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Abstract
The present study is dealt with the applicability of shifted Chebyshev polynomial-based Rayleigh–Ritz method and Navier’s 
technique on free vibration of functionally graded (FG) beam with uniformly distributed porosity along the thickness of 
the beam. The material properties such as Young’s modulus, mass density, and Poisson’s ratio are also considered to vary 
along the thickness of the FG beam as per the power-law exponent model. The porous FG beam is embedded in an elastic 
substrate; namely, the Kerr elastic foundation and the displacement field of the beam are governed by a refined higher-order 
shear deformation theory. The effectiveness of the Rayleigh–Ritz method is due to the use of the shifted Chebyshev polyno-
mials as a shape function. The orthogonality of shifted Chebyshev polynomial makes the technique more computationally 
efficient and avoid ill-conditioning for the higher number of terms of the polynomial. Hinged–hinged, clamped–hinged, 
clamped–clamped, and clamped-free boundary conditions have been taken into account for the parametric study. Validation 
of the present model is examined by comparing it with the existing literature in special cases showing remarkable agree-
ment. A pointwise convergence study is also carried out for shifted Chebyshev polynomial-based Rayleigh–Ritz method, and 
the effect of power-law exponent, porosity volume fraction index, and elastic foundation on natural frequencies is studied 
comprehensively.
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1  Introduction

Over the years, functionally graded materials (FGMs) as 
new engineering materials have drawn the attention of many 
researchers. The primary purpose of making and expand-
ing these materials is to increase the efficiency and differ-
ent structural components and to control unwanted stresses 

and strains. Suitable properties of functional materials such 
as high strength, low weight, and appropriate resistance to 
chemical conditions and high temperatures have led to the 
development of the use of these materials in various fields. 
In these materials, the properties of each point are defined by 
a proper mixing law as a function of the component proper-
ties and their volume fraction at each point. Graded materi-
als are mainly used in a combination of metal and ceramics. 
In recent years, the use of FGMs in high-temperature envi-
ronments such as nuclear reactors, chemical plants and in 
the manufacture of high-speed vessels has become increas-
ingly important. Also, a member with a metal-ceramic cross 
section has a higher bearing capacity than a material made 
of only a single metal or ceramic member and also with a 
larger cross-sectional area. Most engineers today are look-
ing for efficient methods to help them reduce the weight of 
the structure. As a result, by combining different materials 
on a functional scale, the bearing capacity can be substan-
tially increased, and the weight of the structure reduced at 
the same time. This is very important in terms of economic 
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savings. In this study, we will analyze the vibrational analy-
sis of local beam made of functionally graded materials.

Analysis of the natural frequency of the beam made of 
FGMs has a very much publication in engineering and aca-
demic research. In the literature, Sina et al. [1] considered 
a first-order shear deformation beam approach in combi-
nation with an analytical method to study vibrations of an 
FGM beam. Ke et al. [2] analyzed FGM beams based on 
nonlinear vibration studies using an analytical examination. 
They utilized the classical beam hypothesis and solved the 
achieved constitutive equation for three different boundary 
condition cases, namely hinged–hinged, fixed–hinged, and 
fixed–fixed. Hein and Feklistova [3] assumed FGM beams 
with the non-uniform geometrical section in a vibrational sit-
uation and a variety of edge conditions. They employed the 
Euler–Bernoulli beam model and solved their obtained rela-
tions with Haar wavelets numerical technique. Shooshtari 
and Rafiee [4] modeled nonlinear frequencies of an FGM 
beam with fixed edge conditions based on the outer excita-
tions. The classical beam theory, in conjunction with the 
Galerkin solution method, gave numerical outcomes. Wat-
tanasakulpong et al. [5] studied the thermal effects on an 
FGM beam besides resonant vibrations on the basis of a 
third-order shear deformation beam approach and solved 
the harvested vibrational relation based on the Ritz vari-
ational technique. In another work, Wattanasakulpong et al. 
[6], this time, employed experimental validation to compare 
with the numerical results of vibrations of an FGM beam 
with assuming the beam as a laminated composite as well. 
The used beam model in their theoretical part was a higher-
order shear deformation one, and the obtained characteristic 
relation was solved with the Ritz method. They also applied 
various models of edge conditions and got good approval 
from their experiment with just 10 percent discrepancies 
between theoretical and experiments sections averaged for 
all boundary conditions. Thai and Vo [7] developed vibra-
tion analysis of FGM beams for different higher-order beam 
models. The constitutive equation of vibration was solved 
analytically, and the natural frequencies were computed 
using the Navier approach. Fallah and Aghdam [8] embed-
ded an FGM beam with several edge conditions on a non-
linear elastic substrate and studied the vibrational response 
of the modeled system based on the temperature variations 
of the environment. The influences of the foundation were 
assumed as a linear transverse effect, shear, and nonlinear 
transverse impact. Pradhan and Chakraverty [9] investigated 
an FGM beam based on both classical and Timoshenko 
models and calculated the natural frequencies utilizing the 
Rayleigh–Ritz solution technique. Rahimi et al. [10] evalu-
ated the response of an FGM beam to the vibrational condi-
tion based on the first-order shear deformation beam theory. 
The achieved governing equations were solved by imposing 
fixed and hinged edge conditions in accurate modal analysis. 

Vo et al. [11] numerically analyzed a sandwich FGM beam 
in both stability and vibrational states with the help of a 
higher-order shear deformation beam model. The numerical 
results were captured by applying various boundary condi-
tions based on the finite element method. Kanani et al. [12] 
studied the effects of a nonlinear elastic matrix on an FGM 
beam placed in a vibrational state with considering large 
amplitudes. The characteristic relation was derived based 
on the classical beam approach and solved by a variational 
iteration technique. There also many published works on the 
FGM beams in various conditions, considering new defor-
mation beam models [13], using dynamic stiffness solution 
technique [14], a two-parameter elastic medium [15], and 
geometrical non-uniformity as well [16]. Chen et al. [17], in 
a diverse study, investigated an FGM beam with some poros-
ity imperfections. The constitutive relation was derived in 
the framework of the Timoshenko beam model, and the Ritz 
trial function helped them to compute excited frequencies. 
They evaluated two kinds of porosity and confirmed that 
the type of porosity affects fundamentally the frequencies. 
Jing et al. [18] combined the Timoshenko beam theory with 
finite element formulation to extract natural frequencies of 
an FGM beam. They considered three kinds of shear correc-
tions factors to modify and refine the shear stresses along the 
thickness. Sedighi et al. [19–21] promoted various analytical 
approaches such as homotopy perturbation method with an 
auxiliary term, max–min approach (MMA), and iteration 
perturbation method (IPM) to study dynamical characteris-
tics of structural elements. Esmaeili and Tadi Beni [22] ana-
lyzed dynamical characteristics of flexoelectric nanobeam 
composed of functionally graded materials.

