
ORIGINAL ARTICLE

Development of a shell superelement for large deformation and free
vibration analysis of composite spherical shells

Mansoor Shamloofard1 • Ali Hosseinzadeh2 • M. R. Movahhedy1

Received: 28 November 2019 / Accepted: 17 March 2020 / Published online: 12 April 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Finite element analysis of huge and/or complicated structures often requires long times and large computational expenses.

Superelements are huge elements that exploit the deformation theory of a specific problem to provide the capability of

discretizing the problem with minimum number of elements. They are employed to reduce the computational cost while

retaining the accuracy of results in FEM analysis of engineering problems. In this research, a new shell superelement is

presented to study linear/nonlinear static and free vibration analysis of spherical structures with partial or full spherical

geometries that exist in many industrial applications. Furthermore, this study investigates the effects of changing the

superelement size and its number of nodes on solution accuracy. The governing equations of composite spherical shells are

derived based on the first-order shear deformation theory and considering large deformations. For solving the nonlinear

governing equations, the tangent stiffness matrix has been extracted and the Newton–Raphson method is employed. The

capability of the presented shell superelement is investigated in several problems under linear/nonlinear static and free

vibration analysis. The results acquired by the presented shell superelements are compared with available results in the

literature and conventional shell elements in a commercial software. Results comparisons reveal high accuracy at a reduced

computational cost in the superelement model.

Keywords Finite element analysis � Shell superelement � First-order shear deformation theory � Large deformation �
Numerical analysis of composite spherical shell � Free vibration analysis

1 Introduction

Finite element method (FEM) has been widely used for

analysis of engineering problems [1]. However, in some

cases that the structure is huge or complicated, FEM

requires tremendous computational costs [2]. This is

mainly due to a large number of elements and nodes that

should be considered for approximating the field variables

in these problems. Recently, researchers have presented

several approaches to overcome this shortcoming. In one

approach, isogeometric analysis has been presented to

eliminate the mesh generation process, which results in

decreasing the solution time of engineering problems

[3–5]. Another approach investigated in this study is the

use of superelement, which considerably reduces the

number of necessary elements and nodes, while providing

an acceptable accuracy in the solution. Koko et al. [6, 7]

analyzed stiffened plates using superelements. They used

shear deformation theory and concluded that using

superelements in nonlinear dynamic analysis of plates is

highly efficient. Furthermore, they studied the vibration

analysis of stiffened plates using their proposed superele-

ment in Ref. [8]. Jiang et al. [9] studied static and dynamic

analysis of stiffened cylindrical shells using superelements

with considering geometric and material nonlinearities.

Ahmadian et al. [10] investigated the free vibration anal-

ysis of composite plates using superelements.

In recent years, cylindrical, conical and spherical

superelements have been introduced for static and vibration

analysis of such structures. For instance, Bonakdar et al.

[11] proposed a cylindrical superelement for static and
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dynamic analysis of multilayer composite cylinders. Also,

Rezaei et al. [12] developed a tapered superelement to

simulate tapered parts in the machine tools spindle. Fur-

thermore, free vibration analysis of several FGM structures

was studied by Torabi et al. [13] using a presented 3D

superelement. The spherical superelement was initially

presented by Nasiri et al. [14]. They studied static and free

vibration analysis of the spherical structures using the

presented superelement. Then, Shamloofard et al. [15]

modified the spherical superelement designed in [14] and

developed a thermo-elastic model of spherical and tapered

superelements.

Laminated composite shells are frequently used in many

structures, due to the high strength/weight ratio of com-

posite structures [16, 17]. These structures are usually thin

and are exposed to various and severe static and dynamic

loads. Therefore, vibration behavior and deformation

analysis of these structures are significantly important, and

these issues have been recently discussed in many research

studies. For instance, vibration characteristics of laminated

doubly curved and spherical shells have been investigated

by using different methods in Refs. [18–29]. In addition,

deformation analysis of these shells has been studied by

considering different approaches in Refs. [30–39].

The objective of this research study is to present a new

shell superelement which is capable of discretizing com-

plete and partial spherical shells and predicting linear/

nonlinear static and free vibration behavior of composite

spherical shells under local loads and boundary conditions.

Moreover, this study recommends the optimum number of

nodes in each shell superelement to achieve the best

compromise between accuracy and computational cost. To

the best of the authors’ knowledge, this subject has not

been investigated for spherical, conical and cylindrical

superelements which have been presented in the literature.

In what follows, the finite element equations for spher-

ical shells are initially derived using first-order shear

deformation theory (FSDT), next a spherical shell

superelement is presented, and finally, through several

problems, the results obtained from the proposed

superelement are compared with the existing results in the

literature and conventional shell elements in ANSYS

software.

