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Abstract
The butterfly optimization algorithm (BOA) is a new metaheuristic algorithm that is inspired from food foraging behavior 
of the butterflies. Because of its simplicity and effectiveness, the algorithm has been proved to be effective in solving global 
optimization problems and applied to practical problems. However, BOA is prone to local optimality and may lose its diver-
sity, thus suffering losses of premature convergence. In this work, a hybrid metaheuristic algorithm using butterfly and flower 
pollination base on mutualism mechanism called MBFPA was proposed. Firstly, the flower pollination algorithm has good 
exploration ability and the hybrid butterfly optimization algorithm and the flower pollination algorithms greatly improve 
the exploration ability of the algorithm; secondly, the symbiosis organisms search has a strong exploitation capability in the 
mutualism phase. By introducing the mutualism phase, the algorithm’s exploitation capability is effectively increased and 
the algorithm’s convergence speed is accelerated. Finally, the adaptive switching probability is increased to increase the 
algorithm’s balance in exploration and exploitation capabilities. In order to evaluate the effectiveness of the algorithm, in 
the 49 standard test functions, the proposed algorithm was compared with six basic metaheuristic algorithms and five hybrid 
metaheuristic algorithms. MBFPA has also been used to solve five classic engineering problems (three-bar truss design prob-
lem; multi-plate disc clutch brake design; welded beam design; pressure vessel design problem; and speed reducer design). 
The results show that the proposed method is feasible and has good application prospect and competitiveness.

Keywords Butterfly optimization algorithm (BOA) · Flower pollination algorithm (FPA) · Mutualism mechanism · 
Benchmark functions · Engineering design problem · Hybrid metaheuristic

1 Introduction

In real life, optimization is everywhere. Optimization is a 
process of finding the optimal solution. At present, a large 
number of optimization methods have been used to deal with 
optimization problems. Most of the traditional optimization 
methods rely on gradient information to update the solution, 
and the position of the initial solution affects the quality of 
the final solution. Therefore, in many practical engineering 

design problems, it is difficult to get a satisfactory solution 
based on gradient optimization method. Recently, a nature 
inspired metaheuristic optimization method is becoming 
more and more popular with the field of optimization and 
is widely used to solve complex optimization problems of 
various fields. According to a survey, metaheuristic has 
solved the optimization problem with sufficient efficiency 
and reasonable calculation cost compared with the accurate 
method [1].

The term "metaheuristic" generally refers to the approxi-
mate algorithm used for optimization, which is not specifi-
cally expressed for a particular problem, some metaheuris-
tics are inspired by natural processes such as evolution, 
while others are extensions of less complex algorithms such 
as greedy heuristics and local search [2]. Existing natural 
metaheuristic algorithms can be simply divided into the 
following four categories: swarm intelligence based, bio-
inspired, physical/chemical inspired and human behaviors. 
Among the population-based algorithms, some of the more 
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classical algorithms are particle swarm optimization (PSO) 
[3], ant colony optimization (ACO) [4], artificial bee colony 
(ABC) [5], cuckoo Search (CS) [6], flower pollination algo-
rithm (FPA) [7], firefly algorithm (FA) [8]. In addition, in 
recent years, some novel and effective swarm algorithms 
have been proposed, including Grey wolf optimizer (GWO) 
[9], whale optimization algorithm (WOA) [10], Harris 
hawks optimization (HHO) [11], symbiotic organisms search 
(SOS) [12], butterfly optimization algorithm (BOA) [13], 
etc. Bio-inspired algorithm includes evolutionary algorithms 
and immune type algorithms: evolutionary algorithms imi-
tate the reproduction, recombination, selection and mutation 
stages of biological evolution. Some common evolutionary 
algorithms include genetic algorithms (GA) [14] and dif-
ferential evolution (DE) [15]; immune type algorithm is to 
propose optimization algorithm based on immune mecha-
nism and comply with immunological principle. The most 
representative ones are immune genetic algorithm (IGA) 
[16], clonal selection algorithm (CSA) [17], negative selec-
tion algorithm (NSA) [18], b-cell algorithm (BCA) [19], 
etc. In the third physical/chemical inspired algorithm, search 
individuals are updated based on physical phenomena, rules 
or some chemical reaction rules. For example, simulated 
annealing (SA) [20], gravitational search algorithm (GSA) 
[21], lightning search algorithm (LSA) [22], multi-verse 
optimizer (MVO) [23], electromagnetic field optimization 
(EFO) [24], equilibrium optimizer (EO) [25], chemical reac-
tion optimization (CRO) [26], artificial chemical reaction 
optimization algorithm (ACROA) [27], etc. In the last kind 
of algorithm based on human behavior, it is subdivided in 
paper [28] social ideologies, sports competitive behavior, 
social and cultural interaction and condensation. Among 
them, the representative ones are cultural evolution algo-
rithm (CEA) [29], teaching learning-based optimization 
(TLBO) [30], imperial list competitive algorithm (ICA) 
[31], etc.

Butterfly optimization algorithm (BOA) is a metaheuris-
tic algorithm proposed by Arora and Singh. BOA is based 
on food foraging behavior and information sharing strategy 
of butterflies [13]. Literature [13] shows that the perfor-
mance of BOA is better than that of the generally accepted 
optimization algorithm. Since the BOA algorithm was pro-
posed, in order to obtain better results in the exploitation 
and exploration capabilities of the algorithm, Arora et al. 
have made a series of improvements on BOA: literature 
[32] proposed an improved butterfly optimization algo-
rithm, which adopts the variable sensing modal parameter 
strategy to improve the convergence speed of the algorithm; 
literature [33] proposed an improved butterfly optimization 
algorithm with chaos; the algorithm’s exploration capabil-
ity has been increased; literature [34] proposed a hybrid 
method BOA/DE by the ensemble of BOA and DE algo-
rithm, which combines the advantages of BOA and DE to 

enable the algorithm to achieve between exploration and 
exploitation balance to produce efficient results; literature 
[35] proposed the hybrid method BOA/ABC by the ensem-
ble of BOA and ABC algorithm, which is similar to BOA/
DE; literature [36] introduced learning automata, which not 
only keeps the main characteristics of the basic BOA, but 
also accelerates the global convergence speed and achieves 
the real global optimization; literature [37] proposed an 
modified BOA (MBOA), which adds the modification opera-
tion to the optimal position, thereby increasing the algorithm 
exploitation capability. In addition, Singh et al. [38] pro-
posed an adaptive butterfly optimization algorithm, which 
improved the convergence speed of the algorithm by chang-
ing the sensory mode of BOA; Li [39] proposed an improved 
butterfly optimization algorithm (BOA), by embedding the 
cross-entropy (CE) method into the BOA, and the results 
showed that the improved algorithm achieved a good balance 
in exploration and exploitation; Sharma and Sushmita [40] 
proposed a butterfly optimization algorithm enhanced with 
mutualism scheme which improves the exploitation ability 
of BOA. Sharma et al. [41] proposed an integrated algorithm 
of butterfly optimization algorithm and symbiotic biologi-
cal search, called hBOSOS. The global search capability of 
BOA and the local search capability of SOS are combined to 
make the proposed hBOSOS robust and effective.

In addition to improving the BOA, researchers have carried 
out a wide range of applications of BOA. Arora et al. [42] 
applied BOA to feature selection. Jalali et al. [43] applied 
BOA to train artificial neural network. Wang et al. [44] used 
butterfly optimization algorithm to optimize the extreme 
learning machine technology and applied it to port throughput 
prediction. Kisi et al. [45] used BOA to forecast drought in a 
semi-arid environment. Priyadharshini et al. [46] used BOA to 
optimize capacitated vehicle routing problem (CVRP). Abdul-
Rashid et al. [47] used BOA to optimize the parameters of a 
designed Lead-Lad Controller. El Hajjami et al. [48] used 
BOA optimal PID control of an autonomous vehicle. Sharma 
et al. [49] used BOA/ABC for node localization in acoustic 
sensor networks. Du et al. [44] used butterfly optimization 
algorithm to optimize the ELM technology for container 
throughput prediction. These successful applications are due 
to BOA’s advantages over other optimization methods. That 
is to say, BOA has a few parameters to be instantiated, and 
no preprocessing stage is required before the main body of 
the BOA [40]. Moreover, the algorithm is simple and has 
strong expansibility, which attracts researchers to expand and 
improve it and apply it in more and more complex fields.

Another efficient metaheuristic algorithm is flower pol-
lination algorithm (FPA), developed by Yang. FPA belongs 
to bio-inspired algorithms that simulate flower pollination 
behavior in nature [7]. In recent years, there have been a 
large number of improved versions of the pollination algo-
rithm, and it has been applied to solve practical optimization 
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problems. The improved FPA versions include: Wang et al. 
[50] proposed the flower pollination algorithm with dimen-
sion by dimension improvement; Zhao et al. [51] proposed a 
complex encoding flower pollination algorithm; Zhou et al. 
[52] proposed the elite opposition-based flower pollination 
algorithm. Nabil et al. [53] proposed a modified flower pol-
lination algorithm. Singh et al. [54] proposed an extended 
version of flower pollination algorithm. Lei et al. [55] pro-
posed wind-driven flower pollination algorithm. Pauline 
et al. [56] proposed an improved flower pollination algo-
rithm with chaos theory. At the same time, FPA has been 
successfully applied to solve various practical optimization 
problems, mainly in the following areas: cloud comput-
ing [57], data clustering [58–60], wireless sensor networks 
(WSNs) optimization [61–63], graph coloring problem [64], 
neural networks training [65, 66], economic load dispatch 
problem [67–70], ratios optimization problems (ROPs) [71], 
vehicle path planning problem [72, 73] and medical image 
segmentation [74], etc.

BOA has been applied to many aspects, but in terms of 
the algorithm itself, BOA is easy to fall into the local opti-
mal solution in the early search process; one of the reasons 
is that the optimal solution is not fully utilized. Moreover, 
it was observed that random selection of exploration and 
exploitation phases based on the selected value of switching 
probability sometimes causes the BOA to lose direction and 
move away from the global best solution [37]. Therefore, in 
order to effectively improve the algorithm in the exploration 
and exploitation capacity and better balance the algorithm in 
the two stages of switching, in this paper, a hybrid butterfly 
optimization algorithm and flower pollination base on mutu-
alism mechanism were proposed, which is called MBFPA.

Mutualism is the most common and important inter-spe-
cific relationship in ecosystem, and ecosystem cannot exist 
without mutualism. In nature, flowers send out fragrance to 
attract butterflies to spread pollen, which makes flowers bear 
fruit. Butterflies can get nectar and habitat from flowers. The 
processes of butterfly foraging and flower pollination are a 
mutually beneficial process. Inspired by the mutualism of 
different species in nature, a hybrid metaheuristic algorithm 
using butterfly and flower pollination base on mutualism 
mechanism was proposed. At the same time, the adaptive 
switching probability is introduced so that the algorithm can 
effectively balance the exploration and exploitation stages in 
the process of operation.

The primary contributions of this paper are summarized 
as follows:

1. A hybrid metaheuristic algorithm using Butterfly and 
Flower Pollination base on mutualism mechanism is 
proposed.

2. The exploration capability of the BOA and FPA is 
retained, and the exploitation capability is increased 

through the mutualism mechanism; the dynamic switch-
ing probability balance exploitation and exploration 
ratio is introduced.

3. To fully test the effectiveness of MBFPA, several per-
formance aspects including accuracy, convergence and 
statistics are evaluated by using 49 complex benchmark 
functions.

4. The proposed MBFPA algorithm has been utilized to 
solve six constrained engineering optimization prob-
lems, such as (a) three-bar truss design problem; (b) 
multi-plate disc clutch brake design; (c) pressure vessel 
design problem; (d) welded beam design problem and 
(e) speed reducer design.

The rest of this paper is organized as follows: Sect. 2 
briefly introduces the BOA and FPA. Section 3 introduces a 
hybrid butterfly optimization algorithm and flower pollina-
tion algorithm base on mutualism mechanism (MBFPA). 
Section 4 describes the theoretical comparison with other 
algorithms. Section 5 describes simulation experiments and 
result analysis. Finally, our conclusions and ideas for future 
work are presented in Sect. 6.

2  Butterfly optimization algorithm 
and flower pollination algorithm

2.1  Butterfly optimization algorithm

The butterfly optimization algorithm [13] is a new 
metaheuristic algorithm. The algorithm is mainly based 
on the foraging strategy of butterflies, which utilize their 
sense of smell to determine the location of nectar or mating 
partner. In order to find the source of nectar, butterflies use 
sense receptors which are used to smell and these recep-
tors are scattered over butterfly’s body parts like legs, palps, 
antennae, etc. [37]. In the BOA, it is assumed that each but-
terfly can release its own fragrance, which is related to its 
fitness value. The foraging of butterflies can be divided into 
two situations: when the butterfly can feel the fragrance of 
the best butterfly in the search space, it will move towards 
the best butterfly, which is called the global search stage of 
BOA. When the butterfly can’t detect the smell of other but-
terflies, it will move forward randomly. This stage is called 
local search. The process of BOA algorithm is described by 
the following three rules [13]:

1. The fragrance is formulated as a function of the physical 
intensity of stimulus as follows:

(1)fi = cIa
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where fi is the perceived magnitude of fragrance, how 
stronger the fragrance is perceived by other butterflies, 
c is the sensory modality, I is the stimulus intensity and 
a is the power exponent depended on modality, which 
accounts the varying degree of absorption.

