1)|�|J�
L
(Ω) =

‖‖aD
�
x
�‖‖,

(2.2)‖�‖J�
L
(Ω) =

�
���2

J
�

L
(Ω)

+ ‖�‖2
�1∕2

,

(2.3)|�|J�
R
(Ω) =

‖‖‖xD
�

b
�
‖‖‖,

(2.4)‖�‖J�
R
(Ω) =

�
���2

J
�

R
(Ω)

+ ‖�‖2
�1∕2

,

(2.5)|�|J�
S
(Ω) = |(aD�

x
� , xD

�

b
�)|)|1∕2,
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and denote J�
S
(Ω) and J�

S,0
(Ω) as the closure of C∞(Ω) and 

C∞
0
(Ω) with respect to ‖ ⋅ ‖J�

S
(Ω) , respectively.

Definition 4 (Fractional Sobolev space) For 𝜂 > 0 , we 
define the semi-norm

and the norm

and denote H�(Ω) and H�

0
(Ω) as the closure of C∞(Ω) and 

C∞
0
(Ω) with respect to ‖ ⋅ ‖H�(Ω) , respectively. Here, F(�̂�)(𝜉) 

is the Fourier transformation of the function �̂� , and �̂� is the 
zero extension of � outside Ω.

Lemma 1 ( [10]) The spaces J�
L
, J

�

R
, J�

s
 and H� are 

equivalent with equivalent semi-norms and norms if 
� ≠ n −

1

2
, n ∈ ℕ.

Lemma 2 (Adjoint property) Let 1 < 𝜂 < 2, then for any 
� ∈ H

�

0
(Ω) and � ∈ H

�∕2

0
(Ω) , we get

The following lemma and remark summarize the proper-
ties of the interpolation operator IN.

Lemma 3 (see [31]) Let s ≥ 1 . If �j ∈ Hs(Ω) then there 
exists a constant C > 0 independent of N, such that 
‖‖‖�j − IN�j

‖‖‖l ≤ CNl−s‖‖‖�j
‖‖‖s , for any 0 ≤ l ≤ 1.

Remark 1 A smooth solution of a fractional differential 
equation does not mean a smooth source term and vice versa. 
Therefore, the regularity order s of the solution �i is not the 
same as the regularity order r of the source term fj , i.e 
‖‖‖INfj − fj

‖‖‖ ≤ CN−r‖‖‖�j
‖‖‖r,∀fj ∈ Hr(Ω).

Lemma 4 (see [10]) Let 𝜂 > 0 and u ∈ J
�

L,0
(Ω) ∩ J

�

R,0
(Ω) . 

Then

Let P(�,�)
n

(x) be the Jacobi polynomial of degree n with 
𝛼, 𝛽 > −1 defined on Λ = (−1, 1) . The Jacobi polynomials 
are defined by the three-term recurrence (cf. [31]):

(2.6)‖�‖J�
S
(Ω) =

�
‖�‖2 + ���2

J
�

S
(Ω)

�1∕2

,

(2.7)�𝜓�H𝜂(Ω) = ‖�𝜉�𝜂F(�̂�)(𝜉)‖L2(ℝ),

(2.8)‖�‖H�(Ω) =
�
‖�‖2 + ���2

H�(Ω)

� 1

2

,

(2.9)

(
aD

�
x
� , �

)
=
(
aD

�∕2
x

� , xD
�∕2

b
�

)
,

(
xD

�

b
� , �

)

=
(
xD

�∕2

b
� , aD

�∕2
x

�

)
.

(2.10)

(
aD

𝜂
x
u, xD

𝜂

b
u
)
= cos(𝜋𝜂)‖‖−∞D

𝜂
x
û‖‖

2

L2(ℝ)

= cos(𝜋𝜂)‖‖xD
𝜂
∞
û‖‖

2

L2(ℝ)
.

where

We have

For 𝛼, 𝛽 > −1 , the Jacobi polynomials are orthogo-
nal with respect to the Jacobi weight function: 
�(�,�)(x) = (1 − x)�(1 + x)� , namely,

where �mn is the Kronecker symbol, and

In particular, the Legendre polynomial is defined 
as Li(x) = J

0,0

i
(x) .  Let us denote by IN  the Leg-

endre–Gauss–Loba t to  in t e r po la t ion  ope ra to r 
IN ∶ C(Ω̄) → WN as �(xk) = IN�(xk) ∈ PN , k = 0, 1,… ,N

.
In what follows, we shall use the Legendre–Gauss–Lobatto 

interpolation and quadrature. Let {xj}Nj=0 be the zeros of 
(1 − x2)L�

i
(x) , and let {�j}

N
j=0

 be the corresponding weights (cf. 
[31]). Then, the Legendre–Gauss–Lobatto quadrature has the 
exactness

where PN denotes the set of all polynomials of degree less 
than or equal to N.

