
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:3665–3698
https://doi.org/10.1007/s00366-020-01025-8

ORIGINAL ARTICLE

Hybrid metaheuristic algorithm using butterfly and flower pollination
base on mutualism mechanism for global optimization problems

Zhongmin Wang1 · Qifang Luo1,2 · Yongquan Zhou1,2,3

Received: 22 January 2020 / Accepted: 15 April 2020 / Published online: 8 May 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
The butterfly optimization algorithm (BOA) is a new metaheuristic algorithm that is inspired from food foraging behavior
of the butterflies. Because of its simplicity and effectiveness, the algorithm has been proved to be effective in solving global
optimization problems and applied to practical problems. However, BOA is prone to local optimality and may lose its diver-
sity, thus suffering losses of premature convergence. In this work, a hybrid metaheuristic algorithm using butterfly and flower
pollination base on mutualism mechanism called MBFPA was proposed. Firstly, the flower pollination algorithm has good
exploration ability and the hybrid butterfly optimization algorithm and the flower pollination algorithms greatly improve
the exploration ability of the algorithm; secondly, the symbiosis organisms search has a strong exploitation capability in the
mutualism phase. By introducing the mutualism phase, the algorithm’s exploitation capability is effectively increased and
the algorithm’s convergence speed is accelerated. Finally, the adaptive switching probability is increased to increase the
algorithm’s balance in exploration and exploitation capabilities. In order to evaluate the effectiveness of the algorithm, in
the 49 standard test functions, the proposed algorithm was compared with six basic metaheuristic algorithms and five hybrid
metaheuristic algorithms. MBFPA has also been used to solve five classic engineering problems (three-bar truss design prob-
lem; multi-plate disc clutch brake design; welded beam design; pressure vessel design problem; and speed reducer design).
The results show that the proposed method is feasible and has good application prospect and competitiveness.

Keywords Butterfly optimization algorithm (BOA) · Flower pollination algorithm (FPA) · Mutualism mechanism ·
Benchmark functions · Engineering design problem · Hybrid metaheuristic

1 Introduction

In real life, optimization is everywhere. Optimization is a
process of finding the optimal solution. At present, a large
number of optimization methods have been used to deal with
optimization problems. Most of the traditional optimization
methods rely on gradient information to update the solution,
and the position of the initial solution affects the quality of
the final solution. Therefore, in many practical engineering

design problems, it is difficult to get a satisfactory solution
based on gradient optimization method. Recently, a nature
inspired metaheuristic optimization method is becoming
more and more popular with the field of optimization and
is widely used to solve complex optimization problems of
various fields. According to a survey, metaheuristic has
solved the optimization problem with sufficient efficiency
and reasonable calculation cost compared with the accurate
method [1].

The term "metaheuristic" generally refers to the approxi-
mate algorithm used for optimization, which is not specifi-
cally expressed for a particular problem, some metaheuris-
tics are inspired by natural processes such as evolution,
while others are extensions of less complex algorithms such
as greedy heuristics and local search [2]. Existing natural
metaheuristic algorithms can be simply divided into the
following four categories: swarm intelligence based, bio-
inspired, physical/chemical inspired and human behaviors.
Among the population-based algorithms, some of the more

 * Yongquan Zhou
 yongquanzhou@126.com

1 College of Artificial Intelligence, Guangxi University
for Nationalities, Nanning 530006, Guangxi, China

2 Key Laboratories of Guangxi High Schools Complex System
and Computational Intelligence, Nanning 530006, Guangxi,
China

3 Guangxi Key Laboratories of Hybrid Computation and IC
Design Analysis, Nanning 530006, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-01025-8&domain=pdf

3666 Engineering with Computers (2021) 37:3665–3698

1 3

classical algorithms are particle swarm optimization (PSO)
[3], ant colony optimization (ACO) [4], artificial bee colony
(ABC) [5], cuckoo Search (CS) [6], flower pollination algo-
rithm (FPA) [7], firefly algorithm (FA) [8]. In addition, in
recent years, some novel and effective swarm algorithms
have been proposed, including Grey wolf optimizer (GWO)
[9], whale optimization algorithm (WOA) [10], Harris
hawks optimization (HHO) [11], symbiotic organisms search
(SOS) [12], butterfly optimization algorithm (BOA) [13],
etc. Bio-inspired algorithm includes evolutionary algorithms
and immune type algorithms: evolutionary algorithms imi-
tate the reproduction, recombination, selection and mutation
stages of biological evolution. Some common evolutionary
algorithms include genetic algorithms (GA) [14] and dif-
ferential evolution (DE) [15]; immune type algorithm is to
propose optimization algorithm based on immune mecha-
nism and comply with immunological principle. The most
representative ones are immune genetic algorithm (IGA)
[16], clonal selection algorithm (CSA) [17], negative selec-
tion algorithm (NSA) [18], b-cell algorithm (BCA) [19],
etc. In the third physical/chemical inspired algorithm, search
individuals are updated based on physical phenomena, rules
or some chemical reaction rules. For example, simulated
annealing (SA) [20], gravitational search algorithm (GSA)
[21], lightning search algorithm (LSA) [22], multi-verse
optimizer (MVO) [23], electromagnetic field optimization
(EFO) [24], equilibrium optimizer (EO) [25], chemical reac-
tion optimization (CRO) [26], artificial chemical reaction
optimization algorithm (ACROA) [27], etc. In the last kind
of algorithm based on human behavior, it is subdivided in
paper [28] social ideologies, sports competitive behavior,
social and cultural interaction and condensation. Among
them, the representative ones are cultural evolution algo-
rithm (CEA) [29], teaching learning-based optimization
(TLBO) [30], imperial list competitive algorithm (ICA)
[31], etc.

Butterfly optimization algorithm (BOA) is a metaheuris-
tic algorithm proposed by Arora and Singh. BOA is based
on food foraging behavior and information sharing strategy
of butterflies [13]. Literature [13] shows that the perfor-
mance of BOA is better than that of the generally accepted
optimization algorithm. Since the BOA algorithm was pro-
posed, in order to obtain better results in the exploitation
and exploration capabilities of the algorithm, Arora et al.
have made a series of improvements on BOA: literature
[32] proposed an improved butterfly optimization algo-
rithm, which adopts the variable sensing modal parameter
strategy to improve the convergence speed of the algorithm;
literature [33] proposed an improved butterfly optimization
algorithm with chaos; the algorithm’s exploration capabil-
ity has been increased; literature [34] proposed a hybrid
method BOA/DE by the ensemble of BOA and DE algo-
rithm, which combines the advantages of BOA and DE to

enable the algorithm to achieve between exploration and
exploitation balance to produce efficient results; literature
[35] proposed the hybrid method BOA/ABC by the ensem-
ble of BOA and ABC algorithm, which is similar to BOA/
DE; literature [36] introduced learning automata, which not
only keeps the main characteristics of the basic BOA, but
also accelerates the global convergence speed and achieves
the real global optimization; literature [37] proposed an
modified BOA (MBOA), which adds the modification opera-
tion to the optimal position, thereby increasing the algorithm
exploitation capability. In addition, Singh et al. [38] pro-
posed an adaptive butterfly optimization algorithm, which
improved the convergence speed of the algorithm by chang-
ing the sensory mode of BOA; Li [39] proposed an improved
butterfly optimization algorithm (BOA), by embedding the
cross-entropy (CE) method into the BOA, and the results
showed that the improved algorithm achieved a good balance
in exploration and exploitation; Sharma and Sushmita [40]
proposed a butterfly optimization algorithm enhanced with
mutualism scheme which improves the exploitation ability
of BOA. Sharma et al. [41] proposed an integrated algorithm
of butterfly optimization algorithm and symbiotic biologi-
cal search, called hBOSOS. The global search capability of
BOA and the local search capability of SOS are combined to
make the proposed hBOSOS robust and effective.

In addition to improving the BOA, researchers have carried
out a wide range of applications of BOA. Arora et al. [42]
applied BOA to feature selection. Jalali et al. [43] applied
BOA to train artificial neural network. Wang et al. [44] used
butterfly optimization algorithm to optimize the extreme
learning machine technology and applied it to port throughput
prediction. Kisi et al. [45] used BOA to forecast drought in a
semi-arid environment. Priyadharshini et al. [46] used BOA to
optimize capacitated vehicle routing problem (CVRP). Abdul-
Rashid et al. [47] used BOA to optimize the parameters of a
designed Lead-Lad Controller. El Hajjami et al. [48] used
BOA optimal PID control of an autonomous vehicle. Sharma
et al. [49] used BOA/ABC for node localization in acoustic
sensor networks. Du et al. [44] used butterfly optimization
algorithm to optimize the ELM technology for container
throughput prediction. These successful applications are due
to BOA’s advantages over other optimization methods. That
is to say, BOA has a few parameters to be instantiated, and
no preprocessing stage is required before the main body of
the BOA [40]. Moreover, the algorithm is simple and has
strong expansibility, which attracts researchers to expand and
improve it and apply it in more and more complex fields.

Another efficient metaheuristic algorithm is flower pol-
lination algorithm (FPA), developed by Yang. FPA belongs
to bio-inspired algorithms that simulate flower pollination
behavior in nature [7]. In recent years, there have been a
large number of improved versions of the pollination algo-
rithm, and it has been applied to solve practical optimization

3667Engineering with Computers (2021) 37:3665–3698

1 3

problems. The improved FPA versions include: Wang et al.
[50] proposed the flower pollination algorithm with dimen-
sion by dimension improvement; Zhao et al. [51] proposed a
complex encoding flower pollination algorithm; Zhou et al.
[52] proposed the elite opposition-based flower pollination
algorithm. Nabil et al. [53] proposed a modified flower pol-
lination algorithm. Singh et al. [54] proposed an extended
version of flower pollination algorithm. Lei et al. [55] pro-
posed wind-driven flower pollination algorithm. Pauline
et al. [56] proposed an improved flower pollination algo-
rithm with chaos theory. At the same time, FPA has been
successfully applied to solve various practical optimization
problems, mainly in the following areas: cloud comput-
ing [57], data clustering [58–60], wireless sensor networks
(WSNs) optimization [61–63], graph coloring problem [64],
neural networks training [65, 66], economic load dispatch
problem [67–70], ratios optimization problems (ROPs) [71],
vehicle path planning problem [72, 73] and medical image
segmentation [74], etc.

BOA has been applied to many aspects, but in terms of
the algorithm itself, BOA is easy to fall into the local opti-
mal solution in the early search process; one of the reasons
is that the optimal solution is not fully utilized. Moreover,
it was observed that random selection of exploration and
exploitation phases based on the selected value of switching
probability sometimes causes the BOA to lose direction and
move away from the global best solution [37]. Therefore, in
order to effectively improve the algorithm in the exploration
and exploitation capacity and better balance the algorithm in
the two stages of switching, in this paper, a hybrid butterfly
optimization algorithm and flower pollination base on mutu-
alism mechanism were proposed, which is called MBFPA.

Mutualism is the most common and important inter-spe-
cific relationship in ecosystem, and ecosystem cannot exist
without mutualism. In nature, flowers send out fragrance to
attract butterflies to spread pollen, which makes flowers bear
fruit. Butterflies can get nectar and habitat from flowers. The
processes of butterfly foraging and flower pollination are a
mutually beneficial process. Inspired by the mutualism of
different species in nature, a hybrid metaheuristic algorithm
using butterfly and flower pollination base on mutualism
mechanism was proposed. At the same time, the adaptive
switching probability is introduced so that the algorithm can
effectively balance the exploration and exploitation stages in
the process of operation.

The primary contributions of this paper are summarized
as follows:

1. A hybrid metaheuristic algorithm using Butterfly and
Flower Pollination base on mutualism mechanism is
proposed.

2. The exploration capability of the BOA and FPA is
retained, and the exploitation capability is increased

through the mutualism mechanism; the dynamic switch-
ing probability balance exploitation and exploration
ratio is introduced.

3. To fully test the effectiveness of MBFPA, several per-
formance aspects including accuracy, convergence and
statistics are evaluated by using 49 complex benchmark
functions.

4. The proposed MBFPA algorithm has been utilized to
solve six constrained engineering optimization prob-
lems, such as (a) three-bar truss design problem; (b)
multi-plate disc clutch brake design; (c) pressure vessel
design problem; (d) welded beam design problem and
(e) speed reducer design.

The rest of this paper is organized as follows: Sect. 2
briefly introduces the BOA and FPA. Section 3 introduces a
hybrid butterfly optimization algorithm and flower pollina-
tion algorithm base on mutualism mechanism (MBFPA).
Section 4 describes the theoretical comparison with other
algorithms. Section 5 describes simulation experiments and
result analysis. Finally, our conclusions and ideas for future
work are presented in Sect. 6.

2 Butterfly optimization algorithm
and flower pollination algorithm

2.1 Butterfly optimization algorithm

The butterfly optimization algorithm [13] is a new
metaheuristic algorithm. The algorithm is mainly based
on the foraging strategy of butterflies, which utilize their
sense of smell to determine the location of nectar or mating
partner. In order to find the source of nectar, butterflies use
sense receptors which are used to smell and these recep-
tors are scattered over butterfly’s body parts like legs, palps,
antennae, etc. [37]. In the BOA, it is assumed that each but-
terfly can release its own fragrance, which is related to its
fitness value. The foraging of butterflies can be divided into
two situations: when the butterfly can feel the fragrance of
the best butterfly in the search space, it will move towards
the best butterfly, which is called the global search stage of
BOA. When the butterfly can’t detect the smell of other but-
terflies, it will move forward randomly. This stage is called
local search. The process of BOA algorithm is described by
the following three rules [13]:

1. The fragrance is formulated as a function of the physical
intensity of stimulus as follows:

(1)fi = cIa

3668 Engineering with Computers (2021) 37:3665–3698

1 3

where fi is the perceived magnitude of fragrance, how
stronger the fragrance is perceived by other butterflies,
c is the sensory modality, I is the stimulus intensity and
a is the power exponent depended on modality, which
accounts the varying degree of absorption.

2. In global search phase, the butterfly takes a step towards
the fittest butterfly/solution g* which can be represented
as:

Xi
t is the solution vector Xi of the ith butterfly in the t

iteration. g* represents the best solution currently found.
Fragrance of ith butterfly is represented by fi and r is a
random number in [0,1].

3. Local search phase can be represented as:

where Xj
t and Xk

t are the jth and kth butterflies randomly
selected in the solution space. The switch probability
p is used in BOA to switch between global search and
local search. BOA is presented in Algorithm 1.

(2)Xt+1
i

= Xt
i
+ (r2 × g∗ − Xt

i
) × fi

(3)Xt+1
i

= Xt
i
+ (r2 × Xt

j
− Xt

k
) × fi

2.2 Flower pollination algorithm

Flower pollination algorithm (FPA) [7] is a new metaheuris-
tic swarm intelligence optimization algorithm proposed by
Xinshe Yang in 2012. This optimization algorithm simulates
the pollination process of plant flowers in nature, mainly
including cross-pollination and self-pollination of flowers.
In the process of cross-pollination, the flight behavior of the
propagator (butterfly, bee, etc.) obeys Levy flight distribu-
tion. In the process of self-pollination, the mature pollen of
plants spreads to their own flowers or different flowers of
the same type of plants. The process of FPA algorithm is
described by the following four rules [7]:

1. Flower constancy can be considered as the reproduction
probability is proportional to the similarity of two flow-
ers involved.

2. In the implementation of the algorithm, the conversion
between local and global pollination mechanisms is con-
trolled by the value of conversion probability p ∈ [0,1].

3. In the process of biological cross-pollination, the Propa-
gator’s flight obeys Levy flight for global pollination.
The formula is described as follows:

where Xt+1
i

 and Xt
i
 represent the position of pollen indi-

vidual i in the t + 1 and t generations, g∗ represents the
position of the optimal flower and/or a pollen gamete the
current population and represents Levy the step factor
obeying the Levy distribution, as shown in the follow-
ing formula:

where Γ(λ) is the standard gamma function, � = 1.5.
4. Abiotic self-pollination can be regarded as the local pol-

lination stage in the algorithm, which is expressed as

where Xt
j
 and Xt

k
 represent the position of two different

pollens in the same kind of plants. They are randomly
selected two individuals; � is the variable of uniform
distribution in [0, 1]. FPA is presented in Algorithm 2.