2. In global search phase, the butterfly takes a step towards 
the fittest butterfly/solution  g* which can be represented 
as:

Xi
t is the solution vector Xi of the ith butterfly in the t 

iteration. g* represents the best solution currently found. 
Fragrance of ith butterfly is represented by fi and r is a 
random number in [0,1].

3. Local search phase can be represented as:

where Xj
t and Xk

t are the jth and kth butterflies randomly 
selected in the solution space. The switch probability 
p is used in BOA to switch between global search and 
local search. BOA is presented in Algorithm 1.

(2)Xt+1
i

= Xt
i
+ (r2 × g∗ − Xt

i
) × fi

(3)Xt+1
i

= Xt
i
+ (r2 × Xt

j
− Xt

k
) × fi

2.2  Flower pollination algorithm

Flower pollination algorithm (FPA) [7] is a new metaheuris-
tic swarm intelligence optimization algorithm proposed by 
Xinshe Yang in 2012. This optimization algorithm simulates 
the pollination process of plant flowers in nature, mainly 
including cross-pollination and self-pollination of flowers. 
In the process of cross-pollination, the flight behavior of the 
propagator (butterfly, bee, etc.) obeys Levy flight distribu-
tion. In the process of self-pollination, the mature pollen of 
plants spreads to their own flowers or different flowers of 
the same type of plants. The process of FPA algorithm is 
described by the following four rules [7]:

1. Flower constancy can be considered as the reproduction 
probability is proportional to the similarity of two flow-
ers involved.

2. In the implementation of the algorithm, the conversion 
between local and global pollination mechanisms is con-
trolled by the value of conversion probability p ∈ [0,1].

3. In the process of biological cross-pollination, the Propa-
gator’s flight obeys Levy flight for global pollination. 
The formula is described as follows:

where Xt+1
i

 and Xt
i
 represent the position of pollen indi-

vidual i in the t + 1 and t generations, g∗ represents the 
position of the optimal flower and/or a pollen gamete the 
current population and represents Levy the step factor 
obeying the Levy distribution, as shown in the follow-
ing formula:

where Γ(λ) is the standard gamma function, � = 1.5.
4. Abiotic self-pollination can be regarded as the local pol-

lination stage in the algorithm, which is expressed as

where Xt
j
 and Xt

k
 represent the position of two different 

pollens in the same kind of plants. They are randomly 
selected two individuals; � is the variable of uniform 
distribution in [0, 1]. FPA is presented in Algorithm 2.

(4)Xt+1
i

= Xt
i
+ Levy(�)(Xt

i
− g∗)

(5)L ∼
𝜆Γ(𝜆) sin(𝜋𝜆∕2)

𝜋

1

S1+𝜆
, (S ≥ S0 > 0)

(6)Xt+1
i

= Xt
i
+ �(Xt

j
− Xt

k
)
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3  Hybrid butterfly optimization algorithm 
and flower pollination algorithm base 
on mutualism mechanism

As already discussed, since the butterfly optimization 
algorithm was proposed, researchers have made different 
attempts to better improve the algorithm’s exploration and 
exploitation capabilities: Arora and Singh proposed BOA/
DE [35], BOA/ABC [34], balanced the algorithm’s ability to 
exploitation and exploration. Because the two different algo-
rithms are mixed, the advantages of the original algorithm 
can be retained. In addition, the addition of two different 
renewal mechanisms will inevitably increase the diversity 
of the population. Sharma and Sushmita [40] effectively 
improved the algorithm exploitation ability by adding the 
SOS algorithm to the exploitation stage of the original but-
terfly optimization algorithm. A good algorithm should be 
able to take into account two aspects. When the exploita-
tion phase of an algorithm is dominant, the early popula-
tion of the algorithm will concentrate on the best individual 
attachments early, leading to the loss of population diversity. 

During the algorithm update process, If too much considera-
tion is given to the exploration capability of the algorithm, 
the exploration with low accuracy may lose the optimal solu-
tion and slow convergence rate.

Therefore, how to balance the two aspects of the algo-
rithm becomes the key.

Thus, the success of a metaheuristic method on a given 
optimization problem is defined by its ability to provide a 
good balance between the exploration and exploitation. The 
exploration defines the global search ability of the algorithm, 
whereas the exploitation is the ability to find the optimum 
around a near-optimal solution, which can also be consid-
ered as the local search ability [75].

Therefore, in the current study, in order to deal with this 
imbalance between exploration capability and exploitation 
capability, BOA and FPA were adopted to mix through 
mutualism. The combination of diverse metaheuristics can 
lead to new exciting approaches since the hybridization can 
be used to get the advantage of different metaheuristics [76]. 
Here, the first step is to divide the entire population into 
two subpopulations: butterflies and flowers. Independent 
evolution between subpopulations can gain the advantages 
of both algorithms while increasing the diversity of the 
entire population. At the same time, the dynamic switching 
probability is introduced to balance the reasonable distribu-
tion of exploration and exploitation. The second stage is 
called mutualism stage. In this stage, the individual butter-
fly should randomly select a flower for mutualism, and the 
flower should do the same, so as to increase the exploitation 
capability of the algorithm.

Mutualism refers to two kinds of organisms living 
together, which are mutually beneficial. After the two are 
separated, life will be greatly affected, even death. Among 
them, insects, birds, mammals and many other creatures 
serve for pollination and seed transmission of flowering 
plants. Plants provide them with nectar and fruits in return. 
Without symbiosis, most plants would not survive. An 
example of reciprocity is the relationship between the but-
terfly and the flower, and the butterfly looks for food/nectar 
in the flower cluster for the butterfly to maintain its own 
survival, which is also beneficial to the flower in this activ-
ity, because the butterfly’s foraging distributes pollen in the 
process, which is beneficial to the pollination of plants. It’s 
good for both sides of life.

In order to simulate the mutualism between butterfly 
and flower, the mutualism stage of symbiotic organisms 
search (SOS) is introduced. In 2014, Cheng and Prayogo 
[12] proposed SOS, which simulates the interaction between 
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organisms in the ecosystem. In the search space, each 
individual of different species is regarded as a candidate 
solution. The algorithm randomly initializes n organisms 
and generates an ecosystem. On this basis, individuals are 
updated through mutualism, commensalism and parasitism. 
SOS has good exploitation capabilities with the processes of 
mutualism and commensalism. SOS uses best solution as a 
reference point that might help in exploiting the neighbor-
hood solutions of the current best solution [77].

This paper introduces the mutualism phase in the SOS 
algorithm. The renewal formula of SOS mutualism stage is 
introduced as follows [12]:

 

where Mutualagent expressed the relationship between the 
two organisms in the t generation xt

i
 and Xt

j
 . rand[0,1] is a 

vector of random numbers. g∗ is the best organism in the 
population, and BF1 and BF2 are the interest factors of ran-
domly generated 1 or 2. These factors represent the favorable 
degree of interaction between two organisms.

In addition, the BOA algorithm uses fixed switching 
probability in the whole search process. However, the rea-
sonable process should be: search in the global scope in the 
early stage, and increase the mining intensity in the local 
scope in the later stage to increase the accuracy of the solu-
tion. Therefore, in order to effectively balance the two stages 
of exploration and exploitation, the dynamic switching prob-
ability is used, as shown in the following formula:

where Max_iter is the maximum number of iterations and 
itrer is the current number of iterations.

The flowchart of the proposed approach is described in 
Fig. 1, and pseudocode for the mutualism butterfly flower 
pollination algorithm is presented in “Algorithm 3”:

(7)Mutualagent =
(

Xt
i
+ Xt

j

)

∕2

(8)Xt+1
i

= Xt
i
+ rand[0, 1] × (g ∗ −Mutualagent × BF1)

(9)Xt+1
j

= Xt
j
+ rand[0, 1] × (g∗ −Mutualagent × BF2)

(10)p = 0.8 − 0.1 × (Max_iter − itrer)∕Max_iter
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4  Theoretical comparison with other 
algorithm

In the BOA (Arora and Singh), the butterfly optimization 
algorithm is conceptually compared with other algorithms, 
namely ABC, CS, DE, FA, GA, MBO and PSO. Based on 
the comparison of the BOA, m-MBOA makes a compre-
hensive conceptual comparison among SOS, Jaya, improved 
BOA, chaotic BOA (CBOA), modified BOA, mutated 
BOA(BOA-C), BOA/DE and BOA/ABC.

The difference between the proposed algorithm and 
m-MBOA is that m-MBOA only introduces the symbiosis 
stage unilaterally, which increases the exploitation ability 
of the algorithm, and the symbiosis is based on the sym-
biosis between species. The introduction of the proposed 
algorithm in the symbiosis phase is not only between spe-
cies, but also through the interaction between butterflies and 
flowers. Additionally, the introduction of dynamic switching 
probability can better balance the ratio of exploitation and 
exploration within the subpopulation.

TLBO is an algorithm based on human behavior, and its 
inspiration comes from the teaching and learning process 
in the classroom. The iterative evolution process of TLBO 
includes the teaching phase and the learning phase. To 
enhance the average knowledge level of the class, learners 
improve their knowledge levels by learning from the teacher 
in the teaching phase, and they also improve their knowledge 
levels by learning interactively from another learner selected 
randomly in learning phase [30]. MBFPA is a hybrid algo-
rithm of butterfly optimization algorithm and flower pollina-
tion algorithm, inspired by the mutually beneficial relation-
ship between butterflies and flowers in nature. Through the 
combination of the two algorithms, the exploration ability of 
butterfly algorithm and flower pollination algorithm is pre-
served. Across the introduction of SOS symbiosis stage, the 
exploitation ability of the algorithm can be enhanced and the 
probability of losing the optimal solution of the algorithm 
can be reduced.

GSA can be considered as physics-based metaheuristic 
search algorithm. At the beginning of the algorithm, each 
individual is given a mass, and the law of gravity between 
two objects is used to guide the motion optimization of 
each particle to search for the optimal solution. Superposi-
tion of the gravitational forces, dependency to the distance 
and the relation between mass values and fitnesses make 
this algorithm unique [78]. The proposed algorithm is a 
metaheuristic algorithm that simulates the mixed symbi-
otic relationship between two organisms in nature, mainly 
including two basic algorithms of BOA and FPA, which, 
respectively, simulate the foraging of butterfly and the pol-
lination of flower, and the two subgroups switch through 
p for exploration and exploitation. At the same time, the 

increased mutualism stage enables the exchange of informa-
tion between subgroups, reducing the possibility of entering 
the local optimal solution.

Hbosos is a hybrid algorithm of BOA and SOS. By com-
bining BOA and SOS, the algorithm can retain the advan-
tages of the two algorithms to the greatest extent. The pro-
posed algorithm does not integrate the SOS algorithm, but 
improves the algorithm development ability by introducing 
the mutually beneficial symbiosis stage of SOS.

Li, Guocheng et al. proposed an improved butterfly opti-
mization algorithm (BOA) using the cross-entropy method. 
The cross-entropy (CE) method was developed by Rubin-
stein [79] in 1997 to estimate the probability of rare events 
in complex random networks. This paper embeds the CE 
method into the BOA to obtain a good balance between 
exploration and exploitation and improve the BOA’s global 
search capability. The proposed algorithm is a hybrid algo-
rithm based on two kinds of biological mutualism mecha-
nisms in nature. It enhances the ability of algorithm devel-
opment by adding mutualism mechanism. In the value of 
switching probability, adaptive dynamic switching prob-
ability is used.

Arora and Singh proposed Learning automata-based but-
terfly optimization algorithm. Learning automata have been 
embedded in BOA in which a learning automaton takes the 
role of configuring the behavior of a butterfly in order to cre-
ate a proper balance between the process of global and local 
search [41], by introducing the adaptive dynamic switching 
probability, which is a simpler and more effective method.

5  Simulation experiments and result 
analysis

In order to verify the effectiveness of the proposed algo-
rithm, as shown in Table 1, 49 different benchmark functions 
are tested, including function name, type, dimension, search 
scope, formulation and optimal value. Generally speaking, 
reference functions can be divided into two categories: uni-
modal function and multimodal function. Different types of 
test functions have different characteristics. Among them, 
the single-peak test function is used to verify the excavation 
ability. Multimodal test functions have many local optimal 
solutions, which is helpful to test the exploration ability of 
the algorithm and the ability to avoid the optimal value.

The algorithm is implemented in MATLAB R2018b. 
Experiments are performed on a PC with a 3.30  GHz, 
Intel(R) Core(TM) i5 CPU, System type 64 bit, Windows 
10 operating system. To increase reliability and generate sta-
tistically significant results, each function was run 30 times 
in this validation test. The mean and standard deviation of 
the proposed algorithm and other algorithms for comparison 
were recorded.
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5.1  Comparison with basic BOA and enhanced BOA

In order to evaluate the performance of the proposed 
algorithm compared with BOA [13] and enhanced BOA 
(m-MBOA) [40], it is worth noting that in the comparison 
experiment, the parameter Settings of the proposed algo-
rithm are the same as those of the other two algorithms in 
the paper. In this comparison, the number of population is 
fixed at 50 and the maximum number of iterations is fixed 
at 10,000. The simulation results include average results and 
corresponding standard deviation. In the simulation of all 
reference functions, sensory modality (c) is 0.01 and power 
exponent (a) is increased from 0.1 to 0.3.

From the test results shown in Table 2, it can be seen 
that under the same test conditions, f5, f14, f20, f25 and f28 are 
superior to the other two algorithms, and other test functions 

can achieve the same accuracy as the other two algorithms. It 
can be concluded that the proposed algorithm can get high-
precision results; in addition, it has better results in multiple 
functions.