Karami et al. [23] employed generalized DQM to inves-
tigate free vibration characteristics of two-dimensional 
FG tampered nanobeam exposed to thermal environment 
based on Timoshenko beam theory, while size-dependent 
behavior was captured by non-local strain gradient model. 
Again, Karami et al. [24] studied guided wave propagation 
of clamped–clamped FG nanoplate with porosity by utiliz-
ing the first-order shear deformation theory and non-local 
elasticity theory. In the pioneering works, She et al. studied 
nonlinear bending behavior [25] of curved nanotubes made 
up of FG porous material, while thermal snap-buckling 
[26] was carried out by using uniform temperature distri-
butions across the thickness. Free vibration of FG porous 
nanoplate exposed to hygrothermal environment embed-
ded in Kerr elastic foundation was studied by Karami et al. 
[27]. In the work [28], resonance behavior of Kirchhoff 
nanoplate made up of 3D-FG materials was analyzed by 
using Navier’s method and incorporating bi-Helmholtz non-
local strain gradient theory. Karami et al. [29] employed 
second-order shear deformation theory in combination with 
non-local strain gradient model to study wave propagation 
analysis of FG porous nanoplate subjected to thermal and 
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magnetic environment embedded in Winkler–Pasternak 
elastic foundation. Karami and Janghorban [30] utilized 
G-DQM to analyze free vibration of porous nanotube based 
on Timoshenko beam theory. The size-dependent behav-
ior was studied by non-local strain gradient model, while 
the porosity of the nanotube was evenly distributed which 
was governed by modified power-law rule. Alimirzaei et al. 
[31] used finite element method to study static and dynamic 
analyses of viscoelastic micro-composite beam having geo-
metrical imperfection. The microstructural effect was han-
dled by the modified coupled stress theory. Karami et al. [32] 
used Galerkin’s approach to investigate buckling behavior 
of functional graded nanoplate using non-local strain gradi-
ent theory. Tounsi et al. [33] investigated static behavior of 
advanced functionally graded (AFG) ceramic-metal plates 
exposed to a nonlinear hygrothermo-mechanical load using 
a four-variable trigonometric integral shear deformation 
model placed in a two-parameter elastic foundation. Addou 
et al. [34] comprehensively studied the influence of differ-
ent types of porosities on coupled vibration response of 
FG plates embedded in different types of elastic substrates 
using a quasi 3D HSDT. Chaabane et al. [35] analytically 
investigated the static and dynamic analyses of functionally 
graded beams resting on Winkler–Pasternak elastic foun-
dation using hyperbolic shear deformation theory. Some 
other studies related to FG structures embedded in elastic 
foundations are discussed in [36, 37]. Kaddari et al. [38] 
used a quasi-3D model to investigate bending and free vibra-
tion of functionally graded plates having porosity. Bourada 
et al. [39] utilized a trigonometric deformation theory to 
investigate vibrational behavior of FG beam considering per-
fect and porosity condition for simply supported edge sup-
port. Khiloun et al. [40] analytically investigated static and 
dynamic analyses of FG plates using high-order shear and 
normal deformation theory. Bousahla et al. [41] used a novel 
integral first-order shear deformation theory to investigate 
the buckling and vibrational characteristics of the composite 
beam armed with single-walled carbon nanotubes resting 
on elastic foundation of Winkler–Pasternak type. Boussoula 
et al. [42] employed nth-order shear deformation theory to 
investigate the thermo-mechanical flexural behavior of sand-
wich plates composed of functionally graded material.

Paul and Das [43], in a new work, modeled pre-stresses 
into an FGM beam by taking the Timoshenko beam theory. 
They considered large deflections for various classic edge 
conditions. They, first, analyzed statically the problem and 
then studied the model dynamically with keeping the static 
stresses as pre-stressed in the beam. Wang and Li [44] dis-
cussed the vibration of an FGM beam based on the Levin-
son beam model. The simple–simple boundary conditions 
were gained by an approximate solution technique, and the 
accurate results were obtained in terms of natural frequen-
cies by the aforementioned beam model. The finite element 

method, in conjunction with the first-order theory of shear 
deformation, was employed to attain natural frequencies 
of an FGM beam by Kahya and Turan [45]. Nguyen et al. 
[46] investigated the excited vibrational state of an FGM 
Timoshenko beam based on the two-directional functional-
ity. Deng et al. [47] presented a double-FGM Timoshenko 
beams system with assuming the Winkler–Pasternak elastic 
matrix. The frequencies of this system were shown on the 
basis of the dynamics stiffness solution method for a variety 
of edge conditions. Celebi et al. [48] derived a complemen-
tary function method to study the natural frequencies of a 
hinged–hinged beam. Sinir et al. [49] studied nonlinearly 
excited and natural frequencies of an FGM Euler–Bernoulli 
beam model with considering a non-uniform cross section. 
Differential quadrature method was associated to discretize 
the frequency equation, and an eigenvalue solution made the 
results graphically. Banerjee and Ananthapuvirajah [50] in 
the framework of the dynamic stiffness method investigated 
the free vibration of an FGM classical beam. Karamanli [51] 
assumed bi-directional functionality for an FGM beam and 
presented natural frequencies of the beam for several bound-
ary conditions based on a third-order of shear deformation 
theory. Fazzolari [52] examined three different higher-order 
shear deformation theories, namely trigonometric, polyno-
mial, and exponential models, to investigate a laminated 
sandwich FGM beam. The porosity was taken into consid-
eration as two types, and finally, the characteristic equation 
of vibration was solved on the basis of the Ritz solution 
approach. Cao and Gao [53] used an asymptotic develop-
ment method to present natural frequencies of an FGM beam 
with taking non-uniformly geometry into account. The basic 
model of the beam, namely Euler–Bernoulli, was utilized, 
and a perturbation technique showed the numerical results.

