
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:481–495 
https://doi.org/10.1007/s00366-020-01048-1

ORIGINAL ARTICLE

Fractional‑Lucas optimization method for evaluating the approximate 
solution of the multi‑dimensional fractional differential equations

Haniye Dehestani1   · Yadollah Ordokhani1   · Mohsen Razzaghi2 

Received: 6 January 2020 / Accepted: 9 May 2020 / Published online: 6 June 2020 
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The paper investigates the numerical solution of the multi-dimensional fractional differential equations by applying fractional-
Lucas functions (FLFs) and an optimization method. First, the FLFs and their properties are introduced. Then, according 
to the pseudo-operational matrix of derivative and modified operational matrix of fractional derivative, we present the 
framework of numerical technique. Also, for computational technique, we evaluate the upper bound of error. As a result, we 
expound the proposed scheme by solving several kinds of problems. Our computational results demonstrate that the proposed 
method is powerful and applicable for nonlinear multi-order fractional differential equations, time-fractional convection–dif-
fusion equations with variable coefficients, and time-space fractional diffusion equations with variable coefficients.

Keywords  Fractional-Lucas functions · Fractional differential equations · Optimization method · Pseudo-operational matrix 
of fractional derivative · Modified operational matrix of derivative

Mathematics Subject Classification  35R11 · 26A33

1  Introduction

In recent years, fractional calculus has generated tremendous 
interest in various fields in sciences and engineering. For 
instance, this topic has been used in modeling the nonlinear 
oscillation of earthquake, fluid-dynamic traffic, continuum, 
and statistical mechanics, signal processing, control theory, 
heat transfer in heterogeneous media, the ultracapacitor, and 
beam heating [1–5].

Among the fractional-order problems, solving fractional 
partial differential equations has received considerable 
attention from many researchers. The solution to most prob-
lems cannot be easily obtained by the analytical methods. 

Therefore, many researchers considered the numerical 
approach to gain the approximate solution of the proposed 
problems. The wide type of numerical methods has been 
introduced such as radial basis functions method [6], adap-
tive finite element method [7], and optimization method [8].

During recent years, the fractional-order functions have 
received considerable attention in dealing with various frac-
tional problems. These functions have many advantages 
which greatly simplify the numerical technique to achieve 
the approximate solution with high precision. These functions 
have drawn the attention of many mathematicians and lead 
to the emersion of flexible approaches for solving fractional-
order problems such as fractional-order generalized Laguerre 
functions [9], fractional-order Genocchi functions [10], frac-
tional-order Legendre functions [11], fractional-order Leg-
endre–Laguerre functions [12], Fractional-order Bessel wave-
let functions [13] and Genocchi-fractional Laguerre functions 
[14]. For some other papers on this subject, see [15, 16].

This paper includes the numerical optimization technique 
for solving nonlinear multi-order fractional differential equa-
tions and time-space fractional diffusion equations. To get the 
desired goal, we applied FLFs together with an optimization 
method. It is worthwhile to mention that one of the advantages 
of these functions is integer coefficients of individual terms, 
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which are effective in computational error. Fractional-Lucas 
functions features and operational matrices create good condi-
tions to get appropriate results.

The current paper is arranged as follows: In Sect. 2, we 
describe the fractional-Lucas functions and their proper-
ties, and also function approximations. Sections 3 and 4 are 
devoted to the technique of obtaining a modified operational 
matrix of the derivative and pseudo-operational matrix of the 
fractional derivative. The procedure of implementing the pro-
posed method for two classes of the problems is presented 
in Sect. 5. Convergence analysis and error estimate for the 
proposed method are discussed in Sect. 6. Section 7 contains 
some numerical experiments to demonstrate the accuracy of 
the proposed algorithms. The conclusion is summarized in 
the last section.

In this paper, we consider two classes of the fractional dif-
ferential equations:

•	 Nonlinear multi-order fractional differential equations [17, 
18]: 

 with the initial conditions 

 where the parameters u0 and u1 are constants and F  is 
linear or nonlinear known function.

•	 Nonlinear time-space fractional diffusion equations [19]: 

 with the initial and boundary conditions 

where f0(x), �0(t) and �1(t) are known functions.
Here also, D� and D� denote the Caputo fractional derivatives 
that this operator is defined as follows [12]:

2 � Fractional‑Lucas functions

Fractional-Lucas functions are constructed explicitly by 
applying the change of variable role x → x𝛼 (𝛼 > 0) , on 
Lucas polynomials [20] on the interval [0, 1] as

(1)
D𝜈u(x) + D𝛾u(x) = F(x, u, u�),

0 ≤ x ≤ 1, 1 < 𝜈 ≤ 2, 0 < 𝛾 ≤ 1,

u(0) = u0, u�(0) = u1,

(2)
D𝜈

t
u(x, t) + D𝛾

x
u(x, t) = G(x, t, u,

𝜕u

𝜕x
,
𝜕2u

𝜕x2
),

0 ≤ x, t ≤ 1, 0 < 𝜈 ≤ 1, 0 < 𝛾 ≤ 2,

u(x, 0) = f0(x), 0 ≤ x ≤ 1,

u(0, t) = �0(t), u(1, t) = �1(t), 0 ≤ t ≤ 1,

D𝜈u(x) =

{
1

Γ(q−𝜈)
∫ x

0
(x − t)q−𝜈−1u(q)(t)dt, q − 1 < 𝜈 < q,

u(q)(x), 𝜈 = q.

These functions are defined by the following second-order 
linear recursive formulas:

A given function f belonging to L2([0, 1]) can be expanded 
by FLFs as:

By truncating the above series, we have

and the coefficients vector are computed as follows:

3 � Modified operational matrix of derivative

Throughout this section, we present the technique of cal-
culating the modified operational matrix of the derivative. 
This issue is discussed in the following theorem.

Theorem 1  Let ���
(x) be the fractional-Lucas vector given 

in Eq. (5), then the modified operational matrix of the deriv-
ative for � = 1 is defined as:

where �(�, x) is the (�1 + 1) × (�1 + 1) modified opera-
tional matrix of the derivative for FLFs.

Proof  The following relation for FLFs holds [21]:

Due to the above relation, we have

(3)��
�

m
(x) =

[
m

2
]∑

k=0

m

m − k

(
m − k

k

)
x(m−2k)� .