(2.11)

P
(�,�)

n+1
(x) =

(
a(�,�)
n

x − b(�,�)
n

)
P(�,�)
n

(x) − c(�,�)
n

P
(�,�)

n−1
(x), n ≥ 1,

P
(�,�)

0
(x) = 1, P

(�,�)

1
(x) =

1

2
(� + � + 2)x +

1

2
(� − �),

(2.12)a(�,�)
n

=
(2n + � + � + 1)(2n + � + � + 2)

2(n + 1)(n + � + � + 1)
,

(2.13)b(�,�)
n

=
(�2 − �2)(2n + � + � + 1)

2(n + 1)(n + � + � + 1)(2n + � + �)
,

(2.14)c(�,�)
n

=
(n + �)(n + �)(2n + � + � + 2)

(n + 1)(n + � + � + 1)(2n + � + �)
.

(2.15)

P(�,�)
n

(−1) = (−1)nP(�,�)
n

(1), P(�,�)
n

(1) =
Γ(n + � + 1)

n!Γ(� + 1)
.

(2.16)∫
1

−1

P(�,�)
n

(x)P(�,�)
m

(x)�(�,�)(x) dx = � (�,�)
n

�mn,

(2.17)� (�,�)
n

=
2�+�+1Γ(n + � + 1)Γ(n + � + 1)

(2n + � + � + 1)n! Γ(n + � + � + 1)
.

(2.18)∫
1

−1

f (x)dx =

N∑

j=0

f (xj)�j, ∀f ∈ P2N−1,
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3  The numerical algorithm

In this section, we shall develop a robust scheme for the prob-
lem (1.1)–(1.4) with a nonsmooth solution in time direction. 
The scheme employs the Legendre–Galerkin spectral method 
in space and an L1-type approximation with graded mesh for 
the time-fractional derivative. In spite of the assumption that 
the initial conditions and source terms are smooth, the solu-
tions of the fractional differential equation can be nonsmooth 
and even have a strong singularity at t = 0 . Hence, the rate of 
convergence may be deteriorate significantly. To make up for 
the lost of accuracy near t = 0 , we refer to the nonuniform L1 
approach in [23].

Definition 5 For a positive integer M, let 
{
ti = T(i∕M)�

}M

i=0
 

be the graded mesh with a grading parameter 𝛾 > 1 and 
�i ∶= ti − ti−1 for i = 1,… ,M . Let {�n}M

n=0
 be a sequence of 

real functions defined on Ω . The nonuniform discrete time-
fractional difference Caputo operator Δ�

M
 is given by

w h e r e  a
n,�

n−i
=

�2−� (tn−ti−1)−�2−� (tn−ti)

�i
, 1 ≤ i ≤ n  , 

𝜔𝛽(t) =
t𝛽−1

Γ(𝛽)
, t > 0  ,  b

n,�

0
= a

n,�

0
 ,  bn,�

n
= −a

n,�

n−1
 , 

b
n,�

n−i
= a

n,�

n−i
− a

n,�

n−i−1
 , ∀i = 1,… , n − 1 and �t� i

j
= � i

j
− � i−1

j
.

The integral mean-value theorem says that the nonuniform 
L1 coefficient (3.1) satisfies

Let �n
j
 be the discrete approximation of solution 

�j(x, tn) ∀j ∈ {1, 2}, for x ∈ Ω . At each time level n, the frac-
tional temporal component of (1.1)–eqrefusl2v can be 
approximated using (3.1), i.e.,

The approximation space WN is defined as

Then the L1/spectral Galerkin scheme of (1.1)–(1.4) can be 
expressed as follows: for n = 1, 2,… ,M , j = 1, 2, find 
�n
j,N

∈ WN such that

(3.1)
Δ

�

M
�n
j
=

n∑

i=1

a
n,�

n−i
�t�

i
j
=

n∑

i=0

b
n,�

n−i
� i
j
,

∀n = 1,… ,M,

(3.2)a
n,𝛽

n−i+1
< 𝜔1−𝛽(tn − ti−1) < a

n,𝛽

n−i
, 1 ≤ i ≤ n.