As can be seen from the above literature, there is huge 
number of research to investigate the vibrational behavior 
of functionally graded porous beam, but only a few have 
employed higher-order shear deformation theory to examine 
the vibration characteristic of these materials. The porous 
FG beam is embedded in the Kerr elastic foundation, and 
the displacement field of the beam is governed by a refined 
higher-order shear deformation theory (RHSDT). Several 
classical boundary conditions such as HH, CH, CC, and CF 
boundary conditions have been taken into account by using 
the shifted Chebyshev polynomials Rayleigh–Ritz method. 
The advantage of the shifted Chebyshev polynomials is due 
to the orthogonal properties that makes the technique more 
computationally efficient by avoiding ill-conditioning for the 
higher number of terms of the polynomial. The results of this 
numerical method are also validated with the results of the 
Navier’s method for HH edge support. Further, a paramet-
ric study is also conducted to analyze the effects of various 
parameters such as power-law exponent, porosity volume 
fraction index, and elastic foundation on natural frequencies.
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2 � Mathematical formulation 
of the proposed model

A functionally graded beam consisting of ceramic and metal 
components, having a length (L) , breadth (b) , and thickness 
(h) , is considered in this study. It is assumed that the material 
composition at the top surface (z = h∕2) is ceramic-rich and 
consistently varies to the metal-rich surface at the bottom 
(z = −h∕2) . In this analysis, the FG beam is presumed to 
have even porosity distribution with porosity volume frac-
tion �(𝜓 << 1) , scattering equally throughout the metal and 
ceramic constituents, as illustrated in Fig. 1.

So, the modified rule of the mixture is stated as [54–56]

Here, Pc , Vc and Pm , Vm are the material properties and 
volume fractions of the ceramic and metal components, 
respectively.

The volume fractions of the ceramic and metal constitu-
ents are given by [54–56]

where k is the nonnegative parameter that determines the 
distribution of material all across the thickness of the beam, 
namely power-law exponent, and z is the distance from the 
mid-plane of the FG beam. Combining Eqs. (1), (2), and (3), 

(1)P = PcVc + PmVm −
�

2

(
Pc + Pm

)

(2)Vc =
(
z

h
+

1

2

)k

(3)Vm = 1 −
(
z

h
+

1

2

)k

the material properties of the FG beam with porosity can be 
expressed as [54–56]

Therefore, Young’s modulus E(z) , material density �(z) , 
and Poisson’s ratio of the FG beam can be represented 
graphically as shown in Figs. 2, 3 and 4 and mathematically 
as [54–56]

According to the refined higher-order shear deformation 
theory, the displacement field can be represented as [7, 57, 
58]

where u , wb , and ws are the axial displacement, bending, and 
shear components of transverse displacement on the mid-
plane of the FG beam, respectively.
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Fig. 1   a Schematic representation of a rectangular FGM beam that rested on the Kerr elastic foundation in 3D, b schematic representation of the 
rectangular cross section of the FGM beam with evenly distributed porosity
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The normal and shear strains of the FG beam for this 
beam theory are stated as

(7)

�xx =
�u1(x, z, t)

�x
=

�u

�x
− z

(
�2wb

�x2
+

�2ws

�x2

)
+
(
h
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)
sin

(
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h
z
)�2ws

�x2

(8)�xz =
�u1(x, z, t)

�z
+

�u3(x, z, t)

�x
= cos

(
�

h
z
)�ws

�x

Considering that the material constituents of the FG beam 
comply with the generalized Hooke’s law, the stress com-
ponents yield [9]

(9)�xx = Q11�xx =

(
E(z)

1 − �(z)2

)
�xx

(10)�xz = Q55�xz =

(
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2(1 + �(z))

)
�xz

Fig. 2   Power-law variation of 
Young’s modulus
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mass density
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2.1 � Formulation of governing equations 
for Rayleigh–Ritz method

The strain energy 
(
Se
)
 of the proposed model can be 

expressed as

(11)

Se =
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h
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The kinetic energy 
(
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)
 can be stated as

Fig. 4   Power-law variation of 
Poisson’s ratio
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where 
(
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The external work done 
(
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)
 by the Kerr foundation can 

be expressed as [55, 59]
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where U(x) , Wb(x) , and Ws(x) are the amplitudes of axial 
displacement, bending and shear components of transverse 
displacement, respectively, and � denotes the natural fre-
quency of the proposed model.

Utilizing Eq. (14) into Eqs. (11), (12), and (13), the maxi-
mum strain energy 

(
SMax
e

)
 , kinetic energy 

(
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e

)
 , and work 

done by Kerr foundation 
(
WMax

e

)
 can be portrayed as

(14)
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Here, ks , ku , and kl are shear, upper, and lower layers elas-
tic parameters of the Kerr foundation, respectively.

Assuming the motion of the FG beam as sinusoidal, the 
displacement components can be represented as [9]

•	 By removing the upper spring, the Kerr foundation will 
be changed into Winkler–Pasternak foundation and the 
maximum work done by the Winkler–Pasternak founda-
tion can be stated as
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�
U
dWb

dx

�
+ I2

�
dWb

dx

�2

−2J1

�
U
dWs

dx

�
+ 2J2

�
dWb

dx

��
dWs

dx

�
+ K2

�
dWs

dx

�2

⎤
⎥⎥⎥⎥⎦
dx

(17)WMax
e

= −
1

2

L

∫
0

[(
kukl

ku + kl

)(
Wb +Ws

)2
+

(
ksku

ku + kl

)(
d

dx

(
Wb +Ws

))2
]
dx
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(18)

WMax
e

= −
1

2

L

∫
0

[(
kl
)(
Wb +Ws

)2
+
(
ks
)( d

dx

(
Wb +Ws

))2
]
dx

Likewise, the variation in kinetic energy 
(
�Ke

)
 can be 

expressed as

•	 Likewise, if the upper spring and shear layer will be 
removed from the Kerr foundation, the model will be con-
verted into Winkler elastic foundation and the maximum 
work done by the Winkler foundation can be modified as