2 Background theory and governing
equations

Based on FSDT and considering the spherical coordinate

system, a displacement field U/;Uh;W
� �

is related to

displacements and rotations of mid-plane of the plate

through the following equation [40]:

U/ /; h; nð Þ ¼ u/ /; hð Þ þ nb/ /; hð Þ
Uh /; h; nð Þ ¼ uh /; hð Þ þ nbh /; hð Þ
W /; h; nð Þ ¼ w /; hð Þ

ð1Þ

where u/, uh and w are the displacement components for

points lying on the middle surface of the shell along with

meridional, circumferential and normal directions, respec-

tively. Also, b/, bh and n are normal-to-mid-surface rota-

tions and distance from the mid-surface, respectively.

Strain–displacement relations used in this paper are for-

mulated based on the extension of the Sanders theory [41]

and deal with the large deformation in the von Karman

sense stated in Ref. [42]. For this case of geometric non-

linearity, small strains and moderate rotations are taken

into consideration [40]. Using these assumptions as well as

the FSDT for spherical shells with a radius of R, the strain–

displacement equations are deduced as follows:
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where the strains e0u, e
0
h and e0uh are the in-plane meridional,

circumferential and shearing components, e0un and e0hn are

the transverse shearing strains, and ju, jh and juh are the

analogous curvature changes in the middle surface.
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The relationship between stress resultants and couples

with generalized strains and curvature variations on the

middle surface can be summarized as:

Qsf g ¼ As½ � bf g
Nf g ¼ A½ � e0

� �
þ B½ � jf g

Mf g ¼ B½ � e0
� �

þ D½ � jf g:
ð3Þ

The strain vector e0
� �

is expressed as the sum of the two

linear and nonlinear strain vectors:

e0
� �

¼ e0
� �

L
þ e0
� �

NL
: ð4Þ

Substituting Eq. (4) in Eq. (3) gives:

Nf g ¼ A½ � e0
� �

L
þ A½ � e0

� �
NL
þ B½ � jf g; Mf g

¼ B½ � e0
� �

L
þ B½ � e0

� �
NL
þ D½ � jf g ð5Þ

where the components of the extensional stiffness A,

bending extensional coupling stiffness B, bending stiffness

D and transverse shear stiffness As are defined as follows:

Aij u; hð Þ;Bij u; hð Þ;Dij u; hð Þ
� �

¼
Z

h
2

�h
2

�Qij u; hð Þ 1; n; n2
� �

dn i; j ¼ 1; 2; 6

As
ij u; hð Þ ¼ Ks

Z
h
2

�h
2

�Qij u; hð Þdn i; j ¼ 4; 5 ð6Þ

where h is the shell thickness and Ks is the shear correction

factor, which is usually set to 5/6 [43]. Also, �Qij represents

the transformed reduced stiffness which is computed for

any arbitrary kth layer as follows:
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where a1 is the fiber orientation angle of the k
th lamina with

respect to the shell coordinate system and elastic constants

Q
kð Þ
ij in each layer are given as follows:

Q
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where E
kð Þ
1 ;E

kð Þ
2 ;G

kð Þ
12 ;G

kð Þ
13 ;G

kð Þ
23 ; m

kð Þ
12 and m kð Þ

21 are engineer-

ing parameters of the kth layer.

3 Finite element analysis

Based on FSDT, five degrees of freedom u0, v0, w0, bu and

bh are considered for each node of the superelement.

Displacements and rotations of an arbitrary point (L) are

calculated as follows:

uL u; hð Þ ¼
Xnpe

i¼1

Ni u; hð Þui

vL u; hð Þ ¼
Xnpe

i¼1

Ni u; hð Þvi

wL u; hð Þ ¼
Xnpe

i¼1

Ni u; hð Þwi

bLu u; hð Þ ¼
Xnpe

i¼1

Ni u; hð Þbui

bLh u; hð Þ ¼
Xnpe

i¼1

Ni u; hð Þbhi

ð9Þ

where ui, vi;wi, bhi and bui are displacements and rotations

of the node i, Ni is the shape function of node i, and npe is

the number of nodes in each superelement. Equation (9)

can also be described as the following equation:

uf g5�1¼ N½ �5�5npe Uf g5npe�1

½N�

¼

N1 0 0 0 0 . . . Nnpe 0 0 0 0

0 N1 0 0 0 . . . 0 Nnpe 0 0 0

0 0 N1 0 0 . . . 0 0 Nnpe 0 0

0 0 0 N1 0 . . . 0 0 0 Nnpe 0

0 0 0 0 N1 . . . 0 0 0 0 Nnpe

2

6666664

3

7777775

5�5npe

ð10Þ

where Uf g is the nodal displacement vector. Using

Eq. (10), the relationship between nodal displacement

vector with strain and curvature variations vectors can be

deduced as below:

e0
� �

L
¼ Lm½ � N½ � Uf g ¼ Bm½ � Uf g

jf g ¼ Lb½ � N½ � Uf g ¼ Bb½ � Uf g
bf g ¼ Ls½ � N½ � Uf g ¼ Bs½ �
e0NL
� �

¼ LNL½ � N½ � Uf g ¼ BNL½ � Uf g

ð11Þ
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where Bm½ �; Bb½ �; Bs½ � and BNL½ � are given in Appendix 1.