(3.3)

m∑

r=0

qrΔ
�r
M
�n
1
− �

���n
1

�|x|�
= �F1(�

n
1
,�n

2
) + f n

1
,

m∑

r=0

qrΔ
�r
M
�n
2
− �

���n
2

�|x|�
= �F2(�

n
1
,�n

2
) + f n

2
.

WN = PN(Ω) ∩ H1
0
(Ω).

where PN is an appropriate projection operator, its related 
properties are given in the following theorem.

Lemma 5 (see [47]) Let � and s be real numbers satisfying 
s >

𝛼

2
 . For any function �j ∈ H

�

2

0
(Ω) ∩ Hs(Ω) , there exists a 

projector operator PN such that the following error estimates 
hold:

and

The function space WN can be expressed as

in which �n(x) is defined as follows:

where Ln(x̂) is the Legendre polynomial of order n. We 
expand the approximate solution as

(3.4)

m∑

r=0

qra
n,�r
0

(
�n
1,N

, vN

)
− �

(
���n

1,N

�|x|�
, vN

)

=

m∑

r=0

qra
n,�r
n−1

(
�0
1,N

, vN

)

−

m∑

r=0

qr

n−1∑

i=1

b
n,�r
n−i

(
� i
1,N

, vN

)

+ �

(
IN(F1(�

n
1,N

,�n
2,N

)), vN

)
+ (INf

n
1
, vN),

m∑

r=0

qra
n,�r
0

(
�n
2,N

, vN

)
− �

(
���n

2,N

�|x|�
, vN

)

=

m∑

r=0

qra
n,�r
n−1

(
�0
2,N

, vN

)

−

m∑

r=0

qr

n−1∑

i=1

b
n,�r
n−i

(
� i
2,N

, vN

)

+ �

(
IN(F2

(
�n
1,N

,�n
2,N

)
)
, vN

)
+
(
INf

n
2
, vN

)
,

�0
1,N

= PN�1, �
0
2,N

= PN�2,

n = 1,… ,M, vN ∈ W
0
N
,

(3.5)
‖‖‖�j − PN�j

‖‖‖ ≤ CN−s‖‖‖�j
‖‖‖s, if � ≠ 3

2
,

(3.6)
‖‖‖𝜓j − PN𝜓j

‖‖‖ ≤ CN𝜖−s‖‖‖𝜓j
‖‖‖s, if 𝛼 =

3

2
& 0 < 𝜖 <

1

2
.

(3.7)WN = span
{
�n(x), n = 0, 1,… ,N − 2

}
,

(3.8)
𝜑n(x) =Ln(x̂) − Ln+2(x̂), x̂ ∈ [−1, 1], x

=
(b − a)x̂ + a + b

2
∈ [a, b],

(3.9)𝜓n
j,N

=

N−2∑

i=0

�̂�n
j,i
𝜑i(x), j ∈ {1, 2},
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where �̂�n
j,i

 are unknown coefficients. Plugging the above 
expression into (3.4) and taking vN = �k, 0 ≤ k ≤ N − 2 , we 
obtain the following matrix form representation using 
Lemma 2:

where

(3.10)

(
m∑

r=0

qra
n,𝛽r
0

M̄ − 𝛾c𝛼
(
S + ST

)
)
Ψn

j

= Kn−1
j

+ 𝜌Hn
j
+ Fn

j
, j ∈ {1, 2},

(3.11)

Kn−1
j

= −

m∑

r=0

qr

n−1∑

q=0

bn,𝛽r
n−q

M̄Ψ
q

j

hn
j,i
= ∫Ω

𝜑i(x)INFj

(
𝜓n
1,N

,𝜓n
2,N

)
dx,

sij = ∫Ω
aD

𝛼

2

x 𝜑i(x)xD
𝛼

2

b
𝜑j(x)dx,

S =
(
sij
)N−2
i,j=0

,

mij = ∫Ω

𝜑i(x)𝜑j(x)dx,

M̄ =
(
mij

)N−2
i,j=0

,

Hn
j
=
(
hn
j,0
, hn

j,1
,… , hn

j,N−2

)
,

Ψn
j
=
(
�̂�n
j,0
, �̂�n

j,1
,… , �̂�n

j,N−2

)T

,

f n
i,j
= ∫Ω

𝜑i(x)INf
n
j
dx,

Fn
j
=
(
f n
0,j
, f n
1,j
,… , f n

N−2,j

)T

.