2.2 � Formulation of governing equations for Navier’s 
method

The variation in strain energy 
(
�Se

)
 can be represented as

Here, 
(
N,Mb,Ms

)
= ∫

A

(
1, z, fe

)
�xxdA , Q = ∫

A

g�xzdA , 

fe = z −
(

h

�

)
sin

(
�

h
z
)
 , and g = cos

(
�

h
z
)

(19)WMax
e

= −
1

2

L

∫
0

[(
kl
)(
Wb +Ws

)2]
dx

(20)

�Se =
1

2

L

∫
0

∫
A

(
�xx��xx + �xz��xz

)
dAdx

=
1

2

L

∫
0

∫
A

[
�xx

(
��u

�x
− z

�2�wb

�x2
− fe

�2�ws

�x2

)
+ �xz

(
g
��ws

�x

)]
dAdx

=
1

2

L

∫
0

[(
N
��u

�x
−Mb

�2�wb

�x2
−Ms

�2�ws

�x2
+ Q

��ws

�x

)]
dx

=
1

2

L

∫
0

[(
−
�N

�x
�u −

�2Mb

�x2
�wb −

�2Ms

�x2
�ws −

�Q

�x
�ws

)]
dx

where 
(
I0, I1, I2, J1, J2,K2

)
= ∫

A

�(z)
(
1, z, z2, fe, zfe, f

2
e

)
dA , 

where fe = z −
(

h

�

)
sin

(
�

h
z
)
.

The variation in external work done 
(
�We

)
 can be por-

trayed as [55, 59]

(21)

�Ke =

L

∫
0

∫
A

�(z)

��
�u1

�t

��
��u1

�t

�
+

�
�u2

�t

��
��u2

�t

�
+

�
�u3

�t

��
��u3

�t

��
dAdx

=

L

∫
0

∫
A

�(z)

�
−

�
�2u1

�t2

�
�u1 −

�
�2u2

�t2

�
�u2 −

�
�2u3

�t2

�
�u3

�
dAdx

=

L

∫
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
−I0

�2u

�t2
+ I1

�3wb

�x�t2
+ J1

�3ws

�x�t2

�
�u +

⎛
⎜⎜⎜⎝

−I0
�2wb

�t2
− I0

�2ws

�t2
− I1

�3u

�x�t2

+I2
�4wb

�x2�t2
+ J2

�4ws

�x2�t2

⎞
⎟⎟⎟⎠
�wb

+

�
−I0

�2wb

�t2
− I0

�2ws

�t2
− J1

�3u

�x�t2
+ J2

�4wb

�x2�t2
+ K2

�4ws

�x2�t2

�
�ws

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

dx

(22)

�W
e
= −

L

∫
0

[((
k
u
k
l

k
u
+ k

l

)(
w
b
+ w

s

)

−

(
k
s
k
u

k
u
+ k

l

)
�2
(
w
b
+ w

s

)
�x2

)(
�w

b
+ �w

s

)]

Substituting Eqs. (20–22) into the extended Hamilton’s 

principle 
T∫
0

(
�Ke − �Se + �We

)
dt = 0 and collecting the 
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coefficients of �u , �wb , and �ws , we have

Using generalized Hooke’s law, the local stress resultants 
can be written as

Combining Eqs.  (23–25) and (26–29), the govern-
ing equations of motion in terms of displacements can be 
obtained as

(23)�N

�x
= I0

�2u

�t2
− I1

�3wb

�x�t2
− J1

�3ws

�x�t2

(24)

�2Mb

�x2
= I0

(
�2wb

�t2
+

�2ws

�t2

)
+ I1

�3u

�x�t2
− I2

�4wb

�x2�t2
− J2

�4ws

�x2�t2

+

(
kukl

ku + kl

)(
wb + ws

)
−

(
ksku

ku + kl

)
�2
(
wb + ws

)
�x2

(25)

�2Ms

�x2
+

�Q

�x
= I0

(
�2wb

�t2
+

�2ws

�t2

)
+ J1

�3u

�x�t2
− J2

�4wb

�x2�t2
− K2

�4ws

�x2�t2

+

(
kukl

ku + kl

)(
wb + ws

)
−

(
ksku

ku + kl

)
�2
(
wb + ws

)
�x2

(26)N = A11

(
�u

�x

)
− B11

(
�2wb

�x2

)
− Bs

(
�2ws

�x2

)

(27)Mb = B11

(
�u

�x

)
− D11

(
�2wb

�x2

)
− Ds

(
�2ws

�x2

)

(28)Ms = Bs

(
�u

�x

)
− Ds

(
�2wb

�x2

)
− Hs

(
�2ws

�x2

)

(29)Q = As

(
�ws

�x

)

(30a)

A
11

(
�2u

�x2

)
− B

11

(
�3w

b

�x3

)
− B

s

(
�3w

s

�x3

)

= I
0

�2u

�t2
− I

1

�3w
b

�x�t2
− J

1

�3w
s

�x�t2

(30b)

B
11

(
�3u

�x3

)
− D

11

(
�4w

b

�x4

)
− D

s

(
�4w

s

�x4

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ I

1

�3u

�x�t2
− I

2

�4w
b

�x2�t2
− J

2

�4w
s

�x2�t2

+

(
k
u
k
l

k
u
+ k

l

)(
w
b
+ w

s

)
−

(
k
s
k
u

k
u
+ k

l

)
�2
(
w
b
+ w

s

)
�x2

•	 When the upper spring is removed into the Kerr foun-
dation, the proposed model will be converted for Win-
kler–Pasternak foundation and the governing equations 
of motion can be given as

•	 If the upper spring and shear layer are detached from the 
Kerr foundation, the proposed model will be changed 
for Winkler foundation and the governing equations of 
motion can be depicted as

(30c)

B
s

(
�3u

�x3

)
− D

s

(
�4w

b

�x4

)
− H

s

(
�4w

s

�x4

)
+ A

s

(
�2w

s

�x2

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ J

1

�3u

�x�t2
− J

2

�4w
b

�x2�t2

− K
2

�4w
s

�x2�t2
+

(
k
u
k
l

k
u
+ k

l

)(
w
b
+ w

s

)

−

(
k
s
k
u

k
u
+ k

l

)
�2
(
w
b
+ w

s

)
�x2

(31a)