5.2  Comparison with improve FPA

In order to compare the performance of the algorithm with 
other improved flower pollination algorithms, it is compared 
with dimensional evolution FPA (MFPA) [50] and bee FPA 
(BPFPA) [80]. In the comparison experiment, the population 
size n is set to 30 and the number of iterations is 500 genera-
tions. The switching probability of MFPA and BPFPA is set 
to 0.8, and the parameter setting of the proposed algorithm 
is consistent with the previous section.

Fig. 1  Flowchart of the pro-
posed algorithm
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From the test results shown in Table 3, the results com-
pared in some test functions all reached the same accuracy. 
Except in f10, f25 was less effective than MFPA, and the rest 
of the test results were better than the comparison algorithm. 
Therefore, on the whole, the proposed algorithm has better 
results compared with the two improved FPA (Table 4).

5.3  Comparison with other basic metaheuristic 
methods

To verify the results of the proposed algorithm, the other 
six state-of-the-art metaheuristic algorithms are employed: 
differential evolution( DE), flower pollination algorithm 
(FPA), particle swarm optimization (PSO), gravitational 
search algorithm (GSA), symbiotic organisms search (SOS) 
and teaching learning-based optimization (TLBO). These 
algorithms have been widely used in various fields. In the 
current experiment, the population size and maximum itera-
tion of all algorithms are set to 30 and 500, respectively. In 
30 independent operations, Table 5 shows function results 
performance statistics, Table 6 shows the mean and standard 
deviation of the proposed algorithm and other algorithms in 
solving the benchmark function, and the bold numbers rep-
resent the relatively best values of the compared algorithms. 
The specific parameter values of the comparison algorithm 
are shown in Table 4.

From the statistical data, Table 6 shows that the proposed 
algorithm fails to get satisfactory solutions in functions f10, 
f14, f20, f26, f28, f43, f46, f48 and f49. The functions of f10, 
f14, f20, f28, f48 and f49 are far from the theoretical values. 
Compared with the results obtained by other algorithms in 
these functions, the DE gets relatively better results in f10 
and f47. SOS gets relatively better solutions in f10, f20, f47, 
f48 and f49; the functions of f49 are far from the theoretical 
values. PSO get relatively better solutions in function f28. 
TLBO gets relatively better solutions in f39, f42, f47, but 
these values are still different from the theoretical values. 
From the overall perspective, among the 49 benchmark func-
tions, the proposed algorithm can find the theoretical optimal 
value among the 27 test functions. However, the number of 
theoretical values of DE, FPA, PSO, GSA, SOS and TLBO 
is 16, 8, 6, 4, 15 and 15, respectively. Meanwhile, Table 5 
shows the number of occasions where the mean performance 
of MBFPA is better than, equality and worse than other com-
parison algorithms. From this table, it can be observed that 
the proposed algorithm performs better than DE, FPA, PSO, 
GSA, SOS and TLBO in 25,39,40,44,22 and 25 benchmark 
functions, respectively, equality results are seen in 15, 8, 
5,3,18 and 18, and worse results are obtained in 3, 2, 3, 1, 4 
and 2. Through the comparison of the experimental results 
and data, we can see that in most of the test functions, the 

proposed algorithm can get a more satisfactory solution, and 
has a strong competitiveness with the compared algorithm.

In addition, the performance of the algorithm is statisti-
cally tested. Wilcoxon nonparametric statistical test [80] and 
Friedman rank test [81] were conducted in this paper. Wil-
coxon’s non-parametric statistical test returns a parameter 
call p-value [80]. When p value is less than 0.05, there is a 
significant difference between the two algorithms in solving 
the problem; when p > 0.05, there is no significant difference 
between the two algorithms in solving the problem. From the 
p-value test results in Table 7, except for functions f2, f4, f6, 
f 9, f13, f15, f21,f22, f31,f36 and f44, most of the algorithms 
can converge to the theoretical value, resulting in no signifi-
cant difference in the test results of these functions; for the 
remaining functions, in function f16 and f41 the proposed 
algorithm has no significant difference with SOS; the pro-
posed algorithm has no significant difference with PSO in 
function f22, f37, f42 and f49; the proposed algorithm has no 
significant difference with TLBO in function f22,f26,f37,f39, 
f41, f48. There are significant differences in other functions. 
Therefore, from the p value test results, this further shows 
that the proposed algorithm has superior performance.

Table 8 presents the ranks obtained by Friedman rank 
test from the mean performances of the algorithms for each 
benchmark functions. As can be seen from Table 8, MBFPA 
has the smallest grade, which indicates that MBFPA ’s per-
formance is better than the comparison algorithm (Table 9).

In order to compare the advantages of the algorithm in 
terms of convergence speed, Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13 and 14 show the convergence curve of the pro-
posed algorithm and DE, FPA, PSO, GSA, SOS, TLBO on 
14 benchmark functions. Among all the fitness value con-
vergence graphs, their convergence curves are based on the 
results of 30 times of independent operation of 7 algorithms, 
and all the convergence curves are drawn with the average 
value. As shown in Figs. 2, 3, 4, 5, 6,7, 8, 9, 10, 11, 12, 13, 
14 and 15,  f11,  f14,  f24,  f30 and  f33 can reach the fastest con-
vergence speed and can find the global optimal solution. In 
f6 functions, the fastest convergence speed is not achieved, 
but still can have a better ranking and ultimately can find the 
global optimal solution; f1, f 3, f5, f7, f12, f19, f  23, func-
tion in the early convergence speed is not the first, but in 
the later search, it reaches the highest convergence rate and 
continues to converge to the highest accuracy. Although the 
convergence effect of some functions cannot reach the fast-
est convergence rate in the early stage, and the convergence 
rate of f6 is lower than that of SOS, overall speaking, the 
convergence rate of the proposed algorithm is better than 
that of most other comparison algorithms.
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5.4  Compared with the hybrid metaheuristic 
algorithm

In addition to the comparison with the basic metaheuristic 
algorithm, the other five hybrid metaheuristic algorithms are 
employed: hybrid algorithm of particle swarm optimization 
and Grey wolf optimizer (PSOGWO) [82], sine cosine crow 
search algorithm (SCSCA) [83], hybrid firefly and parti-
cle swarm optimization algorithm (HFPSO) [82], modified 
flower pollination algorithm(MFPA) [53] and hybrid whale 
optimization algorithm based on modified differential evolu-
tion (MDE-WOA) [84].

In the current experiment, the population size and maxi-
mum iteration number of all algorithms are set to 30 and 
500, respectively. Among the 30 independent operations, 
Table 10 shows the performance statistics of the results of 
the function, and Table 11 shows the mean and standard 
deviation of the proposed algorithm and other algorithms 
in solving the benchmark function. Bold numbers represent 
the relative optimal values of the compared algorithms. The 
specific parameter values of the comparison algorithm are 
shown in Table 9.

According to the performance statistics in Table 10, 
among the 49 test results of MBFPA, 48 test results were bet-
ter than PSOGWO. In the SCCSA results, the test results of 
f10, f 14, f20, f 26, f 28 and f 34 are better than the proposed 
algorithm, but there is a large gap with the theoretical value. 
In other test functions, it can be seen from Table 10 that the 
test results of the proposed algorithm are better than those of 
SCCSA in 38 test functions and achieve the same effect in 5 
test results. In the HFPSO results, the HFPSO test results are 
better than the proposed algorithm in the test functions f10, 
f20, f43 and f49, but f20 and f49 are far from the theoretical 
values. In the remaining test functions, the proposed algo-
rithm is better than the HFPSO in 37 test results and gets the 
same value in eight test function results. In the test results of 
MFPA, the proposed algorithm is not better than MFPA in 
11 test functions, but better than the comparison algorithm 
in 24 test function results, and achieves the same effect in 14 
test functions. In the test results of MDE-WOA, the results 
of functions f14, f20, f28, f34, f43 and f46 are better than the 
proposed algorithm, but it can be seen from Table 10 that the 
proposed algorithm is better than MDE-WOA in the 38 test 
results. Therefore, through the comparison of experimental 
results and data, we can see that in most of the test functions, 
the algorithm proposed in this paper can get more satisfac-
tory solutions and has a strong competitiveness compared 
with the comparison algorithm.

In addition, from the p-value test results in Table 12, 
there is no significant difference in the test results of these 
functions, except that the comparison algorithm reaches 

the theoretical value in individual test results; for most of 
the other test functions, p-value is less than 0.05. Table 13 
presents the ranks obtained by Friedman rank test from the 
mean performances of the algorithms for each benchmark 
functions. It can be seen from Table 13 that MBFPA has the 
smallest grade, which indicates that MBFPA’s performance 
is better than the hybrid metaheuristic algorithm compared.

Figures 16, 17, 18, 19, 20, 21, 22 and 23 illustrate the 
convergence of the fitness values of PSOGWO, SCSCA, 
MFPA, HFPSO, BPFPA and MDE-WOA. These conver-
gence graphs are based on the results of 30 independent runs 
of the six algorithms. From these figures, it can be clearly 
seen that MBFPA obtains the global optimal value faster 
than the other four algorithms. These experimental results 
demonstrate that MBFPA, which reflects its strong global 
search capability.

5.5  Results analysis

Now, why is MBFPA so effective? It mainly includes the 
following three aspects:

1. The introduction of dynamic switching probability 
perfectly balances the distribution of exploitation and 
exploration.

2. Because of the mixture of BOA and FPA, the exploration 
capability of the two algorithms is well reserved.

3. Through the introduction of mutualism phase, the mutu-
alism of individuals enhances the exploitation ability of 
the algorithm.

In particular, the butterfly optimization algorithm controls 
the switch between exploitation and exploration by trans-
forming probability p. Because every step of exploitation 
and exploration switch is judged by rand < p, it may cause 
the individual who has been in the vicinity of the optimal 
solution to turn to exploration and lose the optimal solution. 
In addition, the BOA does not directly use the best solution 
as the reference point, but through r2 × g∗ as the reference 
point, where r is a random number and g∗ is the best solution 
in the population, which reduces the guiding role of the best 
solution. Although it can reduce the probability of falling 
into the local optimum prematurely, it has a great limit on 
the exploitation ability of the algorithm. In the improved 
algorithm, the dynamic switching probability is introduced 
to distribute the proportion of development and exploration 
more reasonably. In the increasing symbiosis mechanism, on 
the one hand, the optimal position is used as the reference 
update position, which increases the ability of individuals to 
find the optimal solution around the near optimal solution; 
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Table 1  Benchmark functions (dim: dimensions, M: multimodal, N: non-separable, U: unimodal, S: separable)

No Function Type dim Search space Formulation fmin

f1 Sphere M,S 30 [− 100,100]
f (x) =

n
∑

i=1

x2
i

0

f2 Beale U,N 2 [− 4.5,4.5] f (x) = (1.5 − x1 + x1x2)2 + (2.25 − x1 + x1x
2
2
) 

+(2.625 − x1 + x1x
3
2
)2

0

f3 Cigar U,N 30 [− 100,100]
f (x) = x2

1
+ 106

n
∑

i=2

x2
i

0

f4 Step U,S 30 [− 100,100] f (x) = (⌊xi + 0.5⌋)2 0
f5 Quadraic U,S 30 [− 1.28,1.28]

f (x) =
n
∑

i=1

ix4
i
+ rand(0, 1)

0

f6 Bohachevsky M,N 2 [− 100,100] f (x) = x2
1
+ 2x2

2
− 0.3 cos(3�x1)

−0.4 cos(4�x2) + 0.7

0

f7 Ackley M,N 30 [− 100,100]
f (x) = −20 exp

⎛

⎜

⎜

⎝

−0.2

�

�

�

�

1

n

n
�

i=1

x2
i
− exp

�

1

n

n
�

i=1

cos 2�xi

�

⎞

⎟

⎟

⎠

+20 + e

0

f8 Griewank M,N 30 [− 100,100]
f (x) =

1

4000

n
∑

i=1

�

x2
i

�

−
n
∏

i=1

cos
�

xi
√

i

�

+ 1
0

f9 Levy M,S 2 [− 10,10] f (x) = sin2(3�x1) + (x1 − 1)2[1 + sin2(3x2)] + (x1 − 1)2

×[1 + sin2(2�x2)]

0

f10 Michalewiz M,S 10
f (x) = −

n
∑

i=1

sin(xi)
�

sin(
ix2

i

�
)
�2m

,m = 10
−  0.966

f11 Rastrigin M,S 30 [− 5.12,5.12]
f (x) =

n
∑

i=1

x2
i
− 10 cos(2�xi + 10)

0

f12 Alpine M,S 30 [− 10,10]
f (x) =

n
∑

i=1

�

�

xi sin(x) + 0.1xi
�

�

0

f13 Schaffer M,N 2 [− 100,100] f (x) = (x2
1
+ x2

2
)0.25[50(x2

1
+ x2

2
)0.1 + 1] 0

f14 Rosenbrock U,N 30 [− 30,30]
f (x) =

n−1
∑

i=1

[100(xi+1 − x2
i
)2 + (xi − 1)2]

0

f15 Easom M,S 2 [− 100,100] f (x) = − cos(x1) cos(x2) exp(−(x1 − �)2

−(x2 − �)2)

