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Abstract
Sensitivity-based methods by the model updating strategy are still influential and reliable for structural damage detection. 
The major issue is to utilize a well-established sensitivity function that should be directly relevant to damage. Under noisy 
modal data, it is well known that the sensitivity-based model updating strategy is an ill-posed problem. The main aim of this 
article is to locate and quantify damage using incomplete noisy modal parameters by improving a sensitivity function of 
modal flexibility and proposing a new iterative regularization method for solving an ill-posed problem. The main contribution 
of the enhanced sensitivity formulation is to develop the derivative of eigenvalue and establish a more relevant sensitivity 
function to damage. The new regularization method is a combination of an iterative approach called least squares minimal 
residual and the well-known Tikhonov regularization technique. The key novel element of the proposed solution method 
is to choose an optimal regularization parameter during the iterative process rather than being required a prior. Numerical 
simulations are used to validate the accuracy and efficiency of the improved and proposed methods. Results demonstrate that 
the enhanced sensitivity function of the modal flexibility is more sensitive to damage in comparison with the basic formula-
tion. Moreover, one can observe the robustness of the proposed solution method to solve the ill-posed problem for damage 
localization and quantification under noise-free and noisy modal data.

Keywords  Damage detection · Sensitivity function · Modal flexibility · Noisy modal data · LSMR · Tikhonov 
regularization

1  Introduction

Structural damage detection is an important process in civil, 
mechanical and aerospace engineering systems, because 
adverse changes caused by damage in such systems lead 
to undesirable stresses and displacements, inappropriate 
dynamic behavior, adverse structural performance, failure 

and even collapse. Damage in a structure may emerge as 
material deterioration, geometric alterations, faults in 
boundary conditions, cracks, loose bolts and broken welds, 
corrosion, and fatigue. These may reduce the structural stiff-
ness and result in adverse vibration responses. Therefore, 
there is a great necessity to assess the health and integrity 
of engineering systems for avoiding any irrecoverable events 
and decreasing the repair and rehabilitation costs.

To achieve these aims, structural health monitoring 
(SHM) provides a practical procedure by recording vari-
ous structural responses (e.g. acceleration, strain, frequency 
domain data, modal data, etc.), evaluating structural state, 
and detecting any probable damage [1]. On this basis, an 
SHM system performs a damage detection process in four 
main steps: (1) early damage detection, (2) damage localiza-
tion, (3) damage quantification, and (4) damage prognosis. 
The first step is a global process, which aims to perceive 
whether the damage is available throughout the structure. 
The damage localization and quantification steps are local 
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procedures, which are intended to identify the damage 
location and quantify its severity. Eventually, the last step 
predicts the remaining lifetime of the structure, which is 
associated with the fields of fracture mechanics, fatigue-life 
analysis, and structural design assessment [2].

In general, model-based and data-based approaches are 
two kinds of SHM strategies for early damage detection, 
localization, and quantification. A model-based method 
relies on constructing a finite element (FE) model of the 
structure and utilizing a mathematical technique for the solu-
tion of the inverse problem of damage detection [3–7]. Most 
of the methods in this category are usually based on the 
concept of model updating [8, 9]. In contrast, a data-based 
approach uses raw measured vibration data and extracts fea-
tures from them for SHM on the basis of statistical pattern 
recognition and machine learning [10–14].

Despite the popularity and applicability of data-based 
techniques, those are not sufficiently capable of quantifying 
the damage severity [15]. In contrast, model-based methods 
through the concept of model updating are still reliable and 
effective approaches to detecting, locating, and quantifying 
structural damage. A damage detection strategy based on 
the model updating relies on the modification of structural 
parameters by finding the differences between dynamic char-
acteristics of the real structure and its finite element (FE) 
or analytical model. Under this theory, it is assumed that 
the FE model reflects a known or normal condition and the 
real structure or experimental model is an unknown (either 
undamaged or damaged) state [9]. Accordingly, the inherent 
structural properties and analytical vibration responses are 
simply obtained from the FE model, whereas the only exper-
imental data are available from the real structure. Among all 
dynamic responses, the modal data (i.e., natural frequencies 
and mode shapes) are widely applied to the vibration-based 
damage detection methods. This is due to the fact that these 
parameters only depend on the inherent physical properties 
of the structure (i.e., mass, damping, and stiffness), regard-
less of the type of excitation.