(4)��
�

m
(x) =

⎧
⎪⎨⎪⎩

2, m = 0,

x� , m = 1,

x����

m−1
(x) + ��

�

m−2
(x), m ≥ 2.

f (x) =

∞∑
m1=0

fm1
��

�

m1
(x).

f (x) ≃

�1∑
m1=0

fm1
��

�

m1
(x) = FT

��
�
(x),

(5)��
�
(x) = [��

�

0
(x),���

1
(x),… ,���

�1
(x)]T ,

(6)F = D−1⟨f (x),���
(x)⟩, D = ⟨���

(x),���
(x)⟩.

(7)(��
�
(x))� = �(�, x)���

(x),

(8)(��
�

m+1
(x))� =

m + 1

2

[
��

�

m
(x) +

x

m
(��

�

m
(x))�

]
.
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Therefore, the modified operational matrix is obtained as 
follows:

 	�  ◻

4 � Pseudo‑operational matrix 
of the fractional derivative

In the present section, the methodology of obtaining the 
pseudo-operational matrix of the fractional derivative in 
Caputo sense of order q − 1 < 𝜈 ≤ q is presented. Thus, we 
define

where

According to properties of the Caputo fractional derivative, 
we have

(9)

(��
�

0
(x))� =0,

(��
�

1
(x))� =

1

2
��

�

0
(x),

(��
�

2
(x))� =

[
��

�

1
(x) +

x

2
��

�

0
(x)

]
,

(��
�

3
(x))� =

3

2

[
��

�

2
(x) +

x

2
��

�

1
(x) +

x2

4
��

�

0
(x)

]
,

(��
�

4
(x))� =2

[
��

�

3
(x) +

x

2
��

�

2
(x) +

x2

4
��

�

1
(x)

+
x3

8
��

�

0
(x)

]
,

⋮

(��
�

�1
(x))� =

�1

2

[
��

�

�1−1
(x) +

x

2
��

�

�1−2
(x)

+
x2

4
��

�

�1−3
(x) +

x3

8
��

�

�1−4
(x)

+⋯ +
x�1−1

2�1−1
��

�

0
(x)

]
.

�(�, x)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 … 0 0
1

2
0 0 0 … 0 0

x

2
1 0 0 … 0 0

3x2

8

3x

4

3

2
0 … 0 0

2x3

8

2x2

4

2x

2
2 … 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

�1x
�1−1

2�1

�1x
�1−2

2�1−1

�1x
�1−3

2�1−2

�1x
�1−4

2�1−3
…

�1

2
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(10)D�(��
�
(x)) = �

q(�, �, x)���
(x),

�
q(�, �, x) = xq�−�

[
�
�,�

m,k,i

]
, i = 0, 1,… ,�1,

m = 0, 1,… ,�1.

Using the properties of the Caputo fractional derivative for 
m = ⌈ �

�
⌉,… ,�1 , each component of the pseudo-operational 

matrix of the fractional derivative �q(�, �, x) is computed 
as follows:

where

Next, by expanding x(m−2k−q)� with �1-terms of FLFs, we 
get

Employing the two above relations, then we have

Accordingly, the vector form of the above formula can be 
written as follows:

D�(��
�

m
(x)) = 0, m = 0, 1,… , ⌈ �

�
⌉ − 1.

(11)

D�(��
�

m
(x))

= D�

⎛
⎜⎜⎝

[
m

2
]�

k=0

m

m − k

�
m − k

k

�
x(m−2k)�

⎞
⎟⎟⎠

=

[
m

2
]�

k=0

m

m − k

�
m − k

k

�
D�

�
x(m−2k)�

�

=

[
m

2
]�

k=⌈ m�−�

2�
⌉

m

m − k

�
m − k

k

�

Γ((m − 2k)� + 1)

Γ((m − 2k)� + 1 − �)
x(m−2k)�−�

= xq�−�
[
m

2
]�

k=⌈ m�−�

2�
⌉
�
�,�

m,k
x(m−2k−q)� ,

�
�,�

m,k
=

m

m − k

(
m − k

k

)
Γ((m − 2k)� + 1)

Γ((m − 2k)� + 1 − �)
.

x(m−2k−q)� =

�1∑
i=0

bi��
�

i
(x).

(12)

D�(��
�

m
(x))

= xq�−�
[
m

2
]�

k=⌈ m�−�

2�
⌉
�
�,�

m,k

�
�1�
i=0

bi��
�

i
(x)

�

= xq�−�
�1�
i=0

⎛⎜⎜⎝

[
m

2
]�

k=⌈ m�−�

2�
⌉
�
�,�

m,k
bi

⎞⎟⎟⎠
��

�

i
(x)

= xq�−�
�1�
i=0

�
�,�

m,k,i
��

�

i
(x), �

�,�

m,k,i
=

[
m

2
]�

k=⌈ m�−�

2�
⌉
�
�,�

m,k
bi.
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In a specific case, for �1 = 2, � = 0.5 and � = 0.5 , the 
pseudo-operational matrix of the fractional derivative is 
obtained as follows:

5 � Fractional‑Lucas optimization method

In the current section, we present the novel approach for 
different kinds of fractional differential equations.

5.1 � Implementation of the method for fractional 
differential equations

In this section, we provide an optimization problem for solv-
ing the fractional differential equations. For this aim, we 
expand the function u(x) by FLFs as follows:

In view of the modified operational matrix of derivative for 
� = 1, we have

And for 0 < 𝛼 < 1 , we obtain

On the other hand, according to the pseudo-operational 
matrix of the fractional derivative, we achieve

and

By substituting Eqs. (13)–(17) into Eq. (1), the residual 
function �(x,U) is obtained

D�(��
�

m
(x)) = xq�−�

[
�
�,�

m,k,0
�
�,�

m,k,1
… �

�,�

m,k,�1

]
��

�
(x).

�
1(0.5, 0.5, x)

=

⎡⎢⎢⎣

0 0 0

4.431134627263790 × 10−1 0 0

0 1.128379167095513 0

⎤⎥⎥⎦
.

(13)u(x) ≃ UT
��

�
(x).

(14)u�(x) ≃ UT
�(�, x)���

(x).

(15)u�(x) ≃ UT
�

1(�, 1, x)���
(x).

(16)D𝜈u(x) ≃ UT
�

2(𝛼, 𝜈, x)��𝛼
(x), 1 < 𝜈 ≤ 2,

(17)D𝛾u(x) ≃ UT
�

1(𝛼, 𝛾 , x)��𝛼
(x), 0 < 𝛾 ≤ 1.

