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Abstract
The uniaxial compressive strength (UCS) and elasticity modulus (E) are two of the most quoted rock strength parameters in 
engineering application. Due to approved technical difficulties indirect measurements, the tendency for determining these 
parameters through predictive models using simpler and cheaper tests in practical oriented applications have widely been 
highlighted. In this paper, a new hybridized multi-objective support vector regression (MSVR) model integrated with the 
firefly metaheuristic algorithm (FMA) was developed to touch upon a computational method in rock engineering purposes. 
The optimum internal parameters were adjusted through parametric investigation using 222 physical and mechanical rock 
properties corresponding to a variety of quarried stones from all over Iran. The accuracy and robustness of models were evalu-
ated using different error indices, the area under curve for receiver operation characteristics (AUC ROC) and F1-score criteria. 
Comparing to MSVR, the predictability level of UCS and E showed 8.35% and 5.47% improvement in hybrid MSVR-FMA. 
The superior and more promising results imply that hybrid MSVR-FMA as a flexible alternative can be applied for rock 
strength prediction in designing of construction projects. Using tow sensitivity analyses, the point load index and P-wave 
velocity were distinguished as the main effective factors on predicted UCS and E.

Keywords Hybrid model · Predictability level · Multi-objective · Quarried stone · Rock strength · Firefly algorithm

1 Introduction

The natural stones as one of the efficient but oldest recog-
nized materials provide many possibilities in different civil 
and construction applications (e.g., building industry, road 
base, paving, concrete, and asphalt). However, due to het-
erogeneity of these materials plethora and quite variable 
engineering characteristics can be observed.

Strength properties, durability, attractiveness (appear-
ance and color), cost, economy and quarrying susceptibility 
are the primary common criteria in selecting the appropri-
ate building stones. In specific applications, some other 

properties such as hardness, toughness, specific gravity, 
porosity and water absorption, dressing, seasoning, work-
ability, fire, and chemical resistance also may need to be 
considered. Using laboratory tests suitability of stones for 
building purposes can be evaluated. However, many schol-
ars indicated that laboratory tests for determining uniaxial 
compressive strength (UCS) and elasticity modulus (E) as 
two of the most important rock mechanical characteristics 
is a challenging task (e.g., [2, 11, 42]). Thereby, in prac-
tice prediction of UCS and E using statistical regression of 
simple, inexpensive and non-destructive tests are preferred 
and notified (e.g., [1, 2, 36, 42, 43, 45, 53]). However, such 
correlations due to inconsistency of various rock types have 
shown different degrees of success. Furthermore, the regres-
sion analyses among the variables do not imply causality 
[50], and the strong relationship between variables can be 
the result of the influence of other unmeasured parameters 
[46]. Therefore, to interpret predictive statistical model dif-
ferent incompetence (e.g. assumptions, subjective judgment 
of unobserved data, effect of auxiliary factors, uncertainty of 
experimental tests, inaccurate prediction in wide expanded 
range of data) should be considered [2, 4, 27, 29].
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The demerits of statistical techniques in producing more 
efficient and accurate predictive models can be covered 
using different subcategories of soft computing approaches. 
The literature reviews highlighted that soft computing tech-
niques such as artificial neural networks (e.g. [5, 35, 36]), 
support vector machine [6], random forest [38], genetic 
programming [7, 14], ANFIS [53, 57], Gene expression 
programming [15] and hybrid systems [11, 31] are able to 
predict more promising results for the UCS and E than the 
conventional statistical methods.

The support vector regression (SVR) [24] is a developed 
novel kind of supervised-learning support vector machine 
(SVM) for both classification and regression purposes that 
can map the inputs to an n-dimensional feature space. This 
model using nonlinear kernel functions simultaneously can 
maximize predictive accuracy and avoids overfitting [58]. 
Similar to SVM, the main idea in SVR is always minimizing 
the error and individualizing the hyperplane which maxi-
mizes the margin. However, using small subset of training 
points in SVR gives enormous computational advantages 
than SVM which does not depend on the dimensionality 
of the input space and thus provides excellent generaliza-
tion capability, with high prediction accuracy [13]. This 
implies that the possible poor performance of ANNs (e.g. 
few labeled data points, trapping into local minimal, over-
fitting) can be treated using SVR to achieve more precise 
results [49].