(4)Xt+1
i

= Xt
i
+ Levy(�)(Xt

i
− g∗)

(5)L ∼
𝜆Γ(𝜆) sin(𝜋𝜆∕2)

𝜋

1

S1+𝜆
, (S ≥ S0 > 0)

(6)Xt+1
i

= Xt
i
+ �(Xt

j
− Xt

k
)

3669Engineering with Computers (2021) 37:3665–3698

1 3

3 Hybrid butterfly optimization algorithm
and flower pollination algorithm base
on mutualism mechanism

As already discussed, since the butterfly optimization
algorithm was proposed, researchers have made different
attempts to better improve the algorithm’s exploration and
exploitation capabilities: Arora and Singh proposed BOA/
DE [35], BOA/ABC [34], balanced the algorithm’s ability to
exploitation and exploration. Because the two different algo-
rithms are mixed, the advantages of the original algorithm
can be retained. In addition, the addition of two different
renewal mechanisms will inevitably increase the diversity
of the population. Sharma and Sushmita [40] effectively
improved the algorithm exploitation ability by adding the
SOS algorithm to the exploitation stage of the original but-
terfly optimization algorithm. A good algorithm should be
able to take into account two aspects. When the exploita-
tion phase of an algorithm is dominant, the early popula-
tion of the algorithm will concentrate on the best individual
attachments early, leading to the loss of population diversity.

During the algorithm update process, If too much considera-
tion is given to the exploration capability of the algorithm,
the exploration with low accuracy may lose the optimal solu-
tion and slow convergence rate.

Therefore, how to balance the two aspects of the algo-
rithm becomes the key.

Thus, the success of a metaheuristic method on a given
optimization problem is defined by its ability to provide a
good balance between the exploration and exploitation. The
exploration defines the global search ability of the algorithm,
whereas the exploitation is the ability to find the optimum
around a near-optimal solution, which can also be consid-
ered as the local search ability [75].

Therefore, in the current study, in order to deal with this
imbalance between exploration capability and exploitation
capability, BOA and FPA were adopted to mix through
mutualism. The combination of diverse metaheuristics can
lead to new exciting approaches since the hybridization can
be used to get the advantage of different metaheuristics [76].
Here, the first step is to divide the entire population into
two subpopulations: butterflies and flowers. Independent
evolution between subpopulations can gain the advantages
of both algorithms while increasing the diversity of the
entire population. At the same time, the dynamic switching
probability is introduced to balance the reasonable distribu-
tion of exploration and exploitation. The second stage is
called mutualism stage. In this stage, the individual butter-
fly should randomly select a flower for mutualism, and the
flower should do the same, so as to increase the exploitation
capability of the algorithm.

Mutualism refers to two kinds of organisms living
together, which are mutually beneficial. After the two are
separated, life will be greatly affected, even death. Among
them, insects, birds, mammals and many other creatures
serve for pollination and seed transmission of flowering
plants. Plants provide them with nectar and fruits in return.
Without symbiosis, most plants would not survive. An
example of reciprocity is the relationship between the but-
terfly and the flower, and the butterfly looks for food/nectar
in the flower cluster for the butterfly to maintain its own
survival, which is also beneficial to the flower in this activ-
ity, because the butterfly’s foraging distributes pollen in the
process, which is beneficial to the pollination of plants. It’s
good for both sides of life.

In order to simulate the mutualism between butterfly
and flower, the mutualism stage of symbiotic organisms
search (SOS) is introduced. In 2014, Cheng and Prayogo
[12] proposed SOS, which simulates the interaction between

3670 Engineering with Computers (2021) 37:3665–3698

1 3

organisms in the ecosystem. In the search space, each
individual of different species is regarded as a candidate
solution. The algorithm randomly initializes n organisms
and generates an ecosystem. On this basis, individuals are
updated through mutualism, commensalism and parasitism.
SOS has good exploitation capabilities with the processes of
mutualism and commensalism. SOS uses best solution as a
reference point that might help in exploiting the neighbor-
hood solutions of the current best solution [77].

This paper introduces the mutualism phase in the SOS
algorithm. The renewal formula of SOS mutualism stage is
introduced as follows [12]:

where Mutualagent expressed the relationship between the
two organisms in the t generation xt

i
 and Xt

j
 . rand[0,1] is a

vector of random numbers. g∗ is the best organism in the
population, and BF1 and BF2 are the interest factors of ran-
domly generated 1 or 2. These factors represent the favorable
degree of interaction between two organisms.

In addition, the BOA algorithm uses fixed switching
probability in the whole search process. However, the rea-
sonable process should be: search in the global scope in the
early stage, and increase the mining intensity in the local
scope in the later stage to increase the accuracy of the solu-
tion. Therefore, in order to effectively balance the two stages
of exploration and exploitation, the dynamic switching prob-
ability is used, as shown in the following formula:

where Max_iter is the maximum number of iterations and
itrer is the current number of iterations.

The flowchart of the proposed approach is described in
Fig. 1, and pseudocode for the mutualism butterfly flower
pollination algorithm is presented in “Algorithm 3”:

(7)Mutualagent =
(

Xt
i
+ Xt

j

)

∕2

(8)Xt+1
i

= Xt
i
+ rand[0, 1] × (g ∗ −Mutualagent × BF1)

(9)Xt+1
j

= Xt
j
+ rand[0, 1] × (g∗ −Mutualagent × BF2)

(10)p = 0.8 − 0.1 × (Max_iter − itrer)∕Max_iter

3671Engineering with Computers (2021) 37:3665–3698

1 3

4 Theoretical comparison with other
algorithm

In the BOA (Arora and Singh), the butterfly optimization
algorithm is conceptually compared with other algorithms,
namely ABC, CS, DE, FA, GA, MBO and PSO. Based on
the comparison of the BOA, m-MBOA makes a compre-
hensive conceptual comparison among SOS, Jaya, improved
BOA, chaotic BOA (CBOA), modified BOA, mutated
BOA(BOA-C), BOA/DE and BOA/ABC.

The difference between the proposed algorithm and
m-MBOA is that m-MBOA only introduces the symbiosis
stage unilaterally, which increases the exploitation ability
of the algorithm, and the symbiosis is based on the sym-
biosis between species. The introduction of the proposed
algorithm in the symbiosis phase is not only between spe-
cies, but also through the interaction between butterflies and
flowers. Additionally, the introduction of dynamic switching
probability can better balance the ratio of exploitation and
exploration within the subpopulation.

TLBO is an algorithm based on human behavior, and its
inspiration comes from the teaching and learning process
in the classroom. The iterative evolution process of TLBO
includes the teaching phase and the learning phase. To
enhance the average knowledge level of the class, learners
improve their knowledge levels by learning from the teacher
in the teaching phase, and they also improve their knowledge
levels by learning interactively from another learner selected
randomly in learning phase [30]. MBFPA is a hybrid algo-
rithm of butterfly optimization algorithm and flower pollina-
tion algorithm, inspired by the mutually beneficial relation-
ship between butterflies and flowers in nature. Through the
combination of the two algorithms, the exploration ability of
butterfly algorithm and flower pollination algorithm is pre-
served. Across the introduction of SOS symbiosis stage, the
exploitation ability of the algorithm can be enhanced and the
probability of losing the optimal solution of the algorithm
can be reduced.

GSA can be considered as physics-based metaheuristic
search algorithm. At the beginning of the algorithm, each
individual is given a mass, and the law of gravity between
two objects is used to guide the motion optimization of
each particle to search for the optimal solution. Superposi-
tion of the gravitational forces, dependency to the distance
and the relation between mass values and fitnesses make
this algorithm unique [78]. The proposed algorithm is a
metaheuristic algorithm that simulates the mixed symbi-
otic relationship between two organisms in nature, mainly
including two basic algorithms of BOA and FPA, which,
respectively, simulate the foraging of butterfly and the pol-
lination of flower, and the two subgroups switch through
p for exploration and exploitation. At the same time, the

increased mutualism stage enables the exchange of informa-
tion between subgroups, reducing the possibility of entering
the local optimal solution.

Hbosos is a hybrid algorithm of BOA and SOS. By com-
bining BOA and SOS, the algorithm can retain the advan-
tages of the two algorithms to the greatest extent. The pro-
posed algorithm does not integrate the SOS algorithm, but
improves the algorithm development ability by introducing
the mutually beneficial symbiosis stage of SOS.

Li, Guocheng et al. proposed an improved butterfly opti-
mization algorithm (BOA) using the cross-entropy method.
The cross-entropy (CE) method was developed by Rubin-
stein [79] in 1997 to estimate the probability of rare events
in complex random networks. This paper embeds the CE
method into the BOA to obtain a good balance between
exploration and exploitation and improve the BOA’s global
search capability. The proposed algorithm is a hybrid algo-
rithm based on two kinds of biological mutualism mecha-
nisms in nature. It enhances the ability of algorithm devel-
opment by adding mutualism mechanism. In the value of
switching probability, adaptive dynamic switching prob-
ability is used.

Arora and Singh proposed Learning automata-based but-
terfly optimization algorithm. Learning automata have been
embedded in BOA in which a learning automaton takes the
role of configuring the behavior of a butterfly in order to cre-
ate a proper balance between the process of global and local
search [41], by introducing the adaptive dynamic switching
probability, which is a simpler and more effective method.

5 Simulation experiments and result
analysis

In order to verify the effectiveness of the proposed algo-
rithm, as shown in Table 1, 49 different benchmark functions
are tested, including function name, type, dimension, search
scope, formulation and optimal value. Generally speaking,
reference functions can be divided into two categories: uni-
modal function and multimodal function. Different types of
test functions have different characteristics. Among them,
the single-peak test function is used to verify the excavation
ability. Multimodal test functions have many local optimal
solutions, which is helpful to test the exploration ability of
the algorithm and the ability to avoid the optimal value.

The algorithm is implemented in MATLAB R2018b.
Experiments are performed on a PC with a 3.30 GHz,
Intel(R) Core(TM) i5 CPU, System type 64 bit, Windows
10 operating system. To increase reliability and generate sta-
tistically significant results, each function was run 30 times
in this validation test. The mean and standard deviation of
the proposed algorithm and other algorithms for comparison
were recorded.

3672 Engineering with Computers (2021) 37:3665–3698

1 3

5.1 Comparison with basic BOA and enhanced BOA

In order to evaluate the performance of the proposed
algorithm compared with BOA [13] and enhanced BOA
(m-MBOA) [40], it is worth noting that in the comparison
experiment, the parameter Settings of the proposed algo-
rithm are the same as those of the other two algorithms in
the paper. In this comparison, the number of population is
fixed at 50 and the maximum number of iterations is fixed
at 10,000. The simulation results include average results and
corresponding standard deviation. In the simulation of all
reference functions, sensory modality (c) is 0.01 and power
exponent (a) is increased from 0.1 to 0.3.

From the test results shown in Table 2, it can be seen
that under the same test conditions, f5, f14, f20, f25 and f28 are
superior to the other two algorithms, and other test functions

can achieve the same accuracy as the other two algorithms. It
can be concluded that the proposed algorithm can get high-
precision results; in addition, it has better results in multiple
functions.

5.2 Comparison with improve FPA

In order to compare the performance of the algorithm with
other improved flower pollination algorithms, it is compared
with dimensional evolution FPA (MFPA) [50] and bee FPA
(BPFPA) [80]. In the comparison experiment, the population
size n is set to 30 and the number of iterations is 500 genera-
tions. The switching probability of MFPA and BPFPA is set
to 0.8, and the parameter setting of the proposed algorithm
is consistent with the previous section.

Fig. 1 Flowchart of the pro-
posed algorithm

3673Engineering with Computers (2021) 37:3665–3698

1 3

From the test results shown in Table 3, the results com-
pared in some test functions all reached the same accuracy.
Except in f10, f25 was less effective than MFPA, and the rest
of the test results were better than the comparison algorithm.
Therefore, on the whole, the proposed algorithm has better
results compared with the two improved FPA (Table 4).

5.3 Comparison with other basic metaheuristic
methods

To verify the results of the proposed algorithm, the other
six state-of-the-art metaheuristic algorithms are employed:
differential evolution(DE), flower pollination algorithm
(FPA), particle swarm optimization (PSO), gravitational
search algorithm (GSA), symbiotic organisms search (SOS)
and teaching learning-based optimization (TLBO). These
algorithms have been widely used in various fields. In the
current experiment, the population size and maximum itera-
tion of all algorithms are set to 30 and 500, respectively. In
30 independent operations, Table 5 shows function results
performance statistics, Table 6 shows the mean and standard
deviation of the proposed algorithm and other algorithms in
solving the benchmark function, and the bold numbers rep-
resent the relatively best values of the compared algorithms.
The specific parameter values of the comparison algorithm
are shown in Table 4.

From the statistical data, Table 6 shows that the proposed
algorithm fails to get satisfactory solutions in functions f10,
f14, f20, f26, f28, f43, f46, f48 and f49. The functions of f10,
f14, f20, f28, f48 and f49 are far from the theoretical values.
Compared with the results obtained by other algorithms in
these functions, the DE gets relatively better results in f10
and f47. SOS gets relatively better solutions in f10, f20, f47,
f48 and f49; the functions of f49 are far from the theoretical
values. PSO get relatively better solutions in function f28.
TLBO gets relatively better solutions in f39, f42, f47, but
these values are still different from the theoretical values.
From the overall perspective, among the 49 benchmark func-
tions, the proposed algorithm can find the theoretical optimal
value among the 27 test functions. However, the number of
theoretical values of DE, FPA, PSO, GSA, SOS and TLBO
is 16, 8, 6, 4, 15 and 15, respectively. Meanwhile, Table 5
shows the number of occasions where the mean performance
of MBFPA is better than, equality and worse than other com-
parison algorithms. From this table, it can be observed that
the proposed algorithm performs better than DE, FPA, PSO,
GSA, SOS and TLBO in 25,39,40,44,22 and 25 benchmark
functions, respectively, equality results are seen in 15, 8,
5,3,18 and 18, and worse results are obtained in 3, 2, 3, 1, 4
and 2. Through the comparison of the experimental results
and data, we can see that in most of the test functions, the

proposed algorithm can get a more satisfactory solution, and
has a strong competitiveness with the compared algorithm.

In addition, the performance of the algorithm is statisti-
cally tested. Wilcoxon nonparametric statistical test [80] and
Friedman rank test [81] were conducted in this paper. Wil-
coxon’s non-parametric statistical test returns a parameter
call p-value [80]. When p value is less than 0.05, there is a
significant difference between the two algorithms in solving
the problem; when p > 0.05, there is no significant difference
between the two algorithms in solving the problem. From the
p-value test results in Table 7, except for functions f2, f4, f6,
f 9, f13, f15, f21,f22, f31,f36 and f44, most of the algorithms
can converge to the theoretical value, resulting in no signifi-
cant difference in the test results of these functions; for the
remaining functions, in function f16 and f41 the proposed
algorithm has no significant difference with SOS; the pro-
posed algorithm has no significant difference with PSO in
function f22, f37, f42 and f49; the proposed algorithm has no
significant difference with TLBO in function f22,f26,f37,f39,
f41, f48. There are significant differences in other functions.
Therefore, from the p value test results, this further shows
that the proposed algorithm has superior performance.

Table 8 presents the ranks obtained by Friedman rank
test from the mean performances of the algorithms for each
benchmark functions. As can be seen from Table 8, MBFPA
has the smallest grade, which indicates that MBFPA ’s per-
formance is better than the comparison algorithm (Table 9).

In order to compare the advantages of the algorithm in
terms of convergence speed, Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 and 14 show the convergence curve of the pro-
posed algorithm and DE, FPA, PSO, GSA, SOS, TLBO on
14 benchmark functions. Among all the fitness value con-
vergence graphs, their convergence curves are based on the
results of 30 times of independent operation of 7 algorithms,
and all the convergence curves are drawn with the average
value. As shown in Figs. 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13,
14 and 15, f11, f14, f24, f30 and f33 can reach the fastest con-
vergence speed and can find the global optimal solution. In
f6 functions, the fastest convergence speed is not achieved,
but still can have a better ranking and ultimately can find the
global optimal solution; f1, f 3, f5, f7, f12, f19, f 23, func-
tion in the early convergence speed is not the first, but in
the later search, it reaches the highest convergence rate and
continues to converge to the highest accuracy. Although the
convergence effect of some functions cannot reach the fast-
est convergence rate in the early stage, and the convergence
rate of f6 is lower than that of SOS, overall speaking, the
convergence rate of the proposed algorithm is better than
that of most other comparison algorithms.