(18)

�(x,U)

=

⎧⎪⎪⎨⎪⎪⎩

UT�2(𝛼, 𝜈, x)��𝛼
(x) + UT�1(𝛼, 𝛾 , x)��𝛼

(x)

−F
�
x,UT��

𝛼
(x),UT�(𝛼, x)��𝛼

(x)
�
, 𝛼 = 1,

UT�2(𝛼, 𝜈, x)��𝛼
(x) + UT�1(𝛼, 𝛾 , x)��𝛼

(x)

−F
�
x,UT��

𝛼
(x),UT�1(𝛼, 1, x)��𝛼

(x)
�
, 0 < 𝛼 < 1.

Thus, using the above relation and initial conditions, the fol-
lowing optimization problem is attained for � = 1:

And for 0 < 𝛼 < 1 , we deduce

 For solving the above problem and obtaining the optimal 
value of elements of the unknown vector U, for � = 1 , we 
consider

Also, for 0 < 𝛼 < 1 , we get

Then, by applying the Lagrange multipliers method, the nec-
essary conditions can be written as:

As a result, considering the system of algebraic equations 
obtained from Eq. (23), the unknown vector U is determined. 
Accordingly, the approximate solution is obtained.

5.2 � Implementation of the method for fractional 
diffusion equations

This section introduces the numerical optimization technique 
for fractional diffusion equations. To realize the purpose, we 
assume

Next, we obtain the approximation of other functions by 
FLFs with the help of the operational matrix of derivative. 
Therefore, for � = 1 , we have

(19)

min M(U) = ∫
1

0

�
2(x,U)dx,

subject to

UT
��

�
(x) − u0 = 0,

UT
�(�, x)���

(x) − u1 = 0.

(20)

min M(U) = ∫
1

0

�
2(x,U)dx,

subject to

UT
��

�
(x) − u0 = 0,

UT
�

1(�, 1, x)���
(x) − u1 = 0.

(21)
J(U, �1, �2) = M(U) + �1

(
UT

��
�
(x) − u0

)
+ �2

(
UT

�(�, x)���
(x) − u1

)
.

(22)
J(U, �1, �2) = M(U) + �1

(
UT

��
�
(x) − u0

)

+ �2
(
UT

�
1(�, 1, x)���

(x) − u1
)
.

(23)
�J

�U
= 0,

�J

��1
= 0,

�J

��2
= 0.

(24)u(x, t) ≃ ��
�T
(x)U��

�
(t).

(25)
�u

�x
(x, t) ≃ ��

�T
(x)�T (�, x)U��

�
(t),
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and for 0 < 𝛼 < 1 , we get

We also have the following approximation for the second-
order derivative of the function:

Also, by considering Eq. (24) and pseudo-operational matrix 
of fractional derivative, we get the following relations:

and

We now introduce the following residual function with the 
assistance of substituting Eqs. (24)–(29) into Eq. (2), for 
� = 1 and 0 < 𝛼 < 1 , respectively:

and

From the initial and boundary conditions and Eq. (24), we 
conclude

As a result, the following optimization problem is obtained:

More precisely, by applying nodal points of Newton–Cotes 
[12] in conditions, we deduce

(26)
�u

�x
(x, t) ≃ ��

�T
(x)�1T (�, 1, x)U��

�
(t).

(27)�2u

�x2
(x, t) ≃ ��

�T
(x)�2T (�, 2, x)U��

�
(t).

(28)D𝜈

t
u(x, t) ≃ ��

𝛼T
(x)U�

1(𝛽, 𝜈, t)��𝛽
(t), 0 < 𝜈 ≤ 1,

(29)
D𝛾

x
u(x, t) ≃ ��

𝛼T
(x)�2T (𝛼, 𝛾 , x)U��

𝛽
(t), 0 < 𝛾 ≤ 2.

(30)

�
∗(x, t,U)

= ��
�T
(x)U�

1
(�, �, t)��

�
(t) + ��

�T
(x)�

2T
(�, � , x)U��

�
(t)

− G
(
x, t,��

�T
(x)U��

�
(t),��

�T
(x)�

T
(�, x)U��

�
(t),

��
�T
(x)�

2T
(�, 2, x)U��

�
(t)
)
,

(31)

�
∗(x, t,U) =��

�T
(x)U�

1(�, �, t)���
(t)

+ ��
�T
(x)�2T (�, � , x)U��

�
(t)

− G
(
x, t,���T

(x)U��
�
(t),���T

(x)�1T (�, 1, x)U��
�
(t),

��
�T
(x)�2T (�, 2, x)U��

�
(t)
)
.

�0(x) = ��
�T
(x)U��

�
(0) − f0(x), 0 ≤ x ≤ 1,

�1(t) = ��
�T
(0)U��

�
(t) − �0(t), 0 ≤ t ≤ 1,

�2(t) = ��
�T
(1)U��

�
(t) − �1(t), 0 ≤ t ≤ 1.

(32)

min M
∗(U) = ∫

1

0 ∫
1

0

�
∗2(x, t,U)dxdt,

subject to

�0(x) = 0,

�1(t) = 0,

�2(t) = 0.

Then, for solving the aforesaid minimization problem and 
evaluating the optimal value of unknown matrix U,   we 
define

where

and

 Next, in order to obtain the unknown matrix U,  we utilize 
Lagrange multipliers method. So, we consider the necessary 
conditions below for the extremum of the fractional diffu-
sion equation

As a result, by solving the aforesaid system of algebraic 
equations, we determine the unknown matrix U. Then, by 
replacing the obtained matrix into Eq. (24), the approximate 
solution is obtained.

6 � Convergence analysis and error estimate

Overall, this section discusses the convergence analy-
sis and error estimate in Sobolev space. For this purpose, 
the Sobolev norm of integer order � ≥ 0 in the domain 
Δ = (a, b)d in Rd for d = 2, 3 is defined [22]

where Dj

i
 denotes the jth derivative of u relative to the ith 

variable. To achieve the objectives and simplifying the way 

(33)

min M
∗(U) = ∫

1

0 ∫
1

0

�
∗2(x, t,U)dxdt,

subject to

�0(xi) = 0, i = 0, 1,… ,�1

�1(tj) = 0, j = 0, 1,… ,�2

�2(tj) = 0.

(34)J
∗(U, �1, �2) = M

∗(U) + A�0 + B�1 + C�2.

A =
[
a0, a1,… , a�1

]T
,

B =
[
b0, b1,… , b�2

]T
,

C =
[
c0, c1,… , c�2

]T
,

�0 =
[
�0(x0),�0(x1),… ,�0(x�1

)
]T
,

�1 =
[
�1(t0),�1(t1),… ,�1(t�2

)
]T
,

�2 =
[
�2(t0),�2(t1),… ,�2(t�2

)
]T
.