−  1

f16 Shubert M,S 2 [− 100,100]
f (x) = (

5
∑

i=1

i cos((i + 1)x1 + i)(
5
∑

i=1

i cos((i + 1)x2 + i))
−  186.7309

f17 Schwefel 1.2 U,N 30 [− 100,100]
f (x) =

n
∑

i=1

�

i
∑

j=1

xj

�2 0

f18 Schwefel 2.21 U,S 30 [− 100,100] f (x) = maxi{|xi|, 1 ≤ i ≤ n} 0
f19 Schwefel 2.22 U,N 30 [− 10,10]

f (x) =
n
∑

i=1

�xi� +
n
∏

i=1

�xi�
0

f20 Schwefel 2.26 M,S 30 [− 500,500]
f (x) =

n
∑

i=1

�

�

xi sin(x) + 0.1xi
�

�

−  418.982*n

f21 Booth U,N 2 [10, 10] f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 0
f22 Goldstein price M,N 2 [− 2,2] f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2

1
− 14x2

+6x1x
2 + 3x2

2
)] × [30 + (2x1 − 3x2)

2(18 − 32x1
+12x2

1
+ 48x2 − 36x1x2 + 27x2

2
)]

3

f23 Matyas U,N 2 [− 10,10] f (x) = 0.26(x2
1
+ x2

2
) − 0.48x1x

2 0
f24 Powell U,N 30 [− 100,100]

f (x) =
n∕4
∑

i=1

(x4i−3 + 10x4i−2)
2 + 5(x4i + 10x4i)

2

+(x4i−2 + 2x4i−1)
4 + 10(x4i−3 + 10x4i)

4

0

f25 Power sum M,N 4 [− 10,10]
f (x) =

n
∑

i=1

�

(
n
∑

k=1

xi
k
) − bi

�

0
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Table 1  (continued)

No Function Type dim Search space Formulation fmin

f26 Shekel 4.5 U,S 4 [0,10]
f (x) = −

5
∑

i=1

[(x − ai)(x − ai)
T + ci]

−1
−  10,1532

f27 Sum square U,S 30 [− 10,10]
f (x) =

n
∑

i=1

ix2
i

0

f28 Trid M,N 30 [− 10,10]
f (x) =

n
∑

i=1

(xi − 1)2 −
n
∑

i=2

(xixi−1)
-d*(d + 4)*(d − 1)/6

f29 Zettl U,N 2 [− 1,5] f (x) = (x2
1
+ x2

2
− 2x1)2 + 0.25x1 −  0.00379

f30 Leon U,N 2 [− 1.2,1.2] f (x) = 100(x2 − x3
1
)2 + (1 − x1)

2 0
f31 Stepint U,S 5 [− 5.12,5.12]

f (x) = 25 +
5
∑

i=1

⌈xi⌉
0

f32 Colville U,N 4 [− 10,10] f (x) = 100(x2
1
− x2

2
)2 + (x1−1)

2 + (x3 − 1)2+

+90(x2
3
− x4)

2 + 10.1(x2 − 1)2 + (x4 − 1)2+19.8(x2
2
− 1)(x4 − 1)

0

f33 Zakharov U,N 10 [5, 10]
f (x) =

n
∑

i=1

x2
i
+ (

n
∑

i=1

0.5ixi)
2 + (

n
∑

i=1

0.5ixi)
4)

0

f34 Dixon-Price U,N 30 [− 30,30]
f (x) = (x1 − 1)2 +

n
∑

i=2

i(2x2
i
− x2

i−1
)

0

f35 Foxholes M,S 2 [− 65.536, 65.536]
f (x) =

⎡

⎢

⎢

⎣

1

500
+

25
∑

j=1

1

j+
2
∑

i=1

(xi−aij)6

⎤

⎥

⎥

⎦

−1 0.998

f36 Branin M,S 2 [5, 10] f (x) = (x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6)2 + 10(1 −

5.1

4�2
)cos x1 + 10 0.398

f37 Six Hump
Camel Back

M,N 2 [− 5,5] f (x) = 4x2
1
− 2.1x14 +

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2
−  1.03163

f38 Kowalik M,N 4 [− 5,5]
f (x) =

11
∑

i=1

�

ai −
x1(b

2
i
+bix2)

b2
i
+bix3+x4

�2 0.00031

f39 Perm M,N 4 [− 4,4]
f (x) =

n
∑

k=1

�

n
∑

i=1

(ik + �)((xi∕i)
k) − 1

�2 0

f40 Hartman M,N 3 [0,1]
f (x) =

n
∑

k=1

ci exp

�

−
3
∑

j=1

aij(xj − pij)
2

�

−  3.86

f41 Hartman M,N 6 [0,1]
f (x) =

n
∑

k=1

ci exp

�

−
6
∑

j=1

aij(xj − pij)
2

�

−  3.32

f42 Penalized M,N 30 [− 50,50]
f (x) =

𝜋

D

�

10 sin2(𝜋y1) +

D−1
�

i=1

(y − 1)2[1 + 10 sin2(𝜋y1)]

+(yD − 1)2

�

+

D
�

i=1

u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4

u(xi, a, k,m) =

⎧

⎪

⎨

⎪

⎩

k(xi − a)m, xi > a

0,−a ≤ xi ≤ a

k(−xi − z)m, xi < a

0

f43 Penalized2 M,N 30 [− 50,50]
f (x) = 0.1

{

sin2

(

3�x1 +

n
∑

i=1

(xi − 1)2[1 + sin2(3�xi + 1)]

+(xn − 1)2[1 + sin2(2�xn)]

)}

+

n
∑

i=1

u(xi, 5, 100, 4)

0

f44 Langerman2 M,N 2 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

−  1.08
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Table 1  (continued)

No Function Type dim Search space Formulation fmin

f45 Langerman5 M,N 5 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

−  1.5

f46 Langerman10 M,N 10 [0,10]
f (x) =

m
∑

i=1

ci exp

�

−
1

�

n
∑

j=1

(xj − aij)
2 cos(�

n
∑

j=1

(xj − aij)
2)

�

N/A

f47 Fletcher
Powell2

M,N 2 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

f48 Fletcher
Powell5

M,N 5 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

f49 Fletcher
Powell10

M,N 10 [�,�]
f (x) =

n
∑

i=1

(Ai − Bi)
2

Ai =
n
∑

i=1

(aij sin aj + bij cos aj),Bi =
n
∑

j=1

(aij sin xj + bij cos xj)

0

Table 2  Mean and SD for 
comparing MBFPA with BOA 
and m-MBOA on 30 benchmark 
functions

Bold values are represent MBPFA algorithm can get high-precision results

Mean SD

MBPFA m-MBOA [38] BOA [13] MBPFA m-MBOA [38] BOA [13]

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f3 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f4 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f5 5.7759E− 06 3.8917E−05 1.45E+00 4.1738E−05 2.9003E−05 1.73E−01
f6 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f7 8.8818E− 16 1.7183E+00 8.8818E− 16 0.0000E+00 0.0000E+00 0.0000E+00
f8 0.0000E+00 1.8472E−19 0.00E+00 0.0000E+00 2.6886E−02 0.0000E+00
f9 1.35E−31 4.4108E−01 1.35E−31 6.6809E−47 5.7467E−02 8.9000E−47
f10 − 6.08E+00 N/A − 5.34E−02 5.1538E−01 N/A − 5.6092E+00
f11 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f12 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f14 2.0681E+01 2.8837E+01 5.80E+00 1.5593E+00 0.0000E+00 6.12E−01
f15 − 1.000E+00 − 1.0000E+00 − 1.02E+00 0.0000E+00 0.0000E+00 1.51E−01
f16 − 1.8673E+02 − 1.8673E+02 8.84E+01 5.9985E−08 2.06493E−11 1.44E−14
f17 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f18 0.0000E+00 6.9906E−153 0.0000E+00 0.0000E+00 1.4788E−152 0.0000E+00
f19 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f20 − 7.5562E+03 − 2.2662E+03 − 5.50E+99 1.9273E+02 4.5626E+02 8.78E+100
f21 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f22 3.0000E+00 3.0000E+00 3.0000E+00 0.0000E+00 0.0000E+00 2.52E−15
f23 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f24 0.0000E+00 0.0000E+00 2.90E−13 0.0000E+00 0.0000E+00 1.61E−12
f25 1.7490E−03 2.8400E−02 2.48E−05 0.0000E+00 1.3179E−02 3.02E−05
f27 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f28 − 1.2812E+03 − 2.7507E+07 − 1.06E+01 4.0402E+02 5.6521E+07 4.83E+00
f29 − 3.7912E−03 − 3.7912E−03 − 3.79E−03 1.7644E−18 0.0000E+00 3.09E−06
f30 0.00E+00 1.1527E−06 0.00E+00 0.00E+00 9.4711E−07 0.00E+00
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on the other hand, because symbiosis is carried out between 
two individuals, the improvement in any one in the symbio-
sis stage will increase the convergence speed in the whole 
iterative process.

Although MBFPA is effective, it has some weaknesses. 
Compared with the original BOA and FPA algorithm, it is 
obvious that the algorithm becomes more complex, which 
will increase the running time of the algorithm; in addition, 

Table 3  Mean and SD for comparing MBFPA with MFPA and BPFPA on 30 benchmark functions

Bold values are represent MBPFA algorithm can get high-precision results

Mean SD

MBPFA MFPA BPFPA MBPFA MFPA BPFPA

f1 0.00E+00 321.9284 39.5022 0.00E+00 170.0287 20.5743
f2 0.00E+00 0.00E+00 4.8648e−23 0.00E+00 0.00E+00 2.089e−22
f3 0.00E+00 236,477,826.7226 40,308,138.5658 0.00E+00 146,754,099.6033 17,648,691.5919
f4 0.00E+00 807.3667 51.4 0.00E+00 342.6953 17.9417
f5 5.7759E− 06 0.15245 0.10408 4.1738E−05 0.08634 0.033142
f6 0.00E+00 0.0000E+00 0.00E+00 0.00E+00 0.0000E+00 0.00E+00
f7 8.8818E− 16 8.7275 4.0499 0.0000E+00 8.7275 0.86288
f8 0.0000E+00 3.2972 1.4447 0.0000E+00 0.88478 0.18451
f9 1.35E− 31 1.35e− 31 1.35E− 31 6.6809E−47 6.6809e−47 6.6809e−47
f10 − 6.08E+00 − 8.6819 − 7.8253 5.1538E−01 − 8.6819 0.39279
f11 0.0000E+00 54.548 137.7442 0.0000E+00 10.3149 12.1861
f12 0.0000E+00 3.8028 7.3252 0.0000E+00 1.4868 4.7557
f13 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f14 2.0681E+01 421.4537 234.5188 1.5593E+00 185.6032 70.9594
f15 − 1.000E+00 − 1.0000E+00 − 1.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
f16 − 1.8673E+02 − 1.8673E+02 − 1.8673E+02 5.9985E−08 0.00034889 0.010649
f17 0.0000E+00 9.4092 20.5805 0.0000E+00 3.2795 6.6107
f18 0.0000E+00 1.4077 1.3897 0.0000E+00 0.22267 0.28729
f19 0.0000E+00 7.6106 2.6414 0.0000E+00 2.0783 0.71014
f20 − 7.5562E+03 − 7493.523 − 6733.0706 1.9273E+02 421.5054 339.4945
f21 0.0000E+00 0.0000E+00 2.8883e−28 0.0000E+00 0.0000E+00 6.459e−28
f22 3.0000E+00 3.0000E+00 3.0000E+00 0.0000E+00 1.8568e−15 1.0066e−15
f23 0.0000E+00 8.584e−130 2.4477e−26 0.0000E+00 2.2369e−129 8.8267e−26
f24 0.0000E+00 12.1634 11.8327 0.0000E+00 7.8409 6.5558
f25 1.7490E−03 1.4408E− 04 0.014981 0.0000E+00 0.00024295 0.012595
f27 0.0000E+00 5.7103 0.0000E+00 0.0000E+00 22.072 2.2377
f28 − 1.2812E+03 15,102.6218 − 1.06E+01 4.0402E+02 4860.4391 8668.6782
f29 −  3.7912E−03 − 3.7912E−03 − 3.7912E−03 1.7644E−18 1.7644e−18 1.7644e−18
f30 0.00E+00 0.00E+00 8.3804e−19 0.00E+00 0.00E+00 2.659e−18

Table 4  Parameter settings for 
seven algorithms

Algorithm Parameter values

DE [15] Scaling factor = 0.5, Crossover probability = 0.2
FPA [7] The proximity probability p = 0.8
PSO [3] The cognitive parameter c1 = 1.5c2 = 2.0 , inertia weight � = 1

GSA [21] For GSA, the parameters are set to G0 = 100 � = 20

SOS [12] Benefit factors randomly generated as either 1 or 2
TLBO [30] Teaching factor T randomly generated as either 1 or 2
MBFPA Sensory modality c = 0.01, power exponent a is increased from 0.1 to 0.3,

proximity probability using Eq. (10)
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increasing the mutualism stage is more dangerous. Because 
of the mutualism of each individual, it may lead to the 
decline of the individual who has been in the local optimal 
position. Therefore, how to selectively carry out mutually 
beneficial symbiosis of individuals is also a place worthy 
of consideration. The advantages and disadvantages of the 
above MBFPA algorithm are listed in Table 14.

6  Engineering design problems

In order to verify the performance of the proposed algo-
rithm in constrained optimization problems, five engineer-
ing optimization problems (three-bar truss design, multi-
plate disc clutch brake, pressure vessel, welded beam and 
speed reducer) from the structural field are compared and 
the best results are compared with other algorithms. In order 
to obtain a better solution, different maximum numbers of 
iterations and different population numbers are used for each 
different problem according to the number of optimization 
variables and constraints in all engineering optimization 
problems. The specific characteristics of these problems are 
given in Table 15.

