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Abstract
The main purpose of this paper is to design a numerical method for solving the space–time fractional advection-diffusion

equation (STFADE). First, a finite difference scheme is applied to obtain the semi-discrete in time variable with con-

vergence order Oðs2�bÞ. In the next, to discrete the spatial fractional derivative, the Chebyshev collocation method of the

fourth kind has been applied. This discrete scheme is based on the closed formula for the spatial fractional derivative.

Besides, the time-discrete scheme has studied in the L2 space by the energy method and we have proved the unconditional

stability and convergence order. Finally, we solve three examples by the proposed method and the obtained results are

compared with other numerical problems. The numerical results show that our method is much more accurate than existing

techniques in the literature.

Keywords Fractional derivatives and integrals � Diffusion processes � Partial differential equations � Stability �
Convergence

Mathematics Subject Classification 35R11 � 65M70 � 91G60

1 Introduction

Fractional calculus (FC) is extended variants of classical

integer-order ones that are produced by replacing frac-

tional integer-order derivatives. Many applications of FC

are in the branch of science and engineering such as

physics, optimal control, chemistry, economics, poly-

meric materials and social science [3, 15, 17, 21–25].

Because of FC’s non-local, the solution of fractional

differential equations (FDEs), such as the diffusion and

reaction-diffusion models, has been considerable

attention in the physical environment, statistical

mechanics and continuum [1, 7, 8]. These physical

models explain the action of the plural movement of

microparticles in a material resulting from the random

movement of each microparticle. It is also suitable as a

topic relevant to the Markov system in mathematics as

well as in different fields. These subjects can be

explained using the diffusion equations named Brown

equations. In the Brownian case, diffusion with an

additional field of velocity and diffusion under the

influence of a constant field of external force are both

based on the equation of advection-dispersion. This is no

longer true in the case of anomalous diffusion, i.e., the

fractional generalization that varies in the case of

advection and carries an external force field in [20]. A

straightforward extension of the model of continuous-

time random walk results in a fractional advection-dis-

persion equation (FADE).

Space and time-fractional diffusion equation are two

main types of FADEs [13]. In the current paper, we

investigate the STFADE, as follows:
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0Db
t uðx; tÞ ¼ aðx; tÞ0Da

xuðx; tÞ þ bðx; tÞ0Dc
xuðx; tÞ þ qðx; tÞ;

0\x\1; 0\t� T ; 0\b; c� 1; 1\a� 2;

ð1Þ

where a(x, t) and b(x, t) are known functions and q(x, t) is

the source term. An initial condition and the boundary

conditions are also assumed:

uðx; 0Þ ¼gðxÞ; 0\x\L; uð0; tÞ ¼ t0ðtÞ;
uðL; tÞ ¼t1ðtÞ; 0\t� T;

ð2Þ

where 0Db
t is the right Caputo fractional of the order b. For

n� 1\#� n; n 2 N; the left and right Caputo fractional

derivative of order #, is defined by

C
aD#

x uðx; tÞ ¼
1

Cðn� #Þ

Z x

a

ðx� sÞn�#�1 o
nuðs; tÞ
osn

ds;

C
x D#

buðx; tÞ ¼
ð�1Þn

Cðn� #Þ

Z b

x

ðs� xÞn�#�1 o
nuðs; tÞ
osn

ds:

If n� 1\#\n 2 N, then we have

lim
#!n

C
aD#

x uðx; tÞ ¼ lim
#!n

C
x D#

buðx; tÞ ¼
onuðx; tÞ

oxn

. For a ¼ 0, we introduce the notation D#
x for the space

derivative. Equation (1) is the classical advection-disper-

sion equation (ADE) in the case of b ¼ c ¼ 1 and a ¼ 2.

We presume that STFADE has a unique and smooth

solution under the initial and boundary conditions of rela-

tion (2).

In recent years, several methods have been proposed for

solving the ADEs. Liu et al. applied the Mellin and Laplace

transform for solving the time-fractional ADE in [18].

Moreover, [16] represented practical numerical schemes

with variable coefficients on a finite domain to solve the

one-dimensional space fractional ADE. Huang and Nie [9]

by using Green functions and applying the Fourier–Laplace

transforms approximated the STFADE. Momani et al. [12]

produced an accurate algorithm for the Adomian decom-

position to build a numerical solution of STFADE.

Recently, the theorems of existence and uniqueness for

STFADE in [10, 19, 23] and collocation method by using

the shifted Chebyshev and rational Chebyshev polynomials

in [4] are discussed.

The main aim of this paper is to represent a new

numerical scheme to solve STFADE. The proposed

scheme is founded on a finite difference method and a

Chebyshev collocation method of the fourth kind. In Sect.