In the recent years, different metaheuristic algorithms 
have been used for possible enhancement in the performance 
and predictability level of intelligence models (e.g. [8, 11, 
61, 65]). Designing supervised learning systems generally 
is a multi-objective optimization problem [55] which aims 
to find appropriate trade-offs between several objectives in 
complex models. However, in practice it is advised to make 
the number of function evaluations as few as possible in 
finding an optimal solution [65]. Moreover, the value of 
design variables (objectives) are obtained by real or compu-
tational experiments, where the form of objective functions 
is not given explicitly in terms of objectives [66]. However, 
the time dependent (dynamic) multi-objective optimization 
due to relying on different moments is a very difficult task 
[40]. Therefore, in the current paper a hybridized multi-
objective support vector regression (MSVR) incorporated 

to firefly metaheuristic algorithm (FMA) for prediction of 
UCS and E was developed.

The population based stochastic FMA is a swarm intel-
ligence method inspired by the flashing behavior of fireflies 
[61]. This trial and error procedure efficiently and simulta-
neously can be applied for solving the hardest optimization 
problems to find both global and local optima [64]. The per-
formance of hybrid MSVR-FMA was examined by different 
error criteria and then compared with MSVR. The models 
were run using 222 datasets of different building stones 
including rock class, density (γ), porosity (n), P-wave veloc-
ity (Vp), water absorption (w) and point load index (Is) from 
almost all over quarry locations of Iran. It was demonstrated 
that by applying the FMA, the success of correct classifica-
tion rate for UCS and E from 81.2% and 79.5% were pro-
gressed to 88.6% and 84.1%, respectively. The comparison 
of different error criteria showed that MSVR-FMA as an 
accurate enough model can efficiently be applied to estimate 
the UCS and E. The main effective factors on predicted val-
ues were then recognized using different sensitivity analyses.

2  Mathematical configuration of MSVR

In classification, SVR is characterized by the use of kernels, 
sparse solution and control of the margin, and the number 
of support vectors. Hence, the output of SVR is found from 
the mapped support vectors through feature space and cal-
culated weights using Lagrange multipliers and assigned 
biases (Fig. 1). As the output of SVR is a real number, thus 
in regression purposes a tolerance margin (ε) known as 
ε-insensitive loss function is set in the approximation [58]. 
This provides a symmetrically flexible tube of minimal 
radius around the estimated function in which the absolute 
values of errors less than a certain threshold are ignored both 
above and below the estimate. Consequently, the points out-
side the tube are penalized, but those within the tube, either 
above or below the function receive no penalty.

Considering to dimensionality of input and output spaces 
(d and Q), the output vector (yi ∈ RQ) subjected to a given 
set of training input data {(xi, yi)}i=1, 2,…n (xi ∈ Rd) is derived 
from minimizing of:
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where; Lp(W, b) is the Lagrangian optimization function. wj 
(W ∈ RQ×d) represents an m × m weighted matrix corresponds 
the model parameter and thus each wi ∈ Rd is the predic-
tor for yi. The bj (b ∈ RQ; j = {1,…, Q}) and ek ∈ R denote 

(2)ui =

√
eT
i
ei; eT

i
= yT

i
− �T

(
xi
)
W − b

T On kth iteration (Wk and bk), optimizing problem and 
constructing the quadratic approximation is expressed by:

where C� as a sum of constant term is independent either 
on W or b. Applying W = Wk and b = bk, provide theame 
value and gradient for LP (W, b) and L′P (W, b). Thereby, 
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then can be calculated using:

Linear combination of the training datasets can provide 
the best solution for optimizing the learning problem within 
the inner product of feature space kernel [56]:
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Fig. 1  Processing procedure in MSVR structure using support vector algorithm

the bias matrix term and error variables. The w and b can 
be obtained using the iterative reweighted trial error least 
squares procedure (IRWLS) to lead a matrix for each com-
ponent that to be estimated [47, 48]. The term structure risk 
(regularization term) is used to control the smoothness or 
complexity of the function. The user specified constant C > 0 
determines the trade-off between the empirical error and the 
amount up to deviations larger than ε [16]. The parameter 
ε should be tuned and is equivalent to the approximation 
accuracy in the training process and shows that the datasets 
in the range of [+ ε, − ε] do not contribute to the empirical 
error [13]. ϕ(·) is the feature space factor to provide nonlin-
ear transformation to a higher dimension. The term L(ui) as 
the loss function using Taylor expansion is defined as:

(3)
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(
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)||| − � otherwise



582 Engineering with Computers (2022) 38:579–594

1 3

Where 1 = [1, 1, …,  1]T is an n dimensional column vec-
tor and a = [a1,…, an]T shows an identity matrix. (K)ij = k 
(xi, xj) is the kernel matrix of two vectors xi and xj that can 
be easily evaluated [23]. The ||·|| correspond the Euclidean 
norm for vectors and γ denotes the variance of the radial 
basis function (RBF) kernel which controls the sensitivity 
of the kernel function. βj is the parameter which should be 
computed by searching algorithm and depends on Lagrange 
multipliers. Hereby, the training datasets via the kernel func-
tion are moved into a higher dimension space where vari-
ous kernel functions may produce different support vectors 
(Fig. 1). Therefore, the jth output of each new incoming 
vector x can be expressed as:

where yj = [y1j, …, ynj]T is the outputs. Consequently, the 
final output (y) is computed by:

where ϕ (xi) and ϕ (xj) are the projection of the xi and xj in 
feature space. The number of support vectors and biases are 
noted by n and bj respectively. Kx is a vector that contains the 
kernel of the input vector x and the training datasets. RBF 
kernel (Eq. 10) has shown more promising results compared 
than other proposed kernels [33].

3  Firefly metaheuristic algorithm (FMA)

The FMA as a swarm intelligence population-based algo-
rithm inspired by flashing behavior of fireflies [61] effec-
tively can be applied to solve the hardest global and local 
optimization problems [64]. During the recent years the 
applicability of this algorithm has been modified. Gao 
et al. [25] improved this algorithm using particle filter 
and presented a powerful tool in solving visual track-
ing problems. Sayadi et al. [52] developed a powerful 
version of discrete FMA to deal with non-deterministic 
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polynomial-time scheduling problems. An efficient binary 
coded FMA to investigate the network reliability was pro-
posed by Chandrasekaran and Simon [17]. Coelho et al. 
[21] proposed a chaotic FMA that outperformed other 
algorithms [22]. The studies of Yang [62] on this version 
of FMA showed that under different ranges of parameter, 
an enhanced performance using tuning can be achieved. 
The Lagrangian FMA is another proposed variant [51] for 
solving the unit commitment problem for a power system. 
An interesting multi-objective discrete FMA version or the 
economic emission load dispatch problem was proposed 
by Apostolopoulos and Vlacho [9]. Meanwhile, Arsuaga-
Rios and Vega-Rodriguez [10] independently proposed 
another multi-objective FMA tool for minimizing energy 
consumption in grid computing. This version further was 
developed to solve multi-objective production scheduling 
systems [34]. Furthermore, a discrete variant of FMA for 
the multi-objective hybrid problems [37], an extended 
FMA for converting the single objective to multi-objective 
optimization in continuous design problems [63], and an 
enhanced multi-objective FMA in complex networks [8] 
were also presented.

As presented in Fig. 2, the primary concept for a fire-
fly’s flash is based on signal system to attract other fireflies 
which can be figured out using brightness (I), attractive-
ness (β) of fireflies i and j in the adjacent distance (rij), 
absorption coefficient (γ) and tradeoff constant to deter-
mine the random behavior of movement (α). The fireflies 
in this system subjected to trial–error procedure tend to 
move towards the brighter one and aim to find a new solu-
tion using the updated distance between two considered 
fireflies.