A
11

(
�2u

�x2

)
− B

11

(
�3w

b

�x3

)
− B

s

(
�3w

s

�x3

)

= I
0

�2u

�t2
− I

1

�3w
b

�x�t2
− J

1

�3w
s

�x�t2

(31b)

B
11

(
�3u

�x3

)
− D

11

(
�4w

b

�x4

)
− D

s

(
�4w

s

�x4

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ I

1

�3u

�x�t2
− I

2

�4w
b

�x2�t2

− J
2

�4w
s

�x2�t2
+
(
k
l

)(
w
b
+ w

s

)
−
(
k
s

)�2(wb
+ w

s

)
�x2

(31c)

B
s

(
�3u

�x3

)
− D

s

(
�4w

b

�x4

)
− H

s

(
�4w

s

�x4

)
+ A

s

(
�2w

s

�x2

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ J

1

�3u

�x�t2
− J

2

�4w
b

�x2�t2

− K
2

�4w
s

�x2�t2
+
(
k
l

)(
w
b
+ w

s

)
−
(
k
s

)�2(wb
+ w

s

)
�x2

(32a)

A
11

(
�2u

�x2

)
− B

11

(
�3w

b

�x3

)
− B

s

(
�3w

s

�x3

)

= I
0

�2u

�t2
− I

1

�3w
b

�x�t2
− J

1

�3w
s

�x�t2
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3 � Solution methodology

In the present analysis, Navier’s method [60–62] and shifted 
Chebyshev polynomial-based Rayleigh–Ritz method [63] 
have been utilized to solve governing differential equations 
for free vibration of the FG beam. Navier’s technique has 
been exploited for hinged–hinged (HH) boundary condi-
tion, whereas the shifted Chebyshev polynomial-based 
Rayleigh–Ritz is adopted to solve hinged–hinged (HH), 
clamped–clamped (CC), clamped–hinged (CH), and 
clamped-free (CF) boundary conditions. Further descrip-
tions of each approach are presented in the subsections 
below.

3.1 � Implementation of Navier’s method

According to the Navier’s technique, the axial displacement 
u (x, t) , bending wb(x, t) , and shear ws(x, t) components of 
transverse the displacement endorse the solution as shown 
below [58]:

where um, wbm , and wsm are arbitrary parameters and � is the 
natural frequency of vibration. Substituting Eq. (33) into the 
governing equations of motion, i.e., Equations (30), (31), 
(32), generalized eigenvalue problem for free vibration of 

(32b)

B
11

(
�3u

�x3

)
− D

11

(
�4w

b

�x4

)
− D

s

(
�4w

s

�x4

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ I

1

�3u

�x�t2
− I

2

�4w
b

�x2�t2

− J
2

�4w
s

�x2�t2
+
(
k
l

)(
w
b
+ w

s

)

(32c)

B
s

(
�3u

�x3

)
− D

s

(
�4w

b

�x4

)
− H

s

(
�4w

s

�x4

)
+ A

s

(
�2w

s

�x2

)

= I
0

(
�2w

b

�t2
+

�2w
s

�t2

)
+ J

1

�3u

�x�t2

− J
2

�4w
b

�x2�t2
− K

2

�4w
s

�x2�t2
+
(
k
l

)(
w
b
+ w

s

)

(33a)u(x, t) =

∞∑
m=1

um cos
(
m�

L
x
)
ei�t

(33b)wb(x, t) =

∞∑
m=1

wbm sin
(
m�

L
x
)
ei�t

(33c)ws(x, t) =

∞∑
m=1

wsm sin
(
m�

L
x
)
ei�t

Kerr, Winkler–Pasternak, and Winkler foundation, respec-
tively, will take the form as given in Eq. (34). But, the results 
for Kerr foundation are only considered (except for compari-
son) in this investigation as other two foundations are the 
special cases of Kerr.

Here [K] =
⎡⎢⎢⎣

k11 k12 k13
k21 k22 k23
k31 k32 k33

⎤⎥⎥⎦
 , [M] =

⎡⎢⎢⎣

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎤⎥⎥⎦
 and 

{X} =
[
um wbm wsm

]T

3.2 � Implementation shifted Chebyshev 
polynomial‑based Rayleigh–Ritz method

In this study, the shifted Chebyshev polynomial of the first 
kind is considered as shape function over algebraic polyno-
mials because of the fact that Chebyshev polynomials are 
the orthogonal polynomials which reduce the computational 
effort, and for the larger value of n (n > 10) , the system 
avoids ill-conditioning. First few terms of shifted Cheby-
shev polynomials of the first kind can be expressed as [63],

The axial displacement u (x, t) , bending wb (x, t) , and shear 
ws (x, t) components of transverse displacement can be stated 
as [9, 63–65]

(34)[K]{X} = �2[M]{X}

k
11

= −A
11

(
m�

L

)2

, k
22

= −D
11

(
m�

L

)4

−

(
k
u
k
l

k
u
+ k

l

)

−

(
k
s
k
u

k
u
+ k

l

)(
m�

L

)2

,

k
12

= k
21

= B
11

(
m�

L

)3

, k
23

= k
32

= −D
s

(
m�

L

)4

−

(
k
u
k
l

k
u
+ k

l

)
−

(
k
s
k
u

k
u
+ k

l

)(
m�

L

)2

,

k
13

= k
31

= B
s

(
m�

L

)3

, k
33

= −H
s

(
m�

L

)4

− A
s

(
m�

L

)2

.

m11 = −I0,m12 = m21 = I1

(
m�

L

)
,

m23 = m32 = −I0 − J2

(
m�

L

)2

,

m22 = −I0 − I2

(
m�

L

)2

,m13 = m31 = J1

(
m�

L

)
,

m33 = −I0 − K2

(
m�

L

)2

.

(35)

�0(x) = 1

�1(x) = 2x − 1

�n(x) = 2(2x − 1)�n−1(x) − �n−2(x), n = 2, 3,…
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Here, c′
i
s,d′

i
s , and e′

i
s are unknown parameters, �n(x) is the 

shifted Chebyshev polynomial of index n , xp(L − x)q is the 
admissible functions, and p , q are the exponents that regulate 
the boundary conditions as shown in Table 1.