2, we investigate the time-discrete approach in the con-

vergence and unconditional stability case. Then, we apply

the Chebyshev collocation method to discrete the spatial

direction and to get a full-discrete plan in Sect. 3. Even-

tually, we introduce three numerical examples to depict the

efficiency of the new manner.

2 The convergence analysis of the time-
discrete method

In this section, we obtain the semi-discrete scheme and

prove the convergence and stability of the new numerical

technique for Eq. (1). To obtain this, we need some pre-

liminaries. Now, we define the functional space

Hn
XðuÞ ¼ u 2 L2ðXÞ;Da

xu 2 L2ðXÞ; 8jaj � n
� �

;

where Da
x ¼ oa

oxa and L2ðXÞ is the Lebesgue integrable in X
with the inner product.

huðxÞ;wðxÞi ¼
Z
X
uðxÞwðxÞdx;

and the standard norm kuðxÞk2 ¼ huðxÞ; uðxÞi
1
2. For c[ 0 ,

the semi-norm and norm for right fractional derivative

space JcR are defined as follows

jujJc
R
¼ kaDc

xukL2ðRÞ; kukJc
R
¼ kuk2

L2ðRÞ þ kaDc
xuk

2
L2ðRÞ

� �1
2

;

respectively. Similar to the above relationship for left

fractional derivative space JcL, we have

jujJc
L
¼ kxDc

bukL2ðRÞ; kukJc
L
¼ kuk2

L2ðRÞ þ kxDc
buk

2
L2ðRÞ

� �1
2

:

It should be noticed that the notations JcL; J
c
R denote the

closure of C1
0 ðRÞ with respect to k � kJc

L
; k � kJc

R
, respec-

tively. We define symmetric fractional derivative space JcS
for c[ 0; c 6¼ n� 1

2
; n 2 N with the semi-norm and norm

jujJc
S
¼ haDc

xu; xD
c
bui

�� ��
L2ðRÞ; kukJcS ¼ kuk2

L2ðRÞ þ juj2Jc
S

� �1
2

;

respectively. Let us introduce some lemmas for developing

and proving the stability of the numerical solution of (1)

that are listed below.

Lemma 1 (See [24].) Assume h be non-negative constant,

sm and rk are non-negative sequences that the sequence tm
satisfies

t0 � h; h[ 0;

tm � hþ
Pm�1

k¼0

rk þ
Pm�1

k¼0

sktm; m� 1;

8<
:
then tm satisfies
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tm � hþ
Xm�1

k¼0

rk

 !
exp

Xm�1

k¼0

sk

 !
:

Lemma 2 (See [6, 9].) For any u; m 2 H
a
2

X we have

haDa
xu; xDa

bui ¼ cosðapÞkaDa
xuk

2
L2ðXÞ

¼ cosðapÞkxDa
buk

2
L2ðXÞ; 8a[ 0;

haDa
xu; mi ¼ aD

a
2
xu; xD

a
2

bm
D E

; hxDa
bu; mi

¼ xD
a
2

bu; aD
a
2
xm

D E
; 8a 2 ð1; 2Þ:

ð3Þ

Lemma 3 (See [5].) If u 2 JcL; J
c
R and 0\c\a, then we

have

kukL2ðRÞ �CjujJc
R
; jujJc

R
�CjujJa

R
;

kukL2ðRÞ �CjujJc
L
; jujJc

L
�CjujJa

L
;

ð4Þ

where C is constant. The analogous results exist for u 2 JcS
with c[ 0; c 6¼ n� 1

2
; n 2 N.

Lemma 4 (See [14].) Let b 2 ð0; 1Þ then the following

s2�b-order of the Caputo derivative approximation formula

(CDAF) into each subintervals [0, T] with the uniform step

size s ¼ T
M such that the node points are tj ¼ js; j

¼ 0; 1; . . .;M, holds

Db
t uðx; tÞ ¼

s�b

Cð2 � bÞ
XM
j¼0

SM;juðx; tjÞ þ Oðs2�bÞ;

where

SM;j ¼
1; j ¼ M;

ðM � j� 1Þ1�b � 2ðM � jÞ1�b þ ðM � jþ 1Þ1�b; 1� j\M;

ðM � 1Þ1�b � ðMÞ1�b; j ¼ 0:

8><
>:

Lemma 5 The coefficients SM;j; j ¼ 0; 1; . . .;M, in the

CDAF defined by Lemma 4 satisfy the properties:

1. SM;M ¼ 1,

2. �1\SM;j\0; j ¼ 0; 1; . . .;M � 1,

3.
PM�1

j¼1 SM;j

���
���\1,

4. �2\SM;0 þ
PM�1

j¼1 SM;j\1:

Proof Let f ðxÞ ¼ ðxÞ1�b
, that is strictly increasing for all

x[ 0. By using the mean value theorem and describing

f ðM � jÞ ¼ ðM � jÞ1�b;M[ j, we can prove the lemma.