The I of each firefly represents the solution, s, as a pro-
portion of the objective function [I(s) ∝ f(s)]. The β is also 

Fig. 2  The configuration of FMA and corresponding applied param-
eters
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proportional to the intensity of visible light for adjacent 
fireflies in each distance coordinate, I(r), as:

The distance between any two si and sj or i and j fireflies 
in an n-dimensional problem is expressed as the Euclidean 
or the Cartesian distance by:

where I0 denotes the light intensity of the source. γ is the 
absorption coefficient with a decisive impact on the conver-
gence speed that can theoretically capture any value from 
interval γ ∈ [0, ∞) but in most optimizing problems typically 
varies within [0.1–10]. β0 is the attractiveness at rij = 0.

In each iteration of FMA, the fitness function (FT) of 
the optimal solution of each firefly will own its bright-
ness. Therefore, searching for better FT corresponding 
to higher brightness level produces new solutions. This 
embedded iterative process will renew several times 
comparing to previous results, and only one new solu-
tion based on FT is kept. This iterative process can be 
expressed as:

where αt denotes the tradeoff constant to determine the ran-
dom behavior of movement and varies in [0, 1] interval. The 
rand function as a random number of solutions I and β0 at 
zero distance is normally set to 1. sj is a solution with lower 
FT than si and (sj − si) represents the updated step size.

Considering to variation of γ within [0, ∞) interval, 
when γ → 0 then β0 = β that express the standard particle 
swarm optimization (PSO). In the situation that γ → ∞, 
the second term falls out from Eq. (16) which not only 
indicate random walk movement but also is essentially a 
parallel version of simulated annealing. Consequently, the 
FMA generally is controlled by three parameters γ, β, and 
α where in β0 = 0, the movement is a simple random walk.
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Depending on compared FT, the new solution (one or 
more than one or no new solution) between firefly i and 
other fireflies in the current population is described with:

Therefore, if the considered solution i is also the global 
best solution, no new solution will be generated. If the 
best global solution in the population (n) belongs to fire-
fly j, then only one new solution snew

i
 is achieved, else, 

at least two better solutions than si in n − 1 is available 
where the lowest FT  (FTbest) is retained and others are 
discarded.

4  Acquired database

A database including 222 sets of rock class, density (γ), 
porosity (n), P-wave velocity (Vp), water absorption (w) and 
point load index (Is) from 49 different quarry locations in 
Iran was assembled (Tables 1 and 2). The statistically ana-
lyzed datasets as well as calculated 95% confidence intervals 
of mean and median of provided datasets are presented in 
Table 3 and Fig. 3. According to suggested classification by 
the International society of rock mechanics [30], the major-
ity of compiled datasets fall in the medium to high strength 
categories (Table 4). The components of processed data-
base due to different units were then normalized within the 
range of [0, 1] to produce dimensionless sets and improve 
the learning speed and model stability. These sets further 
were randomized into training (55%), testing (25%) and 
validation (20%). The rock classes including sedimentary, 
igneous, digenetic and metamorphic were coded from 1 to 
4, respectively.

5  Hybridized MSVR and system results

The structure of MSVR is developed through the input, inter-
mediate and output layers subjected to a series of training exper-
iments. As presented in Fig. 4, the MSVR was trained using 

(17)snew
i

=

⎧
⎪⎨⎪⎩

si si = sbest
snew
i

sj = sbest
snew
ij

with FTbest otherwise

Table 1  Specification of 
acquired datasets

Rock class Rock type Number 
of sam-
ples

Igneous Andesite, Granite, Dacite, Terakite, Vitric tuff, 
Ignemberite, Gabbro, Syenite

47

Sedimentary Limestone, Travertine, Onyx travertine 148
Metamorphic-diagenetic Dolomitic limestone, Marble 27
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Table 2  Sample of compiled datasets

Is, point load index; VP, P-wave velocity; n, porosity; w, water absorption; γ, density

Rock type Rock class Location γ (g/cm3) n (%) Vp (km/s) Is (Mpa) w (%) UCS (Mpa) E (Gpa)