Following the finite element approach, the governing

equation is concluded as follows:

KU ¼ F

F ¼
Xne

i¼1

f
eð Þ

i ;K ¼
Xne

i¼1

K
eð Þ
i

f eð Þ ¼
ZZ

s

N½ �T fsf gdAþ
X

N½ �T fcf g

ð12Þ

where ne, F, fs, fc and K are the number of superelements,

total force vector, traction force, concentrated force and

stiffness matrix computed as follows:

K eð Þ ¼ K1 þ K2 þ K3 þ K4 þ K5 þ K6 þ K7 þ K8 þ K9

þ K10

ð13Þ

where K1;K2;K3; . . .;K10 are presented in Appendix 2.

The solution algorithm for solving the governing equa-

tions (Eq. (12)) is the iterative method of Newton–Raphson

described in Appendix 3.

3.1 Free vibration analysis

For free vibration analysis, natural frequencies xð Þ are

calculated according to the eigenvalue equation in whichM

is the mass matrix as follows:

K � x2M
� �

k ¼ 0

M eð Þ ¼
ZZ

Ae

N½ �T q½ � N½ �dA

q½ � ¼

q0 0 0 q1 0

0 q0 0 0 0

0 0 q0 0 0

q1 0 0 q2 0

0 0 0 0 q2

2

6666664

3

7777775

ð14Þ

where q0, q1 and q2 are the normal, coupled normal-rotary

and rotary inertial coefficients defined by:

q0; q1; q2ð Þ ¼
Z

h
2

�h
2

q nð Þ 1; n; n2
� �

dn: ð15Þ

4 Spherical shell superelement

The purpose of introducing this superelement is to present

an element that can easily discretize spherical sectors with

and without apex and complete spherical shells with fewer

elements. Polynomial and circular shape functions are

employed to obtain this spherical shell superelement in

meridional and circumferential directions, respectively.

Figures 1 and 2 show the arrangement of nodes in these

directions.

Along u, Lagrange shape functions (polynomials) are

utilized for approximating the field variables. By setting M

nodes in this direction, shape functions have the following

form:

Fig. 1 Arrangement of nodes in the meridional direction where three

nodes are used in this direction

Fig. 2 Arrangement of nodes in the circumferential direction where

16 nodes are used in this direction
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N
uð Þ
i ¼ A1 þ A2uþ � � � þ AMu

M�1 i ¼ 1; 2; 3; . . .;M

ð16Þ

where A1;A2; . . .;AM are computed based on the definition

of the shape functions as follows:

N
uð Þ
i ¼ 1 foru ¼ ui

N
uð Þ
i ¼ 0 foru ¼ u1;u2; . . .;ui�1;uiþ1; . . .;uM :

ð17Þ

Along h, as stated earlier, circular shape functions are

used according to [11, 15]. By selecting N ¼ 2n nodes (n is

a positive integer parameter) in a circle, shape functions are

obtained as:

Nh
j ¼ 1

2n�1
cos 2n�2 h� j� 1ð Þp

2n�1

� �� �

� 1þ cos 2n�2 h� j� 1ð Þp
2n�1

� �� �
 �

� 1þ cos 2n�3 h� j� 1ð Þp
2n�1

� �� �
 �

. . . 1þ cos 20 h� j� 1ð Þp
8

� �� �
 �
; j ¼ 1; 2; 3; . . .;N:

ð18Þ

Finally, shape functions for nodes of the superelement

are calculated by multiplying Eqs. (16) and (18) as follows:

Ni:j h;uð Þ ¼ Nu
i � Nh

j i ¼ 1; 2; 3; . . .;M;

j ¼ 1; 2; 3; . . .;N:
ð19Þ

Fig. 3 ðM � N)-node
superelement without a pole

Fig. 5 Increasing the number of superelements

Fig. 4 (1þ N � M � 1ð Þ)-node superelement including pole

Fig. 6 Increasing the number of

circumferential nodes in each

superelement
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Equation (19) is implemented for all nodes except for

those which are poles (u ¼ 0; p). Shape functions in polar

nodes are achieved by setting Nh
j ¼ 1 in Eq. (19) since

these points are individually located in the circumferential

direction

In the presented shell superelement, the number of

nodes is computed as below:

npe ¼ 1þ N � M � 1ð Þ Shell superelement including pole

npe ¼ N �M Shell superelement without a pole
:

ð20Þ

Figures 3 and 4 depict the general form of the obtained

spherical shell superelement with M and N nodes in

meridional and circumferential directions. The shape

functions of these superelements for cases (1) M ¼ 2;N ¼
16 and (2) M ¼ 3;N ¼ 16 can be found in Appendix 4.