3674 Engineering with Computers (2021) 37:3665–3698

1 3

5.4 Compared with the hybrid metaheuristic
algorithm

In addition to the comparison with the basic metaheuristic
algorithm, the other five hybrid metaheuristic algorithms are
employed: hybrid algorithm of particle swarm optimization
and Grey wolf optimizer (PSOGWO) [82], sine cosine crow
search algorithm (SCSCA) [83], hybrid firefly and parti-
cle swarm optimization algorithm (HFPSO) [82], modified
flower pollination algorithm(MFPA) [53] and hybrid whale
optimization algorithm based on modified differential evolu-
tion (MDE-WOA) [84].

In the current experiment, the population size and maxi-
mum iteration number of all algorithms are set to 30 and
500, respectively. Among the 30 independent operations,
Table 10 shows the performance statistics of the results of
the function, and Table 11 shows the mean and standard
deviation of the proposed algorithm and other algorithms
in solving the benchmark function. Bold numbers represent
the relative optimal values of the compared algorithms. The
specific parameter values of the comparison algorithm are
shown in Table 9.

According to the performance statistics in Table 10,
among the 49 test results of MBFPA, 48 test results were bet-
ter than PSOGWO. In the SCCSA results, the test results of
f10, f 14, f20, f 26, f 28 and f 34 are better than the proposed
algorithm, but there is a large gap with the theoretical value.
In other test functions, it can be seen from Table 10 that the
test results of the proposed algorithm are better than those of
SCCSA in 38 test functions and achieve the same effect in 5
test results. In the HFPSO results, the HFPSO test results are
better than the proposed algorithm in the test functions f10,
f20, f43 and f49, but f20 and f49 are far from the theoretical
values. In the remaining test functions, the proposed algo-
rithm is better than the HFPSO in 37 test results and gets the
same value in eight test function results. In the test results of
MFPA, the proposed algorithm is not better than MFPA in
11 test functions, but better than the comparison algorithm
in 24 test function results, and achieves the same effect in 14
test functions. In the test results of MDE-WOA, the results
of functions f14, f20, f28, f34, f43 and f46 are better than the
proposed algorithm, but it can be seen from Table 10 that the
proposed algorithm is better than MDE-WOA in the 38 test
results. Therefore, through the comparison of experimental
results and data, we can see that in most of the test functions,
the algorithm proposed in this paper can get more satisfac-
tory solutions and has a strong competitiveness compared
with the comparison algorithm.

In addition, from the p-value test results in Table 12,
there is no significant difference in the test results of these
functions, except that the comparison algorithm reaches

the theoretical value in individual test results; for most of
the other test functions, p-value is less than 0.05. Table 13
presents the ranks obtained by Friedman rank test from the
mean performances of the algorithms for each benchmark
functions. It can be seen from Table 13 that MBFPA has the
smallest grade, which indicates that MBFPA’s performance
is better than the hybrid metaheuristic algorithm compared.

Figures 16, 17, 18, 19, 20, 21, 22 and 23 illustrate the
convergence of the fitness values of PSOGWO, SCSCA,
MFPA, HFPSO, BPFPA and MDE-WOA. These conver-
gence graphs are based on the results of 30 independent runs
of the six algorithms. From these figures, it can be clearly
seen that MBFPA obtains the global optimal value faster
than the other four algorithms. These experimental results
demonstrate that MBFPA, which reflects its strong global
search capability.

5.5 Results analysis

Now, why is MBFPA so effective? It mainly includes the
following three aspects:

1. The introduction of dynamic switching probability
perfectly balances the distribution of exploitation and
exploration.

2. Because of the mixture of BOA and FPA, the exploration
capability of the two algorithms is well reserved.

3. Through the introduction of mutualism phase, the mutu-
alism of individuals enhances the exploitation ability of
the algorithm.

In particular, the butterfly optimization algorithm controls
the switch between exploitation and exploration by trans-
forming probability p. Because every step of exploitation
and exploration switch is judged by rand < p, it may cause
the individual who has been in the vicinity of the optimal
solution to turn to exploration and lose the optimal solution.
In addition, the BOA does not directly use the best solution
as the reference point, but through r2 × g∗ as the reference
point, where r is a random number and g∗ is the best solution
in the population, which reduces the guiding role of the best
solution. Although it can reduce the probability of falling
into the local optimum prematurely, it has a great limit on
the exploitation ability of the algorithm. In the improved
algorithm, the dynamic switching probability is introduced
to distribute the proportion of development and exploration
more reasonably. In the increasing symbiosis mechanism, on
the one hand, the optimal position is used as the reference
update position, which increases the ability of individuals to
find the optimal solution around the near optimal solution;

3675Engineering with Computers (2021) 37:3665–3698

1 3

Table 1 Benchmark functions (dim: dimensions, M: multimodal, N: non-separable, U: unimodal, S: separable)

No Function Type dim Search space Formulation fmin

f1 Sphere M,S 30 [− 100,100]
f (x) =

n
∑

i=1

x2
i

0

f2 Beale U,N 2 [− 4.5,4.5] f (x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x
2
2
)

+(2.625 − x1 + x1x
3
2
)2

0

f3 Cigar U,N 30 [− 100,100]
f (x) = x2

1
+ 106

n
∑

i=2

x2
i

0

f4 Step U,S 30 [− 100,100] f (x) = (⌊xi + 0.5⌋)2 0
f5 Quadraic U,S 30 [− 1.28,1.28]

f (x) =
n
∑

i=1

ix4
i
+ rand(0, 1)

0

f6 Bohachevsky M,N 2 [− 100,100] f (x) = x2
1
+ 2x2

2
− 0.3 cos(3�x1)

−0.4 cos(4�x2) + 0.7

0

f7 Ackley M,N 30 [− 100,100]
f (x) = −20 exp

⎛

⎜

⎜

⎝

−0.2

�

�

�

�

1

n

n
�

i=1

x2
i
− exp

�

1

n

n
�

i=1

cos 2�xi

�

⎞

⎟

⎟

⎠

+20 + e

0

f8 Griewank M,N 30 [− 100,100]
f (x) =

1

4000

n
∑

i=1

�

x2
i

�

−
n
∏

i=1

cos
�

xi
√

i

�

+ 1
0

f9 Levy M,S 2 [− 10,10] f (x) = sin2(3�x1) + (x1 − 1)2[1 + sin2(3x2)] + (x1 − 1)2

×[1 + sin2(2�x2)]

0

f10 Michalewiz M,S 10
f (x) = −

n
∑

i=1

sin(xi)
�

sin(
ix2

i

�
)
�2m

,m = 10
− 0.966

f11 Rastrigin M,S 30 [− 5.12,5.12]
f (x) =

n
∑

i=1

x2
i
− 10 cos(2�xi + 10)

0

f12 Alpine M,S 30 [− 10,10]
f (x) =

n
∑

i=1

�

�

xi sin(x) + 0.1xi
�

�

0

f13 Schaffer M,N 2 [− 100,100] f (x) = (x2
1
+ x2

2
)0.25[50(x2

1
+ x2

2
)0.1 + 1] 0

f14 Rosenbrock U,N 30 [− 30,30]
f (x) =

n−1
∑

i=1

[100(xi+1 − x2
i
)2 + (xi − 1)2]

0

f15 Easom M,S 2 [− 100,100] f (x) = − cos(x1) cos(x2) exp(−(x1 − �)2

−(x2 − �)2)

− 1

f16 Shubert M,S 2 [− 100,100]
f (x) = (

5
∑

i=1

i cos((i + 1)x1 + i)(
5
∑

i=1

i cos((i + 1)x2 + i))
− 186.7309

f17 Schwefel 1.2 U,N 30 [− 100,100]
f (x) =

n
∑

i=1

�

i
∑

j=1

xj

�2 0

f18 Schwefel 2.21 U,S 30 [− 100,100] f (x) = maxi{|xi|, 1 ≤ i ≤ n} 0
f19 Schwefel 2.22 U,N 30 [− 10,10]

f (x) =
n
∑

i=1

�xi� +
n
∏

i=1

�xi�
0

f20 Schwefel 2.26 M,S 30 [− 500,500]
f (x) =

n
∑

i=1

�

�

xi sin(x) + 0.1xi
�

�

− 418.982*n

f21 Booth U,N 2 [10, 10] f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 0
f22 Goldstein price M,N 2 [− 2,2] f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1
− 14x2

+6x1x
2 + 3x2

2
)] × [30 + (2x1 − 3x2)

2(18 − 32x1
+12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)]

3

f23 Matyas U,N 2 [− 10,10] f (x) = 0.26(x2
1
+ x2

2
) − 0.48x1x

2 0
f24 Powell U,N 30 [− 100,100]

f (x) =
n∕4
∑

i=1

(x4i−3 + 10x4i−2)
2 + 5(x4i + 10x4i)

2

+(x4i−2 + 2x4i−1)
4 + 10(x4i−3 + 10x4i)

4

0

f25 Power sum M,N 4 [− 10,10]
f (x) =

n
∑

i=1

�

(
n
∑

k=1

xi
k
) − bi

�

0

3676 Engineering with Computers (2021) 37:3665–3698

1 3

Table 1 (continued)

No Function Type dim Search space Formulation fmin

f26 Shekel 4.5 U,S 4 [0,10]
f (x) = −

5
∑

i=1

[(x − ai)(x − ai)
T + ci]

−1
− 10,1532

f27 Sum square U,S 30 [− 10,10]
f (x) =

n
∑

i=1

ix2
i

0

f28 Trid M,N 30 [− 10,10]
f (x) =

n
∑

i=1

(xi − 1)2 −
n
∑

i=2

(xixi−1)
-d*(d + 4)*(d − 1)/6

f29 Zettl U,N 2 [− 1,5] f (x) = (x2
1
+ x2

2
− 2x1)2 + 0.25x1 − 0.00379

f30 Leon U,N 2 [− 1.2,1.2] f (x) = 100(x2 − x3
1
)2 + (1 − x1)

2 0
f31 Stepint U,S 5 [− 5.12,5.12]

f (x) = 25 +
5
∑

i=1

⌈xi⌉
0

f32 Colville U,N 4 [− 10,10] f (x) = 100(x2
1
− x2

2
)2 + (x1−1)

2 + (x3 − 1)2+

+90(x2
3
− x4)

2 + 10.1(x2 − 1)2 + (x4 − 1)2+19.8(x2
2
− 1)(x4 − 1)

0

f33 Zakharov U,N 10 [5, 10]
f (x) =

n
∑

i=1

x2
i
+ (

n
∑

i=1

0.5ixi)
2 + (

n
∑

i=1

0.5ixi)
4)

0

f34 Dixon-Price U,N 30 [− 30,30]
f (x) = (x1 − 1)2 +

n
∑

i=2

i(2x2
i
− x2

i−1
)

0

f35 Foxholes M,S 2 [− 65.536, 65.536]
f (x) =

⎡

⎢

⎢

⎣

1

500
+

25
∑

j=1

1

j+
2
∑

i=1

(xi−aij)6

⎤

⎥

⎥

⎦

−1 0.998

f36 Branin M,S 2 [5, 10] f (x) = (x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6)2 + 10(1 −

5.1

4�2
)cos x1 + 10 0.398

f37 Six Hump
Camel Back

M,N 2 [− 5,5] f (x) = 4x2
1
− 2.1x14 +

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
− 1.03163

f38 Kowalik M,N 4 [− 5,5]
f (x) =

11
∑

i=1

�

ai −
x1(b

2
i
+bix2)

b2
i
+bix3+x4

�2 0.00031

f39 Perm M,N 4 [− 4,4]
f (x) =

n
∑

k=1

�

n
∑

i=1

(ik + �)((xi∕i)
k) − 1

�2 0

f40 Hartman M,N 3 [0,1]
f (x) =

n
∑

k=1

ci exp

�

−
3
∑

j=1

aij(xj − pij)
2

�

− 3.86

f41 Hartman M,N 6 [0,1]
f (x) =

n
∑

k=1

ci exp

�

−
6
∑

j=1

aij(xj − pij)
2

�

− 3.32

f42 Penalized M,N 30 [− 50,50]
f (x) =

𝜋

D

�

10 sin2(𝜋y1) +

D−1
�

i=1

(y − 1)2[1 + 10 sin2(𝜋y1)]

+(yD − 1)2

�

+

D
�

i=1

u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4

u(xi, a, k,m) =

⎧

⎪

⎨

⎪

⎩

k(xi − a)m, xi > a

0,−a ≤ xi ≤ a

k(−xi − z)m, xi < a

0

f43 Penalized2 M,N 30 [− 50,50]
f (x) = 0.1

{

sin2

(

3�x1 +

n
∑

i=1

(xi − 1)2[1 + sin2(3�xi + 1)]

+(xn − 1)2[1 + sin2(2�xn)]

)}

+

n
∑

i=1

u(xi, 5, 100, 4)

0

f44 Langerman2 M,N 2 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

− 1.08

3677Engineering with Computers (2021) 37:3665–3698

1 3

Table 1 (continued)

No Function Type dim Search space Formulation fmin

f45 Langerman5 M,N 5 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

− 1.5

f46 Langerman10 M,N 10 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

N/A

f47 Fletcher
Powell2

M,N 2 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

f48 Fletcher
Powell5

M,N 5 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

f49 Fletcher
Powell10

M,N 10 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

Table 2 Mean and SD for
comparing MBFPA with BOA
and m-MBOA on 30 benchmark
functions

Bold values are represent MBPFA algorithm can get high-precision results

Mean SD

MBPFA m-MBOA [38] BOA [13] MBPFA m-MBOA [38] BOA [13]

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f3 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f4 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f5 5.7759E− 06 3.8917E−05 1.45E+00 4.1738E−05 2.9003E−05 1.73E−01
f6 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f7 8.8818E− 16 1.7183E+00 8.8818E− 16 0.0000E+00 0.0000E+00 0.0000E+00
f8 0.0000E+00 1.8472E−19 0.00E+00 0.0000E+00 2.6886E−02 0.0000E+00
f9 1.35E−31 4.4108E−01 1.35E−31 6.6809E−47 5.7467E−02 8.9000E−47
f10 − 6.08E+00 N/A − 5.34E−02 5.1538E−01 N/A − 5.6092E+00
f11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f14 2.0681E+01 2.8837E+01 5.80E+00 1.5593E+00 0.0000E+00 6.12E−01
f15 − 1.000E+00 − 1.0000E+00 − 1.02E+00 0.0000E+00 0.0000E+00 1.51E−01
f16 − 1.8673E+02 − 1.8673E+02 8.84E+01 5.9985E−08 2.06493E−11 1.44E−14
f17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f18 0.0000E+00 6.9906E−153 0.0000E+00 0.0000E+00 1.4788E−152 0.0000E+00
f19 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f20 − 7.5562E+03 − 2.2662E+03 − 5.50E+99 1.9273E+02 4.5626E+02 8.78E+100
f21 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f22 3.0000E+00 3.0000E+00 3.0000E+00 0.0000E+00 0.0000E+00 2.52E−15
f23 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f24 0.0000E+00 0.0000E+00 2.90E−13 0.0000E+00 0.0000E+00 1.61E−12
f25 1.7490E−03 2.8400E−02 2.48E−05 0.0000E+00 1.3179E−02 3.02E−05
f27 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f28 − 1.2812E+03 − 2.7507E+07 − 1.06E+01 4.0402E+02 5.6521E+07 4.83E+00
f29 − 3.7912E−03 − 3.7912E−03 − 3.79E−03 1.7644E−18 0.0000E+00 3.09E−06
f30 0.00E+00 1.1527E−06 0.00E+00 0.00E+00 9.4711E−07 0.00E+00

3678 Engineering with Computers (2021) 37:3665–3698

1 3

on the other hand, because symbiosis is carried out between
two individuals, the improvement in any one in the symbio-
sis stage will increase the convergence speed in the whole
iterative process.