Travertine 1 Azarshahr 2.48 7.41 3.95 3.59 1.43 33.60 4.50
Onyx travertine 1 Hamedan 2.32 7.18 3.75 2.37 2.87 52.96 5.1
Travertine 1 Atashkooh 2.47 4.20 4.60 4.20 1.47 49.30 6.61
Travertine 1 Abbasabad 2.43 4.86 4.15 3.64 2.69 41.30 5.56
Travertine 1 Firuzkuh 2.38 3 5.01 5.11 0.88 59.9 5.11
Andesite 2 Yazd 2.72 0.87 5.79 8.82 0.32 126.00 46.40
Granite 2 Nehbandan 2.8 0.32 6.10 10.67 0.23 145.00 36.50
Granite 2 Hamedan 2.71 1.36 4.39 10.78 0.46 125.64 52.76
Syenite 2 Iranshahr 2.54 1.88 5.30 6.27 0.59 91.00 20.00
Gabbro 2 Natanz 2.82 0.26 6.11 14.98 0.23 147.00 81.40
Vitric tuff 2 Farahzad-Tehran 2.18 1.15 3.72 7.20 5.61 101.00 32.4
Marble 4 Sirjan 2.69 1.10 5.21 3.30 0.16 64.00 12.46
Dolomitic limestone 3 Dehbid 2.71 0.35 5.89 5.64 0.20 103.50 17.44
Marble 4 Neyriz 2.7 0.37 5.83 5.53 0.18 101.80 13.58
Limestone 1 Sarvestan 2.69 0.87 4.85 2.66 4.36 47.00 7.33
Limestone 1 Kharame 2.70 0.27 5.87 4.03 1.94 77.00 12.27
Limestone 1 Firoozabad 2.56 9.76 3.42 2.01 6.38 32.90 8.010

Table 3  Descriptive statistics of 
acquired datasets

Mean st.e. Mean standard error; St. Dev Standard Deviation

Variable Mean Mean st.e St. Dev Min Median Max Skewness

Rock class 1.51 0.058 0.846 1 1 4 1.65
γ (g/cm3) 2.5919 0.0116 0.1733 2.18 2.585 3.06 0.39
n% 6.405 0.409 6.09 0.15 4.435 31.4 1.11
Vp (m/s) 4.7661 0.0651 0.9698 2.154 5.01 6.82 − 0.62
w (%) 4.274 0.199 2.968 0.3 3.36 15.12 1.54
Is (MPa) 2.859 0.266 3.958 0.07 1.38 16.16 1.94
UCS (Mpa) 58.86 2.52 37.51 4.75 47.23 193 0.8
E (Gpa) 14.2 1.15 17.1 0.5 6.81 89.4 2.1

Fig. 3.  95% confidence intervals of mean and median for the employed variables
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iterative reweighted trial error least squares procedure (IRWLS) 
[47, 48]. Weighting is based on the output of the true objective 
function and thus the reweighting scheme is considered as a 
feedback control. The accuracy of MSVR output depends on 
the appropriate regularized C, ε as well as γ and σ (Min and Lee 
[39], but no unified procedure for estimating these parameters 
are accepted. To tune the optimum C and γ, numerous combi-
nations of these parameters with step sizes of  20.2 and  20.1 over 
 log2 using the LIBSVM code in Matlab (Chang and Lin [18] 
were examined. The FT of optimum parameters in the training 
process then was evaluated using separate validation datasets 
or cross-validation technique [19, 32] using:

(18)f (m) = RMSE
opimization

training data
+ RMSE

optimization

validation data

where RMSE expresses the root mean square error.
Due to ability of the FMA in control the parameters 

for effective balancing [20], it was applied to improve the 
quality of the initial population and optimizing the C and 
σ. Refer to Fig. 4, the main loop of FMA is controlled by 
the maximum number of generations (Max Gen). This loop 
using a gen-counter parameter (t), calculates the new values 
for the randomization parameter (α) through the functions 
Δ = 1–10−4/0.91/Max Gen and α(t+1) = 1 − Δ. α(t). Δ determines 
the step size of changing parameter α(t+1) and is descended 
with the increasing of t. Then, the new solution si