Lemma 6 ( [31, 46]) The elements of the stiffness matrix 
S are given as

where

and 
{
�

−
�

2
,−

�

2

r , x
−

�

2
,−

�

2

r

}N

i=0
 are the set of Jacobi–Gauss 

weights and nodes corresponding to the Jacobi parameters 
−

�

2
,−

�

2
 . The mass matrix M̄ is symmetric whose nonzero 

elements are

Noticing that Hn
r
= Hn

r
(�n

1,N
,�n

2,N
) , we can solve the non-

linear system (3.10) by the following iteration algorithm:

(3.12)
sij = a

j

i
− a

j+2

i
− a

j

i+2
+ a

j+2

i+2
, ∀i, j = 0, 1,… ,N − 2,

(3.13)

a
j

i
= ∫Λ

aD
𝛼

2

x Li(x̂)xD
𝛼

2

b
Lj(x̂)dx

=
(
b − a

2

)1−𝛼 Γ(i + 1)Γ(j + 1)

Γ
(
i −

𝛼

2
+ 1

)
Γ
(
j −

𝛼

2
+ 1

)

×

N∑

r=0

𝜛
−

𝛼

2
,−

𝛼

2

r P

(
𝛼

2
,−

𝛼

2

)

i

(
x
−

𝛼

2
,−

𝛼

2

r

)
P

(
−

𝛼

2
,
𝛼

2

)

j

(
x
−

𝛼

2
,−

𝛼

2

r

)
,

(3.14)mij = mji =

{
b−a

2j+1
+

b−a

2j+5
, i = j,

−
b−a

2j+5
, i = j + 2.

Algorithm 1: Nonuniform L1- Galerkin-Legendre spectral scheme for
problem (1.1)-(1.4)

Set Ψn,0
s = Ψn−1

s , ψn,0
s,N =

N−2∑
j=0

ψ̂n,0
s,j ϕj(x) , s = 1, 2 ;

for r = 0 : Q do

Solve






(∑m
r=0 qra

n,βr

0 M̄ − γcα S + ST
))

Ψn,r+1
1 =

Kn−1
1 − ρHn,r

1 ψn
1,N , ψn

2,N
)
+ Fn,

(∑m
r=0 qra

n,βr

0 M̄ − γcα S + ST
))

Ψn,r+1
2 =

Kn−1
2 − ρHn,r

2 ψn
1,N , ψn

2,N
)
+Gn,

to get Ψn,r+1
1

and Ψn,r+1
2 ;

Compute ψn,r+1
1,N =

N−2∑
j=0

ψ̂n,r+1
1,j ϕj(x) and ψn,r+1

2,N =
N−2∑
j=0

ψ̂n,r+1
2,j ϕj(x);

if
∥∥∥ψn,r+1

1,N − ψn,r
1,N

∥∥∥ ≤ ε &
∥∥∥ψn,r+1

2,N − ψn,r
2,N

∥∥∥ ≤ ε then

break;
end

end
Set Ψn

1 = Ψn,r+1
1 and Ψn

2 = Ψn,r+1
2 .
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4  Theoretical analysis

The present section is devoted to present sharp error 
estimates in the following theorem for the nonuniform 
L1-Galerkin spectral scheme (3.4). In the sequel, C and C� 
will denote generic positive constants independent of M, N 
and n, and may be different under different circumstances. 
We define the following space of functions:

and fix the following notation

Def ine  t he  o r t hogona l  p ro j ec t ion  ope ra to r 
PN ∶ H

�

2

0
(Ω) → WN such that

For convenience of theoretical analysis, we give the follow-
ing semi-norm and norm, respectively,

The following two lemmas is deduced from [19] and used 
to obtain the truncation error for the multi-term fractional 
operator approximation

Lemma 7 Let 
{
tn = T(n∕M)�

}M

n=0
 be the graded mesh with 

a grading parameter � ≥ 1 . Then for �n
j
, j ∈ {1, 2}, satis-

fies (1.1)–(1.4), the the truncating error in time can be rep-
resented by

where

C𝛽([0, T];X)

∶=

�
f ∈ C𝛽([0, T];X) ∶ sup

0<𝜏<T

‖u(⋅, t + 𝜏) − u(⋅, t)‖C([0,T−𝜏];X)
𝜏𝛽

≤ ∞

�
,

(4.1)

A(�j,w)

= −�c�

[(
aD

�∕2
x

�j, xD
�∕2

b
w
)
+
(
xD

�∕2

b
�j, aD

�∕2
x

w
)]

.

(4.2)A(�j − PN�j,w) = 0, ∀w ∈ WN .

(4.3)

|�j|�∕2 ∶= A(�j,�j)
1∕2,

‖‖‖�j
‖‖‖�∕2 ∶=

(
‖‖‖�j

‖‖‖
2

+ |�j|2�∕2

)1∕2

.