Because the model updating process is an inverse problem 
and the relationship between the inherent structural param-
eters and modal data is intrinsically nonlinear, sensitivity-
based methods are developed to simplify the solution of the 
inverse problem using the linearization of equations [16]. 
Most of the modal-based sensitivity functions rely upon tak-
ing the first-order derivative of the eigenvalue (the square of 
the natural frequency) and eigenvector (mode shape) with 
respect to the structural parameter based on the fundamen-
tal dynamic equations [16]. Although the measurement of 
modal frequencies is simpler and more accurate than the 
mode shapes, those are global dynamic characteristics and 
may not provide sufficient local information about damage 
[17]. This is because the damage is a local phenomenon and 
may not significantly affect the lower modes that are usually 

measured by modal testing [18]. Additionally, in order to 
acquire adequate modal displacements (mode shapes), it is 
necessary to equip the structure with a dense sensor net-
work. This is a major limitation of the measurement and 
identification of mode shapes. Under such circumstances, an 
alternative way is to use modal flexibility that is a function 
of both the eigenvalues and eigenvectors. The salient feature 
of the modal flexibility is that it is more sensitive to damage 
than the modal frequencies and mode shapes [19]. As the 
other great merit, one can accurately estimate the modal 
flexibility matrix from only a few lower modes, because it is 
inversely proportional to the eigenvalues [20]. Due to such 
remarkable advantages, many researchers have utilized the 
change in the modal flexibility matrix as a damage index in 
vibration-based damage detection problems [21–24].

Taking all the merits of the modal flexibility into con-
sideration, one of the important issues is how to define a 
well-established sensitivity function of the modal flexibility. 
General speaking, there are two approaches including: (1) 
the formulation of a sensitivity function based on the inverse 
of the stiffness matrix without using the modal data [25, 26] 
and (2) establishment of a sensitivity equation with the aid of 
the first-order derivatives of the eigenvalue and eigenvector 
[27]. Although the sensitivity formula of the first approach is 
very simple, it needs all modes, which may be impossible in 
most of the real applications. On this basis, it seems that the 
second approach provides a better and more beneficial sensi-
tivity function for the modal flexibility. However, the major 
challenging issue in most of the sensitivity-based damage 
detection methods is to derive a well-established sensitivity 
function that should be sensitive to damage. In other words, 
this function should be related to the problem of damage 
detection and should provide sufficient damage detectability.

Another significant topic on the model-based damage 
detection is to solve an ill-posed inverse problem, which 
may arise from noisy modal data. This is a prominent issue, 
because a small perturbation caused by noise results in erro-
neous solutions. Regularization methods are usually used 
to solve ill-posed inverse problems [28–32]. In relation 
to damage detection, Weber et al. [33] utilized Tikhonov 
regularization and truncated singular value decomposition 
methods to solve a nonlinear model updating problem for 
damage identification in an iterative manner. Hou et al. 
[34] dealt with the problem of using the classical Tikhonov 
regularization technique for sparse damage identification 
by proposing l1 regularization method. In connection with 
new regularization methods, Grip et al. [35] introduced total 
variation-based regularization as a well-established regular-
ized solution approach to detect structural damage based 
on a sensitivity-based model updating strategy. Entezami 
et al. [3] proposed regularized least squares minimal resid-
ual method to solve an ill-posed inverse problem regard-
ing the sensitivity-based damage detection under a highly 
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ill-conditioned sensitivity matrix and noise measurements. 
Despite reasonable researches about the model-based dam-
age detection via regularization methods, the ill-posedness 
is still an open problem, particularly choosing an optimal 
regularization value.