(t) is evalu-
ated based on a fitness function f(s(t)). With respect to the 
fitness function, f(si

(t)) is ordered ascending the solutions 
si

(t) for n populations, where si
(t) = S(xi

(t)) and thus the best 
solution s* = s0

(t) is determined in the population P(t). The 
FMA parameters (n, α, β0, γ) were obtained considering 

Table 4  Strength classification based on ISRM [30] for provided 
database

Strength description UCS (MPa) No of samples Percentage

Extremely low strength < 1 0 0
Very low strength 1–5 1 0.45
Low strength 5–25 28 12.61
Medium strength 25–50 88 39.64
High strength 50–100 70 31.53
Very high strength 100–250 35 15.77
Extremely high strength > 250 0 0

Fig. 4  Flowchart of model construction and assessing the optimized structure

Table 5  Adjusting the FMA parameters

Parameter Initial value Final value Incre-
ment step 
size

α 0.01 1.0 0.05
β0 0.1 1.0 0.05
γ 0 1.0 0.05
n 10 100 5
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variations in the weight results, meanwhile, one was tested 
the other one was fixed. The number of fireflies was obtained 
according to the convergence history of the iteration process. 
Tables 5 and 6 summarize the information about initial, final 
values and rate of variation in each parameter as well as a 
sample of series efforts in parametric analyzing. The number 
of iteration and corresponding fireflies were found through 
the convergence history of different populations (Fig. 5). The 
results showed that 1000, 30, 1, 0.2, 0.05, 0.2 and 0.5 cor-
responding to the number of iterations, number of fireflies, γ, 

β, Δ, α and β0 can be selected as the most appropriate tuned 
parameters in FMA.  

In this study, for a stable learning process and reduce 
the computational effort the MSVR was managed using a 
quadratic loss function with the value of 0.1 and RBF ker-
nel function subjected to tenfold cross-validation. In the 
cross-validation method (Fig. 6), the entire training data-
set is randomly split into roughly equal subset folds. For K 
times, each of the folds can be chosen for test data and the 
remaining is used as training sets. The errors should be less 
than ε and any deviation larger than this is not accepted. As 
reflected in Table 7, the optimum values for C and γ were 
then selected from the lowest error and highest correlation 
coefficient (R2) in tenfold cross-validation. Accordingly, the 
performance of the hybridized MSVR-FMA using adjusted 
parameters comparing to measured values was checked and 
presented in Fig. 7.

6  Validation and discussion

The correct classification rate (CCR) is a leading assess-
ment metric in discriminant analysis. This criterion can be 
extracted from the confusion matrix [54] as an unambiguous 

Table 6  A brief result of analyzing process to tune FMA parameters

β0 = 0.5, γ = 1 α = 0, γ = 1 α = 0.1, β0 = 0.5

α RMSE β0 RMSE γ RMSE

0.05 0.143 0.05 0.114 0.05 0.169
0.10 0.120 0.10 0.119 0.1 0.170
0.15 0.102 0.15 0.128 0.15 0.168
0.20 0.075 0.20 0.125 0.2 0.169
0.25 0.143 0.25 0.120 0.25 0.169
0.30 0.168 0.30 0.091 0.3 0.171
0.35 0.185 0.35 0.072 0.35 0.166
0.40 0.179 0.40 0.058 0.4 0.161
0.45 0.160 0.45 0.038 0.45 0.161
0.50 0.157 0.50 0.027 0.5 0.157
0.55 0.168 0.55 0.067 0.55 0.159
0.60 0.169 0.60 0.125 0.6 0.150
0.65 0.187 0.65 0.143 0.65 0.145
0.70 0.162 0.70 0.139 0.7 0.148
0.75 0.170 0.75 0.129 0.75 0.158
0.80 0.158 0.81 0.147 0.8 0.159
0.85 0.178 0.85 0.158 0.85 0.161
0.90 0.193 0.90 0.157 0.9 0.134
0.95 0.194 0.95 0.137 0.95 0.080
1.00 0.161 1.00 0.143 1.00 0.025

Fig. 5  Convergence history subjected to different firefly populations

Fig. 6  K-fold cross-validation using split randomized dataset
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table layout method to present the predictability of machine 
learning classifier. Referring to conducted confusion matrix 
(Table 8), the calculated correct classification rate (CCR) 
showed 10.27% and 5.47% improvement in predictability 

of UCS and E using hybrid MSVR-FMA (Table 9). These 
results reflect the significant influence of incorporated FMA 
on the accuracy progress of prediction process. 

