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Abstract
In this paper, the vibration problem of a rectangular plate rested on a viscoelastic substrate and consisting of porous metal

foam is solved via an analytical method with respect to the influences of various porosity distributions. Three types of

porosity distribution across the thickness are covered, namely uniform, symmetric and asymmetric. The strain–displace-

ment relations of the plate are assumed to be derived on the basis of a refined higher-order shear deformation plate theory.

Then, the achieved relations will be incorporated with the Hamilton’s principle in order to reach the Euler–Lagrange

equations of the structure. Next, the well-known Galerkin’s method is utilized to calculate the natural frequencies of the

system. The influences of both simply supported and clamped boundary conditions are included. In order to show the

accuracy of the presented method, the results of present research are compared with those reported by former published

papers. The reported results show that an increase in the porosity coefficient can dramatically decrease the frequency of the

plate. Also, the stiffness of the system can be lesser decreased, while a symmetrically porous metal foam is used to

manufacture the plate.

Keywords Vibration analysis � Metal foam � Uniform and non-uniform porosity distributions � Viscoelastic medium �
Galerkin’s method

1 Introduction

Porosity is a defect which is able to affect the mechanical

performance of a system. Usually, porosity leads to a

softening influence on the stiffness of a continuous system

made from porous materials. Henceforward, the system’s

frequency or stability limit decreases gradually as the

porosity coefficient grows. Due to the unavoidable pres-

ence of porosity in the fabricated materials, this phe-

nomenon has recently attracted the researchers’ attention.

For instance, Jabbari et al. [1] analyzed the stability

responses of porous functionally graded (FG) circular

plates. Another porosity-dependent paper is presented by

Jabbari et al. [2] in order to consider the stability behaviors

of circular FG plates, while the structure is subjected to

thermal loading. Also, Wattanasakulpong and Ungbhakorn

[3] investigated the vibrational behaviors of porous FG

beams once the ends of the structure were considered to be

restrained. Later, Chen et al. [4] investigated the static

stability of porous FG beams via a theory which is able to

capture the effects of shear deformation. Moreover, both

natural and externally excited dynamic behaviors of FG

beams are probed by Chen et al. [5] with respect to the

influences of porosity. In another study, a porous FG core is

considered by Chen et al. [6] to survey the nonlinear

dynamic responses of multilayered beams. Rezaei and

Saidi [7] studied the vibrational characteristics of porous

rectangular plates within the frameworks of the Carrera’s

unified formulation (CUF). Atmane et al. [8] studied the

dynamic frequency and deflection behaviors of porous FG

beams via a shear deformable beam model. Recently,

Barati and Zenkour [9] have probed the thermo-electrically

influenced vibrational behaviors of porous FG plates
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considering for the effects of various supports at the edges

of the structure.

As discussed in the above sentences, the influences of

porosity on the mechanical behaviors of FG structures have

been widely studied by a large number of researchers.

However, the issue of static and dynamic behaviors of

porous metal foam beams, plates and shells has lesser been

studied by the scientific community. Although this issue

has not been investigated a lot, many natural materials such

as wood, bone and cork can be well simulated by making

porous metal foams [10]. Also, metal foams are excellent

candidates for the conditions which both high stiffness and

low density are required together. So, it is of great

importance to earn as more as possible knowledge about

the mechanical behaviors of beams, plates and shells made

from metal foams.

In one of the researches in this field, Vaidya et al. [11]

investigated both low and immediate velocity impact

responses of sandwich plates including a metal foam core.