We are not going to cover the details here. h

Now, we obtain the semi-discrete form of Eq. (1) at

points ftjgj¼M
j¼0 . By using Lemma 4, we can write

UM � asbDa
xU

M � bsbDc
xU

M

¼
XM�1

j¼0

SM;jU
j þ sbQM þ sbRM;

0\c� 1; 1\a� 2;

ð5Þ

where

UM ¼ uðx; tMÞ;QM ¼ Cð2 � bÞqðx; tMÞ; a
¼ Cð � bÞaðx; tMÞ; b ¼ Cð � bÞbðx; tMÞ

and SM;j ¼ �SM;j. The truncation term is RM where a

positive constant C exists such that RM �COðs�bÞ. By

omitting the truncation term, we can get the following

numerical approach, in which UM and N are the approxi-

mation solution of Eq. (5) and the total number of the

points in the x domain, respectively.

UM � asbDa
xU

M � bsbDc
xU

M ¼
PM�1

j¼0 SM;jU
j þ sbQM;

U j
0 ¼ uð0; tjÞ ¼ t0ðtjÞ;U j

N ¼ uð1; tjÞ ¼ t1ðtjÞ; j ¼ 0; 1; . . .;M;

U0 ¼ gðxÞ; 0\x\1:

8><
>: ð6Þ

We suppose that in the current section for x 2 ½0; 1�, we

have a; b[ .

Lemma 6 Let Uk 2 Hn
X; k ¼ 1; 2; . . .;M and C1;C2 2 R,

be the solution of time discrete (6), then

kUkk�C1kU0k þ C2 max
0� r�N

0� l�M

kQl
rk:

Proof We use the mathematical induction on k to prove

the above inequality. For k ¼ 1, we get

U1 � asbDa
xU � bsbDc

xU ¼ S;U þ sbQ: ð7Þ

Multiplying Eq. (7) by U1 and integrating on X, it results

hU1;U1i � asbhDa
xU;Ui

� bsbhDc
xU;Ui ¼ S;hU;Ui

þ sbhQ1;U1i:
ð8Þ

By using of Lemma 2, the second term of the left-hand side

of the above inequality is negative, i.e.,

haDa
xU

1;U1i ¼haD
a
2
xU

1; xD
a
2

bU
1i

¼ cos
a
2
p

� �
kaD

a
2
xk2

¼ cos
a
2
p

� �
kxD

a
2

bk
2\0; 81\a� 2:

Regarding Lemmas 2 and 3 for the third term of left-hand

side Eq. (8), one can obtain
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haDc
xU

1;U1i ¼ aD
c
2
xU

1; xD
c
2

bU
1

D E

�C aD
a
2
xU

1; xD
a
2

bU
1

D E
\0:

The aforesaid relation and by using Lemma 5 can be

rewritten as

kU1k�S1;0kU0k þ sb max
0� r�N

kQ1
rk�kU0k þ max

0� r�N
kQ1

rk:

Now, assume that the induction principle is true for all

k ¼ 1; 2; . . .;M � 1,

kUkk�kU0k þ max
0� r�N

kQk
rk:

Multiplying Eq. (6) by UM and integrating on X, it follows

that

hUM;UMi � asbhDa
xU

M;UMi � bsbhDc
xU

M;UMi

¼
XM�1

j¼0

SM;jhU j;UMi þ sbhQM ;UMi:
ð9Þ

From Lemmas 2, 3 and 5 and using the Cauchy–Schwarz

inequality, we deduce the following relation

kUMk�
XM�1

j¼0

SM;jkU jk þ max
0� r�N

kQM
r k ¼ SM;0kU0k

þ
XM�1

j¼1

SM;jkU jk þ max
0� r�N

kQM
r k

�SM;0kU0k þ
XM�1

j¼1

SM;j kU0
�

k

þ max
0� r�N

kQj
rk
�
þ max

0� r�N
kQM

r k

� SM;0 þ
XM�1

j¼1

SM;j

 !
kU0k þ

XM�1

j¼1

SM;j max
0� r�N

kQj
rk

þ max
0� r�N

kQM
r k�C1kU0k þ C2 max

0� r�N

0� l�M

kQl
rk;

ð10Þ

where C1 and C2 are constants. This concludes the proof of

Lemma 6. h

Theorem 1 Assume UM 2 Hn
X is the solution of semi-

discrete scheme (6). Then, system (6) is unconditionally

stable.