Plugging Eq. (36) into maximum strain energy 
(
SMax
e

)
 , 

kinetic energy 
(
KMax
e

)
 , and work done by Kerr founda-

tion 
(
WMax

e

)
 , i.e., Equations  (15–17) and equating as 

SMax
e

+WMax
e

= KMax
e

 and minimizing the natural fre-
quency 

(
�2

)
 with respect to the coefficients c′

i
s,d′

i
s , and e′

i
s

,i = 1, 2, 3 … n , yield the generalized eigenvalue problem as

where {X} =
[
c1, c2, c3,… cn, d1, d2, d3,… dn, e1, e2, e3,… en

]T , 
[K] denotes the stiffness matrix, and [M] represents the mass 
matrix.

4 � Numerical results and discussion

In this study, the functionally graded beam is assumed to be 
composed of stainless steel (SUS304) as a metal constituent 
and silicon nitride (Si3N4) as a ceramic constituent with their 
mechanical properties as [66, 67]

(36a)U(x) = xp(L − x)q
n∑
i=1

ci�i−1(x)

(36b)Wb(x) = xp(L − x)q
n∑
i=1

di�i−1(x)

(36c)Ws(x) = xp(L − x)q
n∑
i=1

ei�i−1(x)

(37)[K]{X} = �2[M]{X}

S i l i c o n  n i t r i d e  ( S i 3 N 4 ) :Ec = 348.43GPa  , 
�c = 2370 kgm−3 , and �c = 0.24

S t a i n l e s s  s t e e l  ( S U S 3 0 4 ) :Em = 201.04GPa  , 
�m = 8166 kgm−3 , and �m = 0.3262.

The dimension of the FG beam is taken as width 
(b = 0.05m) × thickness (h = 0.0125m) × length (L = 1m) . 
Natural frequencies (�) for four essential boundary condi-
tions such as hinged–hinged (HH), clamped–hinged (CH), 
clamped–clamped (CC), and clamped-free are taken into 
the investigation in this investigation by employing Navier’s 
technique for HH boundary condition and shifted Chebyshev 
polynomial-based Rayleigh–Ritz method for all the bound-
ary conditions mentioned above.

4.1 � Validation

Through this subsection, the present model is validated in 
two ways. Firstly, the current results are compared with 
other existing works present in the literature, in special 
cases. In this regard, the first three non-dimensional fre-
quency parameters of the present model are compared with 
[7, 68] for different power-law index by neglecting the elas-
tic foundation and porosity effect from the present investi-
gation. For the validation purpose, all the parameters are 
kept the same as [7, 68], and the tabular results are depicted 
in Table 2. Secondly, natural frequencies of the first four 
modes of hinged–hinged boundary condition are computed 
by using an analytical method, i.e., Navier’s method and 
numerical method, such as shifted Chebyshev polynomial-
based Rayleigh–Ritz method with porosity index � = 0.1 , 
ku = kl = 1GPa , ks = 1GN and other parameters are taken 
as given as above section. A comparison of the natural fre-
quencies is demonstrated in Table 3. From these results, one 
may perceive that the current model goes well with other 
established outcomes.

4.2 � Convergence

This subsection is dedicated to analyzing the convergence of 
natural frequencies of the first four modes of HH, CH, CC, 
and CF boundary conditions by employing the shifted Che-
byshev polynomial-based Rayleigh–Ritz method. The use 

Table 1   p and q for different 
boundary conditions [9, 63, 65]

B.C. p q

H–H 1 1
C–H 2 1
C–C 2 2
C–F 2 0

Table 2   Validation of the 
present model for HH boundary 
condition with [7, 68] in special 
cases

Mode k = 0 k = 1 k = 2 k = 5 k = 10

1 [7] 5.1531 3.9907 3.6263 3.3998 3.2811
[68] 5.1531 3.9907 3.6263 3.3998 3.2811
Present 5.1531 3.9906 3.6263 3.9997 3.2811

2 [7] 17.8868 14.0138 12.6411 11.5324 11.0216
Present 17.8868 14.0137 12.6411 11.5324 11.0215

3 [7] 34.2344 27.1152 24.3237 21.6943 20.5581
Present 34.2344 27.1152 24.3236 21.6943 20.5581
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Table 3   Comparisons of results 
between Navier’s method and 
shifted Chebyshev polynomial-
based Rayleigh–Ritz method for 
HH boundary condition

(k) �
1
 in kHz �

2
 in kHz �

3
 in kHz �

4
 in kHz

NM SC-RR NM SC-RR NM SC-RR NM SC-RR

0 6.7509 6.7509 13.5018 13.5018 20.2527 20.2531 27.0036 27.1808
0.5 4.3689 4.3688 8.7365 8.7364 13.1014 13.1027 17.4623 17.5788
1 3.7310 3.7308 7.4606 7.4601 11.1875 11.1881 14.9102 15.0088
1.5 3.4230 3.4227 6.8448 6.8440 10.2641 10.2643 13.6798 13.7695
2 3.2397 3.2393 6.4783 6.4775 9.7149 9.7148 12.9483 13.0328

Fig. 5   Convergence of natural 
frequency for HH boundary 
condition
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Fig. 6   Convergence of natural 
frequency for CH boundary 
condition 1
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of shifted Chebyshev polynomial as a shape function makes 
the methods more efficient because of orthogonal proper-
ties and avoids the system from becoming an ill condition 
for the higher number of terms. This study is conducted by 
considering the power-law exponent (k) = 5 , porosity vol-
ume fraction (�) = 0.1 , ku = kl = 1GPa , and ks = 1GN , and 
the graphical results are illustrated in Figs. 5, 6, 7 and 8. 
From these results, it is very much evident that the number 
of polynomials plays a very vital role in the convergence of 

frequencies. Lower-mode frequencies require less number of 
polynomials, whereas higher-mode frequencies need more 
number of terms. It is also observed that first- and second-
mode frequencies are converging with n = 5 , while third and 
fourth modes are attending convergence at n = 6 , which is 
almost the same for all the boundary conditions mentioned 
in this study.   