The main objective of this article is to locate and quan-
tify structural damage using incomplete noisy modal data. 
For these purposes, an improved sensitivity function of 
the modal flexibility is proposed to establish a more sen-
sitive formulation to damage. The improvement relies on 
the development of the derivative of eigenvalue, which is 
directly used in the general formulation of the sensitivity 
of the modal flexibility. In order to address the incomplete-
ness of mode shapes, system equivalent reduction expan-
sion process (SEREP) approach is applied to expand the 
measured modal displacements. A new regularized solution 
method as the combination of least squares minimal resid-
ual (LSMR) and the well-known Tikhonov regularization is 
proposed to solve the ill-posed inverse problem of damage 
detection under noisy conditions. The main contribution of 
the proposed solution method called LSMR-Tikhonov is to 
select an optimal regularization parameter during the itera-
tive process rather than being required a prior. The accuracy 
and performance of the enhanced sensitivity function and 
proposed solution method are verified by two numerical 
models. A statistical threshold limit is also incorporated to 
increase the reliability of damage localization. Results show 
that the methods presented here are precisely able to locate 
and quantify single and multiple damage cases, even under 
noisy modal data. Moreover, it is observed that the enhanced 
sensitivity function of the modal flexibility is more sensitive 
to damage compared to the basic formulation.

2 � Enhanced sensitivity function of modal 
flexibility

The modal flexibility F is a function of the eigenvalues and 
eigenvectors. This function generally represents a static 
deflection profile caused by a unit load [27]. For a structural 
system with n degrees-of-freedom (DOFs), the function of 
modal flexibility is defined as:

where λi and φi represent the ith eigenvalue (the square of 
natural frequency) and eigenvector (mode shape) of the FE 
model of the structural system. These modal parameters are 
derived from the analytical mass and stiffness matrices; that 
is, M, K∈ℜn×n. One should clarify here that it is not always 
feasible to measure all the modal data of the real structure 
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For the problem of damage detection, it is possible to neglect 
the derivative of mass matrix since the damage usually does 
not affect this structural property and it often remains invari-
ant. Let L denotes the inverse of K − λiM. Rather than using 
the classical inverse operator, which may lead to an inac-
curate inversion in the case of an ill-conditioned matrix, it 
is better to utilize the pseudo-inverse procedure based on 
singular value decomposition (SVD) [37]. For this purpose, 
the matrix K-λiM is decomposed into three matrices in the 
following form:

in which Σ is a diagonal matrix. Thus:

where “+” denotes the pseudo-inverse. Therefore, the deriv-
ative of mode shape is modified as:

Substituting Eq. (8) into Eq. (4) yields:

where Ψi = φiφi
T∈ℜn×n. Unlike ∂K/∂p, the first-order deriva-

tive of the eigenvalue is unknown and should be determined. 
An efficient and well-known approach to determining the 
derivative of eigenvalue is the method of Fox and Kapoor 
[38]:

For the problem of damage detection, this equation can 
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TK. Hence, the above equation is 
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However, the first term of this equation describes the 
variation of the stiffness matrix as the main damage index, 
one can approximate the derivative of mode shape in the 
second term of Eq. (13) based on the rate of change in the 
stiffness matrix as follows [18]:

Therefore, the first-order derivative of the eigenvalue 
is improved as:

Assume that:

By inserting Eq. (15) into Eq. (9), the enhanced sensi-
tivity function of the modal flexibility for the ith mode is 
proposed as:
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development of the sensitivity of eigenvalue by adding 
the expression ξ. In other words, one can obtain the basic 
formulation of the modal flexibility by eliminating this 
expression.

3 � Damage detection strategy

A perturbation of each structural parameter will lead to 
changes in the structural stiffness and modal flexibility. 
Based on the first-order Taylor’s series, the changes are 
described as:

where ne and Kj denote the number of elements of the FE 
model and the local stiffness matrix of the jth element, 
respectively. By replacing Eq. (18) into Eq. (20) and using 
the expression of the stiffness discrepancy function pre-
sented in Eq. (21), the discrepancy matrix of the modal 
flexibility is given by:

where ξ should be modified as:
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Note that Kj should be replaced with ΔK for the expres-
sion of ξ in Eq. (23). Expanding Eq. (25), one yields:

For the process of damage detection, this expression 
can be changed into a linear inverse problem as:

where � ∈ ℜn2×ne (n2 ≫ ne), a∈ℜne, and Δ� ∈ ℜn2 . More 
precisely, one can expand Eq. (28) as follows:
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The regularized solution to Eq. (28) based on the Tik-
honov regularization technique relies on an estimation of 
atrue from the least squares (LS) problem as follows:

where the regularization parameter γ controls the smooth-
ness of the solution. The main limitation of the Tikhonov 
regularization technique is to select an appropriate regu-
larization parameter. Furthermore, this regularized solution 
method falls into a direct approach, which solves the ill-
posed inverse problem once. As an alternative, it is possible 
to exploit iterative regularization techniques for solving the 
LS problem in the following form:

The major objective of iterative regularization methods 
is to approximate solution ak after k iterations. It is well 
known that iterative approaches indicate semi-convergence 
on the ill-posed problem [39]. In addition, the choice of a 
proper stopping condition for the termination of the itera-
tive process is an important and nontrivial task. Considering 
these limitations, hybrid methods are efficiently used to deal 
with the semi-convergence treatment in most of the iterative 
techniques and avoid choosing a regularization parameter 
a prior, which is a crucial requirement for all regulariza-
tion methods. The central idea behind a hybrid method is 
to utilize an iterative algorithm to project the original ill-
posed LS problem onto Krylov subspaces and then apply a 
direct regularization technique to solve the relatively small 
projected LS problem. The regularization of the projected 
problem at each iteration affects stabilizing the convergence 
behavior, which leads to reducing the risk of computing a 
poor solution. Recently, a new hybrid method has been 
proposed by Chung and Palmer [39] to solve the ill-posed 
inverse problem through the combination of LSMR and 
Tikhonov regularization. This method, which is called here 

LSMR-Tikhonov, is applied to solve Eq. (28) for damage 
localization and quantification.

4.2 � Solution algorithm

The LSMR method is an iterative solver of the LS equation 
and uses the Golub–Kahan (GK) bidiagonalization process to 
generate a Krylov subspace. The application of this iterative 
solution method to the vibration-based problem can be found 
in Sarmadi et al. [9]. Similar to the other iterative algorithms 
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Equation (39) can be rewritten as follows:

where �̄k = Δ�̄ − �̄�k , �̄ =

(
�

𝛾�

)
 , and Δ�̄ =

(
Δ�

0

)
.

4.3 � Regularization parameter

The critical step of solving the ill-posed LS problem is to 
choose an appropriate regularization parameter. Since �̂k 
may be small for small values of k, it is possible to utilize 
methods based on SVD for determining γ. In this article, 
the well-known generalized cross-validation (GCV) is 
used to choose an appropriate regularization parameter. 
The general function of GCV is given by:

where �†
�
 = (STS + γ2I)−1ST and I is an identity matrix. For 

this formulation, the optimal regularization parameter is 
chosen to minimize the GCV function. Although Eq. (42) is 
a widely accepted formulation, it is not suitable to use in the 
LSMR-Tikhonov method. As an alternative, a proper regu-
larization parameter is selected at each iteration to minimize 
a new GCV function. For this aim, �̂k is initially decom-
posed into three sub-matrices based on the SVD technique 
as:

Thus, the new GCV function associated with the 
LSMR-Tikhonov method is expressed as:
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where σi is the ith diagonal element of �̂k . Based on Eq. (44), 
the regularization parameter at the kth iteration is chosen as 
the optimal value [39].

4.4 � Stopping criterion

Another significant issue in the LSMR-Tikhonov method is 
to determine a stopping condition for terminating the itera-
tion for the GK process. In addition, this condition plays 
a prominent role in determining the optimal regularization 
parameter at the kth iteration, where k is directly obtained 
from the stopping criterion. Since standard techniques for 
defining the stopping condition were not developed with ill-
posed inverse problems, a GCV function is introduced in the 
LSMR-Tikhonov method. Consider the following problem:

On this basis, the GCV function for determining a stop-
ping condition (k) can be expressed as:

in which

Using the SVD of �̂k , Eq. (46) can be simplified as:
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Fig. 1   The simply supported beam (E: Element and D: Degree-of-freedom)
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Based on the above expression, the number of iterations 
(k) in the LSMR-Tikhonov method is a value when Ḡ(k) 
becomes minimum.