6.1  Three‑bar truss design problem

Three-bar truss design problem (see “Appendix A.1”) is the 
most common constraint optimization test problem, which is 
a minimization problem. The goal is to minimize the weight 
of three-bar truss, where the constraints are stress, deflection 
and buckling. Figure 24 shows the shape of the truss and the 
associated forces on the structure.

In this problem, the fixed population number is 30 and the 
maximum number of iterations is 100 and the optimal fitness 
value obtained by the proposed algorithm after 30 independ-
ent runs is f(X) = 263.895843376, X = [0.788675132828, 
0.408248295461]. The best results of the proposed algorithm 

will be compared with the optimal solution obtained in the 
previous literature in Table 16. The results show that the 
proposed algorithm can get a better solution in this problem 
and show good performance.

6.2  Multi‑plate disc clutch brake

This problem requires the minimization of the weight of a 
multiple disc clutch brake (see “Appendix A.2”) by consid-
ering five discrete design variables: inner radius (r1), outer 
radius(r0), thickness of discs(t), actuating force(F), and num-
ber of friction surfaces(Z) [48]. Figure 25 shows a multiple 
disc clutch brake. The difficulty of the optimization problem 
increases, because the problem includes eight different con-
straints, which will result in only 70% of the feasible region 
in the solution space.

The fixed population number is 30 and the maximum 
number of iterations is 500, and the optimal fitness value 
obtained by the proposed algorithm after 30 independent 
runs is f(X) = 0.235242457900804, X = [70, 90, 1, 600, 2]. 
The results obtained by MBPFA were compared with the 
optimal results of HHO [11], TLBO [30], WCA [47] and 
PVS [48]. As shown in Table 17, we can see that the pro-
posed algorithm obtained the best solution in solving the 
problem.

6.3  Pressure vessel design problem

As a classical constrained engineering optimization prob-
lem, the goal of optimization is to minimize the total cost of 
welding, materials and manufacturing. The manufacturing 
configuration of the problem is shown in Fig. 26. The prob-
lem consists of four optimization variables: Ts (thickness 
of the shell),  Th (thickness of the head), r (inner radius), L 
(length of section without the head). At the same time, it 
contains four different constraints. The details are given in 
“Appendix A.3.”

The fixed population number is 20 and the maximum 
number of iterations is 200, and the optimal fitness value 
obtained by the proposed algorithm after 30 independ-
ent runs is f(X) = 5885.3327736, X = [0.778168641371 
0.384649162626 40.3196187241 200.0]. The obtained opti-
mal solution is compared with other algorithms. Table 18 
shows that the proposed algorithm is the best to deal with 
this problem and can obtain the optimal result.

6.4  Welded beam design problem

This problem requires designing the most appropriate height 
of weld (× 1), length of weld (× 2), height of beam (× 3), 
and width of beam (× 4) to minimize welding costs. Con-
straints include: shear stress, bending stress, buckling load 

Table 5  Statistical results of the 6 basic metaheuristic on the 49 prob-
lems

* Where “Better,” “Equal,” and “less than” represent the number of 
problems that the performance of MBFPA is significantly better than, 
almost the same as, and significantly worse than the corresponding 
algorithm, respectively

Algorithms Better Equal Less than

DE 25 15 9
FPA 39 8 2
PSO 40 5 4
GSA 44 3 2
SOS 22 18 9
TLBO 25 18 6
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Table 6  Comparative results of the proposed algorithm with DE, FPA, PSO, GSA, SOS and TLBO

No MBFPA DE FPA PSO GSA SOS TLBO

f1 Mean 0 2.47E−04 1.92E+03 8.72E−07 3.40E−03 1.56E−135 1.43E−89
SD 0 8.31E−05 5.26E+02 3.04E−06 1.86E−02 3.17E−135 2.13E−89

f2 Mean 0 0 2.00E−12 5.08E−02 1.07E−18 0 0
SD 0 0 4.76E−09 1.93E−01 1.24E−18 0 0

f3 Mean 0 1.54E+02 1.65E+09 4.60E+01 2.10E+02 1.09E−129 1.94E83
SD 0 7.20E+02 4.4E+08 5.52E+02 3.10E+02 2.24E−129 3.22E−83

f4 Mean 0 0 1.85E+02 9.20E+00 1.42E+01 0 0
SD 0 0 5.05E+02 7.84E+00 2.90E+01 0 0

f5 Mean 1.42E− 04 5.31E−02 3.08E−01 2.26E−02 3.99E−01 5.64E−04 1.19E−03
SD 1.23E−04 1.43E−02 1.07E−01 7.62E−03 6.81E−01 2.99E−04 6.32E−04

f6 Mean 0 0 1.14E−08 0 0 0 0
SD 0 0 1.65E−08 0 0 0 0

f7 Mean 8.88E− 16 4.13E−03 7.35E+00 1.49E+00 8.58E−02 4.09E−15 6.45E−15
SD 0 9.19E−04 1.22E+00 6.60E−01 3.39E−01 1.08E−15 1.79E−15

f8 Mean 0 3.82E−03 1.75E+01 4.24E−02 2.53E+01 0 0
SD 0 5.01E−03 4.75E+00 4.15E−02 5.86E+00 0 0

f9 Mean 1.35E− 31 1.35E− 31 9.60E−10 1.35E−31 1.32E−18 1.35E− 31 1.35E− 31
SD 6.68E−31 6.68E−47 1.90E−09 1.35E−47 1.44E−18 6.68E−47 6.68E−47

f10 Mean − 4.9975 − 9.1123 − 4.8717 − 7.7869 − 8.3083 − 9.0103 − 4.654
SD 0.47106 0.22017 0.48003 1.1805 0.78902 0.30491 0.47188

f11 Mean 0 8.14E+01 1.86E+02 4.97E+01 3.66E+01 0 1.30E +01
SD 0 9.60E+00 1.25E+01 1.62E+00 8.24E+00 0 5.20E + 00

f12 Mean 0 3.74E−02 2.11E+01 7.99E−03 2.62E−03 6.72E−70 1.19E−45
SD 0 3.29E−02 1.94E+00 9.87E−03 2.71E−03 8.81E−70 9.83E−46

f13 Mean 0 0 0 2.51E−05 1.39E−02 0 0
SD 0 0 0 1.37E−04 4.24E−03 0 0

f14 Mean 2.54E+01 6.62E+01 5.19E+03 3.53E+01 5.53E+01 2.81E+01 2.54E + 01
SD 9.20E−01 3.34E+01 2.32E+03 2.21E+01 6.43E+01 1.26E+00 6.71E−01

f15 Mean − 1 − 1 − 1 − 1 8.33E−01 − 1 − 1
SD 0 0 2.66E−06 0 3.79E−01 0 0

f16 Mean − 186.7309 − 186.7309 186.7290 186.7290 − 76.2892 − 186.7305 − 186.7305
SD 3.16E−05 3.77E−14 1.88E−03 4.255E−14 67.2174 1.24E−03 1.95E−20

f17 Mean 0 3.16E+02 1.54E+01 8.88E−01 4.09E+01 2.78E−46 2.62E−20
SD 0 4.44E+01 4.77E+00 8.51E−01 1.43E+01 6.37E−46 7.50E−20

f18 Mean 0 1.18E+00 2.34E+00 2.18E−01 2.61E+00 9.87E−56 1.42E−37
SD 0 2.01E−01 4.02E−01 6.84E−02 2.15E+00 1.56E−55 1.19E−37

f19 Mean 0 1.97E−03 3.20E+01 5.36E−02 5.50E−01 2.79E−69 4.84E−45
SD 0 3.60E−03 7.21E+00 8.90E−02 1.15E+00 3.68E−69 5.80E−45

f20 Mean − 6748.059 − 9.55E+03 − 6.37E+03 − 6.85E+03 − 2.51E+02 − 1.04E+4 − 8.12E + 03
SD 2.56E+02 5.66E+02 2.44E+02 7.98E+02 1.87E+02 6.51E+02 9.77E + 02

f21 Mean 0 0 4.83E−12 0 9.79E−19 0 0
SD 0 0 1.28E−11 0 1.08E−18 0 0

f22 Mean 3 3 3 3 3 3 3
SD 1.375E−15 2.11E−15 1.52E−09 1.90E−15 9.34E−15 7.28E−16 5.53E−133

f23 Mean 0 1.14E−39 3.00E−14 4.37E−127 3.54E−20 2.90E−204 1.51E−133
SD 0 2.98E−39 5.37E−14 2.39E−126 3.42E−20 0.00E+00 5.93E−133

f24 Mean 0 1.37E+02 7.50E−01 7.65E−03 3.58E+01 2.26E−18 6.64E−07
SD 0 5.58E+01 2.75E+01 1.23E−02 2.85E+01 1.23E−17 1.73E−06

f25 Mean 1.55E−03 2.63E−02 1.56E−02 2.55E−03 1.73E+00 7.61E− 04 1.77E−03
SD 1.61E−03 2.21E−02 1.29E−02 4.49E−03 3.55E+00 1.45E−03 2.76E−03
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Bold numbers represent the best values

Table 6  (continued)

No MBFPA DE FPA PSO GSA SOS TLBO

f26 Mean − 9.60E+00 − 9.72E+00 − 10.14E+00 − 5.71E+00 − 4.72E+00 − 8.79E+00 − 9.85E + 00
SD 1.33E+00 1.62E+00 3.21E−02 3.13E+00 1.96E+00 2.29E+00 1.09E + 00

f27 Mean 0 2.94E−05 2.58E+02 1.78E−06 5.24E−02 3.99E−136 3.00E−90
SD 0 1.03E−05 7.67E+01 9.07E−06 2.76E−01 1.36E−135 6.51E−90

f28 Mean − 824.5121 − 722.8702 − 319.1363 − 1389.999 − 376.832 − 1389.9717 − 620.1225
SD 203.5617 210.6547 476.8181 0.0010726 48.446 0.13842 76.9352

f29 Mean − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03 − 3.7912E− 03
SD 1.76E−18 1.76E−18 3.73E−11 1.76E−18 1.43E−03 1.76E−18 1.76E−18

f30 Mean 4.77E− 28 3.04E−05 6.77E−10 1.96E−13 3.46E+00 4.66E−24 3.00E−18
SD 3.61E−30 1.67E−04 1.19E−09 1.04E−12 8.95E+00 9.02E−17 1.30E−17

f31 Mean 0 0 0 0.16667 0.00E+00 0.00E+00 0
SD 0 0 0 0.46113 0.00E+00 0.00E+00 0

f32 Mean 1.9229e− 09 0.014151 0.84197 0.013523 2.2912 1.7713e−06 6.005e−05
SD 8.5913e−09 0.0266 0.59836 0.028011 2.5911 2.7075e−06 0.0002167

f33 Mean 0 0.80091 0.44679 1.5895e−23 32.2198 9.6583e−97 4.1953e−52
SD 0 0.57182 0.20611 8.2719e−23 23.0425 3.0788e−96 1.3486e−51

f34 Mean 0.66667 1.1345 2106.5512 0.80044 1.4626 0.66667 0.66667
SD 5.062e−09 0.52524 1082.586 0.45797 1.288 4.6695e−16 6.9636e−11

f35 Mean 0.998 0.998 0.99804 4.2063 13.8477 0.998 0.998
SD 1.0909e−16 0 0.00011513 3.5086 6.5919 0 0

f36 Mean 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
SD 0 0 1.0909e−06 0 0 0 0

f37 Mean − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316 − 1.0316
SD 6.4539e−16 6.7752e−16 7.5631e−08 6.3877e−16 4.3441e−16 6.7752e−16 6.7122e−16

f38 Mean 0.00030749 0.00068446 0.00070785 0.0012646 0.013252 0.00034321 0.00040824
SD 1.0001e−10 0.00012951 0.00018082 0.0036397 0.0076868 0.0001677 0.00021674

f39 Mean 0.029788 0.12031 0.77598 0.071187 22.8601 0.017961 0.00021674
SD 0.086304 0.12312 0.54825 0.12438 43.7677 0.037765 0.11913

f40 Mean − 3.8628 − 3.8628 − 3.8628 − 3.8112 − 0.68659 − 3.8628 − 3.8628
SD 2.6543e−15 2.7101e−15 2.53e−08 0.19612 0.96964 2.7101e−15 2.7101e−15

f41 Mean − 3.3018 − 3.3224 − 3.2928 − 3.2826 − 0.69676 − 3.2745 − 3.2916
SD 0.044744 3.5999e−09 0.024118 0.057155 0.43278 0.059277 0.051482

f42 Mean 0.00019444 0.0001291 39.1718 0.20049 0.72433 0.0034556 4.3409e−04
SD 0.00045217 9.7444e−05 8.3372 0.53152 0.93427 0.018927 1.1576e−06

f43 Mean 1.5041 1.9565e− 05 98.6619 0.03867 3.1383 0.099525 0.10525
SD 1.1085 8.9344e−06 23.9594 0.083781 8.2229 0.084214 0.1112

f44 Mean − 1.0809 − 1.0809 − 1.0809 − 1.0539 − 0.83968 − 1.0809 − 1.0809
SD 4.5168e−16 4.5168e−16 5.011e−10 0.05505 0.42543 4.5168e−16 4.5168e−16

f45 Mean − 1.4128 − 1.3754 − 1.0729 − 1.2147 − 0.079911 − 1.3724 − 1.1599
SD 0.26942 0.10787 0.22864 0.29192 0.11968 0.23541 0.30714

f46 Mean − 0.59898 − 0.53705 − 0.40214 − 0.54436 − 0.0008114 − 0.72055 − 0.5387
SD 0.28994 0.17137 0.18212 0.25042 0.0023572 0.40612 0.31296

f47 Mean 8.3234e−23 0 7.6125e−05 47.0197 94.0393 0 0
SD 3.2682e−22 0 9.1474e−05 178.9391 243.8528 0 0

f48 Mean 49.3012 31.6276 67.9252 1166.8096 188.3431 0.0026592 38.8046
SD 89.2502 70.2243 68.5145 1179.2897 86.1584 0.012047 80.7725

f49 Mean 1841.1397 306.1898 8988.2742 3453.4229 951.4124 229.5545 963.2594
SD 2051.3933 104.6094 3948.2518 6351.4667 1589.0465 762.5573 1369.8109