(4.4)

|||R
n,�r
t

||| =
||||
��r

�t�r
�j(tn) − Δ

�r
M
�(tn)

||||

≤ t−�r
n

(
(�1∕tn)f

1,�r + max
p=2,…,n

f p,�r

)
,

∀n = 1,… ,M, r = 1,… ,m,

Lemma 8 ( [19]) Suppose that |�l
t
�j(t)| ≤ 1 + t�m−l, for 

l = 1, 2 and t ∈ (0, T], then

and the consistency error for the multi term fractional deriv-
ative in time given as

Now, the following lemma is devoted to introduce a 
proper discrete fractional Grönwall inequality.

Lemma 9 (Nonuniform discrete fractional Grönwall ine-
quality [23, 24]) For any finite time tM = T > 0, and a given 
nonnegative sequence (�l)M−1

l=0
 , assume that there exists a 

constant �, independent of time steps, such that � ≥ ∑M−1

l=0
�l 

and let {�n}M
n=1

 and {�n, gn}M
n=1

 be sequences of non-negative 
numbers satisfying

If the time grids satisfy

then with the maximum time step

the following inequality holds:

(4.5)

f 1,�r ∶= �
�r
1

sup
s∈(0,t1)(

s1−�r
|||�t(�j(t1)) − �s�j(s)

|||
)
,

f p,�r ∶= �
2−�r
j

t�r
p

sup
s∈(tp−1,tp)(

s1−�r
|||�

2
s
�j(s)

|||
)
, ∀p ≥ 2.

(4.6)

|||R
n,�r
t

||| ≤ t−�m
n

(
(�1∕tn)f

1,�m + max
p=2,…,n

f p,�1

)

≤ t−�m
n

M−min{��m,2−�m},

∀n = 1,… ,M,

(4.7)

||R
n
t
|| =

m∑

r=1

qr
|||R

n,�r
t

||| ≤ �t−�m
n

M−min{��m,2−�m},

� =

m∑

r=1

qr, ∀n = 1,… ,M.

(4.8)
Δ

�

M
(�n)2 ≤

n∑

l=1

�n−l(�
l)2 + �n(�n + gn),

∀ n = 1,… ,M.

(4.9)�i−1 ≤ �i, 2 ≤ i ≤ M,

�M ≤ �

√
1

2Γ(2 − �)�
,
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where P(n)

n−j
 is the discrete convolution kernel defined in [23] 

and E�(t) is the Mittag-Leffler function. Moreover, the con-
volution summation 

∑j

l=1
P
(j)

j−l
� l in (4.10) is meaningful since 

it can be bounded by �1+�(tj)max1≤l≤j � l.

Remark 2 The boundedness estimate (4.10) is also valid if 
the condition (4.8) is replaced by

In the following lemma, we clarify how to extend the 
Grönwall Lemma 9 for the multi-term fractional operators.

Theorem  1 For any time {tM = T > 0}, and a given 
non-negative constant � . Suppose that the grid function 
{�n|n ≥ 0}, such that �0 ≥ 0, satisfies

where Δ�r
M

 is the fractional difference operator defined in 
(3.1), qr > 0, and {� k, �k, 1 ≤ k ≤ M}, are non-negative 
sequences. If the time grid fulfills �k−1 ≤ �k, 2 ≤ k ≤ M, with 
the maximum time-step restriction

it holds that

Proof Multiply both sides of (4.11) by �M and summing over 
k from 1 → j for both sides of (4.11), we conclude

Since

(4.10)

�n ≤ 2

(
�0 + max

1≤j≤n
j∑

l=1

P
(j)

j−l
� l

+�1+�(tn)max
1≤j≤n g

j

)
E�(2�t

�
n
),

∀1 ≤ n ≤ M,

Δ
�

M
�n ≤

n∑

l=1

�n−l�
l + �n + gn, ∀ n = 1,… ,M.

(4.11)
m∑

r=1

qrΔ
�r
M
�k ≤ ��k + (� k + �k), k ≥ 1,

�M ≤ �m

√
qm

2Γ(2 − �m)�
,

(4.12)

�k ≤ 2

qm
�1+�m

(tk)

(
k∑

l=1

(� l + �l) + �0W

)
E�m

(
2
�

qm
t
�m
k

)
, ∀1 ≤ k ≤ M.