Proof We suppose that bU j; j ¼ 1; 2; . . .;M, is the solution

of scheme (6) with the initial condition bU0 ¼ uðx; 0Þ. Then,

given the error e j ¼ U j � bU j, Eq. (5) is converted as

follows

eM � asbDa
xe

M � bsbDc
xe

M ¼
XM�

j¼
SM;je

j; ð11Þ

from Lemma 6 and the above relation, we have

ke jk�Cke0k; j ¼ 1; 2; . . .;M;

which completes the proof of the unconditional stability.

Theorem 2 If ek ¼ Uk � bUk; k ¼ 1; 2; . . .;M, be the errors

to Eq. (6), then the time-discrete scheme is convergent with

the convergence order OðsÞ.

Proof From Eq. (5), we get the following round-off error

equation

ek � asbDa
xe

k � bsbDc
xe

k ¼
Xk�
j¼

Sk;je
j þ sbRk: ð12Þ

There is a positive constant C where RM �COðs�bÞ.
With multiplying Eq. (12) by ek and integrating, we get

the following relation

hek; eki � asbhDa
xe

k; eki � bsbhDc
xe

k; eki

¼
Xk�1

j¼0

Sk;jhe j; eki þ sbhRk; eki:

Using the Cauchy–Schwarz inequality, Lemmas 2, 3 and 5,

we can write the following inequality

kekk�
Xk�1

j¼0

Sk;jke jk þ sbkRkk

�Sk;k�1kek�1k þ
Xk�2

j¼0

Sk;jke jk þ sbkRkk

�kek�1k þ
Xk�2

j¼0

Sk;jke jk þ sbkRkk;

or in the equivalent form, we can get

kekk � kek�1k�
Xk�2

j¼0

Sk;jke jk þ sbkRkk;

Summing the above equation for k form 1 to M and since

ke0k ¼ 0, we get

keMk�
XM
k¼1

Xk�2

j¼0

Sk;jke jk þ sb
XM
k¼1

kRkk;

by changing index, the above relation simply can be

rewritten as

1412 Engineering with Computers (2022) 38:1409–1420

123



keMk�
XM�2

k¼0

SM;kkekk þ sb
XM�1

k¼0

kRkþk:

We will write on the other hand

keMk�keMk þ SM;M�1keM�1k�
XM�1

k¼0

SM;kkekk

þ sb
XM�1

k¼0

kRkþk:

Now, using Lemmas 1 and 5 we gain

keMk� sb
XM�1

k¼0

kRkþk
 !

exp
XM�1

k¼0

SM;k

 !

� sb
XM�1

k¼0

kRkþk
 !

exp 2ð Þ

� T

s1�b
max

1� k�M
kRkk

	 �
exp 2ð Þ�CTOðsÞ;

where CT is a constant. The proof is finished. h

3 Space-discrete method

In this section, we employ the Chebyshev collocation

method to discrete the space direction and obtain a full-

discrete scheme of (5). Firstly, we define some notations

and get the closed form of the fractional derivative of the

Chebyshev polynomials of fourth kind (CPFK) that have

applications in the current section.

Definition 1 The Jacobi polynomials J
ðr;sÞ
i ðxÞ are orthog-

onal polynomials with respect to the Jacobi weight function

xðr;sÞðxÞ ¼ ð1 � xÞrð1 þ xÞs in interval ½�1; 1� as follows

J
ðr;sÞ
i ¼ Cðr þ iþ 1Þ

i!Cðr þ sþ iþ 1Þ
Xi
m¼0

i

m

	 �
Cðr þ sþ iþ mþ 1Þ

Cðr þ mþ 1Þ

� x� 1

2

	 �m

:

By the analytical form of the Jacobi polynomials, the

CPFK W iðxÞ of degree i can be restated as below

W iðxÞ¼
22i

2i

i

 !J
1
2
;�1

2ð Þ
i ðxÞ¼ 22i�2Cðiþ0:5Þ

ið2i�2Þ!
Xi�1

k¼0

Xk
n¼0

ð�1Þn2�kCðiþ kÞi!
ði� k�1Þ!Cðkþ1:5Þðk�nÞ!n!� xk�n

¼ Ii
Xi�1

k¼0

Xk
n¼0

Ci;k;n� xk�n; x2 ½�1;1�; i¼ 1;2; . . .;

where

Ii ¼
22i�2Cðiþ 0:5Þ

ið2i� 2Þ! ;Ci;k;3n

¼ ð�1Þn2�kCðiþ kÞi!
ði� k � 1Þ!Cðk þ 1:5Þðk � nÞ!n! :

For using these polynomials on the interval [0, 1], we

define the shifted CPFK (SCPFK) W�
i ðxÞ ¼ W ið2x� 1Þ by

the change of variable. The analytic form of SCPFK as

follows

W�
i ðxÞ ¼Ii

Xi�1

k¼0

Xk
n¼0

Ci;k;n � 2k � xk�n;

x 2 ½0; 1�; i ¼ 1; 2; . . .:

ð13Þ

These polynomials are orthogonal in the interval [0, 1]

with respect to the following inner product

hW�
i ðxÞ;W�

j ðxÞi ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

x

r
W�

i ðxÞW�
j ðxÞdx

¼
0; i 6¼ j;
p
2
; i ¼ j:

(

The square-integrable function g(x) in the interval [0, 1]

can be expanded in series of SCPFK as

gðxÞ ¼
X1
i¼0

wiW�
i ðxÞ; x 2 ½0; 1�;

where the coefficients vi; i ¼ 0; 1; 2; . . .; are defined by

wi ¼
2

p

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

x

r
gðxÞW�

i ðxÞdx;

wi ¼
1

p

Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

1 þ x

r
gðxÞW iðxÞdx:

ð14Þ
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Now, by using the linearity of the Caputo fractional dif-

ferentiation and Eq. (13) one can get the closed form of the

fractional derivative of SCPFK, as the form

Dx
x ðW�

i ðxÞÞ ¼
Xi�dxe

k¼0

Xk
n¼0

N
x;dxe
i;k;n

� xk�n�xþdxe; x 2 ½0; 1�; i ¼ 0; 1; 2; . . .;

ð15Þ

where dxe denotes the ceiling part ofx andN
x;dxe
i;k;n is given by

N
x;dxe
i;k;n ¼ ð�1Þn22iðiÞ!Cðiþ 0:5ÞCðiþ k þ dxe þ 1ÞCðk � nþ dxe þ 1Þ

n!ð2iÞ!ði� k � dxeÞ!ðk þ dxe � nÞ!Cðk þ dxe þ 1:5ÞCðk � n� xþ dxe þ 1Þ :

Notice that for i ¼ 0; 1; 2; . . .; dxe � 1; we have

Dx
x ðW�

i ðxÞÞ ¼ 0. In practice, only the first N-terms of

SCPFK are considered in the approximate case. Then we

have:

gðxÞ ¼
XN
i¼0

wiW�
i ðxÞ: ð16Þ

In addition, by means of Caputo fractional differentiation

properties and combinations Eqs. (15) and (16), one can obtain

Dx
x ðgðxÞÞ ¼

XN
i¼dxe

Xi�dxe

k¼0

Xk
n¼0

wiN
x;dxe
i;k;n xk�n�xþdxe; x 2 ½0; 1�:

ð17Þ

As is discussed in Section 2, the time-discrete scheme is

UM � asbDa
xU

M � bsbDc
xU

M ¼
XM�

j¼
SM;jU

j þ sbQM:

ð18Þ

To get a full-discrete scheme based on the SCPFK, we

apply the following approximate

ûðx; tÞ ¼
XN
i¼0

uiðtÞW�
i ðxÞ: ð19Þ

From Eqs. (17) and (18), we have

XN
i¼0

u
j
iW

�
i ðxÞ � asb

XN
i¼dae

Xi�dae

k¼

Xk
n¼

u
j
i N

a;dae
i;k;n xk�n�aþdae

� bsb
XN
i¼dce

Xi�dce

k¼

Xk
n¼

u
j
i N

c;dce
i;k;n x

k�n�cþdce

¼
Xj�1

m¼0

XN
i¼0

Sj;mu
m
i W�

i ðxÞ þ sbQðx; tjÞ; j ¼ ; ; . . .;M;

ð20Þ

where u
j
i is the coefficients in the points of ðxi; tjÞ. For

positive integer N, fxrgNþ1�dae
r¼1 denote the collocation

points that they are the roots of SCPFK W�
Nþ1�daeðxÞ. We

collocate Eq. (20) with the collocation points fxrgNþ1�dae
r¼1

as below

XN
i¼0

u
j
iW

�
i ðxrÞ � asb

XN
i¼dae

Xi�dae

k¼

Xk
n¼

u
j
i N

a;dae
i;k;n xk�n�aþdae

r

� bsb
XN
i¼dce

Xi�dce

k¼

Xk
n¼

u
j
i N

c;dce
i;k;n x

k�n�cþdce
r

¼
Xj�1

m¼0

XN
i¼0

Sj;mu
m
i W�

i ðxrÞ þ sbQðxr; tjÞ; j ¼ ; ; . . .;M:

ð21Þ

By substituting Eq. (19) in Eq. (2), in case of x ¼ 0 and

x ¼ 1 we obtain the boundary conditions to get on dae
equations as

XN
i¼0

ð�1Þiu j
i ¼ tðtjÞ;

XN
i¼0

ð2iþ 1Þu j
i ¼ tðtjÞ; j ¼ ; ; . . .;M:

ð22Þ

Equation (21), together with boundary conditions (22),

gives N þ 1 of linear algebraic equations which can be

determined the unknown u
j
i ; i ¼ ; ; ; . . .;N, in every step of

time j. For obtaining the initial solution ui, we use the

initial condition uðx; 0Þ ¼ gðxÞ combining with Eq. (14).