�J∗

�U
= 0,

�J∗

�A
= 0,

�J∗

�B
= 0,

�J∗

�C
= 0.

(35)‖u‖H�(a,b) =

�
��
j=0

d�
i=1

‖Dj

i
u‖2

L2(Δ)

� 1

2

,
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of presenting the results, we consider �1 = �2 = � and 
� = �.

Theorem 2  Suppose that u ∈ H�(Δ) , � ≥ 0 and Δ = (0, 1)2. 
If

is the best approximation of u,  then we have the following 
estimations:

and for 1 ≤ r ≤ �,

where

and c depends on �. In addition, the symbol on the right-
hand side of the above error formulas is defined as follows:

Proof  According to results presented in [22] and the known 
concept which the best approximation is unique [23], the 
following estimate holds:

and for 1 ≤ r ≤ �,

Hence, the desired result is deduced. 	�  ◻

Lemma 1  Let u ∈ H�(Δ) , � ≥ 0 and 0 < 𝜈 ≤ 1, then we 
have

Proof  Due to the above-mentioned results and property of 
the norm

�
�

�
u =

�∑
m1=0

�∑
m2=0

am1m2
��

�

m1
(x)���

m2
(t),

(36)‖u − �
�

�
u‖L2(Δ) ≤ c�1−�

�
1−��u�H�;��(Δ),

(37)‖u − �
�

�
u‖Hr(Δ) ≤ c��(r)−�

�
�(r)−��u�H�;��(Δ),

𝜎(r) =

{
0, r = 0,

2r −
1

2
, r > 0,

�u�H�;��(Δ) =

�
��

j=min(�,��+1)

d�
i=1

‖Dj

i
u‖2

L2(Δ)

� 1

2

.

(38)
‖u − �

�

�
u‖L2(Δ) = ‖u − ���u‖L2(Δ)

≤ c(��)1−��u�H�;��(Δ),

(39)
‖u − �

�

�
u‖Hr(Δ) = ‖u − ���u‖Hr(Δ)

≤ c(��)�(r)−��u�H�;��(Δ).

(40)
‖D�

t
u − D�

t
(��

�
u)‖L2(Δ)

≤ c

Γ(2 − �)
��(r)−�

�
�(r)−��u�H�;��(Δ).

‖f ∗ g‖p ≤ ‖f‖p‖g‖1,

where ∗ is the convolution product and also from Riemann–
Liouville fractional integral properties [12], we conclude

	�  ◻

Lemma 2  Let u ∈ H�(Δ) , � ≥ 0 and 1 < 𝛾 ≤ 2 , then we 
have

Proof  From the above lemma, we have

	�  ◻

Lemma 3  Let u ∈ H�(Δ) , � ≥ 0 and 1 < r ≤ 𝜇 , then we get

and

‖‖‖D
�

t
u − D�

t
(��

�
u)
‖‖‖L2(Δ)

=
‖‖‖I

1−�
t

[
D1

t
u − D1

t
(��

�
u)
]‖‖‖L2(Δ)

=
‖‖‖‖

1

t�Γ(1 − �)
∗
[
D1

t
u − D1

t
(��

�
u)
]‖‖‖‖L2(Δ)

≤ 1

(1 − �)Γ(1 − �)

‖‖‖D
1
t
u − D1

t
(��

�
u)
‖‖‖L2(Δ)

≤ 1

Γ(2 − �)

‖‖‖u − �
�

�
u
‖‖‖Hr(Δ)

≤ c

Γ(2 − �)
��(r)−�

�
�(r)−�|u|H�;��(Δ).

(41)

‖‖‖D
�

x
u − D�

x
(��

�
u)
‖‖‖L2(Δ)

≤ c

Γ(3 − �)
��(r)−�

�
�(r)−�|D1

x
u|H�;��(Δ).

���D
�

x
u − D�

x
(��

�
u)
���L2(Δ)

=
���I

2−�
x

�
D2

x
u − D2

x
(��

�
u)
����L2(Δ)

=
����

1

x�−1Γ(2 − �)
∗
�
D2

x
u − D2

x
(��

�
u)
�����L2(Δ)

≤ 1

(2 − �)Γ(2 − �)

���
�
D2

x
u − D2

x
(��

�
u)
����L2(Δ)

=
1

Γ(3 − �)
‖D1

x

�
D1

x
u − D1

x
(��

�
u)
�‖L2(Δ)

≤ 1

Γ(3 − �)
‖D1

x
u − D1

x
(��

�
u)‖Hr(Δ)

≤ c

Γ(3 − �)
��(r)−�

�
�(r)−��D1

x
u�H�;��(Δ).

(42)

‖‖‖‖
�

�x
u −

�

�x
�
�

�
u
‖‖‖‖L2(Δ)

≤ c��(r)−�
�

�(r)−�|u|H�;��(Δ),
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Proof  Directly, the results are obtained from Lemma 2. 
Thus, we have

and also

	�  ◻

Corollary 1  Let u ∈ H�(Δ) , � ≥ 0 and 1 < r ≤ 𝜇. If the 
assumptions in the above theorem and lemmas are estab-
lished, and Lipschitz condition with the Lipschitz constant � 
is satisfied forG, then we gain

where

So that,

and

Proof  From the results of the above theorem and lemmas, 
we achieve the following results:

(43)

‖‖‖‖
�2

�x2
u −

�2

�x2
�
�

�
u
‖‖‖‖L2(Δ)

≤ c��(r)−�
�

�(r)−�
||||
�

�x
u
||||H�;��(Δ)

.

‖‖‖‖
�

�x
u −

�

�x
�
�

�
u
‖‖‖‖L2(Δ)

≤ ‖‖‖u − �
�

�
u
‖‖‖Hr(Δ)

≤ c��(r)−�
�

�(r)−�|u|H�;��(Δ),

‖‖‖‖
�2

�x2
u −

�2

�x2
�
�

�
u
‖‖‖‖L2(Δ)

=
‖‖‖‖
�

�x

(
�

�x
u
)
−

�

�x

(
�

�x
�
�

�
u
)‖‖‖‖L2(Δ)

≤ ‖‖‖‖
�

�x
u −

�

�x
�
�

�
u
‖‖‖‖Hr(Δ)

≤ c��(r)−�
�

�(r)−�
||||
�

�x
u
||||H�;��(Δ)

.