Fig. 7   Convergence of natural 
frequency for CC boundary 
condition 1
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4.3 � Effect of power‑law exponent 
(
k
)

Through this subsection, the effect of the power-law index 
has been studied on the first four modes of natural frequen-
cies of the FG beam considering HH, CH, CC, and CF 
boundary conditions. Both the tabular and graphical results 
are computed with porosity volume fraction (�) = 0.1 , 
ku = kl = 1GPa , ks = 1GN , and power-law exponent are 
varied as 0, 0.2, 0.5, 1, 2, 3, 5, and 10, which are illustrated 
in Table 4 and Figs. 9, 10, 11 and 12. From this study, it 
is quite evident that with the rise in the power-law expo-
nent, the natural frequencies of all the modes decrease and 
this reduction is more remarkable when k < 2 . This can 
be explained by the fact that at k = 0 , the beam is purely 
ceramic possesses the highest natural frequencies, while at 
k = ∞ , the beam is pure metal having the lowest natural 

frequencies, i.e., as we go on increasing the power-law expo-
nent (k) , Young’s modulus of the FG beam decreases which 
leads to higher flexibility and lower natural frequencies.

4.4 � Effect of porosity volume fraction ( )

In the present investigation, the FG beam is consid-
ered as a porous beam with evenly distributed porosity 
along the thickness of the beam. Graphical and tabular 
results (Figs. 13, 14, 15, 16; Table 5) are computed by con-
sidering ku = kl = 1GPa , ks = 1GN and by varying both the 
power-law index (k) and porosity volume fraction (�) . From 
these results, it can be concluded that with the increase in 
porosity index (�) , natural frequencies also increase when 
the FG beam is purely ceramic, i.e., at k = 0 . This is due to 
the fact that the beam becomes stiffer, which ultimately gives 

Table 4   Variation of natural 
frequencies (�) with power-law 
exponent (k)

B.C. k �
1
 in kHz �

2
 in kHz �

3
 in kHz �

4
 in kHz

HH 0 6.7509 13.5018 20.2527 27.0036
0.2 5.2715 10.5423 15.8115 21.0784
0.5 4.3689 8.7365 13.1014 17.4623
1 3.7310 7.4606 11.1875 14.9102
2 3.2397 6.4783 9.7149 12.9483
3 3.0302 6.0596 9.0876 12.1133
5 2.8386 5.6768 8.5142 11.3504
10 2.6772 5.3543 8.0311 10.7074

CH 0 6.8350 13.6678 20.5057 27.3626
0.2 5.3373 10.6721 16.0100 21.3604
0.5 4.4233 8.8439 13.2662 17.6967
1 3.7774 7.5520 11.3279 15.1098
2 3.2798 6.5575 9.8363 13.1208
3 3.0678 6.1337 9.2010 12.2743
5 2.8739 5.7463 8.6205 11.5011
10 2.7105 5.4200 8.1313 10.8497

CC 0 6.8756 13.8042 20.6180 27.6540
0.2 5.3691 10.7787 16.0978 21.5878
0.5 4.4498 8.9324 13.3393 17.8854
1 3.8001 7.6279 11.3907 15.2713
2 3.2996 6.6234 9.8910 13.2612
3 3.0862 6.1954 9.2521 12.4057
5 2.8911 5.8040 8.6681 11.6240
10 2.7267 5.4742 8.1760 10.9654

CF 0 3.4290 10.2850 17.1439 23.9586
0.2 2.6776 8.0311 13.3859 18.7046
0.5 2.2192 6.6558 11.0926 15.4981
1 1.8952 5.6839 9.4724 13.2336
2 1.6456 4.9354 8.2253 11.4916
3 1.5392 4.6163 7.6938 10.7497
5 1.4418 4.3246 7.2079 10.0718
10 1.3598 4.0787 6.7985 9.5005
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rise to the natural frequencies. On the other hand, for differ-
ent values of power-law index, i.e., k = 1, 2, 10 , etc., this 
trend is completely opposite that means natural frequencies 
reduce with the rise in porosity volume fraction. Also, this 
trend is more significant in the case of higher values of k . 
Based on these observations, it may be concluded that the 

rise or fall of natural frequencies depends upon the power-
law index even if the porosity index follows an increasing or 
decreasing trend. Since the trend is similar for other bound-
ary conditions, only results of HH edge support are exclu-
sively provided in the study.     

Fig. 9   Variation of the natural 
frequency with the power-law 
index for HH boundary condi-
tion

Fig. 10   Variation of the natural 
frequency with power-law index 
for CH boundary condition
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4.5 � Effect of elastic foundation

This subsection is aimed at analyzing the effect of the Kerr 
elastic foundation along with Winkler–Pasternak and Win-
kler foundations in special cases on the natural frequencies 

of HH, CH, CC, and CF boundary conditions. For the com-
putational purpose, the power-law index (k) is taken as 0.5, 
and the porosity volume fraction (�) is considered as 0.1. 
For Kerr elastic foundation, the elastic moduli of upper and 
lower springs are equally varying as 0, 103, 106, 109, 1012 

Fig. 11   Variation of the natural 
frequency with the power-law 
index for CC boundary condi-
tion

Fig. 12   Variation of the natural 
frequency with the power-law 
index for CF boundary condi-
tion
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Pa, while the elastic modulus of shear layer is considered as 
0, 103, 106, 109, 1012 N. Likewise, for the computation of 
Winkler–Pasternak model, elastic moduli of lower spring 
and shear layer are taken as 0, 103, 106, 109, 1012 Pa, and 

0, 103, 106, 109, 1012 N, respectively. Finally, for Winkler 
foundation model, elastic moduli of lower spring are varies 
as 0, 103, 106, 109, 1012 Pa. The tabular results of all the 
above-mentioned boundary conditions are listed in Table 6. 

Fig. 13   Variation of the natural 
frequency with porosity index 
for first mode

Fig. 14   Variation of the natural 
frequency with porosity index 
for second mode
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Based on this analysis, we conclude that, with the rise in 
elastic modulus of Kerr foundation, the natural frequencies 
of the FG beam display a mixed behavior that means natu-
ral frequencies decrease initially and then increase until the 
elastic moduli attain 1 GPa and then exhibit very less change 
in natural frequencies as we go on increasing elastic moduli. 
Also, for higher values of elastic constants, natural frequen-
cies for the three types of elastic models are almost equal.