The issue of dynamic buckling characteristics of metal

foam plates is probed by Debowski et al. [12] in the

framework of Bubnov–Galerkin method. Magnucka-

Blandzi [13] investigated the critical stability responses of

laminated plates with a porous metal foam core in a bi-

axial compression. The plastic behaviors of a laminate

beam with metal foam core are observed by Qin and Wang

[14] focusing on the variations of the force versus the

transverse deflection of the structure once a punch is

touching the beam. In addition, Jasion et al. [15] procured a

local stability analysis on the behaviors of laminated beams

and plates made from a central metal foam layer coated

with facesheets by considering the wrinkling effects. Qin

et al. [16] surveyed the impact responses of sandwich

plates that consisted of a metal foam core via both ana-

lytical and finite element methods. Toan Thang et al. [10]

could solve the postbuckling problem of porous metal foam

cylinders with respect to various porosity distributions

across the shell’s thickness. They derived the strain–dis-

placement relations by combining the classical shell theory

with the nonlinear theory of von-Karman. Most recently, a

porosity-dependent homogenization scheme has been uti-

lized by Ebrahimi et al. [17] in order to probe the free

oscillation problem of cylinders manufactured from porous

metal foams.

According to the above literature review, it can be

comprehended that there exists no analytical investigation

on the viscoelastically damped dynamic problem of rect-

angular plates that consisted of porous metal foams up to

now. Therefore, the authors are aimed to solve the afore-

mentioned problem by the means of an analytical

approach. The plate will be modeled based on the refined

shear deformation theory of plates incorporated with the

dynamic form of the principle of virtual work. Among

three types of porosity distributions, symmetric one pro-

vides higher natural frequencies followed by asymmetric

and uniform types.

2 Theory and formulations

2.1 Derivation of the effective properties
of porous metal foams

In this section, the influences of three types of porosity on

the effective material properties of porous metal foam

shells will be shown. The schematic representation of the

porosity through the thickness of the shell can be seen in

Fig. 1. In the following formulations e0 and em denote the

porosity coefficient and density coefficients, respectively.

The effective properties for a uniformly porous metal foam

can be written as [17]:

EðzÞ ¼ E1 1� e0kð Þ ð1Þ
GðzÞ ¼ G1 1� e0kð Þ ð2Þ

qðzÞ ¼ q1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e0k
p

ð3Þ

Equations (1)–(3) can be rewritten for the symmetric

porosity distribution as [17]:

EðzÞ ¼ E1 1� e0 cos
pz
h

� �� �

ð4Þ

GðzÞ ¼ G1 1� e0 cos
pz
h

� �� �

ð5Þ

qðzÞ ¼ q1 1� em cos
pz
h

� �� �

ð6Þ

And for the asymmetric porosity distribution, one should

calculate the effective material properties as follows [17]:

EðzÞ ¼ E1 1� e0 cos
pz
2h

þ p
4

� �� �

ð7Þ

GðzÞ ¼ G1 1� e0 cos
pz
2h

þ p
4

� �� �

ð8Þ

qðzÞ ¼ q1 1� em cos
pz
2h

þ p
4

� �� �

ð9Þ

in which E1, G1 and q1 are the maximum values of

Young’s modulus, shear modulus and mass density of the

porous metal foam, respectively. Also, E2, G2 and q2 are

the minimum values of the aforementioned variants,

respectively. Based on the extremum values, the porosity

and density coefficients can be defined in the following

form [17]:

e0 ¼ 1� E2

E1

¼ 1� G2

G1

; ð0\e0\1Þ ð10Þ

em ¼ 1� q2
q1

ð11Þ
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In this method, the variations of the Poisson’s ratio are

small enough to be considered negligible. So, the Poisson’s

is constant. Moreover, the term k which is implemented in

Eqs. (1)–(3) can be calculated by [17]:

k ¼ 1

e0
� 1

e0

2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e0
p

� 2

p
þ 1

h i2

ð12Þ

2.2 Kinematic relations

The kinematic relations of the plate are going to be derived

in this section. The displacement fields of a rectangular

plate can be expressed as follows based on the refined

higher-order shear deformable plate theory [18–20]:

uxðx; y; z; tÞ ¼ uðx; y; tÞ � z
owbðx; y; tÞ

ox
� f ðzÞ owsðx; y; tÞ

ox
;

uyðx; y; z; tÞ ¼ vðx; y; tÞ � z
owbðx; y; tÞ

oy
� f ðzÞ owsðx; y; tÞ

oy
;