(44)

‖��‖L2(Δ) ≤ c��1−�
�

1−��u�H�;��(Δ)

+

�
1

Γ(2 − �)
+ �

�
c��(r)−�

�
�(r)−��u�H�;��(Δ)

+

�
1

Γ(3 − �)
+ �

�
c��(r)−�

�
�(r)−�

����
�

�x
u
����H�;��(Δ)

,

�
� = �u(x, t) − ��

�

�
u(x, t).

�u(x, t) = D�

t
u(x, t) + D�

x
u(x, t) − G

(
x, t, u,

�

�x
u,

�2

�x2
u

)
,

��
�

�
u(x, t) = D�

t
�
�

�
u(x, t) + D�

x
�
�

�
u(x, t)

− G(x, t,��

�
u,

�

�x
�
�

�
u,

�2

�x2
�
�

�
u).

Accordingly, the proof is completed. 	�  ◻

7 � Numerical experiments

In this section, we implement the fractional-Lucas optimiza-
tion method in solving the different classes of fractional dif-
ferential equations, which justify the accuracy, applicability, 
and efficiency of the proposed method. The computations 
were performed on a personal computer, and the codes are 
written in MATLAB 2016.

7.1 � Fractional differential equation

Example 1  For the first example, we consider the following 
initial value problem [24]:

(45)

‖��‖L2(Δ)
=
����u − ��

�

�
u
���L2(Δ)

≤ ���D
�

t
u − D�

t
�
�

�
u
���L2(Δ) +

���D
�

x
u − D�

x
�
�

�
u
���L2(Δ)

+
����G(x, t, u,

�

�x
u,

�2

�x2
u) − G(x, t,��

�
u,

�

�x
�
�

�
u

,
�2

�x2
�
�

�
u)
����L2(Δ)

≤ ���D
�

t
u − D�

t
�
�

�
u
���L2(Δ) +

���D
�

x
u − D�

x
�
�

�
u
���L2(Δ)

+ �
���u − �

�

�
u
���L2(Δ) + �

����
�

�x
u −

�

�x
�
�

�
u
����L2(Δ)

+ �
����
�2

�x2
u −

�2

�x2
�
�

�
u
����L2(Δ)

≤ c

Γ(2 − �)
��(r)−�

�
�(r)−��u�H�;��(Δ)

+
c

Γ(3 − �)
��(r)−�

�
�(r)−�

����
�

�x
u
����H�;��(Δ)

+ c��1−�
�

1−��u�H�;��(Δ)

+ c���(r)−�
�

�(r)−��u�H�;��(Δ)

+ c���(r)−�
�

�(r)−�
����
�

�x
u
����H�;��(Δ)

= c��1−�
�

1−��u�H�;��(Δ)

+

�
1

Γ(2 − �)
+ �

�
c��(r)−�

�
�(r)−��u�H�;��(Δ)

+

�
1

Γ(3 − �)
+ �

�
c��(r)−�

�
�(r)−�� �

�x
u�H�;��(Δ).

D𝜈u(x) + 3u(x) = 3x3 +
8

Γ(0.5)
x3−𝜈 , 1 < 𝜈 ≤ 2,
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with the initial condition u(0) = 0, u�(0) = 0. The exact solu-
tion, when � =

3

2
, is u(x) = x3. In Table 1 the value of abso-

lute error for various choices of � with � = 1 and �1 = 3 
is computed. From this table, it can be observed that, as 
� approaches 3

2
 , the approximate solution converges to the 

exact solution. The behavior of the numerical solutions 
obtained by numerical technique is illustrated in Figs. 1 
and 2 for different choices of parameters mentioned in 
Sect. 5.1.

Example 2  Consider the following nonlinear multi-order 
fractional differential equations [17, 18]:

with the initial conditions u(0) = 0, u�(0) = −1. The exact 
solution for this problem is u(x) = x2 − x. In view of the pre-
sented method, for � = 1 , we have

D�u(x) + D�u(x) + [u(x)]2

= (x2 − x)2 +
2x2−�

Γ(3 − �)
+

2x2−�

Γ(3 − �)
−

x1−�

Γ(2 − �)
,

1 < 𝜈 ≤ 2, 0 < 𝛾 ≤ 1,

and for 0 < 𝛼 < 1 , we get

where

For � = � = 1, � = 2, � = 1, and �1 = 2 , we obtain

Therefore, the approximate solution is

And also, for � = � = 1, � = 1.5, � = 0.5 and �1 = 2 , we 
deduce

min M(U) = ∫
1

0

�
2(x,U)dx,

subject to

UT
��

�
(x) = 0,

UT
�(�, x)���

(x) + 1 = 0,

min M(U) = ∫
1

0

�
2(x,U)dx,

subject to

UT
��

�
(x) = 0,

UT
�

1(�, 1, x)���
(x) + 1 = 0,

�(x,U) = UT
�

2(�, �, x)���
(x) + UT

�
1(�, � , x)���

(x)

+
[
UT

��
�
(x)

]2

−

(
(x2 − x)2 +

2x2−�

Γ(3 − �)
+

2x2−�

Γ(3 − �)
−

x1−�

Γ(2 − �)

)
.

u1 = − 1.0000000000000058,

u2 = − 1,

u3 =1.0000000000000058.

u(x) = x2 − x + 1.147943701974890 × 10−41.

Table 1   Absolute error for various choices of � with � = 1 and 
�1 = 3 of Example 1

x � = 1.2 � = 1.3 � = 1.4 � = 1.5

0.1 3.7554 × 10−3 2.4432 × 10−3 1.1839 × 10−3 9.1813 × 10−16

0.3 3.0924 × 10−2 2.0265 × 10−2 9.9007 × 10−2 5.8919 × 10−16

0.5 7.7915 × 10−2 5.1508 × 10−2 2.5405 × 10−2 3.9228 × 10−15

0.7 1.3706 × 10−1 9.1574 × 10−2 4.5686 × 10−2 7.2335 × 10−15

0.9 2.0069 × 10−1 1.3587 × 10−1 6.8729 × 10−2 8.1116 × 10−15

0 0.2 0.4 0.6 0.8 1x

0

0.2

0.4

0.6

0.8

1

1.2 Exact solution
=1.5
=1.4
=1.3
=1.2

0 0.2 0.4 0.6 0.8 1x
-2

0

2

4

6

8

10-15

Fig. 1   Approximate solution and exact solution for � = 1.5, 1.4, 1.3, 1.2 (left) and absolute error for � = 1.5 (right) with �1 = 3 and � = 1 of 
Example 1
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Then,

Also, we compare our results with Chebyshev wavelet meth-
ods [17, 18] in Table 2. By comparing these results, it can be 
seen that there is good agreement between numerical solu-
tions and the exact solution.