Although MBFPA is effective, it has some weaknesses.
Compared with the original BOA and FPA algorithm, it is
obvious that the algorithm becomes more complex, which
will increase the running time of the algorithm; in addition,

Table 3 Mean and SD for comparing MBFPA with MFPA and BPFPA on 30 benchmark functions

Bold values are represent MBPFA algorithm can get high-precision results

Mean SD

MBPFA MFPA BPFPA MBPFA MFPA BPFPA

f1 0.00E+00 321.9284 39.5022 0.00E+00 170.0287 20.5743
f2 0.00E+00 0.00E+00 4.8648e−23 0.00E+00 0.00E+00 2.089e−22
f3 0.00E+00 236,477,826.7226 40,308,138.5658 0.00E+00 146,754,099.6033 17,648,691.5919
f4 0.00E+00 807.3667 51.4 0.00E+00 342.6953 17.9417
f5 5.7759E− 06 0.15245 0.10408 4.1738E−05 0.08634 0.033142
f6 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f7 8.8818E− 16 8.7275 4.0499 0.0000E+00 8.7275 0.86288
f8 0.0000E+00 3.2972 1.4447 0.0000E+00 0.88478 0.18451
f9 1.35E− 31 1.35e− 31 1.35E− 31 6.6809E−47 6.6809e−47 6.6809e−47
f10 − 6.08E+00 − 8.6819 − 7.8253 5.1538E−01 − 8.6819 0.39279
f11 0.0000E+00 54.548 137.7442 0.0000E+00 10.3149 12.1861
f12 0.0000E+00 3.8028 7.3252 0.0000E+00 1.4868 4.7557
f13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f14 2.0681E+01 421.4537 234.5188 1.5593E+00 185.6032 70.9594
f15 − 1.000E+00 − 1.0000E+00 − 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f16 − 1.8673E+02 − 1.8673E+02 − 1.8673E+02 5.9985E−08 0.00034889 0.010649
f17 0.0000E+00 9.4092 20.5805 0.0000E+00 3.2795 6.6107
f18 0.0000E+00 1.4077 1.3897 0.0000E+00 0.22267 0.28729
f19 0.0000E+00 7.6106 2.6414 0.0000E+00 2.0783 0.71014
f20 − 7.5562E+03 − 7493.523 − 6733.0706 1.9273E+02 421.5054 339.4945
f21 0.0000E+00 0.0000E+00 2.8883e−28 0.0000E+00 0.0000E+00 6.459e−28
f22 3.0000E+00 3.0000E+00 3.0000E+00 0.0000E+00 1.8568e−15 1.0066e−15
f23 0.0000E+00 8.584e−130 2.4477e−26 0.0000E+00 2.2369e−129 8.8267e−26
f24 0.0000E+00 12.1634 11.8327 0.0000E+00 7.8409 6.5558
f25 1.7490E−03 1.4408E− 04 0.014981 0.0000E+00 0.00024295 0.012595
f27 0.0000E+00 5.7103 0.0000E+00 0.0000E+00 22.072 2.2377
f28 − 1.2812E+03 15,102.6218 − 1.06E+01 4.0402E+02 4860.4391 8668.6782
f29 − 3.7912E−03 − 3.7912E−03 − 3.7912E−03 1.7644E−18 1.7644e−18 1.7644e−18
f30 0.00E+00 0.00E+00 8.3804e−19 0.00E+00 0.00E+00 2.659e−18

Table 4 Parameter settings for
seven algorithms

Algorithm Parameter values

DE [15] Scaling factor = 0.5, Crossover probability = 0.2
FPA [7] The proximity probability p = 0.8
PSO [3] The cognitive parameter c1 = 1.5c2 = 2.0 , inertia weight � = 1

GSA [21] For GSA, the parameters are set to G0 = 100 � = 20

SOS [12] Benefit factors randomly generated as either 1 or 2
TLBO [30] Teaching factor T randomly generated as either 1 or 2
MBFPA Sensory modality c = 0.01, power exponent a is increased from 0.1 to 0.3,

proximity probability using Eq. (10)

3679Engineering with Computers (2021) 37:3665–3698

1 3

increasing the mutualism stage is more dangerous. Because
of the mutualism of each individual, it may lead to the
decline of the individual who has been in the local optimal
position. Therefore, how to selectively carry out mutually
beneficial symbiosis of individuals is also a place worthy
of consideration. The advantages and disadvantages of the
above MBFPA algorithm are listed in Table 14.

6 Engineering design problems

In order to verify the performance of the proposed algo-
rithm in constrained optimization problems, five engineer-
ing optimization problems (three-bar truss design, multi-
plate disc clutch brake, pressure vessel, welded beam and
speed reducer) from the structural field are compared and
the best results are compared with other algorithms. In order
to obtain a better solution, different maximum numbers of
iterations and different population numbers are used for each
different problem according to the number of optimization
variables and constraints in all engineering optimization
problems. The specific characteristics of these problems are
given in Table 15.

6.1 Three‑bar truss design problem

Three-bar truss design problem (see “Appendix A.1”) is the
most common constraint optimization test problem, which is
a minimization problem. The goal is to minimize the weight
of three-bar truss, where the constraints are stress, deflection
and buckling. Figure 24 shows the shape of the truss and the
associated forces on the structure.

In this problem, the fixed population number is 30 and the
maximum number of iterations is 100 and the optimal fitness
value obtained by the proposed algorithm after 30 independ-
ent runs is f(X) = 263.895843376, X = [0.788675132828,
0.408248295461]. The best results of the proposed algorithm

will be compared with the optimal solution obtained in the
previous literature in Table 16. The results show that the
proposed algorithm can get a better solution in this problem
and show good performance.

6.2 Multi‑plate disc clutch brake

This problem requires the minimization of the weight of a
multiple disc clutch brake (see “Appendix A.2”) by consid-
ering five discrete design variables: inner radius (r1), outer
radius(r0), thickness of discs(t), actuating force(F), and num-
ber of friction surfaces(Z) [48]. Figure 25 shows a multiple
disc clutch brake. The difficulty of the optimization problem
increases, because the problem includes eight different con-
straints, which will result in only 70% of the feasible region
in the solution space.

The fixed population number is 30 and the maximum
number of iterations is 500, and the optimal fitness value
obtained by the proposed algorithm after 30 independent
runs is f(X) = 0.235242457900804, X = [70, 90, 1, 600, 2].
The results obtained by MBPFA were compared with the
optimal results of HHO [11], TLBO [30], WCA [47] and
PVS [48]. As shown in Table 17, we can see that the pro-
posed algorithm obtained the best solution in solving the
problem.

6.3 Pressure vessel design problem

As a classical constrained engineering optimization prob-
lem, the goal of optimization is to minimize the total cost of
welding, materials and manufacturing. The manufacturing
configuration of the problem is shown in Fig. 26. The prob-
lem consists of four optimization variables: Ts (thickness
of the shell), Th (thickness of the head), r (inner radius), L
(length of section without the head). At the same time, it
contains four different constraints. The details are given in
“Appendix A.3.”

The fixed population number is 20 and the maximum
number of iterations is 200, and the optimal fitness value
obtained by the proposed algorithm after 30 independ-
ent runs is f(X) = 5885.3327736, X = [0.778168641371
0.384649162626 40.3196187241 200.0]. The obtained opti-
mal solution is compared with other algorithms. Table 18
shows that the proposed algorithm is the best to deal with
this problem and can obtain the optimal result.

6.4 Welded beam design problem

This problem requires designing the most appropriate height
of weld (× 1), length of weld (× 2), height of beam (× 3),
and width of beam (× 4) to minimize welding costs. Con-
straints include: shear stress, bending stress, buckling load

Table 5 Statistical results of the 6 basic metaheuristic on the 49 prob-
lems

* Where “Better,” “Equal,” and “less than” represent the number of
problems that the performance of MBFPA is significantly better than,
almost the same as, and significantly worse than the corresponding
algorithm, respectively

Algorithms Better Equal Less than

DE 25 15 9
FPA 39 8 2
PSO 40 5 4
GSA 44 3 2
SOS 22 18 9
TLBO 25 18 6

3680 Engineering with Computers (2021) 37:3665–3698

1 3

Table 6 Comparative results of the proposed algorithm with DE, FPA, PSO, GSA, SOS and TLBO

No MBFPA DE FPA PSO GSA SOS TLBO

f1 Mean 0 2.47E−04 1.92E+03 8.72E−07 3.40E−03 1.56E−135 1.43E−89
SD 0 8.31E−05 5.26E+02 3.04E−06 1.86E−02 3.17E−135 2.13E−89

f2 Mean 0 0 2.00E−12 5.08E−02 1.07E−18 0 0
SD 0 0 4.76E−09 1.93E−01 1.24E−18 0 0

f3 Mean 0 1.54E+02 1.65E+09 4.60E+01 2.10E+02 1.09E−129 1.94E83
SD 0 7.20E+02 4.4E+08 5.52E+02 3.10E+02 2.24E−129 3.22E−83

f4 Mean 0 0 1.85E+02 9.20E+00 1.42E+01 0 0
SD 0 0 5.05E+02 7.84E+00 2.90E+01 0 0

f5 Mean 1.42E− 04 5.31E−02 3.08E−01 2.26E−02 3.99E−01 5.64E−04 1.19E−03
SD 1.23E−04 1.43E−02 1.07E−01 7.62E−03 6.81E−01 2.99E−04 6.32E−04

f6 Mean 0 0 1.14E−08 0 0 0 0
SD 0 0 1.65E−08 0 0 0 0

f7 Mean 8.88E− 16 4.13E−03 7.35E+00 1.49E+00 8.58E−02 4.09E−15 6.45E−15
SD 0 9.19E−04 1.22E+00 6.60E−01 3.39E−01 1.08E−15 1.79E−15

f8 Mean 0 3.82E−03 1.75E+01 4.24E−02 2.53E+01 0 0
SD 0 5.01E−03 4.75E+00 4.15E−02 5.86E+00 0 0

f9 Mean 1.35E− 31 1.35E− 31 9.60E−10 1.35E−31 1.32E−18 1.35E− 31 1.35E− 31
SD 6.68E−31 6.68E−47 1.90E−09 1.35E−47 1.44E−18 6.68E−47 6.68E−47

f10 Mean − 4.9975 − 9.1123 − 4.8717 − 7.7869 − 8.3083 − 9.0103 − 4.654
SD 0.47106 0.22017 0.48003 1.1805 0.78902 0.30491 0.47188

f11 Mean 0 8.14E+01 1.86E+02 4.97E+01 3.66E+01 0 1.30E +01
SD 0 9.60E+00 1.25E+01 1.62E+00 8.24E+00 0 5.20E + 00

f12 Mean 0 3.74E−02 2.11E+01 7.99E−03 2.62E−03 6.72E−70 1.19E−45
SD 0 3.29E−02 1.94E+00 9.87E−03 2.71E−03 8.81E−70 9.83E−46

f13 Mean 0 0 0 2.51E−05 1.39E−02 0 0
SD 0 0 0 1.37E−04 4.24E−03 0 0

f14 Mean 2.54E+01 6.62E+01 5.19E+03 3.53E+01 5.53E+01 2.81E+01 2.54E + 01
SD 9.20E−01 3.34E+01 2.32E+03 2.21E+01 6.43E+01 1.26E+00 6.71E−01

f15 Mean − 1 − 1 − 1 − 1 8.33E−01 − 1 − 1
SD 0 0 2.66E−06 0 3.79E−01 0 0

f16 Mean − 186.7309 − 186.7309 186.7290 186.7290 − 76.2892 − 186.7305 − 186.7305
SD 3.16E−05 3.77E−14 1.88E−03 4.255E−14 67.2174 1.24E−03 1.95E−20

f17 Mean 0 3.16E+02 1.54E+01 8.88E−01 4.09E+01 2.78E−46 2.62E−20
SD 0 4.44E+01 4.77E+00 8.51E−01 1.43E+01 6.37E−46 7.50E−20

f18 Mean 0 1.18E+00 2.34E+00 2.18E−01 2.61E+00 9.87E−56 1.42E−37
SD 0 2.01E−01 4.02E−01 6.84E−02 2.15E+00 1.56E−55 1.19E−37

f19 Mean 0 1.97E−03 3.20E+01 5.36E−02 5.50E−01 2.79E−69 4.84E−45
SD 0 3.60E−03 7.21E+00 8.90E−02 1.15E+00 3.68E−69 5.80E−45

f20 Mean − 6748.059 − 9.55E+03 − 6.37E+03 − 6.85E+03 − 2.51E+02 − 1.04E+4 − 8.12E + 03
SD 2.56E+02 5.66E+02 2.44E+02 7.98E+02 1.87E+02 6.51E+02 9.77E + 02

f21 Mean 0 0 4.83E−12 0 9.79E−19 0 0
SD 0 0 1.28E−11 0 1.08E−18 0 0

f22 Mean 3 3 3 3 3 3 3
SD 1.375E−15 2.11E−15 1.52E−09 1.90E−15 9.34E−15 7.28E−16 5.53E−133

f23 Mean 0 1.14E−39 3.00E−14 4.37E−127 3.54E−20 2.90E−204 1.51E−133
SD 0 2.98E−39 5.37E−14 2.39E−126 3.42E−20 0.00E+00 5.93E−133

f24 Mean 0 1.37E+02 7.50E−01 7.65E−03 3.58E+01 2.26E−18 6.64E−07
SD 0 5.58E+01 2.75E+01 1.23E−02 2.85E+01 1.23E−17 1.73E−06

f25 Mean 1.55E−03 2.63E−02 1.56E−02 2.55E−03 1.73E+00 7.61E− 04 1.77E−03
SD 1.61E−03 2.21E−02 1.29E−02 4.49E−03 3.55E+00 1.45E−03 2.76E−03

3681Engineering with Computers (2021) 37:3665–3698

1 3
Bold numbers represent the best values

Table 6 (continued)

No MBFPA DE FPA PSO GSA SOS TLBO

f26 Mean − 9.60E+00 − 9.72E+00 − 10.14E+00 − 5.71E+00 − 4.72E+00 − 8.79E+00 − 9.85E + 00
SD 1.33E+00 1.62E+00 3.21E−02 3.13E+00 1.96E+00 2.29E+00 1.09E + 00

f27 Mean 0 2.94E−05 2.58E+02 1.78E−06 5.24E−02 3.99E−136 3.00E−90
SD 0 1.03E−05 7.67E+01 9.07E−06 2.76E−01 1.36E−135 6.51E−90

f28 Mean − 824.5121 − 722.8702 − 319.1363 − 1389.999 − 376.832 − 1389.9717 − 620.1225
SD 203.5617 210.6547 476.8181 0.0010726 48.446 0.13842 76.9352

f29 Mean − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03
SD 1.76E−18 1.76E−18 3.73E−11 1.76E−18 1.43E−03 1.76E−18 1.76E−18

f30 Mean 4.77E− 28 3.04E−05 6.77E−10 1.96E−13 3.46E+00 4.66E−24 3.00E−18
SD 3.61E−30 1.67E−04 1.19E−09 1.04E−12 8.95E+00 9.02E−17 1.30E−17

f31 Mean 0 0 0 0.16667 0.00E+00 0.00E+00 0
SD 0 0 0 0.46113 0.00E+00 0.00E+00 0

f32 Mean 1.9229e− 09 0.014151 0.84197 0.013523 2.2912 1.7713e−06 6.005e−05
SD 8.5913e−09 0.0266 0.59836 0.028011 2.5911 2.7075e−06 0.0002167

f33 Mean 0 0.80091 0.44679 1.5895e−23 32.2198 9.6583e−97 4.1953e−52
SD 0 0.57182 0.20611 8.2719e−23 23.0425 3.0788e−96 1.3486e−51

f34 Mean 0.66667 1.1345 2106.5512 0.80044 1.4626 0.66667 0.66667
SD 5.062e−09 0.52524 1082.586 0.45797 1.288 4.6695e−16 6.9636e−11

f35 Mean 0.998 0.998 0.99804 4.2063 13.8477 0.998 0.998
SD 1.0909e−16 0 0.00011513 3.5086 6.5919 0 0

f36 Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
SD 0 0 1.0909e−06 0 0 0 0

f37 Mean − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
SD 6.4539e−16 6.7752e−16 7.5631e−08 6.3877e−16 4.3441e−16 6.7752e−16 6.7122e−16

f38 Mean 0.00030749 0.00068446 0.00070785 0.0012646 0.013252 0.00034321 0.00040824
SD 1.0001e−10 0.00012951 0.00018082 0.0036397 0.0076868 0.0001677 0.00021674