uzðx; y; z; tÞ ¼ wbðx; y; tÞ þ wsðx; y; tÞ:
ð13Þ

In the above equations, u and v are longitudinal and

transverse displacements of the mid-surface, respectively;

also, wb and ws are the bending and shear deflections

through z-axis, respectively. In addition, f(z) stands for the

shape function of the theorem. Now, the nonzero strains of

the plate can be expressed by following equations [18–20]:
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cxy
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Fig. 1 Schematic illustration of various porosity distributions across the plate’s thickness for a uniform porosity distribution, b symmetric

porosity distribution and c asymmetric porosity distribution
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In this research, the following novel shape function is

utilized [21]:

f ðzÞ ¼ hez

h2 þ p2
p sin pz

h

� �

þ h cos
pz
h

� �� �

� h2

h2 þ p2
ð16Þ

2.3 Derivation of motion equations

Herein, dynamic form of the principle of virtual work will

be extended for plates in order to reach the Euler–Lagrange

equations of a porous metal foam plate. This principle can

be defined in the following form [19, 20]:

Z

t

0

d U � K � Vð Þdt ¼ 0 ð17Þ

where U, K and V are strain energy, kinetic energy and

work done by external loading, respectively. The variation

of strain energy for a linear elastic solid can be expressed

as [19, 20]:

dU¼
Z

V

rxxdexxþryydeyyþrxydcxyþrxzdcxzþryzdcyz
� �

dV

¼
Z

b

0

Z

a

0

Nxxde0xxþMb
xxdj

b
xxþMs

xxdj
s
xxþNyyde0yy

þMb
yydj

b
yyþMs

yydj
s
yyþNxydc0xyþMb

xydj
b
xy

þMs
xydj

s
xyþQxzdc0xzþQyzdc0yz

0

B

@

1

C

A

dxdy

ð18Þ

in the above equation, the axial forces and bending and

shear moments can be defined as:

Nij;M
b
ij;M

s
ij

� �

¼
Z

h=2

�h=2

1; z; f ðzÞð Þrijdz; i; j ¼ x; yð Þ;

Qk ¼
Z

h=2

�h=2

gðzÞrkdz; k ¼ xz; yzð Þ ð19Þ

where g(z) = 1 - df(z)/dz. The first variation of kinetic

energy can be expressed as [19, 20]:

dK ¼
Z

V

ð _uxd _ux þ _uyd _uy þ _uzd _uzÞqðzÞdV

¼
Z

b

0

Z

a

0
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ou

ot
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ot

þ ov

ot
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� I1
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o2dwb
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odv
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oyot
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o2dws

oyot
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oxot
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oxot
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o2dwb
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C

A
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ð20Þ

In all of the equations, the dot-superscript denotes the

differentiation with respect to time, and the mass inertias

used in the above equations are given in the following

form:

I0; I1; J1; I2; J2;K2½ � ¼
Z

h=2

�h=2

1; z; f ðzÞ; z2; zf ðzÞ; f 2ðzÞ
	 


qðzÞdz

ð21Þ

Furthermore, the variation of work done by external

loading can be stated in the following form [20]:

dV¼

Z

A

N0
x
o wbþwsð Þ

ox
od wbþwsð Þ

ox þN0
y
o wbþwsð Þ

oy
od wbþwsð Þ

oy þ2dN0
xy

o wbþwsð Þ
ox

o wbþwsð Þ
oy

�kw wbþwsð Þd wbþwsð Þþkp
o2 wbþwsð Þ

ox2
þ o2 wbþwsð Þ

oy2

� �

d wbþwsð Þ

�cd
o wbþwsð Þ

ot d wbþwsð Þ�dA

2

6

6

4

ð22Þ

in which N0
x , N

0
y and N0

xy are external in-plane loads that are

applied to the structure. Also, kw and kp are the elastic

linear and shear stiffnesses of substrate, respectively, and

cd denotes the damping coefficient of the substrate.