4 Numerical examples

The main of this section is to give the numerical conclusion

of the present method. We checked the stability of the

developed method for various values of N and M. We will

calculate the computational order (denoted by Cs) by the

following formula

Cs ¼
log E1

E2

� �

log s1

s2

� � ;

in which E1 and E2 are errors corresponding to grids with

mesh size s1 and s2, respectively.

Example 1 Consider the following STFADE
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obuðx; tÞ
otb

¼ aðx; tÞ o
1:8uðx; tÞ
ox1:8

þ bðx; tÞ

ocuðx; tÞ
oxc

þ qðx; tÞ;

0\x\1; 0\t� T ;

with the known functions aðx; tÞ ¼ Cð1:2Þx1:8 and

bðx; tÞ ¼ 0. The boundary and initial conditions are

uð0; tÞ ¼ uð1; tÞ ¼ 0 and uðx; 0Þ ¼ x2ð1 � xÞ, respectively.

The source term is qðx; tÞ ¼ 3x2e�tð2x� 1Þ. This problem

has exact solution uðx; tÞ ¼ x2e�tð1 � xÞ in the case of

b ¼ 1.

We solve this example based on the approach method

and report the results in Tables 1, 2 and 3. In Table 1, the

comparison of L1 between the proposed method and

methods described with the Chebyshev estimates solved by

the finite difference method in [11], the classical Crank–

Nicholson method in [26], the Legendre polynomials in

[2], and on the other hand, shifted Chebyshev polynomials

for space and rational Chebyshev functions for the time-

discrete in [4], are reported at T ¼ 2; T ¼ 10 and T ¼ 50

for M ¼ 400 with 5 collocation points in the space domain.

The reports show a better estimation of the current method

than the methods mentioned. In addition, the absolute error

of the presented method (PM) and the method of [4] are

compared in Table 2 which indicates our method gives

much better than the method [4]. In Table 3, the compu-

tational orders with b ¼ 0:99 at T ¼ 1;N ¼ 5; 7 and dif-

ferent values of M, are shown. From this table, we can

conclude that the computational orders are closed to the

theoretical order.

Figure 1 shows the approximation solution and absolute

error for N ¼ 3 and the different values of M at T ¼ 1.

Figure 2 demonstrates the numerical solution at T ¼ 1 (left

panel) and T ¼ 2 (right panel) with M ¼ N ¼ 5 and several

values of b. Moreover, Fig. 3 depicts the numerical solu-

tion for the different values M and N at T ¼ 1 with various

qualities of a, which they display the convergence of the

proposed method when b and a tend to 1 and 1.8,

respectively.

Example 2 The smooth initial condition for problem (1) to

be considered: homogeneous boundary conditions,

uðx; 0Þ ¼ x2 � x3, the space fractional orders a ¼ 1:8; c ¼
0:8 and aðx; tÞ ¼ Cð2:2Þ

2
x1:8; bðx; tÞ ¼ � Cð3:2Þ

2
x0:8 are known

functions. The source term can be achieved corresponding

Table 1 Comparison of L1 with N ¼ 5;M ¼ 400 on interval [0, 1]

for Example 1

T T ¼ 2 T ¼ 10 T ¼ 50

Present method 4:2 � 10�5 2:1 � 10�6 1:1 � 10�10

Method of [4] 1:0 � 10�2 3:0 � 10�6 1:4 � 10�9

Method of [11] 2:7 � 10�5 3.7 67.6

Method of [26] 8:4 � 10�5 7.1 23.7

Method of [2] 2:3 � 10�2 1:2 � 10�2 8:0 � 10�5

Table 2 The comparison of the absolute error of the present method with method given in [4] for N ¼ M ¼ 3 at T ¼ 2 for Example 1

b ¼ 0:2 b ¼ 0:4 b ¼ 0:6 b ¼ 0:8 b ¼ 1

x L1 of [4] L1of PM L1 of [4] L1of PM L1 of [4] L1of PM L1 of [4] L1of PM L1 of [4] L1of PM

0.2 0.00605 0.00350685 0.00610 0.00295544 0.00604 0.00254704 0.00585 0.00218182 0.00548 0.00169137

0.4 0.00981 0.00670466 0.00936 0.00595797 0.00880 0.00514471 0.00810 0.00417021 0.00723 0.00283402