Table 7  Determining the 
optimal parameters of MSVR 
in tenfold cross-validation 
procedure

Fold number Train Test C (× 104) σ (× 10–1)

R2 RMSE R2 RMSE

1 0.92 0.795 0.96 0.528 2.181 120.28
2 0.94 0.517 0.95 0.465 1.742 66.822
3 0.93 0.628 0.92 0.586 0.098 524.754
4 0.95 0.543 0.90 0.767 1.014 74.297
5 0.92 0.548 0.94 0.475 9.335 978.906
6 0.93 0.634 0.96 0.579 1.756 55.156
7 0.96 0.425 0.95 0.402 0.423 44.278
8 0.93 0.701 0.94 0.604 8.077 267.428
9 0.95 0.696 0.92 0.675 10.152 83.203
10 0.91 0.716 0.93 0.695 1.948 211.572
Average 0.93 0.620 0.94 0.577 3.672 242.669

Fig. 7  Predictability level of 
optimum and hybridized MSVR 
in training stage for E (a, c) and 
UCS (b, d)
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The area under the curve (AUC) of receiver operating 
characteristic (ROC) is one of the most important graphi-
cal metrics in performance and diagnostic ability of a clas-
sifier system. ROC is a probability curve that summarizes 
the trade-off between the true and false positive rates (TPR 
and FPR) for a predictive model at various threshold set-
tings while AUC represents the degree of separability. 

Therefore, AUC ROC expresses the capability and strength 
of the model in distinguishing classes (Fig. 8a). In machine 
learning, precision shows the capability of a classification 
model in identifying only the relevant data points, while 
recall monitors all the related cases within a dataset. An 
optimal combination of precision and recall can be inter-
preted using F1-score as:

Table 9  CCR of optimized models for validation and test datasets

Model CCR (%) Progress (%)

Test Validate MSVR MSVR-FMA

UCS E UCS E UCS E UCS E

MSVR 80.3 76.8 81.2 79.5 1.11 3.4 – –
MSVR-FMA 85.7 82.1 88.6 84.1 – – 3.27 2.38

MSVR MSVR-FMA

UCS E UCS E

MSVR
 UCS – 2.1% − 8.35% − 3.45%
 E − 2.1% – − 10.27% − 5.47%

MSVR-FMA
 UCS 8.35% 10.27% – 5.08%
 E 3.45% 5.47% − 5.08% –

Fig. 8  Analyzed performance of MSVR and hybrid MSVR-FMA using AUC ROC (a) and F1-score criteria (b)

Table 10  Comparison of 
statistical criteria to evaluate the 
MSVR and MVR models for all 
used datasets

Criteria Abbreviation MSVR-FMA MSVR

UCS E UCS E

Mean absolute percentage error MAPE 8.21 7.46 9.51 10.32
Root mean squared error RMSE 0.302 0.267 0.384 0.330
Mean absolute deviation MAD 2.18 1.65 4.01 3.04
Variance account for VAF 95.80 93.15 92.36 89.77
Index of agreement IA 0.88 0.88 0.84 0.82
Coefficient of determination R2 0.98 0.97 0.95 0.93
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This criterion expresses a harmonic mean that can be 
used instead of a simple average. It avoids extreme values 
and thus is used in imbalanced classes when the false nega-
tives and false positives are crucial [28]. High precision and 
low recall express extremely accurate model, but it misses 
a significant number of instances that are difficult to clas-
sify. In optimal recall and precision values, the F1-score of 
a balanced classification model tends to be maximize. This 
situation reflects veracity (correctly classified data) and 
robustness (not miss significant instances) of the classifier. 
In optimizing of the classifier to increase one and disfavor 
the other, the harmonic mean shows quick decreasing when 
both precision and recall are equal (Fig. 8b).