f39 Mean 0.029788 0.12031 0.77598 0.071187 22.8601 0.017961 0.00021674
SD 0.086304 0.12312 0.54825 0.12438 43.7677 0.037765 0.11913

f40 Mean − 3.8628 − 3.8628 − 3.8628 − 3.8112 − 0.68659 − 3.8628 − 3.8628
SD 2.6543e−15 2.7101e−15 2.53e−08 0.19612 0.96964 2.7101e−15 2.7101e−15

f41 Mean − 3.3018 − 3.3224 − 3.2928 − 3.2826 − 0.69676 − 3.2745 − 3.2916
SD 0.044744 3.5999e−09 0.024118 0.057155 0.43278 0.059277 0.051482

f42 Mean 0.00019444 0.0001291 39.1718 0.20049 0.72433 0.0034556 4.3409e−04
SD 0.00045217 9.7444e−05 8.3372 0.53152 0.93427 0.018927 1.1576e−06

f43 Mean 1.5041 1.9565e− 05 98.6619 0.03867 3.1383 0.099525 0.10525
SD 1.1085 8.9344e−06 23.9594 0.083781 8.2229 0.084214 0.1112

f44 Mean − 1.0809 − 1.0809 − 1.0809 − 1.0539 − 0.83968 − 1.0809 − 1.0809
SD 4.5168e−16 4.5168e−16 5.011e−10 0.05505 0.42543 4.5168e−16 4.5168e−16

f45 Mean − 1.4128 − 1.3754 − 1.0729 − 1.2147 − 0.079911 − 1.3724 − 1.1599
SD 0.26942 0.10787 0.22864 0.29192 0.11968 0.23541 0.30714

f46 Mean − 0.59898 − 0.53705 − 0.40214 − 0.54436 − 0.0008114 − 0.72055 − 0.5387
SD 0.28994 0.17137 0.18212 0.25042 0.0023572 0.40612 0.31296

f47 Mean 8.3234e−23 0 7.6125e−05 47.0197 94.0393 0 0
SD 3.2682e−22 0 9.1474e−05 178.9391 243.8528 0 0

f48 Mean 49.3012 31.6276 67.9252 1166.8096 188.3431 0.0026592 38.8046
SD 89.2502 70.2243 68.5145 1179.2897 86.1584 0.012047 80.7725

f49 Mean 1841.1397 306.1898 8988.2742 3453.4229 951.4124 229.5545 963.2594
SD 2051.3933 104.6094 3948.2518 6351.4667 1589.0465 762.5573 1369.8109

The number of theoreti-
cal values

27 16 8 6 4 15 15

3682 Engineering with Computers (2021) 37:3665–3698

1 3

Table 7 Results of the p value benchmark functions

Bold numbers represent the p > 0.05

No MBFPA VS DE MBFPA VS FPA MBFPA VS PSO MBFPA VS GSA MBFPA VS SOS MBFPA VS TLBO

1 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
2 0.3337 1.7203E−12 0.0483 1.720E−12 0.3337 0.3337
3 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
4 1.00 1.2118E−12 1.1766E−12 5.7442E−10 1.00 1.00
5 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 8.1465E−05 1.8567E−09
6 1.00 1.2118E−12 1.00 1.00 1.00 1.00
7 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 3.9410E−12 4.4551E−13
8 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 1.00 1.00
9 1.00 1.2118E−12 1.00 1.2118E−12 1.2118E−12 1.00
10 2.8574E−11 3.0199E−11 6.2027E−04 3.5638E−04 8.1527E−11 2.0283E−07
11 1.2117E−12 1.2118E−12 1.211E−12 1.210E−12 1.148E−12 1.2117E−12
12 1.2117E−12 1.211E−12 1.211E−12 1.211E−12 1.00 1.2117E−12
13 1.00 1.00 0.0337 1.211E−12 1.00 1.00
14 3.019E−11 3.019E−11 0.0575 3.019E−11 3.689E−11 5.264E−04
15 1.00 1.2118E−12 1.00 0.0214 1.211E−12 1.00
16 9.1589E−11 6.6955E−11 1.260E−10 2.672E−04 0.4551 2.8210E−10
17 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
18 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
19 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
20 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10
21 1.00 1.2118E−12 1.00 1.2118E−12 1.00 1.00
22 5.8157E−04 1.9242E−11 0.6578 1.9142E−11 0.0119 0.0812
23 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
24 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
25 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11
26 4.9752E−11 1.8790E−09 0.0034 5.8721E−11 5.1859E−04 0.8135
27 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
28 3.0199E−11 3.0199E−11 0.0051 3.0199E−11 8.4848E−09 3.3679E−04
29 0.049 6.3188E−12 8.4226E−08 6.2647E−12 0.0109 0.0109
30 1.4051E−09 3.0047E−11 3.0047E−11 3.0047E−11 3.0047E−11 3.0047E−11
31 1.00 1.00 0.041865 1 1 1
32 3.01986E−11 3.01986E−11 3.01986E−11 3.01986E−11 5.49405E−11 4.97517E−11
33 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12
34 3.01986E−11 3.01986E−11 2.37682E−07 0.00039881 2.7495E−11 3.4742E−10
35 0.005466034 7.57407E−12 1.04283E−0 7.49962E−12 0.005466034 0.005466034
36 1 1.21178E−12 1 1 1 1
37 0.021419179 5.14363E−12 0.749103252 1.44603E−10 0.021419179 0.090513169
38 3.0123E−11 3.0123E−11 3.0123E−11 3.0123E−11 0.001472867 0.011458939
39 2.49131E−06 3.15889E−10 0.211561237 7.11859E−09 0.002499392 0.332854692
40 0.04177393 4.08059E−12 0.468729621 6.31718E−13 0.04177393 0.04177393
41 0.447787971 1.87936E−05 0.19301787 2.54317E−11 0.371541283 0.981521904
42 0.096262831 3.01986E−11 0.077271976 1.72941E−07 5.57265E−10 3.01986E−11
43 3.01986E−11 3.01986E−11 5.49405E−11 0.005569939 9.88918E−11 1.95678E−10
44 1 1.21178E−12 0.000142057 2.62034E−13 1 1
45 0.039150716 1.48881E−06 0.376236712 3.00852E−11 4.77755E−05 0.662002664
46 0.958731491 7.59915E−07 0.970512775 3.01986E−11 0.662717173 0.047868861
47 0.000313354 1.44305E−11 0.01129043 1.4392E−11 0.000313354 0.000313354
48 0.428963389 0.00185748 0.001029216 2.8735E−06 4.76558E−06 0.841779758
49 0.00069125 1.28704E−09 0.952841775 0.04841038 1.52917E−05 0.043583548

3683Engineering with Computers (2021) 37:3665–3698

1 3

on the bar, end deflection and side constraints [48]. The
schematic diagram of the problem is shown in Fig. 27; the
details are given in “Appendix A.4.” In this example, the
fixed population number is 30 and the maximum number
of iterations is 500, and the optimal fitness value obtained
by the proposed algorithm after 30 independent runs is
f(X) = 1.72485185, X = [0.205730, 3.470473, 9.036623,
0.205729]. The obtained optimal solution is compared with
other 8 algorithms. In Table 19, we can conclude that the
proposed algorithm can find the most suitable parameters
and get the minimum fitness value.

Table 8 Friedman rank test
for the mean performances
obtained (for f1-f49 functions)

Algorithms Mean rank Rank

MBFPA 2.42 1
DE 3.93 4
FPA 5.56 7
PSO 4.52 5
GSA 5.82 6
SOS 2.61 2
TLBO 3.14 3

Fig. 2 Convergence graph for Sphere function

Fig. 3 Convergence graph for Cigar function

Fig. 4 Convergence graph for Step function

Fig. 5 Convergence graph for Quadraic function

3684 Engineering with Computers (2021) 37:3665–3698

1 3

Fig. 6 Convergence graph for Bohachevsky function

Fig. 7 Convergence graph for Ackley function

Fig. 8 Convergence graph for Rastrigin function

Fig. 9 Convergence graph for Alpine function

Fig. 10 Convergence graph for Rosenbrock function

Fig. 11 Convergence graph for Schwefel 2.22 function

3685Engineering with Computers (2021) 37:3665–3698

1 3

6.5 Speed reducer

Speed reducer (as shown in Fig. 28) is designed to minimize
the weight of the reducer. There are mainly 7 variables to be

optimized: the face width(× 1), module of teeth(× 2), num-
ber of teeth on pinion(× 3), length of the first shaft between
bearings(× 4), length of the second shaft between bear-
ings(× 5), diameter of the first shaft(× 6) and diameter of
the first shaft(× 7) [90]. In this problem, there are as many
as 11 constraints, which is a challenging optimization prob-
lem, mainly to minimize the weight under the condition of
bending stress of the gear teeth, surface stress, transverse
deflections of the shafts and stresses in the shafts [90]. The
details are given in “Appendix A.5.”

The optimal fitness value obtained by the proposed algo-
rithm after 30 independent runs is f(X) = 2994.341315,
X = [3.5 0.7 17 7.3 7.7153199122 3.35021466 5.28665446].
The optimal solutions obtained by this paper are compared
with those obtained by the other five algorithms. Table 20
shows the detailed comparison. It can be concluded that the
proposed algorithm has advantages in the optimization under
complex constraints and can obtain better solutions.

7 Conclusions and future work

In recent years, butterfly optimization algorithm has been
proposed as a new heuristic algorithm, which is widely used
in global optimization problems. In BOA algorithm, indi-
viduals can find the most fragrant position by simulating
the foraging process of butterflies and then find the optimal
solution in the global optimization. The random number dis-
turbance is added to the optimal position during the update
of the butterfly optimization algorithm, which avoids indi-
vidual crowding, but it brings a problem: it is difficult to
make the most of the current the leading role of the optimal
position leads to the possibility of missing the optimal posi-
tion in actual application. This will cause the algorithm to
have low accuracy and slow convergence. Therefore, this
paper proposes a hybrid optimization algorithm for butter-
fly and flower pollination base on mutualism mechanism,
which increases the speed and accuracy of algorithm exploi-
tation through the mutualism mechanism. At the same time,

Fig. 12 Convergence graph for Matyas function

Fig. 13 Convergence graph for Powersum function

Table 9 Parameter settings for
six algorithms

Algorithm Parameter values

PSOGWO [82] The parameter is a linearly decreased from 2 to 0,c1 = c2 = c3 = 0.5,w = 0.5 + rand/2
SCSCA [83] Constant a = 2, r1 = a-t*((a)/max_iter),r2 = 2*pi*rand,r3 = r2,r4 = rand
MFPA [53] Switch probability p = 0.8, cloning array = [1, 1, 1, 1, 1, 1–9], r1 = 1,r2 = 3
HFPSO [82] The parameter a = 0.2, B0 = 2,r = 1,c1 = c2 = 1.49445,wi = 0.9,wf = 0.5
MDE-WOA [84] crossover probability cr = 0.9, scaling factor F = 0.8, neighborhood of radius k = 3,

weight factor ω = 0.5
MBFPA sensory modality c = 0.01, power exponent a is increased from 0.1 to 0.3,

proximity probability using Eq. (10)

3686 Engineering with Computers (2021) 37:3665–3698

1 3

because the flower pollination algorithm is mixed, the alien-
ated pollination of flowers is propagated through Levy flight,
which can increase the algorithm’s exploration capability
and introduce a dynamic switching probability equilibrium
exploration and exploitation process. The results show that
the butterfly optimization algorithm and the flower polli-
nation algorithm can get good results through the appro-
priate mechanism, and in terms of nature, butterflies and
flowers are two inseparable creatures. Compared with other
metaheuristics, this algorithm can find better or equal func-
tion values in most benchmark problems. From the results
of the five engineering examples, the proposed algorithm
has great advantages in solving constrained optimization
problems and can get better solutions.

In the future research, in order to verify the ability of
the hybrid algorithm to solve the constrained optimization
problem, we will focus on the application of the proposed
algorithm to the solution of practical problems. Since the
vehicle routing problem (VRP) was proposed in 1959, it
has been widely concerned by researchers because of its
wide application and great economic value, such as postal
delivery problem, vehicle scheduling problem and computer
network topology problem [107]. VRP is a NP hard prob-
lem, which is difficult to solve with accurate algorithm. At
present, metaheuristics have become prominent approaches
in tackling complex and multi-objective problems [108]. So,
metaheuristic algorithm is the main method to solve VRP.
However, the core of using metaheuristic algorithm to solve
VRP problem is how to encode the individuals according to
the background of the problem. The quality of coding will
directly affect the complexity of algorithm discretization
and the performance of the algorithm. In addition, how to
discretize the proposed algorithm so that the algorithm can
play a good effect in the discrete problem space is also an
important issue. Therefore, the design of reasonable coding
and discrete version of MBPFA has become the key to VRP

path problems in the future. In addition, we have identified
four areas that deserve further study in the future.

Hybrid metaheuristics combines the advantages of differ-
ent metaheuristics to provide simpler, better and faster solu-
tions for many complex problems [76]. A new metaheuristic
algorithm is proposed, which actually increases the diversity
of metaheuristic algorithm in the update strategy. Different
metaheuristic algorithms let the population update according
to a specific update strategy. However, how to combine these
update strategies in an efficient and reasonable way will be
an interesting and exciting thing. Therefore, by coupling the
characteristics of different strategies, a more effective hybrid
algorithm will be the focus of future algorithm research.

In the absence of gradient information, the metaheuris-
tic algorithm is easier to implement than the precise search
algorithm. In the actual performance test, the parameters of
metaheuristic algorithm greatly affect the performance of
the algorithm. Most of the given reasonable parameters are
obtained through a large number of experiments. Therefore,
it is necessary to develop a function with adaptive parameter
adjustment. Or, we should pay more attention to the non-
parametric metaheuristic algorithm, because it can increase
our thinking on the algorithm itself, rather than focusing on
the adjustment of algorithm parameters. However, develop-
ing parameterless metaheuristic algorithms is yet an open
problem and needs to be thoroughly studied [77]. Therefore,
we should pay more attention to the development of non-
parametric meta heuristic algorithm in the future.

Artificial neural networks (ANNs) [109] are well-known
techniques utilized in learning, approximating and investi-
gating various classes of complex problems [110]. ANNs
are used for prediction purposes in most cases, and it tries
to close the gap among the predicted solution and the given
target solution by frequently adjusting the values of weight
functions [111]. There are two methods to adjust the weight:
metaheuristic-based trainers and gradient-based trainers.
Among them, the gradient-based trainer has better perfor-
mance in local search [112], while the metaheuristic-based
trainers has better performance in global search and can
effectively avoid local optimization [110]. Some works use
genetic algorithm (GA), differential evolution (DE) and evo-
lutionary strategy (ES) to improve artificial neural network
[113–122]. The results affirm the satisfactory results of these
hybrid MLP structures [123].Although a lot of work has
been done so far, searching for global results of hybrid MLP
networks is still an open question [124, 125]. From No Free
Lunch theorem [126], a new superior SMHA can still be
designed to be integrated with MLP networks [123]. There-
fore, metaheuristic algorithm is still worthy of optimizing
ANN in the future.