The number of theoreti-
cal values

27 16 8 6 4 15 15
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Table 7  Results of the p value benchmark functions

Bold numbers represent the p > 0.05

No MBFPA VS DE MBFPA VS FPA MBFPA VS PSO MBFPA VS GSA MBFPA VS SOS MBFPA VS TLBO

1 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
2 0.3337 1.7203E−12 0.0483 1.720E−12 0.3337 0.3337
3 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
4 1.00 1.2118E−12 1.1766E−12 5.7442E−10 1.00 1.00
5 3.0199E−11 3.0199E−11 3.0199E−11 3.0199E−11 8.1465E−05 1.8567E−09
6 1.00 1.2118E−12 1.00 1.00 1.00 1.00
7 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 3.9410E−12 4.4551E−13
8 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 1.00 1.00
9 1.00 1.2118E−12 1.00 1.2118E−12 1.2118E−12 1.00
10 2.8574E−11 3.0199E−11 6.2027E−04 3.5638E−04 8.1527E−11 2.0283E−07
11 1.2117E−12 1.2118E−12 1.211E−12 1.210E−12 1.148E−12 1.2117E−12
12 1.2117E−12 1.211E−12 1.211E−12 1.211E−12 1.00 1.2117E−12
13 1.00 1.00 0.0337 1.211E−12 1.00 1.00
14 3.019E−11 3.019E−11 0.0575 3.019E−11 3.689E−11 5.264E−04
15 1.00 1.2118E−12 1.00 0.0214 1.211E−12 1.00
16 9.1589E−11 6.6955E−11 1.260E−10 2.672E−04 0.4551 2.8210E−10
17 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
18 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
19 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
20 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10 2.1544E−10
21 1.00 1.2118E−12 1.00 1.2118E−12 1.00 1.00
22 5.8157E−04 1.9242E−11 0.6578 1.9142E−11 0.0119 0.0812
23 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
24 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
25 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11 4.9752E−11
26 4.9752E−11 1.8790E−09 0.0034 5.8721E−11 5.1859E−04 0.8135
27 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12
28 3.0199E−11 3.0199E−11 0.0051 3.0199E−11 8.4848E−09 3.3679E−04
29 0.049 6.3188E−12 8.4226E−08 6.2647E−12 0.0109 0.0109
30 1.4051E−09 3.0047E−11 3.0047E−11 3.0047E−11 3.0047E−11 3.0047E−11
31 1.00 1.00 0.041865 1 1 1
32 3.01986E−11 3.01986E−11 3.01986E−11 3.01986E−11 5.49405E−11 4.97517E−11
33 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12
34 3.01986E−11 3.01986E−11 2.37682E−07 0.00039881 2.7495E−11 3.4742E−10
35 0.005466034 7.57407E−12 1.04283E−0 7.49962E−12 0.005466034 0.005466034
36 1 1.21178E−12 1 1 1 1
37 0.021419179 5.14363E−12 0.749103252 1.44603E−10 0.021419179 0.090513169
38 3.0123E−11 3.0123E−11 3.0123E−11 3.0123E−11 0.001472867 0.011458939
39 2.49131E−06 3.15889E−10 0.211561237 7.11859E−09 0.002499392 0.332854692
40 0.04177393 4.08059E−12 0.468729621 6.31718E−13 0.04177393 0.04177393
41 0.447787971 1.87936E−05 0.19301787 2.54317E−11 0.371541283 0.981521904
42 0.096262831 3.01986E−11 0.077271976 1.72941E−07 5.57265E−10 3.01986E−11
43 3.01986E−11 3.01986E−11 5.49405E−11 0.005569939 9.88918E−11 1.95678E−10
44 1 1.21178E−12 0.000142057 2.62034E−13 1 1
45 0.039150716 1.48881E−06 0.376236712 3.00852E−11 4.77755E−05 0.662002664
46 0.958731491 7.59915E−07 0.970512775 3.01986E−11 0.662717173 0.047868861
47 0.000313354 1.44305E−11 0.01129043 1.4392E−11 0.000313354 0.000313354
48 0.428963389 0.00185748 0.001029216 2.8735E−06 4.76558E−06 0.841779758
49 0.00069125 1.28704E−09 0.952841775 0.04841038 1.52917E−05 0.043583548
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on the bar, end deflection and side constraints [48]. The 
schematic diagram of the problem is shown in Fig. 27; the 
details are given in “Appendix A.4.” In this example, the 
fixed population number is 30 and the maximum number 
of iterations is 500, and the optimal fitness value obtained 
by the proposed algorithm after 30 independent runs is 
f(X) = 1.72485185, X = [0.205730, 3.470473, 9.036623, 
0.205729]. The obtained optimal solution is compared with 
other 8 algorithms. In Table 19, we can conclude that the 
proposed algorithm can find the most suitable parameters 
and get the minimum fitness value.

Table 8  Friedman rank test 
for the mean performances 
obtained (for f1-f49 functions)

Algorithms Mean rank Rank

MBFPA 2.42 1
DE 3.93 4
FPA 5.56 7
PSO 4.52 5
GSA 5.82 6
SOS 2.61 2
TLBO 3.14 3

Fig. 2  Convergence graph for Sphere function

Fig. 3  Convergence graph for Cigar function

Fig. 4  Convergence graph for Step function

Fig. 5  Convergence graph for Quadraic function
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Fig. 6  Convergence graph for Bohachevsky function

Fig. 7  Convergence graph for Ackley function

Fig. 8  Convergence graph for Rastrigin function

Fig. 9  Convergence graph for Alpine function

Fig. 10  Convergence graph for Rosenbrock function

Fig. 11  Convergence graph for Schwefel 2.22 function
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6.5  Speed reducer

Speed reducer (as shown in Fig. 28) is designed to minimize 
the weight of the reducer. There are mainly 7 variables to be 

optimized: the face width(× 1), module of teeth(× 2), num-
ber of teeth on pinion(× 3), length of the first shaft between 
bearings(× 4), length of the second shaft between bear-
ings(× 5), diameter of the first shaft(× 6) and diameter of 
the first shaft(× 7) [90]. In this problem, there are as many 
as 11 constraints, which is a challenging optimization prob-
lem, mainly to minimize the weight under the condition of 
bending stress of the gear teeth, surface stress, transverse 
deflections of the shafts and stresses in the shafts [90]. The 
details are given in “Appendix A.5.”

The optimal fitness value obtained by the proposed algo-
rithm after 30 independent runs is f(X) = 2994.341315, 
X = [3.5 0.7 17 7.3 7.7153199122 3.35021466 5.28665446]. 
The optimal solutions obtained by this paper are compared 
with those obtained by the other five algorithms. Table 20 
shows the detailed comparison. It can be concluded that the 
proposed algorithm has advantages in the optimization under 
complex constraints and can obtain better solutions.

7  Conclusions and future work

In recent years, butterfly optimization algorithm has been 
proposed as a new heuristic algorithm, which is widely used 
in global optimization problems. In BOA algorithm, indi-
viduals can find the most fragrant position by simulating 
the foraging process of butterflies and then find the optimal 
solution in the global optimization. The random number dis-
turbance is added to the optimal position during the update 
of the butterfly optimization algorithm, which avoids indi-
vidual crowding, but it brings a problem: it is difficult to 
make the most of the current the leading role of the optimal 
position leads to the possibility of missing the optimal posi-
tion in actual application. This will cause the algorithm to 
have low accuracy and slow convergence. Therefore, this 
paper proposes a hybrid optimization algorithm for butter-
fly and flower pollination base on mutualism mechanism, 
which increases the speed and accuracy of algorithm exploi-
tation through the mutualism mechanism. At the same time, 

Fig. 12  Convergence graph for Matyas function

Fig. 13  Convergence graph for Powersum function

Table 9  Parameter settings for 
six algorithms

Algorithm Parameter values

PSOGWO [82] The parameter is a linearly decreased from 2 to 0,c1 = c2 = c3 = 0.5,w = 0.5 + rand/2
SCSCA [83] Constant a = 2, r1 = a-t*((a)/max_iter),r2 = 2*pi*rand,r3 = r2,r4 = rand
MFPA [53] Switch probability p = 0.8, cloning array = [1, 1, 1, 1, 1, 1–9], r1 = 1,r2 = 3
HFPSO [82] The parameter a = 0.2,  B0 = 2,r = 1,c1 = c2 = 1.49445,wi = 0.9,wf = 0.5
MDE-WOA [84] crossover probability cr = 0.9, scaling factor F = 0.8, neighborhood of radius k = 3, 

weight factor ω = 0.5
MBFPA sensory modality c = 0.01, power exponent a is increased from 0.1 to 0.3,

proximity probability using Eq. (10)
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because the flower pollination algorithm is mixed, the alien-
ated pollination of flowers is propagated through Levy flight, 
which can increase the algorithm’s exploration capability 
and introduce a dynamic switching probability equilibrium 
exploration and exploitation process. The results show that 
the butterfly optimization algorithm and the flower polli-
nation algorithm can get good results through the appro-
priate mechanism, and in terms of nature, butterflies and 
flowers are two inseparable creatures. Compared with other 
metaheuristics, this algorithm can find better or equal func-
tion values in most benchmark problems. From the results 
of the five engineering examples, the proposed algorithm 
has great advantages in solving constrained optimization 
problems and can get better solutions.

In the future research, in order to verify the ability of 
the hybrid algorithm to solve the constrained optimization 
problem, we will focus on the application of the proposed 
algorithm to the solution of practical problems. Since the 
vehicle routing problem (VRP) was proposed in 1959, it 
has been widely concerned by researchers because of its 
wide application and great economic value, such as postal 
delivery problem, vehicle scheduling problem and computer 
network topology problem [107]. VRP is a NP hard prob-
lem, which is difficult to solve with accurate algorithm. At 
present, metaheuristics have become prominent approaches 
in tackling complex and multi-objective problems [108]. So, 
metaheuristic algorithm is the main method to solve VRP. 
However, the core of using metaheuristic algorithm to solve 
VRP problem is how to encode the individuals according to 
the background of the problem. The quality of coding will 
directly affect the complexity of algorithm discretization 
and the performance of the algorithm. In addition, how to 
discretize the proposed algorithm so that the algorithm can 
play a good effect in the discrete problem space is also an 
important issue. Therefore, the design of reasonable coding 
and discrete version of MBPFA has become the key to VRP 

path problems in the future. In addition, we have identified 
four areas that deserve further study in the future.

Hybrid metaheuristics combines the advantages of differ-
ent metaheuristics to provide simpler, better and faster solu-
tions for many complex problems [76]. A new metaheuristic 
algorithm is proposed, which actually increases the diversity 
of metaheuristic algorithm in the update strategy. Different 
metaheuristic algorithms let the population update according 
to a specific update strategy. However, how to combine these 
update strategies in an efficient and reasonable way will be 
an interesting and exciting thing. Therefore, by coupling the 
characteristics of different strategies, a more effective hybrid 
algorithm will be the focus of future algorithm research.

In the absence of gradient information, the metaheuris-
tic algorithm is easier to implement than the precise search 
algorithm. In the actual performance test, the parameters of 
metaheuristic algorithm greatly affect the performance of 
the algorithm. Most of the given reasonable parameters are 
obtained through a large number of experiments. Therefore, 
it is necessary to develop a function with adaptive parameter 
adjustment. Or, we should pay more attention to the non-
parametric metaheuristic algorithm, because it can increase 
our thinking on the algorithm itself, rather than focusing on 
the adjustment of algorithm parameters. However, develop-
ing parameterless metaheuristic algorithms is yet an open 
problem and needs to be thoroughly studied [77]. Therefore, 
we should pay more attention to the development of non-
parametric meta heuristic algorithm in the future.

Artificial neural networks (ANNs) [109] are well-known 
techniques utilized in learning, approximating and investi-
gating various classes of complex problems [110]. ANNs 
are used for prediction purposes in most cases, and it tries 
to close the gap among the predicted solution and the given 
target solution by frequently adjusting the values of weight 
functions [111]. There are two methods to adjust the weight: 
metaheuristic-based trainers and gradient-based trainers. 
Among them, the gradient-based trainer has better perfor-
mance in local search [112], while the metaheuristic-based 
trainers has better performance in global search and can 
effectively avoid local optimization [110]. Some works use 
genetic algorithm (GA), differential evolution (DE) and evo-
lutionary strategy (ES) to improve artificial neural network 
[113–122]. The results affirm the satisfactory results of these 
hybrid MLP structures [123].Although a lot of work has 
been done so far, searching for global results of hybrid MLP 
networks is still an open question [124, 125]. From No Free 
Lunch theorem [126], a new superior SMHA can still be 
designed to be integrated with MLP networks [123]. There-
fore, metaheuristic algorithm is still worthy of optimizing 
ANN in the future.