The performance of the presented models and forecasted 
outputs were also pursued using statistical error indices as 
reflected in Table 10. The formulation of these indices can 
widely be found in statistical textbooks. The MAPE is one 
of the most popular indexes for description of accuracy and 
size of the forecasting error. The MAD reflects the size of 
error in the same units as the data, and reveals that high 
predicted values cause higher error rates. The generic IA 
[60] indicates the compatibility of modeled and observa-
tions. The VAF as an intrinsically connected index between 
predicted and actual values is a representative of model 
performance. Therefore, higher values of VAF, IA and R2 
as well as smaller values of MAPE, MAD and RMSE are 
interoperated as better model performance (Table 10).

Sensitivity analyses cab express the influence of input 
parameters on predictability level and provide robust 

(19)F1 = 2 ×
precision × recall

precision + recall

calibrated models in the presence of uncertainty [12]. This 
implies that removing the least effective inputs may lead to 
better results. The importance of input variables using the 
cosine amplitude (CAM) and partial derivative (PaD) [26] 
are calculated as:

where  CAMij and  PaDi express the importance (contribu-
tion) of ith variable. xi and xj denote elements of data pairs. 
Ok

p and xi
p are output and input values for pattern P, and 

 SSDi is the sum of the squares of the partial derivatives 
respectively.

The results of CAM and PaD (Fig. 9) showed that Is, Vp 
and n are the main effective factors on predicted UCS and 
E, while the rock class and γ expressed the least influences.

7  Conclusion

Due to the heterogeneity of rocks and dependency of strength 
parameters (UCS and E) to different physical and mechani-
cal properties, conducting reliable and accurate predictive 
models is great of interest. In this paper, a new MSVR using 
222 datasets of rock class, density (γ), porosity (n), P-wave 
velocity (Vp), water absorption (w) and point load index (Is) 
for a wide variety of quarried rocks in Iran was developed. 
To enhance the progress and improve the efficiency, the 
MSVR successfully was hybridized with FMA. The results 
showed that by applying the FMA, the characterized internal 

(20)

CAMij =

∑m

k=1

�
xik × xjk

�
�∑m

k=1
x2
ik

∑m

k=1
x2
jk

; PaDi =

∑
p

�
�Ok

p

�x
p

i

�2

∑
i

∑
p

�
�Ok

p

�x
p

i

�2

Fig. 9  Influence of input 
parameters on predicted UCS 
and E using different sensitivity 
analyses
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properties of MSVR were optimized. Hybridizing procedure 
revealed that the CCR for UCS from 81.2% was promoted 
to 88.6% in MSVR-FMA. Similarly, for E this criterion was 
updated from 79.5 to 84.1%. These values indicate for 8.35% 
and 5.47% improvement in predictability level of UCS and 
E in MSVR-FMA. Investigating the robustness of models 
using AUC ROC, F1-score exhibited superior performance 
in MSVR-FMA (85.1%) than MSVR (82.9%). The figured 
out accuracy performance of both classifiers using statisti-
cal error indices represented higher reliability in MSVR-
FMA. According to evaluated criteria, 21.35% and 16.36% 
improvements in RMSE for UCS and E subjected to hybrid 
model was observed. Correspondingly, progress of 3.1% 
(UCS) and 4.16% (E) in MSVR-FMA was raised. Calculated 
IA showed that the MSVR-FMA with 5.54% and 6.82% pro-
gress for UCS and E is more compatible than MSVR. The 
implemented sensitivity analyses showed that Is, Vp and n 
are the most effective factors on both UCS and E. This rank-
ing can be interpreted with previous empirical correlations 
which mostly have been established by these three factors. 
The accuracy level of predicted outputs approved that the 
hybrid MSVR-FMA can efficiently utilizes a promising and 
superior alternative for the purpose of rock strength predic-
tions in designing of construction projects.
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