0.6 0.00914 0.00814905 0.00851 0.00748277 0.00778 0.00646886 0.00695 0.00506769 0.00601 0.00313098

0.8 0.00507 0.00639562 0.00466 0.00600504 0.00420 0.00519534 0.00368 0.00397678 0.00312 0.00228529

Table 3 The computational orders, L1 and L2 with N ¼ 5; 7;M ¼ 3; 6; 12; 24; 48 and b ¼ 0:99 at T ¼ 1 for Example 1

N ¼ 5 N ¼ 7

M L1 Cs L2 Cs L1 Cs L2 Cs

3 0.00439535 0.00644263 0.00405560 0.00649423

6 0.00234346 0.907338 0.00340051 0.921899 0.00213866 0.923210 0.00341802 0.925996

12 0.00121932 0.950141 0.00174975 0.958606 0.00109854 0.961118 0.00175485 0.961818

24 0.00061746 0.974087 0.00088791 0.978666 0.00055666 0.980728 0.00088923 0.980715

48 0.00031157 0.986781 0.00044730 0.989162 0.00028017 0.990466 0.00044761 0.990328

TCO 1 1 1 1
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to the exact solution uðx; tÞ ¼ x2ð1 � xÞð1 þ tbÞ when

b ¼ 1.

Table 4 presents a comparison between L1 and L2 for

N ¼ 5; 7 and the various values of M at T ¼ 1 with

b ¼ 0:9, and also investigating this table, we can conclude

that the developed method has the order OðsÞ in the time

direction. Figure 4 clearly reveals the absolute error based

on the present technique for N ¼ 5 (left side) and N ¼ 9

(right side) at T ¼ 1 with b ¼ 0:2. From this figure, it is

clear that the absolute error is decreased when the time step

is increased. In Fig. 5, we plotted the numerical solution for

values of a, c and b ¼ 0:2 based on M ¼ N ¼ 5 that dis-

plays the convergence.

Fig. 1 Graphs of the absolute error (left-side) and approximate solution (right-side) of Example 1 at T ¼ 1 and N ¼ 3

Fig. 2 The numerical solution of Example 1 at T ¼ 1 (left-side) and T ¼ 2 (right-side), for M ¼ N ¼ 5
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Fig. 3 The compression of numerical solution for Example 1 at T ¼ 1, for the different values M, N

Table 4 The computational orders, L1 and L2 with N ¼ 5; 7;M ¼ 3; 6; 12; 24; 48 and b ¼ 0:9 at T ¼ 1 for Example 2

N ¼ 5 N ¼ 7

M L1 Cs L2 Cs L1 Cs L2 Cs

3 0.00139292 0.00300361 0.00139357 0.00300396

6 0.00071457 0.962955 0.00155320 0.951450 0.00071522 0.962323 0.00155328 0.951549

12 0.00036390 0.973550 0.00079525 0.965761 0.00036411 0.974028 0.00079506 0.966184

24 0.00018649 0.964411 0.00040695 0.966562 0.00018553 0.972740 0.00040670 0.967090

48 0.00009564 0.963409 0.00020848 0.964948 0.00009480 0.968639 0.00020829 0.965405

TCO 1 1 1 1
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Example 3 Consider the following STFADE

obuðx; tÞ
otb

¼ Cð1:4Þ
2

x0:6 o
1:6uðx; tÞ
ox1:6

þ Cð1:2Þ
2

x0:8 o
0:8uðx; tÞ
ox0:8

þ qðx; tÞ; 0\x\1;

uðx; 0Þ ¼ xð1 � xÞ; uð0; tÞ ¼ 0; uð1; tÞ ¼ 0; t[ 0;

ð23Þ

where qðx; tÞ ¼ expð�tÞð�0:5xþ ð1 þ Cð1:2Þ
Cð2:2ÞÞx2Þ. This

example has exact solution uðx; tÞ ¼ xð1 � xÞexpð�tÞ in

the case of b ¼ 1.

The results of this problem are listed in Table 5 at

various given parameters M and N with b ¼ 0:9. It is

shown that the convergence order of the time derivative

supports the theoretical result, that is, OðsÞ. Figure 6

Fig. 4 The absolute error of Example 2 for N ¼ 5 (left-side) and N ¼ 9 (right-side), at T ¼ 1;b ¼ 0:2

Fig. 5 The numerical solution of Example 2 at T ¼ 1 for M ¼ N ¼ 5 with various values a , c and b ¼ 0:2
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depicts the approximate solution at T ¼ 1 for M ¼ N ¼ 9

with different values a , c and b ¼ 0:9.