By substituting Eqs. (18), (20) and (22) into Eq. (17)

and setting the coefficients of du, dv, dwb and dws to zero,

the Euler–Lagrange equations of porous metal foam plates

can be written as [18–20]:

oNxx

ox
þ oNxy

oy
¼ I0

o2u

ot2
� I1

o3wb

oxot2
� J1

o3ws

oxot2
ð23Þ

oNxy

ox
þ oNyy

oy
¼ I0

o2v

ot2
� I1

o3wb

oyot2
� J1

o3ws

oyot2
ð24Þ

o2Mb
xx

ox2
þ 2

o2Mb
xy

oxoy
þ
o2Mb

yy

oy2
� kw wb þ wsð Þ

þ kp
o2 wb þ wsð Þ

ox2
þ o2 wb þ wsð Þ

oy2

� �

� cd
o wb þ wsð Þ

ot

¼ I0
o2ðwb þ wsÞ

ot2
þ I1

o3u

oxot2
þ o3v

oyot2

� �

� I2
o4wb

ox2ot2
þ o4wb

oy2ot2

� �

� J2
o4ws

ox2ot2
þ o4ws

oy2ot2

� �

ð25Þ

o2Ms
xx

ox2
þ 2

o2Ms
xy

oxoy
þ
o2Ms

yy

oy2
þ oQxz

ox
þ oQyz

oy

� kw wb þ wsð Þ þ kp
o2 wb þ wsð Þ

ox2
þ o2 wb þ wsð Þ

oy2

� �

� cd
o wb þ wsð Þ

ot

¼ I0
o2ðwb þ wsÞ

ot2
þ J1

o3u

oxot2
þ o3v

oyot2

� �

� J2
o4wb

ox2ot2
þ o4wb

oy2ot2

� �

� K2

o4ws

ox2ot2
þ o4ws

oy2ot2

� �

ð26Þ
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2.4 Constitutive equations

Herein, the elastic stress–strain relations of isotropic

composite materials are reviewed for the purpose of

deriving the fundamental elastic equations of such solids.

Here, the following constitutive equations can be expressed

as [22]:

rij ¼ Cijklekl ð27Þ

where rij, ekl and Cijkl represent the components of Cauchy

stress tensor, strain tensor and elasticity tensor, respec-

tively. Therefore, these relations can be modified as fol-

lows for plates [22]:

rxx
ryy
ryz
rxz
rxy

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

2

6

6

6

6

4

3

7

7

7

7

5

exx
eyy
eyz
exz
exy

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð28Þ

where

Q11 ¼
E

1� m2
; Q12 ¼ mQ11; Q22 ¼ Q11;

Q44 ¼ Q55 ¼ Q66 ¼ G
ð29Þ

By considering the porous metal foam as a linear elastic

isotropic solid and integrating over the structure’s thick-

ness, the force and moments of the plate can be expressed

in terms of the strains in the following form [19]:

in which

An;Bn;B
s
n;Dn;D

s
n;H

s
n

	 


¼
Z

h=2

�h=2

1;z;f ðzÞ;z2;zf ðzÞ; f 2ðzÞ
	 


QnðzÞdz; n¼ð11;12;22;66Þ

As
44;A

s
55

	 


¼
Z

h=2

�h=2

Q44ðzÞ;Q55ðzÞ½ �g2ðzÞdz

ð31Þ

2.5 Governing equations

The coupled partial differential governing equations of a

porous metal foam plate can be formulated in the following

form by inserting Eq. (30) in Eqs. (23)–(26) [19]:

A11

o2u

ox2
þ A66

o2u

oy2
þ A12 þ A66ð Þ o2v

oxoy
� B11

o3wb

ox3

� B12 þ 2B66ð Þ o
3wb

oxoy2

� Bs
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12 þ 2Bs
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ð32Þ