(4.13)

�M

m∑

r=1

qr

j∑

k=1

k∑

s=1

a
k,�r
k−s

(
�s − �s−1

)

≤ ��M

j∑

k=1

�k + �M

j∑

k=1

(� k + �k), k ≥ 1.

then

Denote

then according to (4.13) and (4.15), we deduce

Assume that

(4.14)

�M

j∑

k=1

k∑

s=1

a
k,�r
k−s

(
�s − �s−1

)

= �M

j∑

s=1

(
�s − �s−1

) j∑

k=s

a
k,�r
k−s

= �M

j∑

s=1

�s
j∑

k=s

a
k,�r
k−s

− �M

j∑

s=1

�s−1
j∑

k=s

a
k,�r
k−s

= �M

j+1∑

s=2

�s−1
j∑

k=s−1

a
k,�r
k−s+1

− �M

j∑

s=2

�s−1
j∑

k=s

a
k,�r
k−s

− �M�
0

j∑

k=1

a
k,�r
k−1

= �M�
ja

j,�r
0

− �M�
0

j∑

k=1

a
k,�r
k−1

+ �M

j∑

s=2

�s−1

[
j∑

k=s−1

a
k,�r
k−s+1

−

j∑

k=s

a
k,�r
k−s+1

]

= �M

j∑

s=1

a
j,�r
j−s

�s − �M�
0

j∑

k=1

a
k,�r
k−1

,

(4.15)

�M

m∑

r=1

qr

j∑

k=1

k∑

s=1

a
k,�r
k−s

(
�s − �s−1

)

= �M

m∑

r=1

qr

j∑

s=1

a
j,�r
j−s

�s

− �M�
0

m∑

r=1

qr

j∑

k=1

a
k,�r
k−1

.

m∑

r=1

qr

j∑

k=1

a
k,𝛽r
k−1

∶= W > 0,

(4.16)

�M

m∑

r=1

qr

j∑

s=1

a
j,�r
j−s

�s

≤ ��M

j∑

k=1

�k

+ �M

j∑

k=1

(� k + �k) + �M�0W, k ≥ 1.

�M

j∑

k=1

�k = yj, y0 = 0
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then

According to that, (4.16) can have the following form:

Now, as

after using the assumption of the positivity of qm , we get

Now, applying Lemma 9, we get

then the proof is fulfilled.   ◻

The following theorem is devoted to study the conver-
gence analysis.

Theorem 2 Let {�1,�2} and {�n
1,N

,�n
2,N

} be solutions of 
( 1 . 1 ) – ( 1 . 4 )  a n d  ( 3 . 4 ) ,  a n d 
�i ∈ C�

(
[0, T];L2(Ω)

)
∩ C([0, T;H

�

2

0
(Ω) ∩ Hs(Ω)) , and sup-

pose that {�1,�2} is sufficiently regular in spatial directions 
and has a regularity hypothesis on temporal derivatives of 
{�1,�2} reads 

‖‖‖‖
�2�j

�t2

‖‖‖‖L∞(I)

≤ C(1 + t�m−2) . Assume also that 
���j

�t�
∈ C([0, T;H

�

2

0
(Ω) ∩ Hs(Ω)) . Also, the functions Fj in 

(1.1)-(1.4) are Lipschitz ,  fj ∈ C(0, T;Hr(Ω)) and 
�i ∈ H

�

2

0
(Ω) ∩ Hs(Ω) , then, if �M ≤ �m

√
qm

2Γ(2−�m)�
 holds, the 

Galerkin spectral scheme (3.4) admits a unique solution 

yk − yk−1

�M
= �k ≥ 0, k ≥ 1.

(4.17)

m∑

r=1

qr

j∑

s=1

a
j,�r
j−s

(
ys − ys−1

)

=

m∑

r=1

qrΔ
�r
M
yj ≤ �yj

+ �M

j∑

k=1

(� k + �k) + �M�0W.

(ys − ys−1) ≥ 0,

(4.18)

Δ
�m
M
yj

≤ 1

qm

[
�yj + �M

j∑

k=1

(� k + �k) + �M�0W

]
,

1 ≤ j ≤ M.

(4.19)

yj = �M

j∑

k=1

�k

≤ 2�M

qm
�1+�m

(tj)

(
j∑

k=1

(� k + �k) + �0W

)
E�m

(
2
�

qm
t
�m
j

)
,

{�n
1,N

,�n
2,N

} under smoothly graded meshes tn = T(n∕M)� 
satisfying

such that � is a positive constant independent of N, M and 
n. Particularly, the numerical solution {�n

1,N
,�n

2,N
} achieves 

an optimal time convergence order O(M�m−2) for the optimal 
grid parameter �opt = (2 − �m)∕�m.