5 Conclusion

This paper presented a new numerical scheme for

approximating the STFADE. First of all, a finite difference

method is utilized to discrete the fractional derivative in

time directly with the Oðs2�bÞ accuracy. In Lemma 5, the

relation of approximating coefficients is stated for estab-

lishing the convergence analysis. In Theorem 1, the

unconditional stability of the time-discrete scheme is

proved by using the energy method and mathematical

induction. Moreover, we obtained the linear convergence

order in Theorem 2. Also, we applied the Chebyshev col-

location method to discrete the space direction and obtain a

full-discrete scheme. Finally, the numerical conclusion is

illustrated to demonstrate and support the accuracy of the

proposed scheme.

Acknowledgements José Francisco Gómez Aguilar affirms the help
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7. Gómez-Aguilar J, Atangana A (2017) New insight in fractional

differentiation: power, exponential decay and Mittag-Leffler laws

and applications. The European Physical Journal Plus 132(1):13

8. Goufo EFD, Kumar S, Mugisha S (2020) Similarities in a fifth-

order evolution equation with and with no singular kernel. Chaos,

Solitons & Fractals 130:109467

9. Huang J, Nie N, Tang Y (2014) A second order finite difference-

spectral method for space fractional diffusion equations. Science

China Mathematics 57(6):1303–1317

10. Kemppainen J (2011) Existence and uniqueness of the solution

for a time-fractional diffusion equation with robin boundary

condition. In: Abstract and Applied Analysis, vol. 2011. Hindawi

11. Khader M (2011) On the numerical solutions for the fractional

diffusion equation. Communications in Nonlinear Science and

Numerical Simulation 16(6):2535–2542

12. Khader M, Sweilam N, Mahdy A (2011) An efficient numerical

method for solving the fractional diffusion equation. Journal of

Applied Mathematics and Bioinformatics 1(2):1

13. Kumar A, Kumar S, Yan SP (2017) Residual power series

method for fractional diffusion equations. Fundamenta Infor-

maticae 151(1–4):213–230

14. Kumar K, Pandey RK, Sharma S (2017) Comparative study of

three numerical schemes for fractional integro-differential equa-

tions. Journal of Computational and Applied Mathematics

315:287–302

15. Kumar S, Ghosh S, Samet B, Goufo EFD (2020) An analysis for

heat equations arises in diffusion process using new Yang-Abdel-

Aty-Cattani fractional operator. Mathematical Methods in the

Applied Sciences 43(9):6062–6080

16. Kumar S, Kumar A, Argyros IK (2017) A new analysis for the

keller-segel model of fractional order. Numerical Algorithms

75(1):213–228

17. Kumar S, Kumar R, Cattani C, Samet B (2020) Chaotic beha-

viour of fractional predator-prey dynamical system. Chaos,

Solitons & Fractals 135:109811

18. Liu F, Anh VV, Turner I, Zhuang P (2003) Time fractional

advection-dispersion equation. Journal of Applied Mathematics

and Computing 13(1–2):233

19. Liu F, Zhuang P, Anh V, Turner I, Burrage K (2007) Stability and

convergence of the difference methods for the space-time frac-

tional advection-diffusion equation. Applied Mathematics and

Computation 191(1):12–20

20. Metzler R, Klafter J (2000) The random walk’s guide to

anomalous diffusion: a fractional dynamics approach. Physics

reports 339(1):1–77

21. Nikan O, Golbabai A, Machado JT, Nikazad T (2020) Numerical

approximation of the time fractional cable equation arising in

neuronal dynamics. Engineering with Computers pp. 1–19.

https://doi.org/10.1007/s00366-020-01033-8

22. Nikan O, Machado JT, Golbabai A, Nikazad T (2020) Numerical

approach for modeling fractal mobile/immobile transport model

in porous and fractured media. International Communications in

Heat and Mass Transfer 111:104443

23. Podlubny I (1998) Fractional differential equations: an intro-

duction to fractional derivatives, fractional differential equations,

to methods of their solution and some of their applications, vol

198. Elsevier, New York

24. Quarteroni A, Valli A (2008) Numerical approximation of partial

differential equations, vol. 23. Springer Science & Business

Media

25. Safdari H, Mesgarani H, Javidi M, Aghdam YE (2020) Conver-

gence analysis of the space fractional-order diffusion equation

based on the compact finite difference scheme. Comput. Appl.

Math 39(2):1–15

26. Tadjeran C, Meerschaert MM, Scheffler HP (2006) A second-

order accurate numerical approximation for the fractional diffu-

sion equation. Journal of Computational Physics 213(1):205–213

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

1420 Engineering with Computers (2022) 38:1409–1420

123

https://doi.org/10.1007/s00366-020-01033-8

	Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space--time fractional advection-diffusion equation
	Abstract
	Introduction
	The convergence analysis of the time-discrete method
	Space-discrete method
	Numerical examples
	Conclusion
	Acknowledgements
	References