Table 10 Statistical results of the five hybrid metaheuristics on the 49
problems

* Where “Better,” “Equal” and “less than” represent the number of
problems that the performance of MBFPA is significantly better than,
almost the same as and significantly worse than the corresponding
algorithm, respectively

Algorithms Better Equal Less
than

PSOGWO 48 1 0
SCSCA 38 5 6
HFPSO 37 8 4
MFPA 24 14 11
MDE-WOA 38 5 6

3687Engineering with Computers (2021) 37:3665–3698

1 3

Table 11 Comparative results of the proposed algorithm with PSOGWO, SCSCA, HFPSO, MFPA and MDE-WOA

No MBFPA PSOGWO SCSCA HFPSO MFPA MDE−WOA

f1 Mean 0 1464.2814 4.5172e−14 3.8625e−05 0.59529 2.5799e−81
SD 0 7292.4107 8.1704e−14 2.6278e−05 2.0744 1.3518e−80

f2 Mean 0 0.025455 4.2455e−05 0.025402 0 0.15241
SD 0 0.13912 7.2352e−05 0.13913 0 0.31004

f3 Mean 0 2,563,406,007.5963 1.5467e−07 1104.9195 2,318,419.1366 1.2469e−77
SD 0 8,609,227,641.8811 4.8979e−07 1943.4194 11,248,886.7624 6.5763e−77

f4 Mean 0 2443.0333 0 0.63333 36.9333 0
SD 0 7896.028 0 0.96431 52.8804 0

f5 Mean 1.42E− 04 5.4452 0.0014015 0.018369 0.29065 0.0008511
SD 1.23E−04 15.2685 0.0015904 0.0074209 0.18338 0.0013862

f6 Mean 0 3.3781e−07 1.014e−15 0 0 0
SD 0 1.2539e−06 3.1393e−15 0 0 0

f7 Mean 8.88E− 16 6.5056 3.0496e−08 0.55656 12.7309 2.5461e−15
SD 0 7.3602 7.0176e−08 0.72773 5.9157 2.0298e−15

f8 Mean 0 50.2158 2.8462e−14 0.011595 0.31272 0.014832
SD 0 89.8593 6.4502e−14 0.020654 0.2921 0.081237

f9 Mean 1.35E− 31 0.0021402 0.00020701 2.453e−29 1.35E− 31 0.0059975
SD 6.68E−31 0.010311 0.00031822 7.2693e−29 6.6809e−47 0.020154

f10 Mean − 4.9975 − 7.7958 − 5.8327 − 8.8304 − 8.7811 − 5.1218
SD 0.47106 1.241 0.55664 0.56524 0.44998 0.66431

f11 Mean 0 111.6577 4.5854e−13 50.3121 69.7322 0
SD 0 117.2388 2.0128e−12 18.0887 28.1146 0

f12 Mean 0 9.9146 2.0812e−08 0.015052 0.050841 2.2761e−56
SD 0 14.6743 3.1042e−08 0.014775 0.16915 8.5285e−56

f13 Mean 0 0.42966 1.317 0.020304 0 0.082758
SD 0 0.5562 2.0102 0.029206 0 0.11231

f14 Mean 2.54E + 01 80,303.3203 0.02902 35.8411 131.0716 11.9217
SD 9.20E−01 242,372.5379 0.046282 22.135 80.0088 13.9223

f15 Mean − 1 − 0.99996 − 0.99988 − 1 − 1 − 0.99868
SD 0 0.00013291 0.00012459 − 1 − 1 0.0016975

f16 Mean − 186.7309 − 186.566 − 186.1738 − 186.7309 − 186.7309 − 186.7217
SD 3.16E−05 0.62993 0.7096 1.9029e−14 1.669e−14 0.022078

f17 Mean 0 59.8604 4.4904e−09 1.0771 9.9161 50.9505
SD 0 165.8967 1.5732e−08 0.56174 7.6294 96.5749

f18 Mean 0 1.3904 1.384e−09 0.1452 2.9532 2.3125e−11
SD 0 2.4368 1.7288e−09 0.16558 0.5579 8.8309e−11

f19 Mean 0 194.7062 8.6921e−08 0.0050617 0.14495 9.8365e−55
SD 0 3.60E−03 1.3219e−07 0.0013767 0.37695 4.0815e−54

f20 Mean − 6748.059 − 6824.173 − 12,569.4711 − 7056.146 − 8035.8558 − 12,492.6458
SD 2.56E + 02 796.7108 0.026996 895.3158 757.2182 187.6248

f21 Mean 0 0.00055731 0.00037454 6.0032e−29 0 0.080391
SD 0 0.0017441 0.00042647 2.8114e−28 0 0.35879

f22 Mean 3 3.0004 3.0025 3 3 8.4122
SD 1.375E−15 0.0012608 0.0034966 3 1.3601e−15 11.0092

f23 Mean 0 3.4108e−05 7.1382e−21 2.4913e−29 9.4404e−67 1.8953e−193
SD 0 0.0001115 3.3442e−20 1.0886e−28 5.1634e−66 0

f24 Mean 0 133.1876 9.9564e−15 0.038249 1.546 1.8865e−33
SD 0 544.6846 2.0631e−14 0.022975 2.6536 1.0328e−32

f25 Mean 1.55E−03 0.14355 0.49844 0.0024393 9.4404e−67 3.8156
SD 1.61E−03 0.28952 0.44027 0.003987 2.8728e−06 5.0596

3688 Engineering with Computers (2021) 37:3665–3698

1 3

Bold numbers represent the best values

Table 11 (continued)

No MBFPA PSOGWO SCSCA HFPSO MFPA MDE−WOA

f26 Mean − 9.60E + 00 − 7.1036 − 10.1506 − 5.7256 − 9.6434 − 8.8565
SD 1.33E + 00 3.5049 0.002894 3.5189 1.5555 2.14

f27 Mean 0.00E + 00 292.9653 6.1751e−15 5.5318e−05 0.47711 2.7192e−82
SD 0.00E + 00 929.781 1.564e−14 3.7834e−05 2.0492 1.1081e−81

f28 Mean − 824.5121 147,400.8462 − 1222.0321 − 273.5306 5181.433 − 1211.9538
SD 203.5617 295,687.4565 345.1971 4990.0141 5535.9984 252.6967

f29 Mean − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912
SD 1.76E−18 4.2949e−08 4.0209e−08 1.5152e−18 1.7644e−18 1.8722e−07

f30 Mean 4.77E−28 1.2828e−05 5.5778e−06 5.6072e−13 0 0.00022238
SD 3.61E−30 2.269e−05 7.27e−06 1.2943e−12 0 0.00047019

f31 Mean 0 0.8 0 0 0 0
SD 0 1.5844 0 0 0 0

f32 Mean 1.9229e−09 1.8528 0.0064765 0.041491 4.6792e− 26 1.0921
SD 8.5913e−09 3.7306 0.0080634 0.10125 2.4723e−25 2.2718

f33 Mean 0 1.5746 4.966e−11 6.9216e−10 3.1215e−09 1.0772
SD 0 3.6314 2.0759e−10 8.5116e−10 1.4231e−08 3.4025

f34 Mean 0.66667 51,445.1189 0.24509 1.0709 7.8827 0.43964
SD 5.062e−09 139,833.8416 0.019825 0.88246 15.7031 0.21716

f35 Mean 0.998 4.2503 1.2297 2.4441 1.0974 1.8565
SD 1.0909e−16 4.818 0.56408 2.3096 0.30331 1.3407

f36 Mean 0.39789 0.47789 0.3984 0.39789 0.39789 0.55809
SD 0 0.43691 0.00090422 0 0 0.60703

f37 Mean − 1.0316 − 1.0312 − 1.0316 − 1.0316 − 1.0316 − 1.0316
SD 6.4539e−16 0.0019509 5.963e−05 5.3761e−16 6.7752e−16 1.3244e−09

f38 Mean 0.00030749 0.0078717 0.00054909 0.0011534 0.00044668 0.00081112
SD 1.0001e−10 0.0096897 0.00036899 0.0036456 0.00032098 0.00060613

f39 Mean 0.029788 2.5086 4.0528 0.04551 0.010766 11.36
SD 0.086304 6.0719 3.6243 0.092229 0.030062 13.1579

f40 Mean − 3.8628 − 3.8617 − 3.8314 − 3.8628 − 3.8628 − 3.8063
SD 2.6543e−15 0.0026512 0.054714 2.3134e−15 2.7101e−15 0.062821

f41 Mean − 3.3018 − 3.1873 − 3.1687 − 3.2906 − 3.2906 − 3.0761
SD 0.044744 0.12287 0.095615 0.053616 0.053616 0.16108

f42 Mean 0.00019444 49.2069 0.00030119 0.036728 10.1681 0.0025115
SD 0.00045217 104.5129 0.00051898 0.074892 7.8628 0.0026091

f43 Mean 1.5041 169.8461 0.00083634 0.0062672 52.9936 0.038273
SD 1.1085 397.1979 0.001669 0.023855 47.253 0.089644

f44 Mean − 1.0809 − 1.0764 − 1.0806 − 1.0584 − 1.0809 − 1.0674
SD 4.5168e−16 0.024704 0.00042078 0.051289 4.5168e−16 0.041287

f45 Mean − 1.3128 − 1.0793 − 0.70596 − 1.1734 − 0.93253 − 0.4832
SD 0.26942 0.39449 0.30924 0.32426 0.37825 0.26011

f46 Mean − 0.59898 − 0.38605 − 0.10057 − 0.70214 0.37825 − 0.024302
SD 0.28994 0.33593 0.10439 0.34045 0.20139 0.049538

f47 Mean 8.3234e−23 0.33593 0.58226 23.5098 0 23.5098
SD 3.2682e−22 178.933 0.75704 128.7687 0 128.7687

f48 Mean 49.3012 1423.275 2236.2919 1122.6836 20.7998 2517.5172
SD 89.2502 4132.7971 4922.6359 1374.7564 56.1376 3962.3547

f49 Mean 1841.1397 6962.7044 41,083.4969 5948.7012 703.3272 50,101.3955
SD 2051.3933 8749.0243 39,585.1198 12,301.3318 1030.9211 26,026.7566

3689Engineering with Computers (2021) 37:3665–3698

1 3

Table 12 Results of the p-value
benchmark functions

Bold numbers represent the p > 0.05

No MBFPA VS
PSOGWO

MBFPA VS
SCCSA

MBFPA VS
HFPSO

MBFPA VS
MFPA

MBFPA VS
MDE−WOA

1 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
2 1.7203E−12 1.7203E−12 2.69685E−12 0.333710696 1.72025E−12
3 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
4 5.83738E−09 1 6.13278E−05 1.20487E−12 1
5 3.0199E−11 3.83067E−05 3.0199E−11 3.0199E−11 0.239849991
6 0.005584312 0.000313354 1.00 1.00 1
7 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 5.80026E−05
8 1.2118E−12 1.30408E−07 1.2118E−12 1.2118E−12 0.333710696
9 1.21178E−12 1.2118E−12 1.69435E−08 1 1.21178E−12
10 0.051877131 3.01986E−11 0.000189162 0.001236185 3.01986E−11
11 1.2117E−12 0.021577192 1.211E−12 1.210E−12 1
12 1.2117E−12 1.211E−12 1.211E−12 1.211E−12 1.21178E−12
13 1.27173E−05 0.000145517 6.60964E−05 1 2.93429E−05
14 7.38908E−11 3.01986E−11 1.09069E−05 5.57265E−10 0.185766856
15 1.21178E−12 1.2118E−12 1.00 1 1.21178E−12
16 9.06321E−08 3.01986E−11 1.01242E−10 3.18271E−11 4.4205E−06
17 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
18 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
19 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
20 0.162375022 3.01986E−11 0.529782491 4.35308E−05 3.01797E−11
21 1.21178E−12 1.2118E−12 1.26686E−05 1 1.21178E−12
22 1.92421E−11 1.9242E−11 0.033375869 0.033941098 1.92421E−11
23 1.21178E−12 1.21178E−12 4.57359E−12 1.21178E−12 1.21178E−12
24 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
25 6.01039E−08 3.01986E−11 0.501143668 5.49405E−11 3.01986E−11
26 1.79266E−10 2.27167E−09 5.50767E−06 0.008235911 7.90834E−10
27 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
28 7.11859E−09 0.000140669 0.510597937 1.72941E−07 2.43271E−05
29 1.21178E−12 1.21178E−12 5.1893E−07 1 1.21178E−12
30 3.00663E−11 3.0047E−11 3.0047E−11 3.0047E−11 3.00663E−11
31 0.00557794 1 1 1 1
32 3.01986E−11 3.01986E−11 3.01986E−11 2.24487E−11 3.01986E−11
33 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12
34 3.01986E−11 3.01986E−11 3.01986E−11 3.01986E−11 0.077271976
35 7.57407E−12 7.57407E−12 2.52423E−06 0.45517435 7.57407E−12
36 1.21178E−12 1.21178E−12 1 1 1.21178E−12
37 5.14363E−12 5.14363E−12 0.000101743 0.021419179 5.14363E−12
38 3.0123E−11 3.0123E−11 3.0123E−11 0.002035545 3.0123E−11
39 9.83289E−08 6.69552E−11 0.706171488 8.84109E−07 4.97517E−11
40 4.08059E−12 4.08059E−12 8.2176E−08 0.04177393 4.08059E−12
41 5.57217E−07 9.91325E−09 0.252190204 0.441038361 3.05844E−10
42 1.38525E−06 0.270705338 0.270705338 3.01986E−11 1.8731E−07
43 0.222572896 3.01986E−11 3.01986E−11 3.35195E−08 6.06576E−11
44 1.21178E−12 1.21178E−12 1.19448E−13 1 1.21178E−12
45 2.42892E−05 1.40656E−09 0.869757328 0.002242796 6.67125E−11
46 0.000421751 8.15274E−11 0.102326268 0.007286735 3.01986E−11
47 1.44305E−11 1.44305E−11 0.47840956 0.000313354 1.44305E−11
48 1.63506E−05 2.43863E−09 2.20308E−05 0.007617064 1.42942E−08
49 0.011710684 8.15274E−11 0.395267011 0.016954881 4.50432E−11

3690 Engineering with Computers (2021) 37:3665–3698

1 3

In practical engineering applications, such as product
design, wing design, investment allocation, urban plan-
ning and other issues, they have more than one single goal,
and they need to meet a large number of constraints at the

same time. In addition, these problems have many decision
variables, which are regarded as large-scale optimization
problems. Currently, most of the existing metaheuristic
algorithms proposed either require thousands of expensive
exact function evaluations to obtain acceptable solutions or
focus on solving low-dimensional and expensive optimiza-
tion problems [127]. This greatly limits the application space
of metaheuristic algorithm and seriously affects the perfor-
mance and efficiency of the algorithm. However, the rise of
surrogate-assisted metaheuristic algorithms (SAEAs) offers
possibilities to solve this problem. The main parts of SAEAs
are the surrogates and the evolutionary optimizer. SAEAs
use proxy surrogates to reduce the amount of computation
brought by the fitness evaluation in the iterative process
[128]. In the future development process of metaheuristic
algorithms, surrogate-assisted metaheuristic algorithms will
become more and more worthy of attention.

Table 13 Friedman rank test
for the mean performances
obtained (for f1–f49 functions)

Algorithms Mean–rank Rank

MBFPA 1.94 1
PSOGWO 5.13 4
SCCSA 3.38 7
HFPSO 3.41 5
MFPA 3.22 2
MDE-WOA 3.92 3

Fig. 14 Convergence graph for Leon function

Fig. 15 Convergence graph for Zakharov function

Fig. 16 Convergence graph for Sphere function

Fig. 17 Convergence graph for Step function

3691Engineering with Computers (2021) 37:3665–3698

1 3

Finally, we hope that this paper will inspire researchers
in metaheuristics and optimization field.

Acknowledgements This work is supported by National Science Foun-
dation of China under Grant No. 61563008, and by Project of Guangxi
Natural Science Foundation under Grant No. 2018GXNSFAA138146.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

Appendix A

A.1. Three‑bar truss design

Minimize f (x) = (2
√

2x1 + x2) × l.
Subject to g1(x) =

√

2x1 + x2∕
√

2x2
1
+ 2x1x2P − � ≤ 0;

g2(x) = x2∕
√

2x2
1
+ 2x1x2P − � ≤ 0;

g3(x) = 1∕
√

2x2 + x1P − � ≤ 0;

Table 14 Advantages and disadvantages of the MBFPA

Advantages Disadvantages

The proposed algorithm has the advantages of BOA and FPA;
Avoid premature convergence, strong global search capability, fast conver-

gence speed and high optimization precision

Long running time
The mutualism stage of sequential execution may lead to further

declines in positions that are already locally optimal

Table 15 Brief description of
engineering design features
(F/S: the proportion of feasible
solutions)

No Problems name Dim Continuous
design vari-
ables

Discrete
design vari-
ables

Number of
constraints

Active
con-
straints

F/S Objective

1 Three-bar truss 2 2 0 3 N/A N/A Minimize weight
2 Multi-plate

disc clutch
brake

5 0 5 8 1 0.7 Minimize weight

3 Pressure vessel 4 2 2 4 2 0.4 Minimize cost
4 Welded beam 4 4 0 7 2 0.035 Minimize cost
5 Speed reducer 7 6 1 11 3 0.004 Minimize weight

Fig. 18 Convergence graph for Bohachevsky function

Table 16 Comparison of results
for three-bar truss design
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithm x1 (A1) x2 (A2) Optimal weight

MBFPA 0.788675132828 0.408248295461 263.895843376
DEDS [85] 0.78867513 0.40824828 263.8958434
MVO [23] 0.78860276 0.408453070000000 263.8958499
GOA [86] 0.788897555578973 0.407619570115153 263.895881496069
MFO [87] 0.788244771 0.409466905784741 263.8959797
PSO–DE [88] 0.7886751 0.4082482 263.8958433
SSA [89] 0.788665414 0.408275784444547 263.8958434
MBA [90]
WCA [91]

0.7885650
0.788651

0.4085597
0.408316

263.8958522
263.895843

3692 Engineering with Computers (2021) 37:3665–3698

1 3

Variable range 0 ≤ x1, x2 ≤ 1.
where l = 100 cm; P = 2 kN∕cm2;r = 2 kN∕cm2.