Example 3  Consider the following nonlinear fractional dif-
ferential equations [25]:

u1 = − 0.9999999999999976,

u2 = − 1,

u3 =0.9999999999999976.

u(x) = 0.9999999999999976x2 − x + 1.1021437293 × 10−41.

with the initial conditions u(0) = 0. The exact solution, when 
� = 1, is u(x) = exp(2x)−1

exp(2x)+1
. In Tables 3 and 4, the value of abso-

lute error and L2-error for various choices of �, � and �1 is 
presented. In Table 3 we notice that as the number of base 
functions �1 increases, the absolute error tends to zero. 
Also, we show L2-error in Table 4 to illustrate the effect of 
the � and � parameters on the numerical results. In addition, 
the approximate solution for � = 1, 0.95, 0.9, 0.85, 0.8, and 
� = 1 with �1 = 5 is plotted in Fig. 3.

D𝛾u(x) + [u(x)]2 = 1, 0 < 𝛾 ≤ 1, 0 ≤ x ≤ 1,

0 0.2 0.4 0.6 0.8 1
x

0

0.5

1

1.5
Exact solution

=1.5
=1.4
=1.3
=1.2

0 0.2 0.4 0.6 0.8 1
x

1

2

3

4

5

6

7

8

9

10
10-9

Fig. 2   Approximate solution and exact solution for � = 1.5, 1.4, 1.3, 1.2 (left) and absolute error for � = 1.5 (right) with �1 = 6 and � = 0.5 of 
Example 1

Table 2   Comparison of absolute 
error for � = 1 with �1 = 2 of 
Example 2

x  Present method Chebyshev wavelet method [17] Chebyshev wavelet method [18]

 �1 = 2 m = 96, (M = 6, k = 4) m = 96, (M = 6, k = 4)

� = 2, � = 1 � = 2, � = 0.5 � = 2, � = 0.5 � = 2, � = 0.5

0.1 0 2.8022 × 10−17 8.8658 × 10−6 1.7936 × 10−8

0.2 4.5917 × 10−41 1.1208 × 10−14 8.5359 × 10−6 3.6525 × 10−8

0.3 4.5917 × 10−41 2.5219 × 10−14 8.1318 × 10−6 5.4314 × 10−8

0.4 4.5917 × 10−41 4.4835 × 10−14 7.6897 × 10−6 7.1227 × 10−8

0.5 0 7.0055 × 10−14 7.1843 × 10−6 8.5678 × 10−8

0.6 9.1835 × 10−41 1.0087 × 10−13 6.7665 × 10−6 1.0234 × 10−7

0.7 4.5917 × 10−41 1.3730 × 10−13 6.3058 × 10−6 1.1650 × 10−7

0.8 1.3775 × 10−40 1.7934 × 10−13 5.8497 × 10−6 1.2967 × 10−7

0.9 1.1479 × 10−40 2.2697 × 10−13 5.4018 × 10−6 1.4172 × 10−7
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7.2 � Fractional diffusion equation

Example 4  Consider the following time-fractional convec-
tion–diffusion equation with variable coefficients [26–28]

with the initial and boundary conditions

D𝜈

t
u(x, t) + x

𝜕u(x, t)

𝜕x
+

𝜕2u(x, t)

𝜕x2
= 2t2𝜈 + 2x2 + 2,

0 < x < 1, 0 < t ≤ 1, 0 < 𝜈 ≤ 1,

The exact solution for this problem is u(x, t) = x2 +
2Γ(�+1)

Γ(2�+1)
t2� . 

With the help of the proposed method in previous section, 
for � = � = � = 1 and �1 = �2 = 2 , we have

Therefore, the approximate solution is gained as follows:

Table  5 contains the comparison of the absolute error 
obtained by present method for � = � = 1, � = 0.5 
and t = 0.5 with Haar wavelet method (HWM) [26], 

u(x, 0) = x2, 0 < x < 1,

u(0, t) =
2Γ(𝜈 + 1)

Γ(2𝜈 + 1)
t2𝜈 ,

u(1, t) = 1 +
2Γ(𝜈 + 1)

Γ(2𝜈 + 1)
t2𝜈 , 0 < t ≤ 1.

u11 = −1.0000000000000777,

u12 = −4.7510058418675076 × 10−14,

u13 = 0.5000000000000758,

u21 = −7.578895611098832 × 10−14,

u22 = −4.5370462095201405 × 10−14,

u23 = 7.371827437818487 × 10−14,

u31 = 0.5000000000000765,

u32 = 4.57701815507234 × 10−14,

u33 = −7.459073413110155 × 10−14.

u(x, t) = 4.577018155072 × 10−14tx2 − 4.1413634656068944

× 10−15x − 3.4797537359033616 × 10−14t

+ 7.3718274378184873 × 10−14xt2 + 1.00000000000000380x2

− 7.4590734131101545 × 10−14x2t2 − 4.5370462095201411

× 10−14xt + 1.00000000000000247t2

+ 6.501249483589424 × 10−17.

Table 3   Absolute error for different choices of �1 with � = � = 1 of 
Example 3

x �1 = 3 �1 = 5 �1 = 7

0.1 1.4396 × 10−3 6.9693 × 10−6 3.5133 × 10−7

0.2 9.0772 × 10−4 3.2131 × 10−5 5.4458 × 10−8

0.3 3.9184 × 10−4 1.8991 × 10−5 4.2375 × 10−7

0.4 1.5335 × 10−3 1.9401 × 10−5 1.4739 × 10−7

0.5 1.9557 × 10−3 3.4759 × 10−5 3.9900 × 10−7

0.6 1.4960 × 10−3 1.2132 × 10−5 8.8964 × 10−8

0.7 3.8165 × 10−4 2.1697 × 10−5 3.3885 × 10−7

0.8 8.1710 × 10−4 2.5283 × 10−5 1.0450 × 10−7

0.9 1.2534 × 10−3 9.1916 × 10−6 1.6283 × 10−7

1 1.2112 × 10−4 7.8488 × 10−8 2.1544 × 10−11

Table 4   L2-error for different choices of �, � with �1 = 5 of Example 
3

� = � = 0.5 � = � = 0.75 � = � = 0.85 � = � = 0.95

L2-error 7.5196 × 10−1 4.6551 × 10−1 1.4383 × 10−1 4.8127 × 10−2

0 0.2 0.4 0.6 0.8 1x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Exact solution
=1
=0.95
=0.9
=0.85
=0.8