Table 10  Statistical results of the five hybrid metaheuristics on the 49 
problems

* Where “Better,” “Equal” and “less than” represent the number of 
problems that the performance of MBFPA is significantly better than, 
almost the same as and significantly worse than the corresponding 
algorithm, respectively

Algorithms Better Equal Less 
than

PSOGWO 48 1 0
SCSCA 38 5 6
HFPSO 37 8 4
MFPA 24 14 11
MDE-WOA 38 5 6
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Table 11  Comparative results of the proposed algorithm with PSOGWO, SCSCA, HFPSO, MFPA and MDE-WOA

No MBFPA PSOGWO SCSCA HFPSO MFPA MDE−WOA

f1 Mean 0 1464.2814 4.5172e−14 3.8625e−05 0.59529 2.5799e−81
SD 0 7292.4107 8.1704e−14 2.6278e−05 2.0744 1.3518e−80

f2 Mean 0 0.025455 4.2455e−05 0.025402 0 0.15241
SD 0 0.13912 7.2352e−05 0.13913 0 0.31004

f3 Mean 0 2,563,406,007.5963 1.5467e−07 1104.9195 2,318,419.1366 1.2469e−77
SD 0 8,609,227,641.8811 4.8979e−07 1943.4194 11,248,886.7624 6.5763e−77

f4 Mean 0 2443.0333 0 0.63333 36.9333 0
SD 0 7896.028 0 0.96431 52.8804 0

f5 Mean 1.42E− 04 5.4452 0.0014015 0.018369 0.29065 0.0008511
SD 1.23E−04 15.2685 0.0015904 0.0074209 0.18338 0.0013862

f6 Mean 0 3.3781e−07 1.014e−15 0 0 0
SD 0 1.2539e−06 3.1393e−15 0 0 0

f7 Mean 8.88E− 16 6.5056 3.0496e−08 0.55656 12.7309 2.5461e−15
SD 0 7.3602 7.0176e−08 0.72773 5.9157 2.0298e−15

f8 Mean 0 50.2158 2.8462e−14 0.011595 0.31272 0.014832
SD 0 89.8593 6.4502e−14 0.020654 0.2921 0.081237

f9 Mean 1.35E− 31 0.0021402 0.00020701 2.453e−29 1.35E− 31 0.0059975
SD 6.68E−31 0.010311 0.00031822 7.2693e−29 6.6809e−47 0.020154

f10 Mean − 4.9975 − 7.7958 − 5.8327 − 8.8304 − 8.7811 − 5.1218
SD 0.47106 1.241 0.55664 0.56524 0.44998 0.66431

f11 Mean 0 111.6577 4.5854e−13 50.3121 69.7322 0
SD 0 117.2388 2.0128e−12 18.0887 28.1146 0

f12 Mean 0 9.9146 2.0812e−08 0.015052 0.050841 2.2761e−56
SD 0 14.6743 3.1042e−08 0.014775 0.16915 8.5285e−56

f13 Mean 0 0.42966 1.317 0.020304 0 0.082758
SD 0 0.5562 2.0102 0.029206 0 0.11231

f14 Mean 2.54E + 01 80,303.3203 0.02902 35.8411 131.0716 11.9217
SD 9.20E−01 242,372.5379 0.046282 22.135 80.0088 13.9223

f15 Mean − 1 − 0.99996 − 0.99988 − 1 − 1 − 0.99868
SD 0 0.00013291 0.00012459 − 1 − 1 0.0016975

f16 Mean − 186.7309 − 186.566 − 186.1738 − 186.7309 − 186.7309 − 186.7217
SD 3.16E−05 0.62993 0.7096 1.9029e−14 1.669e−14 0.022078

f17 Mean 0 59.8604 4.4904e−09 1.0771 9.9161 50.9505
SD 0 165.8967 1.5732e−08 0.56174 7.6294 96.5749

f18 Mean 0 1.3904 1.384e−09 0.1452 2.9532 2.3125e−11
SD 0 2.4368 1.7288e−09 0.16558 0.5579 8.8309e−11

f19 Mean 0 194.7062 8.6921e−08 0.0050617 0.14495 9.8365e−55
SD 0 3.60E−03 1.3219e−07 0.0013767 0.37695 4.0815e−54

f20 Mean −  6748.059 −  6824.173 − 12,569.4711 − 7056.146 − 8035.8558 − 12,492.6458
SD 2.56E + 02 796.7108 0.026996 895.3158 757.2182 187.6248

f21 Mean 0 0.00055731 0.00037454 6.0032e−29 0 0.080391
SD 0 0.0017441 0.00042647 2.8114e−28 0 0.35879

f22 Mean 3 3.0004 3.0025 3 3 8.4122
SD 1.375E−15 0.0012608 0.0034966 3 1.3601e−15 11.0092

f23 Mean 0 3.4108e−05 7.1382e−21 2.4913e−29 9.4404e−67 1.8953e−193
SD 0 0.0001115 3.3442e−20 1.0886e−28 5.1634e−66 0

f24 Mean 0 133.1876 9.9564e−15 0.038249 1.546 1.8865e−33
SD 0 544.6846 2.0631e−14 0.022975 2.6536 1.0328e−32

f25 Mean 1.55E−03 0.14355 0.49844 0.0024393 9.4404e−67 3.8156
SD 1.61E−03 0.28952 0.44027 0.003987 2.8728e−06 5.0596
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Bold numbers represent the best values

Table 11  (continued)

No MBFPA PSOGWO SCSCA HFPSO MFPA MDE−WOA

f26 Mean − 9.60E + 00 − 7.1036 − 10.1506 − 5.7256 − 9.6434 − 8.8565
SD 1.33E + 00 3.5049 0.002894 3.5189 1.5555 2.14

f27 Mean 0.00E + 00 292.9653 6.1751e−15 5.5318e−05 0.47711 2.7192e−82
SD 0.00E + 00 929.781 1.564e−14 3.7834e−05 2.0492 1.1081e−81

f28 Mean − 824.5121 147,400.8462 − 1222.0321 − 273.5306 5181.433 − 1211.9538
SD 203.5617 295,687.4565 345.1971 4990.0141 5535.9984 252.6967

f29 Mean − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912 − 0.0037912
SD 1.76E−18 4.2949e−08 4.0209e−08 1.5152e−18 1.7644e−18 1.8722e−07

f30 Mean 4.77E−28 1.2828e−05 5.5778e−06 5.6072e−13 0 0.00022238
SD 3.61E−30 2.269e−05 7.27e−06 1.2943e−12 0 0.00047019

f31 Mean 0 0.8 0 0 0 0
SD 0 1.5844 0 0 0 0

f32 Mean 1.9229e−09 1.8528 0.0064765 0.041491 4.6792e− 26 1.0921
SD 8.5913e−09 3.7306 0.0080634 0.10125 2.4723e−25 2.2718

f33 Mean 0 1.5746 4.966e−11 6.9216e−10 3.1215e−09 1.0772
SD 0 3.6314 2.0759e−10 8.5116e−10 1.4231e−08 3.4025

f34 Mean 0.66667 51,445.1189 0.24509 1.0709 7.8827 0.43964
SD 5.062e−09 139,833.8416 0.019825 0.88246 15.7031 0.21716

f35 Mean 0.998 4.2503 1.2297 2.4441 1.0974 1.8565
SD 1.0909e−16 4.818 0.56408 2.3096 0.30331 1.3407

f36 Mean 0.39789 0.47789 0.3984 0.39789 0.39789 0.55809
SD 0 0.43691 0.00090422 0 0 0.60703

f37 Mean − 1.0316 − 1.0312 − 1.0316 − 1.0316 − 1.0316 − 1.0316
SD 6.4539e−16 0.0019509 5.963e−05 5.3761e−16 6.7752e−16 1.3244e−09

f38 Mean 0.00030749 0.0078717 0.00054909 0.0011534 0.00044668 0.00081112
SD 1.0001e−10 0.0096897 0.00036899 0.0036456 0.00032098 0.00060613

f39 Mean 0.029788 2.5086 4.0528 0.04551 0.010766 11.36
SD 0.086304 6.0719 3.6243 0.092229 0.030062 13.1579

f40 Mean − 3.8628 − 3.8617 − 3.8314 − 3.8628 − 3.8628 − 3.8063
SD 2.6543e−15 0.0026512 0.054714 2.3134e−15 2.7101e−15 0.062821

f41 Mean − 3.3018 − 3.1873 − 3.1687 − 3.2906 − 3.2906 − 3.0761
SD 0.044744 0.12287 0.095615 0.053616 0.053616 0.16108

f42 Mean 0.00019444 49.2069 0.00030119 0.036728 10.1681 0.0025115
SD 0.00045217 104.5129 0.00051898 0.074892 7.8628 0.0026091

f43 Mean 1.5041 169.8461 0.00083634 0.0062672 52.9936 0.038273
SD 1.1085 397.1979 0.001669 0.023855 47.253 0.089644

f44 Mean − 1.0809 − 1.0764 − 1.0806 − 1.0584 − 1.0809 − 1.0674
SD 4.5168e−16 0.024704 0.00042078 0.051289 4.5168e−16 0.041287

f45 Mean − 1.3128 − 1.0793 − 0.70596 − 1.1734 − 0.93253 − 0.4832
SD 0.26942 0.39449 0.30924 0.32426 0.37825 0.26011

f46 Mean − 0.59898 − 0.38605 − 0.10057 − 0.70214 0.37825 − 0.024302
SD 0.28994 0.33593 0.10439 0.34045 0.20139 0.049538

f47 Mean 8.3234e−23 0.33593 0.58226 23.5098 0 23.5098
SD 3.2682e−22 178.933 0.75704 128.7687 0 128.7687

f48 Mean 49.3012 1423.275 2236.2919 1122.6836 20.7998 2517.5172
SD 89.2502 4132.7971 4922.6359 1374.7564 56.1376 3962.3547

f49 Mean 1841.1397 6962.7044 41,083.4969 5948.7012 703.3272 50,101.3955
SD 2051.3933 8749.0243 39,585.1198 12,301.3318 1030.9211 26,026.7566
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Table 12  Results of the p-value 
benchmark functions

Bold numbers represent the p > 0.05

No MBFPA VS
PSOGWO

MBFPA VS
SCCSA

MBFPA VS
HFPSO

MBFPA VS
MFPA

MBFPA VS
MDE−WOA

1 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
2 1.7203E−12 1.7203E−12 2.69685E−12 0.333710696 1.72025E−12
3 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
4 5.83738E−09 1 6.13278E−05 1.20487E−12 1
5 3.0199E−11 3.83067E−05 3.0199E−11 3.0199E−11 0.239849991
6 0.005584312 0.000313354 1.00 1.00 1
7 1.2118E−12 1.2118E−12 1.2118E−12 1.2118E−12 5.80026E−05
8 1.2118E−12 1.30408E−07 1.2118E−12 1.2118E−12 0.333710696
9 1.21178E−12 1.2118E−12 1.69435E−08 1 1.21178E−12
10 0.051877131 3.01986E−11 0.000189162 0.001236185 3.01986E−11
11 1.2117E−12 0.021577192 1.211E−12 1.210E−12 1
12 1.2117E−12 1.211E−12 1.211E−12 1.211E−12 1.21178E−12
13 1.27173E−05 0.000145517 6.60964E−05 1 2.93429E−05
14 7.38908E−11 3.01986E−11 1.09069E−05 5.57265E−10 0.185766856
15 1.21178E−12 1.2118E−12 1.00 1 1.21178E−12
16 9.06321E−08 3.01986E−11 1.01242E−10 3.18271E−11 4.4205E−06
17 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
18 1.21178E−12 1.21178E−12 1.2117E−12 1.2117E−12 1.21178E−12
19 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
20 0.162375022 3.01986E−11 0.529782491 4.35308E−05 3.01797E−11
21 1.21178E−12 1.2118E−12 1.26686E−05 1 1.21178E−12
22 1.92421E−11 1.9242E−11 0.033375869 0.033941098 1.92421E−11
23 1.21178E−12 1.21178E−12 4.57359E−12 1.21178E−12 1.21178E−12
24 1.2117E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
25 6.01039E−08 3.01986E−11 0.501143668 5.49405E−11 3.01986E−11
26 1.79266E−10 2.27167E−09 5.50767E−06 0.008235911 7.90834E−10
27 1.21178E−12 1.2117E−12 1.2117E−12 1.2117E−12 1.21178E−12
28 7.11859E−09 0.000140669 0.510597937 1.72941E−07 2.43271E−05
29 1.21178E−12 1.21178E−12 5.1893E−07 1 1.21178E−12
30 3.00663E−11 3.0047E−11 3.0047E−11 3.0047E−11 3.00663E−11
31 0.00557794 1 1 1 1
32 3.01986E−11 3.01986E−11 3.01986E−11 2.24487E−11 3.01986E−11
33 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12 1.21178E−12
34 3.01986E−11 3.01986E−11 3.01986E−11 3.01986E−11 0.077271976
35 7.57407E−12 7.57407E−12 2.52423E−06 0.45517435 7.57407E−12
36 1.21178E−12 1.21178E−12 1 1 1.21178E−12
37 5.14363E−12 5.14363E−12 0.000101743 0.021419179 5.14363E−12
38 3.0123E−11 3.0123E−11 3.0123E−11 0.002035545 3.0123E−11
39 9.83289E−08 6.69552E−11 0.706171488 8.84109E−07 4.97517E−11
40 4.08059E−12 4.08059E−12 8.2176E−08 0.04177393 4.08059E−12
41 5.57217E−07 9.91325E−09 0.252190204 0.441038361 3.05844E−10
42 1.38525E−06 0.270705338 0.270705338 3.01986E−11 1.8731E−07
43 0.222572896 3.01986E−11 3.01986E−11 3.35195E−08 6.06576E−11
44 1.21178E−12 1.21178E−12 1.19448E−13 1 1.21178E−12
45 2.42892E−05 1.40656E−09 0.869757328 0.002242796 6.67125E−11
46 0.000421751 8.15274E−11 0.102326268 0.007286735 3.01986E−11
47 1.44305E−11 1.44305E−11 0.47840956 0.000313354 1.44305E−11
48 1.63506E−05 2.43863E−09 2.20308E−05 0.007617064 1.42942E−08
49 0.011710684 8.15274E−11 0.395267011 0.016954881 4.50432E−11
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In practical engineering applications, such as product 
design, wing design, investment allocation, urban plan-
ning and other issues, they have more than one single goal, 
and they need to meet a large number of constraints at the 