Nxx

Nyy

Nxy

Mb
xx

Mb
yy

Mb
xy

Ms
xx

Ms
yy

Ms
xy

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

¼

A11 A12 0 B11 B12 0 Bs
11 Bs

12 0

A12 A22 0 B12 B22 0 Bs
12 Bs

22 0

0 0 A66 0 0 B66 0 0 Bs
66

B11 B12 0 D11 D12 0 Ds
11 Ds

12 0

B12 B22 0 D12 D22 0 Ds
12 Ds

22 0

0 0 B66 0 0 D66 0 0 Ds
66

Bs
11 Bs

12 0 Ds
11 Ds

12 0 Hs
11 Hs

12 0

Bs
12 Bs

22 0 Ds
12 Ds

22 0 Hs
12 Hs

22 0

0 0 Bs
66 0 0 Ds

66 0 0 Hs
66

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

ou
ox

ov
oy

ou
oy þ ov

ox

� o2wb

ox2

� o2wb

oy2

� 2o2wb

oxoy

� o2ws

ox2

� o2ws

oy2

� 2o2ws

oxoy

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

;
Qxz

Qyz

" #

¼ As
44 0

0 As
55

� �

ows

ox
ows

oy

2

6

4

3

7

5

ð30Þ
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A12 þ A66ð Þ o2u

oxoy
þ A66

o2v

ox2
þ A22

o2v

oy2

� B12 þ 2B66ð Þ o
3wb
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o3wb
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ð33Þ
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� �
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ð34Þ
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3 Solution procedure

In this part, Galerkin’s method is utilized in order to

achieve the natural frequency of the porous metal foam

plates. According to this analytical method, the displace-

ment field can be expressed in the following form [19]:

u ¼
X

1

m¼1

X

1

n¼1

Umn
oXmðxÞ
ox

YnðyÞeixnt;

v ¼
X

1

m¼1

X

1

n¼1

VmnXmðxÞ
oYnðyÞ
oy

eixnt;

wb ¼
X

1

m¼1

X

1

n¼1

WbmnXmðxÞYnðyÞeixnt;

ws ¼
X

1

m¼1

X

1

n¼1

WsmnXmðxÞYnðyÞeixnt

ð36Þ

in which Umn, Vmn, Wbmn and Wsmn are unknown coeffi-

cients. Moreover, Xm and Yn are trigonometric functions in

terms of x and y, respectively; these functions are majorly

presented to satisfy the BCs on edges of the plate. The

preliminary assumptions for simply support and clamped

BCs are:

• Simply supported–simply supported (S–S):

wb ¼ ws ¼ Nx ¼ Mx ¼ 0 at x ¼ 0; a

wb ¼ ws ¼ Ny ¼ My ¼ 0 at y ¼ 0; b

• Clamped–clamped (C–C):

u ¼ v ¼ wb ¼ ws ¼ 0 at x ¼ 0; a and y ¼ 0; b

Now, inserting Eq. (36) in Eqs. (32)–(35) and integrat-

ing over the cross-sectional area of the plate results in the

following eigenvalue problem:

K½ �Dþ C½ �xnD� M½ �x2
n D ¼ 0 ð37Þ

where D is a column vector including unknown coeffi-

cients. Also, K, C and M denote stiffness, damping and

mass matrices, respectively. The corresponding arrays of

such matrices can be found looking for ‘‘Appendix’’ at the

end. Here, Xm and Yn functions corresponding with SSSS

and CCCC supports can be assumed to be as [9]:

SSSS: Xm ¼ sin
mpx
a

� �

; Yn ¼ sin
npy
b

� �

CCCC: Xm ¼ sin2
mpx
a

� �

; Yn ¼ sin2
npy
b

� � ð38Þ

4 Numerical results and discussion

The present section is dedicated to present a group of

numerical illustrations for the purpose of highlighting the

effects of different variants on the natural frequency of the

porous rectangular plates. In this study, the material

properties of the metal foam are assumed to be E1 = 200

GPa, q1 = 7850 kg/m3, m = 0.33. Also, the plate’s thick-

ness is considered to be h = 5 mm in all of the diagrams.