A.2. Multi‑plate disc clutch brake design problem

Minimize f (x) = �(x2
2
− x2

1
)x3(x5 + 1)�.

Subject to:
g1(x) = x2 − x1 − ΔR ≥ 0 ,

g2(x) = Lmax − (x5 + 1)(x3 + �) ≥ 0

g3(x) = Pmax − Prz ≥ 0 , g4(x) = Pmaxvsrmax − Przvsr ≥ 0

g5(x) = vsrmax − vsr ≥ 0 , g6(x) = Tmax − T ≥ 0

g7(x) = Mh − sMs ≥ 0 , g8(x) = T ≥ 0

where Mh =
2

3
�x4x5

x3
2
−x3

1

x2
2
−x2

1

, w =
�n

30
rad∕s ,

A = �(x2
2
− x2

1
)mm2,

Prz =
x4

A
N∕mm2, Vsr =

�Rsrn

30
mm∕s , Rsr =

2

3

x3
2
−x3

1

x2
2
x2
1

mm

T =
Iz�n

30(Mh+Mf)
 mm, Δr = 20mm, Lmax = 30mm,� = 0.6

Tmax = 15s,� = 0.5, s = 1.5,Ms = 40Nm,

pmax = 1Mpa, � = 0.0000078 kg∕mm3 ,
vsrmax = 10m∕s, � = 0.5mm, s = 1.5

Tmax = 15s, n = 250 rpm, Iz = 55kgm2 ,
Ms = 40Nm, Mf = 3Nm

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,

60 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9,i = 1, 2, 3, 4, 5.

A.3. Pressure vessel design problem

Consider x = [x1, x2, x3, x4] = [Ts, Th,R, L].
Minimize

f (x) = 0.6224x1x3x4 + 1.7781x2x
3
2
+ 3.1661x2

1
x4 + 19.84x2

1
x3.

Subject to:
g1(x) = −x1 + 0.0193x3 ≤ 0,

g2(x) = −x3 + 0.00954z3 ≤ 0

g3(x) = −�x2
3
x4 −

4

3
�x3

3
+ 1, 296, 000 ≤ 0,

g4(x) = x4 − 240 ≤ 0

Variable range 0 ≤ x1, x2 ≤ 99 ; 0 ≤ x3, x4 ≤ 200.

A.4. Welded beam design problem

Consider Z = [z1, z2, z3, z4] = [h, l, t, b].
Minimize f (Z) = 1.10471z2

1
z2 + 0.04811z3z4(14.0 + z2).

Subject to
g1(Z) = �(Z) - �max ≤ 0,

g2(Z) = �(Z) − �max ≤ 0,
g3(Z) = �(Z) − �max ≤ 0

g4(Z) = z1 − z4 ≤ 0,
g5(Z) = P − Pc(Z) ≤ 0,
g6(Z) = 0.125 − z1 ≤ 0

g7(Z) = 1.10471z2
1
+ 0.04811z3z4(14.0 + z2) − 5.0 ≤ 0

Fig. 19 Convergence graph for Griewank function

Table 17 Comparison of results
for multi-plate disc clutch brake
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithm ri(× 1) r0(× 2) t(× 3) F(× 4) Z(× 5) Optimal Cost

MBFPA 70 90 1 600 2 0.235242457900804
HHO [11] 69.9999999992493 90 1 1000 3 0.259768993
TLBO [30] 70 90 1 810 3 0.313656
WCA [91] 70 90 1 910 3 0.313656
PVS [92] 70 90 1 980 3 0.31366

Fig. 20 Convergence graph for Schaffer function

3693Engineering with Computers (2021) 37:3665–3698

1 3

Variable range 0.05 ≤ z1 ≤ 2.00,0.25 ≤ z2 ≤ 1.30 ,
2.00 ≤ z3 ≤ 15.0

where �(Z) =
�

��2 + 2�����
z2

2R
+ ���2, �� =

P
√

2z1z2

,

��� =
MR

J
,M = P(L +

z2

2
)

R =

�

z2
2

4
+ (

z1+z3

2
)2, J = 2

�
√

2z1z2

�

z2
2

12
+ (

z1+z3

2
)2
��

�(Z) =
6PL

z4z
2
3

, �(Z) =
4PL3

Ez3
3
z4
,Pc(Z) =

4.013E

√

z2
3
z6
4

36

L2

(

1 −
z3

2L

√

E

4G

)

P = 6000lb, L = 14in,E = 30 × 106psi,G = 12 × 106psi.

A.5. Speed reducer

Minimize f (x) = 0.785x1x
2
2
(3.333x2

3
+ 14.9334x3 − 42.0934)

Subject to
g1(X) =

27

x1x
2
2
x3
− 1 ≤ 0 , g2(X) =

397.5

x1x2x
2
3

− 1 ≤ 0

g3(X) =
1.93x3

4

x1x3x
4
6

− 1 ≤ 0,g4(X) =
1.93x3

4

x1x3x
4
7

− 1 ≤ 0

g5(X) =
1

110x3
6

√

(
745x4

x2x3
)2 + 16.9 × 106 − 1 ≤ 0

g6(X) =
1

85x3
7

√

(
745x4

x2x3
)2 + 157.5 × 106 − 1 ≤ 0

−1.508x1(x
2
6
+ x2

7
) + 7.4777x1(x

3
6
+ x3

7
) + 1.508x1(x4x

2
6
+ x5x

2
7
)

Table 18 Comparison of results
for pressure vessel design
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithms Ts(× 1) Th(× 2) R(× 3) L(× 4) Optimal cost

MBFPA 0.77816864137 0.38464916262 40.319618724 200.0 5885.3327736
HHO [11] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
GWO [9] 0.812500 0.434500 42.089181 176.758731 6051.5639
GA [49, 93] 0.812500 0.437500 42.097398 176.654050 6059.9463
HPSO [44, 94] 0.812500 0.437500 42.0984 176.6366 6059.7143
GQPSO [50, 95] 0.812500 0.437500 42.0984 176.6372 6059.7208
WEO [51, 96] 0.812500 0.437500 42.098444 176.636622 6059.71
BA [52, 97] 0.812500 0.437500 42.098445 176.636595 6059.7143
MFO [87] 0.8125 0.437500 42.098445 176.636596 6059.7143
CPSO [98] 0.812500 0.437500 42.091266 176.746500 6061.0777
BIANCA [99] 0.812500 0.437500 42.096800 176.65800 6059.9384
MDDE [55, 100] 0.812500 0.437500 42.0968446 176.636047 6059.701660
WOA [10] 0.812500 0.437500 42.0982699 176.638998 6059.7410

Fig. 21 Convergence graph for Matyas function

Table 19 Comparison of
results for welded beam design
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithms h(× 1) l(× 2) t(× 3) b(× 4) Optimal cost

MBFPA 0.205730 3.470473 9.036623 0.205729 1.72485185
HHO [11] 0.204039 3.531061 9.027463 0.206147 1.73199057
SBO [101] 0.21421 3.49240 8.55771 0.22945 1.8496
RANDOM [102] 0.4575 4.7313 5.0853 0.66 4.1185
SIMPLEX [102] 0.2792 5.6256 7.7512 0.2796 2.5307
APPROX [102] 0.2444 6.2189 8.2915 0.2444 2.3815
GSA [21] 0.182129 3.856979 10 0.202376 1.879952
HS [103] 0.2442 6.2231 8.2915 0.2443 2.3807
CDE [104] 0.203137 3.542998 9.033498 0.206179 1.733462

3694 Engineering with Computers (2021) 37:3665–3698

1 3

g7(X) =
x2x3

40
− 1 ≤ 0 , g8(X) =

5x2

x1
− 1 ≤ 0 ,

g9(X) =
x1

12x2
− 1 ≤ 0

g10(X) =
1.5x6+1.9

x4
− 1 ≤ 0 , g11(X) =

1.1x7+1.9

x5
− 1 ≤ 0.

w h e r e 2.6 ≤ x1 ≤ 3.6,0.7 ≤ x2 ≤ 0.8,17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3,2.9 ≤ x6 ≤ 3.9,5.0 ≤ x7 ≤ 5.5.

Fig. 22 Convergence graph for Branin function

Fig. 23 Convergence graph for Kowalik function

Fig. 24 Three-bar truss design problem

Fig. 25 Multi-plate disc clutch brake problem [30]

Fig. 26 Pressure vessel design problem [92]

Fig. 27 Welded beam design problem [90]

Fig. 28 Speed reducer [90]

3695Engineering with Computers (2021) 37:3665–3698

1 3

References

 1. Hussain K et al (2019) Metaheuristic research: a comprehensive
survey. Artif Intell Rev 52:2191–2233

 2. Blum C et al (2011) Hybrid metaheuristics in combinatorial opti-
mization: a survey. Appl Soft Comput 11:4135–4151

 3. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of the 1995 IEEE international conference on neural
networks, pp 1942–1948.

 4. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell 1:28–39

 5. Basturk B, Karaboga D (2006) An artificial bee colony (ABC)
algorithm for numeric function optimization. In: Proceedings of
the IEEE swarm intelligence symposium, pp 12–14.

 6. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: Pro-
ceedings of the world congress on nature & biologically inspired
computing, NaBIC 2009, pp 210–14

 7. Yang XS (2012) Flower pollination algorithm for global optimi-
zation. In: Unconventional computation and natural computation,
Lecture notes in computer science, 2012, 7445, pp 240–249

 8. Yang X-S (2010) Firefly algorithm, stochastic test functions and
design optimisation. Int J Bio-Inspired Comput 2:78–84

 9. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

 10. Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51–67

 11. Heidari AA et al (2019) Harris hawks optimization: algorithm
and applications. Future Gener Comput Syst 97:849–872

 12. Cheng M-Y, Prayogo D (2014) Symbiotic organisms search:
a new metaheuristic optimization algorithm. Comput Struct
139:98–112

 13. Arora S, and S Singh. Butterfly optimization algorithm: a novel
approach for global optimization. Soft Computing 23.3 (2019):
715–734.

 14. Goldberg DE, Holland JH (1988) Genetic algorithms and
machine learning. Mach Learn 3(2):95–99

 15. Storn R, Price K (1997) Differential evolution-a simple and effi-
cient heuristic for global optimization over continuous spaces. J
Glob Optim 11(4):341–359

 16. Jiao L, Wang L (2000) A novel genetic algorithm based on immu-
nity. IEEE Trans Syst Man Cybern A Syst Hum 30:552–561

 17. De Castro LN, Von Zuben FJ (2000) The clonal selection algo-
rithm with engineering applications. In: Proceedings of GECCO,
vol 2000.

 18. Dasgupta D et al (2004) Negative selection algorithm for aircraft
fault detection. In: International conference on artificial immune
systems. Springer, Berlin

 19. Kelsey J, Timmis J (2003) Immune inspired somatic contiguous
hypermutation for function optimisation. Genetic Evolut Comput
Conf, Springer, Berlin

 20. Van Laarhoven PJM, Aarts EHL (1987) Simulated annealing:
theory and applications. Springer, Dordrecht, pp 7–15

 21. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravi-
tational search algorithm. Inf Sci 179:2232–2248

 22. Shareef H, Ibrahim AA, Mutlag AH (2015) Lightning search
algorithm. Appl Soft Comput 36:315–333

 23. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. Neu-
ral Comput Appl 27(2):495–513

 24. Abedinpourshotorban H et al (2016) Electromagnetic field opti-
mization: a physics-inspired metaheuristic optimization algo-
rithm. Swarm Evolut Comput 26:8–22

 25. Faramarzi A et al (2019) Equilibrium optimizer: a novel optimi-
zation algorithm. Knowl Based Syst 105190.

 26. Lam AYS, Li VOK (2009) Chemical-reaction-inspired
metaheuristic for optimization. IEEE Trans Evolut Comput
14(3):381–399

 27. Alatas B (2011) ACROA: artificial chemical reaction optimi-
zation algorithm for global optimization. Expert Syst Appl
38:13170–13180

 28. Kumar M, Kulkarni AJ, Satapathy SC (2018) Socio evolution &
learning optimization algorithm: a socio-inspired optimization
methodology. Future Gener Comput Syst 81:252–272

 29. Kuo HC, Lin CH (2013) Cultural evolution algorithm for
global optimizations and its applications. J Appl Res Technol
11:510–522

 30. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-
based optimization: a novel method for constrained mechani-
cal design optimization problems. Comput Aided Design
43(3):303–315

 31. Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive
algorithm: an algorithm for optimization inspired by imperialistic
competition. In: 2007 IEEE congress on evolutionary computa-
tion. IEEE

 32. Arora S, Singh S (2016) An improved butterfly optimization
algorithm for global optimization. Advanced Science, Engineer-
ing and Medicine 8(9):711–717

 33. Arora S, Singh S (2017) An improved butterfly optimization
algorithm with chaos. J Intell Fuzzy Syst 32(1):1079–1088

 34. Arora S, Singh S (2017) A hybrid optimisation algorithm based
on butterfly optimisation algorithm and differential evolution. Int
J Swarm Intell 3(2–3):152–169

 35. Arora S, Singh S (2017) An effective hybrid butterfly optimiza-
tion algorithm with artificial bee colony for numerical optimiza-
tion. Int J Interact Multimed Artif Intell 4(4):14–21

 36. Arora S, Anand P (2018) Learning automata-based butterfly
optimization algorithm for engineering design problems. Int J
Comput Mater Sci Eng 7(04):1850021

 37. Arora S, Singh S, Yetilmezsoy K (2018) A modified butterfly
optimization algorithm for mechanical design optimization prob-
lems. J Braz Soc Mech Sci Eng 40(1):21

Table 20 Comparison of results for speed reducer design problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithms × 1 × 2 × 3 × 4 × 5 × 6 × 7 Optimal cost

MBFPA 3.500 0.7 17 7.3 7.7153199122 3.35021466 5.28665446 2994.341315
WCA [91] 3.500 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471066
PSODE [88] 3.500 0.7 17 7.3 7.800000 3.350214 5.2866832 2996.348167
MDE [105] 3.50001 0.7 17 7.300156 7.800027 3.350221 5.286685 2996.356689
HEAA [106] 3.500022 0.7 17.000012 7.300427 7.715377 3.350230 5.286663 2994.499107
PVS [92] 3.49999 0.6999 17 7.3 7.8 3.3502 5.2866 2996.3481

3696 Engineering with Computers (2021) 37:3665–3698

1 3

 38. Singh B, Anand P (2018) A novel adaptive butterfly optimization
algorithm. Int J Comput Mater Sci Eng 7(04):1850026

 39. Li G, Shuang F, Zhao P et al (2019) An improved butterfly opti-
mization algorithm for engineering design problems using the
cross-entropy method. Symmetry 11(8):1049

 40. Sharma S, Saha AK (2020) m-MBOA: a novel butterfly optimiza-
tion algorithm enhanced with mutualism scheme. Soft Comput
24:4809–4827

 41. Sharma S, Saha AK, Ramasamy V et al (2020) hBOSOS: an
ensemble of butterfly optimization algorithm and symbiosis
organisms search for global optimization. In: Advanced comput-
ing and intelligent engineering. Springer, Singapore, vol. 1089,
pp 579–588

 42. Arora S, Anand P (2019) Binary butterfly optimization
approaches for feature selection. Expert Syst Appl 116:147–160

 43. Jalali SMJ, Ahmadian S, Kebria PM, et al (2019) Evolving arti-
ficial neural networks using butterfly optimization algorithm for
data classification. In: International conference on neural infor-
mation processing. Springer, Cham, pp 596–607.