5 � Numerical examples

5.1 � A simply supported beam

In the first numerical example, the accuracy and efficiency of 
the enhanced and proposed methods are verified by a simply 
supported beam as shown in Fig. 1. This beam is constructed 
from 15 elements (E1-E15) with a total of 45 DOFs. Each ele-
ment has 0.25 m width, 0.20 m height, and 0.6 m length. The 
modulus of elasticity and material density are identical to 28 
GPa and 2500 kg/m3, respectively. Using a two-dimensional 
beam element, the FE model of the beam (i.e., the mass and 
stiffness matrices) is obtained by in-house MATLAB codes. 
Several damage scenarios are defined by decreasing the stiff-
ness of some elements. Table 1 presents the information about 
the type, location, and severity of damages. Note that the FE 
model and some damage cases of this numerical model are 
based on [27]. 

Based on the model updating strategy for the damage detec-
tion problem, the initial FE model of the beam is chosen as 
the undamaged or known structural state. In this regard, the 
full sets of analytical modal parameters are obtained by the 
eigenvalue problem. Applying the stiffness reduction factors 
as the sources of damage severities, the modal data of the dam-
aged conditions are determined as well. In order to simulate a 
realistic condition, the first five natural frequencies along with 
the modal displacements at D6, D12, D18, D24, D30, D36, 
and D42 are only utilized to consider the incompleteness con-
ditions of the measured modal data in the damaged states. As 
another practical issue, some noise levels are imposed on the 
measured modal parameters to simulate noisy measurements. 
For the numerical problems, the noisy modal frequency and 
mode shape are simply simulated as:

where η denotes the noise level; wn is a randomly normal 
distribution vector and wn represents a random scalar value. 
For the simply supported beam, 0%, 5%, and 20% noise lev-
els are considered. It is important to mention that the mass 
matrix of the analytical beam model (the undamaged con-
dition) is available. Hence, the analytical mode shapes are 
mass normalized. In this regard, the incomplete measured 
modal displacements of the beam in the damaged states are 
normalized by the mode scale factor [3]. Furthermore, the 
SEREP technique is utilized to expand the mass-normalized 
measured mode shapes. Applying the obtained information 
of the undamaged and damaged conditions, the LSMR-Tik-
honov method is used to solve the ill-posed LS problem 
presented in Eq. (28). In addition, a threshold limit is incor-
porated to increase the reliability of damage localization 
results. From a statistical viewpoint, this limit is identical 
to a 95% confidence interval of the damaged vector (a). For 
the sake of convenience, the threshold limit is defined as:

where μa and σa represent the mean and standard deviation 
of the damage vector. On this basis, each quantity of a that 
exceeds the threshold limit is indicative of the location of 
damage. Note that the absolute quantities of the damage vec-
tor (|a|) should be allocated to determine the threshold limit. 
Table 2 presents the number of iterations for the solution 
of the damage equation by the LSMR-Tikhonov method. 
It should be pointed out that the LSMR method is utilized 
to solve the LS problem in the zero noise level (the noise-
free modal data). For the other noise levels, the number of 
iterations needed to the LSMR-Tikhonov method is obtained 
from Ḡ(k) . Figures 2 and 3 show the regularization param-
eters gained by the GCV function Ĝ(𝛾k) for the only noisy 
modal data. In these figures, the optimal regularization 
parameter in each plot is observable at the last iteration as 
can be detectable by the red circle.  

(49)�̂∗
i
= �̂i + 𝜂��

(50)𝜆̂∗
i
= 𝜆̂i + 𝜂 wn

(51)� = �a + 1.96

�
�
a√
ne
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Table 1   Damage cases for the simply supported beam

Case no. Label Damage location Damage 
severity 
(%)

1 DC1 E8 20
2 DC2 E8 50
3 DC3 E5 10

E15 20
4 DC4 E5 30

E15 40

Table 2   The number of 
iterations for the LSMR (0% 
noise level) and LSMR-
Tikhonov (5% and 20% noise 
levels) methods

Case no. Noise levels (%)

0 5 20

1 46 20 42
2 52 21 51
3 40 20 33
4 39 34 43
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The results of damage localization and quantification in 
all noise levels are shown in Figs. 4, 5 and 6. In these figures, 
the dashed red lines depict the threshold limits of the dam-
age cases. As can be seen, the element 8 (E8) for the first 

and second damage cases (DC1-2) and the elements 5 and 
15 (E5 and E15) for the third and fourth damage scenarios 
(DC3-4) are identified as the damage locations, because the 
damage values of these elements are more than the threshold 

Fig. 2   The optimal regularization parameters under 5% noise level: a DC1, b DC2, c DC3, d DC4

Fig. 3   The optimal regularization parameters under 20% noise level: a DC1, b DC2, c DC3, d DC4
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amounts. For the process of damage quantification, it is dis-
cerned that the values of |a| roughly correspond to the actual 
damage severities. This means that the proposed methods 
are accurately able to estimate the level of damage severity. 