Proof The following variational form can be given thanks to 
(7), (3.3) at i = 1 and using the notation (4.1),

Let e1 = �1 − �1,N , �1 = �1 − PN�1 and �1 = PN�1 − �1,N , 
we get en

1
= �n

1
+ �n

1
. Using Lemma 5, we have the following 

estimate in the case of � ≠ 3

2
,

The full discretization of the first equation in (3.4) can be 
rewritten generally as

Then the error weak form is achieved by taking �1 = �n
1
,

(4.20)

‖‖‖�
n
1,N

− �1(x, tn)
‖‖‖ +

‖‖‖�
n
2,N

− �2(x, tn)
‖‖‖

≤ �
(
M−min{��m,2−�m} + N−s + N−r

)
,

if � ≠ 3

2
,

(4.21)

‖‖‖𝜓
n
1,N

− 𝜓1(x, tn)
‖‖‖ +

‖‖‖𝜓
n
2,N

− 𝜓2(x, tn)
‖‖‖

≤ �
(
M−min{𝛾𝛽m,2−𝛽m} + N𝜖−s + N𝜖−r

)
,

if 𝛼 =
3

2
and 0 < 𝜖 <

1

2
,

(4.22)

(
m∑

r=1

qrΔ
�r
M
�n
1
, �1

)
+ A(�n

1
, �1)

− �
(
F1(�

n
1
,�n

2
), �1

)
−
(
f n
1
, �1

)
+
(
Rn
t
, �1

)
= 0.

(4.23)‖‖e
n
1
‖‖ ≤ ‖‖�

n
1
‖‖ + ‖‖�

n
1
‖‖ ≤ CN−s‖‖�1

‖‖s + ‖‖�
n
1
‖‖.

(4.24)

(
m∑

r=1

qrΔ
�r
M
�n
1,N

, �1

)

+ A(�n
1,N

, �1) − �

(
IN

(
F1(�

n
1,N

,�n
2,N

)
)
, v1

)

− (INf
n
1
, v1) +

(
Rn
t
, �1

)
= 0.

(4.25)

(
m∑

r=1

qrΔ
�r
M
en
1
, �n

1

)
+ A(en

1,N
, �n

1
)

− �

(
IN(F1

(
�n
1,N

,�n
2,N

)
)
− F1(�

n
1
,�n

2
), �n

1

)

− (INf
n
1
− f n

1
, �n

1
) +

(
Rn
t
, �n

1

)
= 0.
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Starting from the first term in the left-hand side of (4.25) 
and according to [24],

For the second term in the left-hand side of (4.25) and by 
considering (4.1) and (4.3), we get

Substituting those results into (4.25), we deduce

Neglecting the second positive term in the left-hand side 
of (4.28) and using Lemma 5 to bound the first term in the 
right-hand side of (4.28) at � ≠ 3

2
 , we obtain

On the other hand, we use (4.23), Lemma 3 and the Lip-
schitz condition on F to reach

In the following, rearrange terms conveniently, take the 
absolute value and use the triangle inequality. Next, use 

(4.26)

(
Δ

�r
M
en
1
, �n

1

)
=
(
Δ

�r
M
�n
1
, �n

1

)
+
(
Δ

�

M
�n
1
, �n

1

)

≥ 1

2
Δ

�r
M
‖‖�

n
1
‖‖
2
+
(
Δ

�r
M
�n
1
, �n

1

)
.

(4.27)A(en
1
, �n

1
) = A(�n

1
, �n

1
) + A(�n

1
, �n

1
) = |�n

1
|2
�∕2

.

(4.28)

m∑

r=1

qrΔ
�r
M
‖‖�

n
1
‖‖
2
+ 2|�n

1
|2
�∕2

≤ 2

m∑

r=1

qr

(
Δ

�r
M
�n, �n

1

)

+ 2�
(
IN

(
F1(�

n
1,N

,�n
2,N

)
)
− F1(�

n
1
,�n

2
), �n

1

)

+ 2
(
INf

n
1
− f n

1
, �n

1

)
+ 2

(
Rn
t
, �n

1

)
.

(4.29)

m∑

r=1

qrΔ
�r
M
‖‖�

n
1
‖‖
2

≤ 2CN−s

m∑

r=1

qr
‖‖‖Δ

�r
M
�n
1

‖‖‖s
‖‖�

n
1
‖‖

+ 2�
(
IN

(
F1(�

n
1,N

,�n
2,N

)
)
− F1(�

n
1
,�n

2
), �n

1

)

+ 2
(
INf

n
1
− f n

1
, �n

1

)
+ 2

(
Rn
t
, �n

1

)
.