 44. Du P et al (2019) Container throughput forecasting using a novel
hybrid learning method with error correction strategy. Knowl-
Based Syst 182:104853

 45. Kisi O et al (2019) Drought forecasting using novel heuristic
methods in a semi-arid environment. J Hydrol 578:124053

 46. Priyadharshini P, Prakashraj K, Padmapriya S (2019) Improved
butterfly optimization algorithm using local search operator for
capacitated vehicle routing problem. Inter Res J Eng Technol
(IRJET) 6(4):983–988

 47. Abdul-Rashid R, Alawode BO (2019) Robustness evaluation of
the butterfly optimization algorithm on a control system. arXiv
preprint arXiv:1912.00185

 48. El Hajjami L, Mellouli EM, Berrada M (2019) Optimal PID
control of an autonomous vehicle using butterfly optimization
algorithm BOA. In: Proceedings of the 4th international confer-
ence on big data and internet of things, pp 1–5.

 49. Arora S, Singh S (2017) Node localization in wireless sensor
networks using butterfly optimization algorithm. Arab J Sci Eng
42(8):3325–3335

 50. Wang R, Zhou Y (2014) Flower pollination algorithm with
dimension by dimension improvement. Math Probl Eng 481791,
9 pages

 51. Zhao C, Zhou Y (2016) A complex encoding flower pollina-
tion algorithm for global numerical optimization. In: Interna-
tional conference on intelligent computing. Springer, Cham, pp.
667–678.

 52. Zhou Y, Wang R, Luo Q (2016) Elite opposition-based flower
pollination algorithm. Neurocomputing 188:294–310

 53. Nabil E (2016) A modified flower pollination algorithm for
global optimization. Expert Syst Appl 57:192–203

 54. Singh D, Singh U, Salgotra R (2018) An extended version of
flower pollination algorithm. Arab J Sci Eng 43(12):7573–7603

 55. Lei M, Zhou Y, Luo Q (2019) Enhanced metaheuristic optimi-
zation: wind-driven flower pollination algorithm. IEEE Access
7:111439–111465

 56. Pauline O, Meng OK, Kiong SC (2017) An improved flower pol-
lination algorithm with chaos theory for function optimization.
AIP Conf Proc AIP Publ LLC 1870(1):050012

 57. Pathak P, Mahajan K (2015) A pollination based optimization for
load balancing task scheduling in cloud computing. Int J Adv Res
Comput Sci 6(7).

 58. Jensi R, Jiji GW (2015) Hybrid data clustering approach using
k-means and flower pollination algorithm. arXiv preprint
arXiv:1505.03236.

 59. Agarwal P, Mehta S (2016) Enhanced flower pollination algo-
rithm on data clustering. Int J Comput Appl 38(2–3):144–155

 60. Wang R, Zhou Y, Qiao S et al (2016) Flower pollination algo-
rithm with bee pollinator for cluster analysis. Inf Process Lett
116(1):1–14

 61. Harikrishnan R, Jawahar Senthil Kumar V, Sridevi Ponmalar P
(2015) Nature inspired flower pollen algorithm for WSN locali-
zation problem. ARPN J Eng. Appl Sci 10(5):2122–2125

 62. Goyal S, Patterh MS (2015) Flower pollination algorithm based
localization of wireless sensor network. In: 2015 2nd interna-
tional conference on recent advances in engineering & compu-
tational sciences (RAECS). IEEE, pp 1–5.

 63. Binh HTT, Hanh NT, Dey N (2018) Improved cuckoo search and
chaotic flower pollination optimization algorithm for maximizing
area coverage in wireless sensor networks. Neural Comput Appl
30(7):2305–2317

 64. Bensouyad M, Saidouni DE (2015) A hybrid discrete flower pol-
lination algorithm for graph coloring problem. In: Proceedings
of the international conference on engineering & MIS 2015, pp
1–6.

 65. Chakraborty D, Saha S, Maity S (2015) Training feedforward
neural networks using hybrid flower pollination-gravitational
search algorithm. In: 2015 International conference on futuristic
trends on computational analysis and knowledge management
(ABLAZE). IEEE, pp 261–266.

 66. Chiroma H, Khan A, Abubakar AI et al (2016) A new approach
for forecasting OPEC petroleum consumption based on neural
network train by using flower pollination algorithm. Appl Soft
Comput 48:50–58

 67. Velamuri S, Sreejith S, Ponnambalam P (2016) Static economic
dispatch incorporating wind farm using flower pollination algo-
rithm. Perspect Sci 8:260–262

 68. Gonidakis D (2016) Application of flower pollination algorithm
to multi-objective environmental/economic dispatch. Int J Manag
Sci Eng Manag 11(4):213–221

 69. Putra PH, Saputra TA (2016) Modified flower pollination algo-
rithm for nonsmooth and multiple fuel options economic dis-
patch. In: 2016 8th international conference on information
technology and electrical engineering (ICITEE). IEEE, pp 1–5.

 70. Shilaja C, Ravi K (2017) Optimization of emission/economic dis-
patch using euclidean affine flower pollination algorithm (eFPA)
and binary FPA (BFPA) in solar photo voltaic generation. Renew
Energy 107:550–566

 71. Abdel-Baset M, Ibrahim MH (2015) An improved flower pol-
lination algorithm for ratios optimization problems. Appl Math
Inf Sci Lett Int J 3(2):83–91

 72. Gautam U, Malmathanraj R, Srivastav C (2015) Simulation for
path planning of autonomous underwater vehicle using flower
pollination algorithm, genetic algorithm and Q-learning. In: 2015
international conference on cognitive computing and information
processing (CCIP). IEEE, pp 1–5

 73. Zhou Y, Wang R (2016) An improved flower pollination algo-
rithm for optimal unmanned undersea vehicle path planning
problem. Int J Pattern Recognit Artif Intell 30(04):1659010

 74. Wang R, Zhou Y, Zhao C et al (2015) A hybrid flower pollina-
tion algorithm based modified randomized location for multi-
threshold medical image segmentation. Bio Med Mater Eng
26(s1):S1345–S1351

 75. Doğan B, Ölmez T (2015) A new metaheuristic for numeri-
cal function optimization: vortex search algorithm. Inf Sci
293:125–145

 76. Dokeroglu T, Sevinc E, Kucukyilmaz T et al (2019) A survey
on new generation metaheuristic algorithms. Comput Ind Eng
137:106040

 77. Ezugwu AE, Prayogo D (2019) Symbiotic organisms search algo-
rithm: theory, recent advances and applications. Expert Syst Appl
119:184–209

3697Engineering with Computers (2021) 37:3665–3698

1 3

 78. Rashedi E, Rashedi E, Nezamabadi-pour H (2018) A compre-
hensive survey on gravitational search algorithm. Swarm Evolut
Comput 41:141–158

 79. Rubinstein RY (1997) Optimization of computer simulation mod-
els with rare events. Eur J Oper Res 99(1):89–112

 80. Ram JP, Babu TS, Dragicevic T et al (2017) A new hybrid bee
pollinator flower pollination algorithm for solar PV parameter
estimation. Energy Convers Manag 135:463–476

 81. Zimmerman DW, Zumbo BD (1993) Relative power of the Wil-
coxon test, the Friedman test, and repeated-measures ANOVA
on ranks. J Exp Educ 62(1):75–86

 82. Singh N, Singh SB (2017) Hybrid algorithm of particle swarm
optimization and grey wolf optimizer for improving convergence
performance. J Appl Math 2017:1–14

 83. Khalilpourazari S, Pasandideh SHR (2019) Sine–cosine crow
search algorithm: theory and applications. Neural Comput Appl
1–18. https ://doi.org/10.1007/s0052 1-019-04530 -0. in press

 84. Luo J, Shi B (2019) A hybrid whale optimization algorithm based
on modified differential evolution for global optimization prob-
lems. Appl Intell 49(5):1982–2000

 85. Zhang M, Luo W, Wang X (2008) Differential evolution with
dynamic stochastic selection for constrained optimization.
Inform Sci 178:3043–3074

 86. Saremi S, Mirjalili S, Lewis A (2017) "Grasshopper optimisation
algorithm: theory and application. Adv Eng Softw 105:30–47

 87. Mirjalili S (2015) Moth-flame optimization algorithm: a
novel nature-inspired heuristic paradigm. Knowl Based Syst
89:228–249

 88. Liu H, Cai Z, Wang Y (2010) Hybridizing particle swarm opti-
mization with differential evolution for constrained numerical
and engineering optimization. Appl Soft Comput 10:629–640

 89. Mirjalili S et al (2017) Salp swarm algorithm: a bio-inspired
optimizer for engineering design problems. Adv Eng Softw
114:163–191

 90. Sadollah A et al (2013) Mine blast algorithm: a new population
based algorithm for solving constrained engineering optimization
problems. Appl Soft Comput 13(5):2592–2612

 91. Zheng YJ (2015) Water wave optimization: a new nature-inspired
metaheuristic. Comput Oper Res 55:1–11

 92. Savsani P, Savsani V (2016) Passing vehicle search (PVS): A
novel metaheuristic algorithm. Appl Math Model 40:3951–3978

 93. Deb K (1991) Optimal design of a welded beam via genetic algo-
rithms. AIAA J 29(11):2013–2015

 94. He Q, Wang L (2007) A hybrid particle swarm optimization with
a feasibility-based rule for constrained optimization. Appl Math
Comput 186:1407–1422

 95. Yao W (2014) Genetic quantum particle swarm optimization
algorithm for solving traveling salesman problems. In: Fuzzy
information & engineering and operations research & manage-
ment. Springer, Berlin, pp 67–74

 96. Kaveh A, Bakhshpoori T (2016) Water evaporation optimiza-
tion: a novel physically inspired optimization algorithm. Comput
Struct 167:69–85

 97. Gandomi AH et al (2013) Bat algorithm for constrained optimi-
zation tasks. Neural Comput Appl 22:1239–1255

 98. He Q, Wang L (2007) An effective co-evolutionary particle
swarm optimization for constrained engineering design prob-
lems. Eng Appl Artif Intell 20(1):89–99

 99. Montemurro M, Vincenti A, Vannucci P (2013) The automatic
dynamic penalisation method (ADP) for handling constraints
with genetic algorithms. Comput Methods Appl Mech Eng
256:70–87

 100. Mezura-Montes E et al (2007) Multiple trial vectors in differen-
tial evolution for engineering design. Eng Opt 39(5):567–589

 101. Moosavi SHS, Bardsiri VK (2017) Satin bowerbird optimizer:
a new optimization algorithm to optimize ANFIS for software
development effort estimation. Eng Appl Artif Intell 60:1–15

 102. Ragsdell KM, Phillips DT (1976) Optimal design of a class of
welded structures using geometric programming, pp 1021–1025.

 103. Lee KS, Geem ZW (2004) A new structural optimization
method based on the harmony search algorithm. Comput Struct
82:781–798

 104. Huang F, Wang L, He Q (2007) An effective co-evolutionary
differential evolution for constrained optimization. Appl Math
Comput 186(1):340–356

 105. Mezura-Montes E, Velázquez-Reyes J, Coello CAC (2006) Modi-
fied differential evolution for constrained optimization. In: 2006
IEEE international conference on evolutionary computation.
IEEE, pp 25–32

 106. Wang Y et al (2009) Constrained optimization based on hybrid
evolutionary algorithm and adaptive constraint-handling tech-
nique. Struct Multidiscip Optim 37:395–413

 107. Braekers K, Ramaekers K, Van Nieuwenhuyse I (2016) The vehi-
cle routing problem: state of the art classification and review.
Comput Ind Eng 99:300–313

 108. Caceres-Cruz J, Arias P, Guimarans D et al (2014) Rich vehi-
cle routing problem: Survey. ACM Comput Surv (CSUR)
47(2):1–28

 109. McCulloch WS, Pitts W (1943) A logical calculus of the ideas
immanent in nervous activity. Bull Math Biophys 5(4):115–133

 110. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection
weights in neural networks using the whale optimization algo-
rithm. Soft Comput 22(1):1–15

 111. Zhang Y, Jin Z, Chen Y (2020) Hybrid teaching–learning-based
optimization and neural network algorithm for engineering
design optimization problems. Knowl Based Syst 187:104836

 112. Zhang JR, Zhang J, Lok TM et al (2007) A hybrid particle swarm
optimization–back-propagation algorithm for feedforward neural
network training. Appl Math Comput 185(2):1026–1037

 113. Alba E, Chicano JF (2004) Training neural networks with GA
hybrid algorithms. In: Genetic and evolutionary computation
conference. Springer, Berlin, pp 852–863.

 114. Sexton RS, Dorsey RE, Johnson JD (1999) Optimization of neu-
ral networks: a comparative analysis of the genetic algorithm and
simulated annealing. Eur J Oper Res 114(3):589–601

 115. Sexton RS, Gupta JND (2000) Comparative evaluation of genetic
algorithm and backpropagation for training neural networks. Inf
Sci 129(1–4):45–59

 116. Siddique MNH, Tokhi MO (2001) Training neural networks:
backpropagation vs. genetic algorithms. In: IJCNN’01. Interna-
tional joint conference on neural networks. Proceedings (Cat. No.
01CH37222), vol 4. IEEE, pp 2673–2678.

 117. Whitley D, Starkweather T, Bogart C (1990) Genetic algorithms
and neural networks: Optimizing connections and connectivity.
Parallel Comput 14(3):347–361

 118. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing
the time complexity of the derandomized evolution strategy
with covariance matrix adaptation (cma-es). Evolut Comput
11(1):1–18

 119. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolu-
tion training algorithm for feed-forward neural networks. Neural
Process Lett 17(1):93–105

 120. Slowik A, Bialko M (2008) Training of artificial neural networks
using differential evolution algorithm. In: 2008 conference on
human system interactions. IEEE, pp 60–65

 121. Wdaa ASI, Sttar A (2008) Differential evolution for neural net-
works learning enhancement. Universiti Teknologi Malaysia,
Johor Bahru

 122. Wienholt W (1993) Minimizing the system error in feedfor-
ward neural networks with evolution strategy. In: International

https://doi.org/10.1007/s00521-019-04530-0

3698 Engineering with Computers (2021) 37:3665–3698

1 3

conference on artificial neural networks. Springer, London, pp
490–493.

 123. Heidari AA, Faris H, Mirjalili S et al (2020) Ant lion optimizer:
theory, literature review, and application in multi-layer per-
ceptron neural networks, Nature-Inspired Optimizers. Cham,
Springer, pp 23–46

 124. Derrac J, García S, Molina D et al (2011) A practical tutorial
on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm Evolut Comput 1(1):3–18

 125. Faris H, Aljarah I, Mirjalili S (2016) Training feedforward neural
networks using multi-verse optimizer for binary classification
problems. Appl Intell 45(2):322–332

 126. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

 127. Tian J, Sun C, Tan Y et al (2020) Granularity-based surrogate-
assisted particle swarm optimization for high-dimensional expen-
sive optimization. Knowl Based Syst 187:104815

 128. Zheng Y, Fu X, Xuan Y (2019) Data-driven optimization based
on random forest surrogate. In: 2019 6th international conference
on systems and informatics (ICSAI). IEEE, pp 487–491

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Hybrid metaheuristic algorithm using butterfly and flower pollination base on mutualism mechanism for global optimization problems
	Abstract
	1 Introduction
	2 Butterfly optimization algorithm and flower pollination algorithm
	2.1 Butterfly optimization algorithm
	2.2 Flower pollination algorithm

	3 Hybrid butterfly optimization algorithm and flower pollination algorithm base on mutualism mechanism
	4 Theoretical comparison with other algorithm
	5 Simulation experiments and result analysis
	5.1 Comparison with basic BOA and enhanced BOA
	5.2 Comparison with improve FPA
	5.3 Comparison with other basic metaheuristic methods
	5.4 Compared with the hybrid metaheuristic algorithm
	5.5 Results analysis

	6 Engineering design problems
	6.1 Three-bar truss design problem
	6.2 Multi-plate disc clutch brake
	6.3 Pressure vessel design problem
	6.4 Welded beam design problem
	6.5 Speed reducer

	7 Conclusions and future work
	Acknowledgements
	References