Moreover, there are inconsiderable damage quantities of 
the undamaged elements, which can be neglected. Note that 
Fig. 4 belongs to the solution of the LS problem by using the 
LSMR method. It is apparent that under the noise-free modal 

Fig. 4   Damage localization and quantification in the beam under the noise-free modal data: a DC1, b DC2, c DC3, d DC4

Fig. 5   Damage localization and quantification in the beam under 5% noise level: a DC1, b DC2, c DC3, d DC4
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data, this iterative method yields reliable and satisfactory 
damage localization and quantification results. Although 
all observations in Figs. 4, 5 and 6 clearly demonstrate the 
accuracy and efficiency of the proposed methods for locat-
ing and quantifying the structural damages, it would be very 
appropriate to compare the enhanced and basic sensitivity 
functions of the modal flexibility. In this regard, Fig. 7 illus-
trates the relative errors (RE) between the estimated and 
actual damage values (severities) at the damaged elements 
in all cases.   

As Fig. 7 shows, the relative errors obtained from the 
basic formulation are more than the enhanced function, 
particularly in DC2 and DC4, which include the relatively 
large damage severities. On the other hand, one can perceive 
that there are roughly inconsiderable relative errors (less 
than 4%) in the damage quantities gained by the improved 
sensitivity function. As a result, these conclusions demon-
strate the superiority of the enhanced function over its basic 
formulation and confirm the positive effect of adding the 
expression ξ to the derivative of eigenvalue.

5.2 � A simulated steel truss

For further assessment, a two-dimensional truss model is 
used to demonstrate the correctness and reliability of the 
enhanced and proposed methods. Figure 8 depicts this model 
along with the element numbers and dimensions. It consists 
of 25 elements and 21 DOFs. One assumes that the truss 
elements are comprised of steel with 200 GPa modulus of 

elasticity and 7850 kg/m3 material density. The cross sec-
tions of the elements are invariant as presented in Table 3. 
Multiple damage scenarios are considered to simulate dam-
aged conditions, which are originally available in [17]. The 
scenarios are based on reducing the stiffness of some ele-
ments as listed in Table 4.  

The FE model of the truss containing the global mass 
and stiffness matrices are obtained by in-house MAT-
LAB codes. Based on the model updating strategy for the 
damage detection process, this model is equivalent to an 
undamaged state. Hence, the analytical modal parameters 
are determined by the eigenvalue problem. For the dam-
aged conditions, one supposes that the first five natural 
frequencies and mode shapes at a few DOFs including D2, 
D4, D6, D10, D15, and D19 are measurable. Four noise 
levels including 0%, 5%, 10%, and 20% are imposed on 
the measured modal parameters based on Eqs. (49) and 
(50). Similar to the previous numerical example, the modal 
displacements of the damaged conditions are scaled based 
on the mass-normalized analytical mode shapes. In addi-
tion, the SEREP technique is applied to expand the mass-
normalized mode shapes of the damaged states. Table 5 
lists the number of iterations needed to solve the damage 
equation. Likewise, the LSMR method is utilized to solve 
the LS problem in the noise-free data (0% noise level). For 
the noisy conditions, the GCV function Ḡ(k) for defining 
the stopping condition is applied to compute the number 
of iterations.

Fig. 6   Damage localization and quantification in the beam under 20% noise level: a DC1, b DC2, c DC3, d DC4
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Based on the GCV function for the determination of 
the optimal regularization parameter, Figs. 9 and 10 show 
the values of γk in the damage cases for the noisy condi-
tions. The optimal regularization parameter required by the 

LSMR-Tikhonov method is obtained from Ĝ(𝛾k) at the last 
iteration number, where is highlighted by the red circle. 