same time. In addition, these problems have many decision 
variables, which are regarded as large-scale optimization 
problems. Currently, most of the existing metaheuristic 
algorithms proposed either require thousands of expensive 
exact function evaluations to obtain acceptable solutions or 
focus on solving low-dimensional and expensive optimiza-
tion problems [127]. This greatly limits the application space 
of metaheuristic algorithm and seriously affects the perfor-
mance and efficiency of the algorithm. However, the rise of 
surrogate-assisted metaheuristic algorithms (SAEAs) offers 
possibilities to solve this problem. The main parts of SAEAs 
are the surrogates and the evolutionary optimizer. SAEAs 
use proxy surrogates to reduce the amount of computation 
brought by the fitness evaluation in the iterative process 
[128]. In the future development process of metaheuristic 
algorithms, surrogate-assisted metaheuristic algorithms will 
become more and more worthy of attention.

Table 13  Friedman rank test 
for the mean performances 
obtained (for f1–f49 functions)

Algorithms Mean–rank Rank

MBFPA 1.94 1
PSOGWO 5.13 4
SCCSA 3.38 7
HFPSO 3.41 5
MFPA 3.22 2
MDE-WOA 3.92 3

Fig. 14  Convergence graph for Leon function

Fig. 15  Convergence graph for Zakharov function

Fig. 16  Convergence graph for Sphere function

Fig. 17  Convergence graph for Step function
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Finally, we hope that this paper will inspire researchers 
in metaheuristics and optimization field.
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Appendix A

A.1. Three‑bar truss design

Minimize f (x) = (2
√

2x1 + x2) × l.
Subject to g1(x) =

√

2x1 + x2∕
√

2x2
1
+ 2x1x2P − � ≤ 0;

g2(x) = x2∕
√

2x2
1
+ 2x1x2P − � ≤ 0;

g3(x) = 1∕
√

2x2 + x1P − � ≤ 0;

Table 14  Advantages and disadvantages of the MBFPA

Advantages Disadvantages

The proposed algorithm has the advantages of BOA and FPA;
Avoid premature convergence, strong global search capability, fast conver-

gence speed and high optimization precision

Long running time
The mutualism stage of sequential execution may lead to further 

declines in positions that are already locally optimal

Table 15  Brief description of 
engineering design features 
(F/S: the proportion of feasible 
solutions)

No Problems name Dim Continuous 
design vari-
ables

Discrete 
design vari-
ables

Number of 
constraints

Active 
con-
straints

F/S Objective

1 Three-bar truss 2 2 0 3 N/A N/A Minimize weight
2 Multi-plate 

disc clutch 
brake

5 0 5 8 1 0.7 Minimize weight

3 Pressure vessel 4 2 2 4 2 0.4 Minimize cost
4 Welded beam 4 4 0 7 2 0.035 Minimize cost
5 Speed reducer 7 6 1 11 3 0.004 Minimize weight

Fig. 18  Convergence graph for Bohachevsky function

Table 16  Comparison of results 
for three-bar truss design 
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithm x1 (A1)  x2 (A2) Optimal weight

MBFPA 0.788675132828 0.408248295461 263.895843376
DEDS [85] 0.78867513 0.40824828 263.8958434
MVO [23] 0.78860276 0.408453070000000 263.8958499
GOA [86] 0.788897555578973 0.407619570115153 263.895881496069
MFO [87] 0.788244771 0.409466905784741 263.8959797
PSO–DE [88] 0.7886751 0.4082482 263.8958433
SSA [89] 0.788665414 0.408275784444547 263.8958434
MBA [90]
WCA [91]

0.7885650
0.788651

0.4085597
0.408316

263.8958522
263.895843
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Variable range 0 ≤ x1, x2 ≤ 1.
where l = 100 cm; P = 2 kN∕cm2;r = 2 kN∕cm2.

A.2. Multi‑plate disc clutch brake design problem

Minimize f (x) = �(x2
2
− x2

1
)x3(x5 + 1)�.

Subject to:
g1(x) = x2 − x1 − ΔR ≥ 0 , 

g2(x) = Lmax − (x5 + 1)(x3 + �) ≥ 0

g3(x) = Pmax − Prz ≥ 0 , g4(x) = Pmaxvsrmax − Przvsr ≥ 0

g5(x) = vsrmax − vsr ≥ 0 , g6(x) = Tmax − T ≥ 0

g7(x) = Mh − sMs ≥ 0 , g8(x) = T ≥ 0

where Mh =
2

3
�x4x5

x3
2
−x3

1

x2
2
−x2

1

, w =
�n

30
rad∕s , 

A = �(x2
2
− x2

1
)mm2,

Prz =
x4

A
N∕mm2, Vsr =

�Rsrn

30
mm∕s , Rsr =

2

3

x3
2
−x3

1

x2
2
x2
1

mm

T =
Iz�n

30(Mh+Mf )
 mm, Δr = 20mm, Lmax = 30mm,� = 0.6

Tmax = 15s,� = 0.5, s = 1.5,Ms = 40Nm,

pmax = 1Mpa, � = 0.0000078 kg∕mm3 , 
vsrmax = 10m∕s, � = 0.5mm, s = 1.5

Tmax = 15s, n = 250 rpm, Iz = 55kgm2 , 
Ms = 40Nm, Mf = 3Nm

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,

60 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9,i = 1, 2, 3, 4, 5.

A.3. Pressure vessel design problem

Consider x = [x1, x2, x3, x4] = [Ts, Th,R, L].
Minimize 

f (x) = 0.6224x1x3x4 + 1.7781x2x
3
2
+ 3.1661x2

1
x4 + 19.84x2

1
x3.

Subject to:
g1(x) = −x1 + 0.0193x3 ≤ 0,  

g2(x) = −x3 + 0.00954z3 ≤ 0

g3(x) = −�x2
3
x4 −

4

3
�x3

3
+ 1, 296, 000 ≤ 0, 

g4(x) = x4 − 240 ≤ 0

Variable range 0 ≤ x1, x2 ≤ 99 ; 0 ≤ x3, x4 ≤ 200.

A.4. Welded beam design problem

Consider Z = [z1, z2, z3, z4] = [h, l, t, b].
Minimize f (Z) = 1.10471z2

1
z2 + 0.04811z3z4(14.0 + z2).

Subject to
g1(Z) = �(Z) - �max ≤ 0, 

g2(Z) = �(Z) − �max ≤ 0, 
g3(Z) = �(Z) − �max ≤ 0

g4(Z) = z1 − z4 ≤ 0, 
g5(Z) = P − Pc(Z) ≤ 0, 
g6(Z) = 0.125 − z1 ≤ 0

g7(Z) = 1.10471z2
1
+ 0.04811z3z4(14.0 + z2) − 5.0 ≤ 0

Fig. 19  Convergence graph for Griewank function

Table 17  Comparison of results 
for multi-plate disc clutch brake 
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithm ri(× 1) r0(× 2) t(× 3) F(× 4) Z(× 5) Optimal Cost

MBFPA 70 90 1 600 2 0.235242457900804
HHO [11] 69.9999999992493 90 1 1000 3 0.259768993
TLBO [30] 70 90 1 810 3 0.313656
WCA [91] 70 90 1 910 3 0.313656
PVS [92] 70 90 1 980 3 0.31366

Fig. 20  Convergence graph for Schaffer function
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Variable range 0.05 ≤ z1 ≤ 2.00,0.25 ≤ z2 ≤ 1.30 , 
2.00 ≤ z3 ≤ 15.0

where �(Z) =
�

��2 + 2�����
z2

2R
+ ���2, �� =

P
√

2z1z2

,

��� =
MR

J
,M = P(L +

z2

2
)

R =

�

z2
2

4
+ (

z1+z3

2
)2, J = 2

�
√

2z1z2

�

z2
2

12
+ (

z1+z3

2
)2
��

�(Z) =
6PL

z4z
2
3

, �(Z) =
4PL3

Ez3
3
z4
,Pc(Z) =

4.013E

√

z2
3
z6
4

36

L2

(

1 −
z3

2L

√

E

4G

)

P = 6000lb, L = 14in,E = 30 × 106psi,G = 12 × 106psi.

A.5. Speed reducer

Minimize f (x) = 0.785x1x
2
2
(3.333x2

3
+ 14.9334x3 − 42.0934)

Subject to
g1(X) =

27

x1x
2
2
x3
− 1 ≤ 0 , g2(X) =

397.5

x1x2x
2
3

− 1 ≤ 0

g3(X) =
1.93x3

4

x1x3x
4
6

− 1 ≤ 0,g4(X) =
1.93x3

4

x1x3x
4
7

− 1 ≤ 0

g5(X) =
1

110x3
6

√

(
745x4

x2x3
)2 + 16.9 × 106 − 1 ≤ 0 

g6(X) =
1

85x3
7

√

(
745x4

x2x3
)2 + 157.5 × 106 − 1 ≤ 0

−1.508x1(x
2
6
+ x2

7
) + 7.4777x1(x

3
6
+ x3

7
) + 1.508x1(x4x

2
6
+ x5x

2
7
)

Table 18  Comparison of results 
for pressure vessel design 
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithms Ts(× 1) Th(× 2) R(× 3) L(× 4) Optimal cost

MBFPA 0.77816864137 0.38464916262 40.319618724 200.0 5885.3327736
HHO [11] 0.81758383 0.4072927 42.09174576 176.7196352 6000.46259
GWO [9] 0.812500 0.434500 42.089181 176.758731 6051.5639
GA [49, 93] 0.812500 0.437500 42.097398 176.654050 6059.9463
HPSO [44, 94] 0.812500 0.437500 42.0984 176.6366 6059.7143
GQPSO [50, 95] 0.812500 0.437500 42.0984 176.6372 6059.7208
WEO [51, 96] 0.812500 0.437500 42.098444 176.636622 6059.71
BA [52, 97] 0.812500 0.437500 42.098445 176.636595 6059.7143
MFO [87] 0.8125 0.437500 42.098445 176.636596 6059.7143
CPSO [98] 0.812500 0.437500 42.091266 176.746500 6061.0777
BIANCA [99] 0.812500 0.437500 42.096800 176.65800 6059.9384
MDDE [55, 100] 0.812500 0.437500 42.0968446 176.636047 6059.701660
WOA [10] 0.812500 0.437500 42.0982699 176.638998 6059.7410

Fig. 21  Convergence graph for Matyas function

Table 19  Comparison of 
results for welded beam design 
problem

Bold values are represent MBPFA algorithm can get high-precision results

Algorithms h(× 1) l(× 2) t(× 3) b(× 4) Optimal cost

MBFPA 0.205730 3.470473 9.036623 0.205729 1.72485185
HHO [11] 0.204039 3.531061 9.027463 0.206147 1.73199057
SBO [101] 0.21421 3.49240 8.55771 0.22945 1.8496
RANDOM [102] 0.4575 4.7313 5.0853 0.66 4.1185
SIMPLEX [102] 0.2792 5.6256 7.7512 0.2796 2.5307
APPROX [102] 0.2444 6.2189 8.2915 0.2444 2.3815
GSA [21] 0.182129 3.856979 10 0.202376 1.879952
HS [103] 0.2442 6.2231 8.2915 0.2443 2.3807
CDE [104] 0.203137 3.542998 9.033498 0.206179 1.733462



3694 Engineering with Computers (2021) 37:3665–3698

1 3

g7(X) =
x2x3

40
− 1 ≤ 0 , g8(X) =

5x2

x1
− 1 ≤ 0 , 

g9(X) =
x1

12x2
− 1 ≤ 0

g10(X) =
1.5x6+1.9

x4
− 1 ≤ 0 , g11(X) =

1.1x7+1.9

x5
− 1 ≤ 0.

w h e r e  2.6 ≤ x1 ≤ 3.6,0.7 ≤ x2 ≤ 0.8,17 ≤ x3 ≤ 28,

7.3 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3,2.9 ≤ x6 ≤ 3.9,5.0 ≤ x7 ≤ 5.5.

Fig. 22  Convergence graph for Branin function

Fig. 23  Convergence graph for Kowalik function

Fig. 24  Three-bar truss design problem

Fig. 25  Multi-plate disc clutch brake problem [30]

Fig. 26  Pressure vessel design problem [92]

Fig. 27  Welded beam design problem [90]

Fig. 28  Speed reducer [90]
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