Fig. 3   Approximate solution for � = 1, 0.95, 0.9, 0.85, 0.8, and � = 1 
with �1 = 5 of Example 3

Table 5   Comparison of absolute error for � = � = 1, � = 0.5 with 
t = 0.5 of Example 4

x Present method HWM [26] SLM [27] CWM [28]
�1 = 2,�2 = 1 m = 64 m = 25 m = 6

0.1 1.1119 × 10−16 1.210 × 10−3 6.462 × 10−6 1.110 × 10−16

0.2 2.9954 × 10−16 1.259 × 10−3 1.578 × 10−5 1.110 × 10−16

0.3 5.1065 × 10−16 1.865 × 10−3 2.272 × 10−5 2.220 × 10−16

0.4 7.4454 × 10−16 7.412 × 10−3 2.674 × 10−5 2.220 × 10−16

0.5 1.0012 × 10−15 1.000 × 10−6 2.759 × 10−5 0
0.6 1.2806 × 10−15 7.460 × 10−3 2.534 × 10−5 0
0.7 1.5828 × 10−15 1.724 × 10−3 2.035 × 10−5 2.220 × 10−16

0.8 1.9078 × 10−15 4.990 × 10−3 1.320 × 10−5 0
0.9 2.2555 × 10−15 1.678 × 10−2 4.653 × 10−6 0
CPU 1.0689 × 10−1 − − −
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Sinc–Legendre method (SLM) [27], and Chebyshev wave-
lets method (CWM) [28]. It should be noted that our method 
with the number of base functions less than Chebyshev 
wavelets method [28] achieved the same results. Also, 
Figs. 4 and 5 demonstrate the behavior of the numerical 
technique for different choices of �, �, � with �1 = �2 = 2.

Example 5  Consider the following nonlinear time-space frac-
tional advection–diffusion equation [29]

D𝜈

t
u(x, t) + u(x, t)

𝜕u(x, t)

𝜕x
= x + xt2,

0 ≤ x ≤ 1, t > 0, 0 < 𝜈 ≤ 1,

with the initial and boundary conditions

The exact solution, when � = 1, is u(x, t) = xt. According 
to the method presented in the earlier section, by taking 
�1 = �2 = 1 and � = � = � = 1, we get

Consequently, the approximate solution is obtained as 
follows:

u(x, 0) = 0, 0 < x < 1,

u(0, t) = 0, u(1, t) = t, t > 0.

U =

[
7.771561172376096 × 10−16 4.440892098500626 × 10−16

−3.552713678800501 × 10−15 1.0000000000000078

]
.

Fig. 4   Approximate solution (left) and absolute error (right) for � = � = 0.3, � = 1 with �1 = �2 = 2 of Example 4

Fig. 5   Approximate solution (left) and absolute error (right) for � = � = 0.9, � = 1 with �1 = �2 = 2 of Example 4
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Also, the behavior of the approximate solution for different 
choices of � is illustrated in Fig. 6.

Example 6  Consider the following time-space fractional dif-
fusion equation with variable coefficients [30, 31]:

with the initial and boundary conditions

u(x, t) = 8.8817841970012 × 10−16t − 7.105427357601001

× 10−15x + xt + 3.10862446895043 × 10−15.

D
1

2

t u(x, t) + xD
1

2

x u(x, t) =
2xt

1

2√
�

+
2x

3

2 t√
�
,

0 ≤ x ≤ 2, 0 ≤ t ≤ 1,

The exact solution for this problem is u(x, t) = xt. Table 6 
illustrates comparisons of the absolute errors of the approxi-
mate solutions with methods in [30, 31] at various times. 
The L2-error for different values of �, � and �1,�2 at vari-
ous times on the interval x ∈ [0, 2] is computed in Table 7. 
We also show the absolute errors for different choices of 
�, � and �1,�2 in Fig. 7. The computational results on the 
tables and figures verify the accuracy and efficiency of the 
proposed method.

Example 7  Consider the following space fractional diffusion 
equation with variable coefficients [32, 33]:

with the initial and boundary conditions

T h e  exa c t  s o l u t i o n  fo r  t h i s  p r o b l e m  i s 
u(x, t) = (x2 − x3) exp(−t). Table 8 compares the absolute 
errors at different points of x and t on interval [0, 1] with 
obtained results in methods [32, 33]. In addition, we display 
the approximate solution and absolute error for � = � = 1 
with �1 = 3,�2 = 5 in Fig.  8. The comparison of the 
obtained results in table and figure with those based on other 
methods demonstrates that the proposed scheme is a power-
ful tool to get the approximate solution with high accuracy.

u(x, 0) = 0, 0 ≤ x ≤ 2,

u(0, t) = 0, 0 ≤ t ≤ 1.

𝜕u(x, t)

𝜕t
= Γ(1.2)x1.8D1.8

x
u(x, t) + (6x3 − 3x2) exp(−t)

0 ≤ x ≤ 1, t > 0,

u(x, 0) = x2 − x3, 0 < x < 1,

u(0, t) = u(1, t) = 0, t > 0.

0 0.2 0.4 0.6 0.8 1
t

0

0.1

0.2

0.3

0.4

0.5
Exact solution
=1
=0.9
=0.7
=0.5

0.1 0.15 0.2

0.06

0.08

0.1

0.12

Fig. 6   Exact solution and approximate solutions for � = 1, 0.9, 0.7, 0.5 
and � = � = 1 with �1 = �2 = 2 and x = 0.5 of Example 5

Table 6   Comparison of absolute 
error for � = � = 1 with 
�1 = �2 = 1 of Example 6

x Present method Fractional-order Legendre func-
tions [30]