Here, the dimensionless form of the natural frequency and
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foundation parameters will be introduced in the following

for the sake of simplicity:

X ¼ 100xh
ffiffiffiffiffiffiffiffiffiffiffiffi

q1=E1

p

; Kw ¼ kwa
4

D� ; Kp ¼ kpa
2

D� ;

Cd ¼ cda
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

q1hD�p ; D� ¼ E1h
3

12 1� m2ð Þ

ð39Þ

First of all, the validation of the introduced methodology

is examined here by comparing the presented results with

those reported by Thai et al. [23]. As given in Table 1, one

can see a remarkable agreement between the results of our

modeling and those reported by Thai et al. [23].

Figure 2 is depicted to illustrate the combined influences

of BC and porosity coefficient on the frequency behaviors

of metal foam porous plates. In this diagram, the variation

of the first dimensionless frequency is plotted against

length-to-thickness ratio for square plates. It can be

realized that the more is the length-to-thickness ratio, the

smaller is the frequency which can be tolerated by the

structure. The physical reason for this phenomenon is that

the structure becomes stiffer once a small value is assigned

to the length-to-thickness ratio and hence, the plate can

provide higher frequencies. Moreover, the observations

reveal that fully clamped plates are able to support greater

resonance frequencies in comparison with the plates with

all edges simply-supported. Also, it is evident that the

frequency of the system will be decreased in the situation

that the porosity coefficient is increased. Indeed, as the

porosities increase in the continua, the stiffness of the plate

will be lessened and due to the direct relation between the

frequency and stiffness the frequency will be lessened, too.

Furthermore, the main objective of presenting Figs. 3 and

4 is to investigate how various patterns of porosity can

affect the natural frequency of SSSS square metal foam

porous plates as well as showing the effects of Winkler and

Pasternak coefficients, respectively. It is obvious that

among these three types of porosity distributions, the

symmetric one can provide higher natural frequencies

compared with the others followed by asymmetric and

uniform. Again, it is observed that the frequency responses

of the plates can be decreased whenever the porosity

coefficient is added. It is worth mentioning that the effect of

changing the coefficient of porosity can be better observed

in uniform and asymmetric porosity distributions. In fact,

the frequency change is minimum in the case of choosing a

porous metal foam plate with symmetric porosity distribu-

tion. Clearly, increasing each of the Winkler and Pasternak

coefficients can improve the natural frequency of the plate.

However, the efficiency of these two elastic stiffnesses is

not the same. In other words, in a constant value for the

dimensionless stiffness, Pasternak coefficient can affect the

frequency more than Winkler coefficient.

Besides, in Fig. 5, both SSSS and CCCC BCs are

undertaken in order to show the variation of the dimen-

sionless frequency versus aspect ratio for various coeffi-

cients of the viscoelastic medium. It is again shown that

CCCC plates can tolerate higher natural frequencies

Table 1 Comparison of the first

dimensionless frequency of FG

square plates

a/h Power law index, p

0 0.5 1 2 5 10

5 Thai et al. [23] 5.2813 4.5180 4.0781 3.6805 3.3938 3.2514

Present 5.2813 4.5073 4.0762 3.6783 3.3926 3.2515

10 Thai et al. [23] 5.7694 4.9014 4.4192 4.0090 3.7682 3.6368

Present 5.7694 4.8899 4.4185 4.0082 3.7678 3.6373

20 Thai et al. [23] 5.9199 5.0180 4.5228 4.1100 3.8884 3.7622

Present 5.9198 5.0061 4.5226 4.1098 3.8883 3.7629

100 Thai et al. [23] 5.9712 5.0575 4.5579 4.1445 3.9299 3.8058

Present 5.9711 5.0456 4.5579 4.1445 3.9300 3.8065

Fig. 2 Variation of the first dimensionless frequency of square porous

plates versus length-to-thickness ratio for various BCs and porosity

coefficients (Kw = 20, Kp = 2, Cd = 5)
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compared with SSSS ones. Also, one should pay attention

that an increase in the elastic constants of the substrate,

namely Winkler and Pasternak coefficients, can aggrandize

the frequency, whereas a similar increase in themagnitude of

damping coefficient results in reaching lower frequencies.