(4.30)

‖‖‖INF1(�
n
1,N

,�n
2,N

) − F1(�
n
1
,�n

2
)
‖‖‖

≤ ‖‖‖‖
IN

(
F1(�

n
1,N

,�n
2,N

) − F1(�
n
1
,�n

2
)
)‖‖‖‖

+ ‖‖INF1(�
n
1
,�n

2
) − F1(�

n
1
,�n

2
)‖‖

≤ C
(‖‖‖F1(�

n
1,N

,�n
2,N

) − F1(�
n
1
,�n

2
)
‖‖‖
)

+ CN−s
(‖‖‖�

n
1,N

‖‖‖s +
‖‖‖�

n
2,N

‖‖‖s
)

≤ CN−s
(‖‖‖�

n
1,N

‖‖‖s +
‖‖‖�

n
2,N

‖‖‖s
)

+ C
(‖‖�

n
1
‖‖ + ‖‖�

n
2
‖‖
)
.

Young’s inequality and Lemma 3 side by side to (4.29) to 
obtain
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Similarly, by following the same steps for (1.1) at i = 2 
and its numerical form in (3.4), we conclude

s u c h  t h a t 
C̄ = 6 ×max{2C
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, 2�C, 4} . Adding (4.31) and (4.32) 

together, we obtain

where Ĉ = max{C̄, C̃}. A direct application of Theorem 1 
and Lemma 8 yields the result. Then the proof is fulfilled 
when � ≠ 3

2
 and the desired result is obtained. The proof 

when � =
3

2
 and 0 < 𝜖 <

1

2
 can be derived similarly.   ◻

5  Numerical results

Consider the following coupled system of ten-term frac-
tional diffusion equations:

(4.31)

m∑

r=1

qrΔ
𝛽r
M
‖‖𝜂

n
1
‖‖
2

≤ 2CN−s

m∑

r=1

qr
‖‖‖Δ

𝛽r
M
𝜓n
1

‖‖‖s
‖‖𝜂

n
1
‖‖

+ 2𝜌
‖‖‖IN(F1(𝜓

n
1,N

,𝜓n
2,N

)) − F1(𝜓
n
1
,𝜓n

2
)
‖‖‖
‖‖𝜂

n
1
‖‖

+ 2‖‖INf
n
1
− f n

1
‖‖‖‖𝜂

n
1
‖‖ +

(
Rn
t
, 𝜂n

1

)

≤ C̃
(
(N−s + N−r)2 + ‖‖𝜂

n
1
‖‖
2
+ ‖‖𝜂

n
1
‖‖‖‖𝜂

n
2
‖‖ + (Rn

t
)2
)
,
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(5.1)
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+ f1(x, t), x ∈ (0, 1), t ∈ (0, 1],
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We choose the fractional orders �r =
1+2m−r

4m
 and � = 1.5 . 

The nonsmooth solutions �1(x, t) = t�mx(1 − x)2sin(�x) and 
�2(x, t) = (t�m + t)x2(1 − x)2cos(�x) are used to generate 
the source functions f1 and f2 and the initial-boundary con-
ditions. Tables 1 and 2 show the convergence rates of the 
approximate solutions of �1 and �2 in temporal and spatial 
directions, respectively.

6  Conclusion

Due to the lack of a discrete fractional Grönwall-type 
inequality, the techniques of analyzing the L1 difference 
schemes can not be applied directly to multi-term frac-
tional diffusion equations that contains positive reac-
tion term on a nonuniform time mesh, especially when 
the maximum order of the fractional derivatives is not an 
integer. This limitation was overcome in Theorem 1 by 
exploiting a novel discrete fractional Grönwall inequal-
ity for the L1 scheme over a nonuniform time mesh. This 
inequality was a main result. Then we proposed a finite 
difference/spectral method to solve coupled systems of 
nonlinear multi-term time-space fractional diffusion 

(5.2)

10∑

r=1

��r�2

�t�r
−

���2

�|x|�

= sin
(
�2

)
+ �2

1
+ f2(x, t), x ∈ (0, 1), t ∈ (0, 1].

equations with non-smooth solutions in the time direc-
tion. The proposed method combined the strength of the 
L1 scheme with temporal nonuniform mesh and the Galer-
kin–Legendre method. Finally, we illustrated the use of 
Theorem 1 by outlining some convergence estimates of the 
scheme. The numerical results accompanying our analy-
sis supported our theoretical contributions. The proposed 
approach extended our earlier work [44] that uses the L1 
approximation to the single-order fractional derivatives.
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