Tau method [31]

t = 0.2 t = 0.8 t = 0.2 t = 0.8 t = 0.2 t = 0.8

0.1 3.4709 × 10−30 4.4176 × 10−30 3.47 × 10−17 6.94 × 10−18 0.00012 0.00816
0.3 3.4709 × 10−30 4.4176 × 10−30 5.55 × 10−17 8.33 × 10−17 0.00417 0.02639
0.5 3.4709 × 10−30 4.4176 × 10−30 0 1.11 × 10−16 0.00761 0.04718
0.7 3.4709 × 10−30 4.4176 × 10−30 5.55 × 10−17 2.22 × 10−16 0.01158 0.07050
0.9 3.4709 × 10−30 4.4176 × 10−30 2.78 × 10−17 1.67 × 10−16 0.01608 0.09637
1.1 3.4709 × 10−30 4.4176 × 10−30 5.55 × 10−17 1.11 × 10−16 0.02111 0.12479
1.3 3.4709 × 10−30 4.4176 × 10−30 5.51 × 10−17 0 0.02667 0.15575
1.5 3.4709 × 10−30 4.4176 × 10−30 1.39 × 10−16 1.11 × 10−16 0.03275 0.18925
1.7 3.4709 × 10−30 4.4176 × 10−30 1.67 × 10−16 2.22 × 10−16 0.03937 0.22529
1.9 3.4709 × 10−30 4.4176 × 10−30 1.67 × 10−16 0 0.04651 0.26389
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Example 8  Consider the following time-space fractional dif-
fusion equation [19]:

with the initial and boundary conditions

D𝜈

t
u(x, t) + D𝛾

x
u(x, t) = cos(x) + cos(t),

0 ≤ x, t ≤ 1, 0 < 𝜈, 𝛾 ≤ 1,

u(x, 0) = sin(x), 0 ≤ x ≤ 1,

u(0, t) = sin(t), 0 ≤ t ≤ 1

The exact solution, when � = � = 1, is u(x, t) = sin(x) + sin(t). 
To show the effect of the number of base functions to the 
accuracy of approximate solution, we exhibit the absolute 
errors for different values of �1,�2 in Table 9. Besides, the 
behavior of the approximate solution for different choices 
of �, � is presented in Figs. 9 and 10. These graphs are plot-
ted to verify the accuracy and efficiency of the proposed 
method.

Table 7   L2-error for different 
choices of �, � and �1,�2 
on the interval x ∈ [0, 2] of 
Example 6

�1 �2 � � t = 0.2 t = 0.4 t = 0.8

2 2 1

2

1

2
1.8393 × 10−13 1.7574 × 10−13 9.9076 × 10−14

2 3 1

2

1

3
5.1472 × 10−10 5.8940 × 10−10 6.3084 × 10−10

4 2 1

4

1

2
9.4161 × 10−11 9.2460 × 10−11 2.5840 × 10−10

Fig. 7   Absolute error for � = � = 0.5 with �1 = �2 = 2 (left) and � = � = 1 with �1 = �2 = 1 (right) of Example 6

Table 8   Comparison of the 
absolute error obtained by the 
present method with methods in 
[32, 33] of Example 7

x Present method Method in [32] Method in [33]

�1 = �2 = 3 �1 = 3,�2 = 6 �1 = 6,�2 = 3 m1 = m2 = 3 m1 = m2 = 3

� = � = 1 � = 1, � = 0.5 � = 0.5, � = 1

0.1 2.7514 × 10−6 1.0753 × 10−6 2.1835 × 10−6 2.10940 × 10−3 5.84581 × 10−6

0.2 5.3240 × 10−6 3.4944 × 10−6 3.3186 × 10−5 1.76609 × 10−4 2.65339 × 10−5

0.3 3.9286 × 10−6 5.3888 × 10−6 1.2597 × 10−4 3.01420 × 10−4 8.32918 × 10−5

0.4 2.2278 × 10−5 5.1909 × 10−6 2.1775 × 10−4 4.04138 × 10−4 1.50580 × 10−4

0.5 3.3567 × 10−5 2.9121 × 10−6 2.0367 × 10−4 4.89044 × 10−4 2.14552 × 10−4

0.6 2.3714 × 10−5 5.7595 × 10−7 1.5328 × 10−5 5.63305 × 10−4 2.61360 × 10−4

0.7 3.7926 × 10−6 2.9449 × 10−7 3.1419 × 10−4 6.33367 × 10−4 2.77156 × 10−4

0.8 2.4866 × 10−5 1.6945 × 10−6 6.1927 × 10−4 7.05677 × 10−4 2.48093 × 10−4

0.9 1.4768 × 10−5 1.7026 × 10−6 6.1974 × 10−4 7.86679 × 10−4 1.60323 × 10−4

1 8.8817 × 10−16 7.3281 × 10−14 4.0413 × 10−14 8.82821 × 10−4 0
CPU 2.4717 × 10−1 4.5575 × 10−1 5.3482 × 10−1 − −
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8 � Conclusion

A novel numerical optimization method is constructed 
for evaluating the approximate solution of various classes 
of fractional partial differential equations. We first intro-
duce fractional-Lucas functions and then compute the 
modified operational matrix of the derivative and pseudo-
operational matrix of the fractional derivative by applying 
the properties of FLFs and Caputo fractional derivative. 
Despite using a few terms of base functions, the numerical 
results illustrate the excellent behavior of the optimization 
approach to gain the approximate solution. Also, the trend 
of the numerical approach illustrates that the method is 
very effective and accurate.

Fig. 8   Approximate solution (left) and absolute error (right) for � = � = 1 with �1 = 3,�2 = 5 of Example 7

Table 9   Absolute errors for different values of �1,�2 with 
� = � = � = � = 1 of Example 8

x = t �1 = �2 = 2 �1 = �2 = 3 �1 = �2 = 5

0 1.0660 × 10−2 4.6261 × 10−4 1.9967 × 10−6

0.1 3.1844 × 10−3 1.4261 × 10−4 1.3597 × 10−7

0.2 7.5164 × 10−3 1.0091 × 10−4 9.2336 × 10−7

0.3 5.5540 × 10−3 2.0418 × 10−4 6.7562 × 10−7

0.4 5.9025 × 10−5 4.9890 × 10−4 2.9982 × 10−7

0.5 6.6834 × 10−3 6.4211 × 10−4 9.3506 × 10−7

0.6 1.2883 × 10−2 5.8554 × 10−4 4.1884 × 10−7

0.7 1.7263 × 10−2 3.6079 × 10−4 6.7748 × 10−7

0.8 1.9077 × 10−2 7.3075 × 10−5 1.0687 × 10−6

0.9 1.8123 × 10−2 9.8707 × 10−5 4.8828 × 10−7

1 1.4762 × 10−2 1.0458 × 10−4 5.1044 × 10−7

0 0.2 0.4 0.6 0.8 1x

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Exact solution
= =1
= =0.9
= =0.8
= =0.7
= =0.6

Fig. 9   Approximate solutions for � = � = 1, 0.9, 0.8, 0.7, 0.6 with 
�1 = �2 = 3, � = � = 1 and t = 1 of Example 8

Fig. 10   Approximate solutions for (blue) � = � = 1, (orange) � = � = 0.8, 
(green) � = � = 0.6, (pink) � = � = 0.4 with �1 = �2 = 3 and 
� = � = 1 of Example 8
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