The results of damage localization and quantification 
for DC1 and DC2 in all noise levels are shown in Figs. 11 

Fig. 7   Comparison of the basic 
and enhanced sensitivity func-
tions of the modal flexibility in 
the beam model (DC: Damage 
Case and E: Element)

Fig. 8   The simulated truss 
model (E: Element & D: 
Degree-of-freedom)
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and 12, respectively. The dashed red arrows in these figures 
depict the threshold limits obtained from Eq. (51). Once 
again, the solution of the damage equation in the noise-free 
condition is carried out by the LSMR method as illustrated 
in Figs. 11a and 12a. 

The damage locations are identified at elements whose 
absolute values of the damage vector exceed the thresh-
old limits. As Fig. 11 reveals, the elements 4 and 11 are 
the damaged areas of the numerical truss model for DC1. 

Moreover, the elements 3, 9, and 17 are identified as the 
damage locations in DC2 as can be seen in Fig. 12. For 
the process of damage quantification, it is discerned that 
the results are reasonable and there are approximately no 
errors in the estimation of damage severities. Therefore, 
one can deduce that the enhanced and proposed methods 
have great abilities to locate and quantify multiple dam-
ages under the noise-free and noisy modal data.

Similar to the previous example, the superiority of the 
enhanced sensitivity function of the modal flexibility over 
the basic formulation is evaluated by comparing the rela-
tive errors in the damage severities of the damaged areas. 
Figure 13 shows the results of this comparative assessment 
for the first damage scenario. As expected, the enhanced 
sensitivity function gives more reliable and better results 
than the basic formulation. Based on Fig. 13, the relative 
errors of the enhanced sensitivity are roughly less than 2%, 
while there are considerable errors in the basic function. 
Therefore, the development of the eigenvalue derivative by 
adding the expression ξ leads to a more sensitive formula-
tion to damage.

6 � Conclusions

In this article, an improved sensitivity function regarding 
the modal flexibility and a hybrid solution method LSMR-
Tikhonov were proposed to locate and quantify structural 
damage under the incomplete noisy modal data. A simply 
supported beam and a truss model were numerically simu-
lated to verify the accuracy and reliability of the enhanced 
and proposed methods. The results in both of the numeri-
cal models demonstrated the accurate and precise damage 
localization and quantification. For locating the structural 
damage, a statistical threshold limit was used to increase 

Table 3   The invariant cross 
sections of the truss structure

Element no. Area (m2)

E1–E6 0.0018
E7–E12 0.0015
E13–E17 0.0010
E18–E25 0.0012

Table 4   Damage cases for the steel truss model

Case no. Label Damage location Damage 
severity 
(%)

1 DC1 E4 15
E11 30

2 DC2 E3 30
E9 30
E17 30

Table 5   The number of 
iterations for the LSMR (0% 
noise level) and LSMR-
Tikhonov (5%, 10%, and 20% 
noise levels) methods

Case no. Noise levels (%)

0 5 10 20

1 34 20 28 27
2 40 47 63 80

Fig. 9   The optimal regularization parameters for DC1: a 5% noise level, b 10% noise level, c 20% noise level
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the reliability of the damage localization. Each value of 
the damage vector larger than the threshold limit was 
indicative of the damage location. It was observed that the 
LSMR-Tikhonov method can efficiently solve any ill-posed 
LS problem by determining an optimal regularization 

parameter in an iterative manner. The comparative evalu-
ations on the enhanced and basic sensitivity functions of 
the modal flexibility confirmed that the improved formula-
tion is more sensitive to damage and provides better and 
more reliable results.

Fig. 10   The optimal regularization parameters for DC2: a 5% noise level, b 10% noise level, c 20% noise level

Fig. 11   Damage localization and quantification for DC1: a 0% noise level, b 5% noise level, c 10% noise level, d 20% noise level
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Fig. 12   Damage localization and quantification for DC2: a 0% noise level, b 5% noise level, c 10% noise level, d 20% noise level

Fig. 13   Comparison of the basic and enhanced sensitivity functions of the modal flexibility in the truss model (DC: Damage Case and E: Ele-
ment)
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