Figure 6 is devoted to show the variation of the

dimensionless frequency versus damping coefficient of the

viscoelastic medium for various porosity distributions of a

SSSS porous metal foam plate. As shown in this figure,

adding the damping coefficient can lessen the dimension-

less frequency in a continuous manner. This decreasing

trend will finally result in diminishing the natural fre-

quency. Also, as well as former illustrations, herein, the

symmetric porosity distribution possesses highest fre-

quency followed by asymmetric and uniform distributions.

At the end, influences of a group of variants are going to

be reviewed in Fig. 7 to highlight their effects on the

variation of the dimensionless natural frequency of SSSS

Fig. 3 Variation of the first dimensionless frequency of SSSS square porous plates against Winkler coefficient for various porosity coefficients

and porosity distributions (a/h = 10, Kp = 2, Cd = 5)
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porous metal foam plates. As same as Fig. 6, the frequency

will be damped gradually as the damping coefficient of the

viscoelastic foundation is increased. Also, once again it can

be shown that structures that are rested on elastic springs

are better candidates for the situations which huge dynamic

frequencies are seemed to be endured by the structure.

Moreover, it can be figured out that the dimensionless

frequency of the plate will be decreased, while the porosity

coefficient is risen.

5 Conclusions

This manuscript was arranged to probe the vibrational

characteristics of metal foam plates rested on a viscoelastic

foundation with respect to the influences of different

porosity distributions. The motion equations were obtained

via the Hamilton’s principle combined with a refined

higher-order shear deformation plate theory. Finally, the

equations were solved according to the Galerkin’s method.

Fig. 4 Variation of the first dimensionless frequency of SSSS square porous plates against Pasternak coefficient for various porosity coefficients

and porosity distributions (a/h = 10, Kw = 20, Cd = 5)
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Herein, the most crucial highlights are presented in the

following:

• The dimensionless frequency becomes smaller, while

the porosity coefficient grows.

• Among three types of porosity distributions, symmetric

one provides highest frequency responses.

• The CCCC plates are able to support higher frequency

ranges in comparison with the SSSS ones.

• The frequency can be increased by employing higher

elastic foundation parameters.

Fig. 5 Variation of the first dimensionless frequency of the rectangular porous plates versus aspect ratio for various foundation parameters and

BCs for uniformly porous metal foams (b/h = 10, e0 = 0.2)

Fig. 6 Variation of the first dimensionless frequency of SSSS square

porous plates versus damping coefficient for various porosity

distributions (a/h = 10, Kw = 20, Kp = 2, e0 = 0.2)

Fig. 7 Variation of the first dimensionless frequency of SSSS square

porous plates versus damping coefficient for various porosity,

Winkler and Pasternak coefficients for the uniformly porous metal

foams (a/h = 10)
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• The frequency can be damped, while the damping

coefficient of the viscoelastic medium is added.

• Both length-to-thickness and aspect ratios are able to

lessen the dimensionless frequency whenever they are

added.

Appendix

The components of stiffness and mass matrices can be

calculated by:

k11 ¼ A11

Z

b

0

Z

a

0

oXmðxÞ
ox

YnðyÞ
o3XmðxÞ
ox3

YnðyÞdxdy

þ A66

Z

b

0

Z

a

0

oXmðxÞ
ox

YnðyÞ
oXmðxÞ
ox

o2YnðyÞ
oy2

dxdy;

k12 ¼ A12 þ A66ð Þ
Z

b

0

Z

a

0

oXmðxÞ
ox

YnðyÞ
oXmðxÞ
ox

o2YnðyÞ
oy2

dxdy;

k13 ¼ �B11

Z

b

0

Z

a

0
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Z

b
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Z
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