5 � Conclusion

In this investigation, the shifted Chebyshev polynomial-
based Rayleigh–Ritz method is implemented to analyze 
the vibration characteristics of the FG beam placed on the 
Kerr foundation, having evenly distributed porosity along 
the thickness. Energy equations are developed for the use 
shifted Chebyshev polynomial-based Rayleigh–Ritz method, 
and Navier’s solution based model has also been imple-
mented to solve the governing equations of motion in terms 

Fig. 15   Variation of the natural 
frequency with porosity index 
for third mode

Fig. 16   Variation of the natural 
frequency with porosity index 
for fourth mode
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of displacement derived from Hamilton’s principle. A para-
metric analysis is also conducted, and the following are the 
main results:

•	 Lower-mode frequencies such as first and second modes 
require number of polynomials n = 5 for the conver-
gence, while higher-mode frequencies, i.e., third and 
fourth modes, need more number of terms, i.e., n = 6 for 
achieving the convergence.

•	 With the increase in the power-law exponent (k) , the 
natural frequencies of all the modes decrease, and this 
reduction is more remarkable when k < 2 . Also, at k = 0 , 
the beam purely ceramic possesses the highest value 
natural frequencies, while at k = ∞ , the beam is purely 
metallic with the lowest value natural frequencies.

•	 With the rise of porosity volume (�) , natural frequencies 
at k = 0 , i.e., purely ceramic, while for other values of 
the power-law index, i.e., k = 1, 2, 10 etc., this trend is 
opposite that means natural frequencies reduce with the 
rise in porosity volume fraction.

•	 With the increase in elastic modulus of Kerr foundation, 
the natural frequencies of the FG beam display a mixed 
behavior; natural frequencies decrease initially and then 
increase until the elastic moduli attain 1 GPa and then 

Table 5   Variation of natural frequencies (�) porosity volume fraction 
(�) for HH boundary condition

k � �
1
 in kHz �

2
 in kHz �

3
 in kHz �

4
 in kHz

0 0 6.2450 12.4901 18.7351 24.9802
0.1 6.7509 13.5018 20.2527 27.0036
0.2 7.5944 15.1888 22.7833 30.3777
0.3 9.2896 18.5793 27.8690 37.1586
0.4 15.1862 30.3725 45.5588 60.7451

1 0 3.7618 7.5225 11.2808 15.0355
0.1 3.7310 7.4606 11.1875 14.9102
0.2 3.7040 7.4064 11.1054 14.7995
0.3 3.6807 7.3593 11.0338 14.7021
0.4 3.6607 7.3188 10.9716 14.6163

5 0 2.9433 5.8863 8.8286 11.7698
0.1 2.8386 5.6768 8.5142 11.3504
0.2 2.7224 5.4444 8.1653 10.8849
0.3 2.5889 5.1773 7.7645 10.3499
0.4 2.4291 4.8575 7.2844 9.7091

10 0 2.7930 5.5859 8.3786 11.1708
0.1 2.6772 5.3543 8.0311 10.7074
0.2 2.5479 5.0957 7.6432 10.1901
0.3 2.3987 4.7972 7.1953 9.5928
0.4 2.2192 4.4381 6.6565 8.8742

Table 6   Variation of natural frequencies (�) in kHz with various elastic foundations such as Kerr, Winkler–Pasternak, and Winkler elastic foun-
dations

B.C. k
u
= k

l
 in Pa 

and k
s
 in N

Kerr foundation 
(
k
u
, k

l
, k

s

)
Winkler–Pasternak foundation 

(
k
l
, k

s

)
Winkler foundation 

(
k
l

)

�
1

�
2

�
3

�
1

�
2

�
3

�
1

�
2

�
3

HH 0 0.0489 0.1946 0.4376 0.0489 0.1946 0.4376 0.0489 0.1946 0.4376
103 0.0483 0.1940 0.4370 0.0477 0.1934 0.4365 0.0488 0.1945 0.4376
106 0.5694 3.7199 4.3835 3.2941 4.3783 5.6509 0.1647 0.4252 0.8017
109 4.3688 8.7363 13.1026 4.3688 8.7363 13.1024 2.5099 4.3749 5.5333
1012 4.3688 8.7362 13.1022 4.3688 8.7362 13.1022 4.3688 8.7362 13.1022

CH 0 0.0761 0.2462 0.5133 0.0761 0.2462 0.5133 0.0761 0.2462 0.5133
103 0.0757 0.2458 0.5128 0.0752 0.2453 0.5123 0.0760 0.2462 0.5133
106 0.8614 1.8483 4.4219 1.2565 4.4214 6.9309 0.2234 0.5028 0.8735
109 4.4233 8.8439 13.266 4.4233 8.8438 13.2660 4.4212 6.9453 8.8526
1012 4.4232 8.8437 13.2657 4.4232 8.8437 13.2657 4.4233 8.8437 13.2658

CC 0 0.1103 0.3038 0.5944 0.1103 0.3038 0.5944 0.1103 0.3038 0.5944
103 0.1100 0.3034 0.5940 0.1097 0.3030 0.5935 0.1103 0.3038 0.5944
106 0.2702 0.8935 2.1698 1.6699 2.8667 4.4501 0.0380 0.2856 0.5854
109 4.4497 8.9324 13.3392 4.4497 8.9323 13.3391 1.7526 4.4500 8.9335
1012 4.4497 8.9323 13.3389 4.4497 8.9323 13.3389 4.4497 8.9323 13.3389

CF 0 0.0173 0.1086 0.3040 0.0173 0.1086 0.3040 0.0173 0.1086 0.3040
103 0.0164 0.1078 0.3033 0.0154 0.1070 0.3026 0.0170 0.1086 0.3040
106 1.0636 2.2196 6.6472 0.0280 2.2194 6.1669 0.0328 0.2858 0.5865
109 2.2191 6.6557 11.0926 2.2191 6.6557 11.0925 2.2193 6.6485 7.1460
1012 2.2191 6.6557 11.0923 2.2191 6.6557 11.0923 2.2191 6.6557 11.0924



3588	 Engineering with Computers (2021) 37:3569–3589

1 3

exhibit very less change toward the natural frequencies 
as we go on increasing elastic moduli. Also, for higher 
values of elastic constants, natural frequencies for the 
three types of elastic models are almost equal.
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