By increasing the values of M and N, converging to the

solution will be more time-consuming. On the other hand,

decreasing these values can deteriorate the accuracy of

results. Therefore, the optimum values of M and N should

be selected, which will be discussed in Sects. 5.1 and 5.2

for static and vibration analysis of the spherical shells.

Figures 5 and 6 display how the accuracy of the finite

element solution could be increased using this superele-

ment. In Figs. 5 and 6, the accuracy will be improved due

to increasing (a) the number of superelements and (b) the

number of nodes in each superelement, respectively.

One of the most advantages of the presented superele-

ment is that all axisymmetric shell structures can be dis-

cretized using this superelement. However, since the

equations for spherical shells are presented in this study,

this superelement is employed for analysis of the spherical

shells.

Fig. 7 The hemispherical shell in problem 1
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Fig. 9 Comparison of radial displacements in path #2

Table 1 Comparison of radial displacement at point A in problem 1

Parameter Conventional

shell elements

Spherical shell

superelement

(N = 16,

M = 3)

Spherical shell

superelement

(N = 16,

M = 2)

Radial

displacement

at point A

(mm)

1.771 1.728 1.707

Number of

elements

4238 20 50

Number of

nodes

4342 641 801

Fig. 10 The spherical shell in problem 2
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Table 2 Comparison of the natural frequencies obtained by different N values in problem 2

Natural

frequency

Conventional shell

element (ANSYS)

(4238 elements)

Spherical shell

superelement with

N = 4, M = 2 (100

elements)

Spherical shell

superelement with

N = 8, M = 2 (80

elements)

Spherical shell

superelement with

N = 16, M = 2 (50

elements)

Spherical shell

superelement with

N = 32, M = 2 (30

elements)

Result (rad/

s)

Error

(%)

Result (rad/

s)

Error

(%)

Result (rad/

s)

Error

(%)

Result (rad/

s)

Error

(%)

Result (rad/

s)

Error

(%)

x1 15,163 – 8104.1 46.553 15,151.2 0.077 15,158.4 0.031 15,159.1 0.026

x2 15,742 – 9265.9 41.138 16,089 2.204 15,722.0 0.127 15,720.6 0.136

x7 30,118 – 18,114.4 39.855 32,968.8 9.465 30,061.9 0.186 30,075.3 0.142

x11 37,295 – 22,285.4 40.245 39,684.5 6.407 37,860.9 1.517 37,866.2 1.518

x18 46,486 – 32,547.9 29.983 54,198.2 16.59 46,328.4 0.339 46,356.5 0.214

Table 3 Comparison of the natural frequencies obtained by different M values in problem 2

Natural frequency Conventional shell element

(ANSYS) (4238 elements)

Spherical shell superelement with

N = 16, M = 2 (50 elements, 801 nodes)

Spherical shell superelement with

N = 16, M = 3 (15 elements, 481 nodes)

Result (rad/s) Error (%) Result (rad/s) Error (%) Result (rad/s) Error (%)

x1 15,163 – 15,158.4 0.031 15,157.5 0.036

x2 15,742 – 15,722 0.127 15,724.5 0.111

x7 30,118 – 30,061.9 0.186 30,100.5 0.058

x11 37,295 – 37,860.9 1.517 37,865.9 1.531

x18 46,486 – 46,328.4 0.339 46,405.5 0.173
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natural frequency to the number

of conventional shell elements

and shell superelements in

problem 2
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4.1 Coordinate transformation

The governing equations derived in Sect. 3 have been

presented in terms of the global coordinates

u1 �u�u2; 0� h� 2pð Þ. Since the numerical integration

of the governing equations can be easily done using the

local coordinate system (�1� c; l� 1), conversion of

global coordinates to local ones should be determined. In

this research, the linear transformation and isoparametric

mapping are employed to convert the global coordinates to

the local ones in the circumferential and meridional

directions, respectively, as given below:

h ¼ p lþ 1ð Þ; 0� h� 2p; �1� l� 1

u ¼
Xnpe

i¼1

Ni c; lð Þ �ui; u1 �u�u2; �1� c� 1:
ð21Þ

Considering these mappings between global and local

coordinates, the Jacobean matrix and infinitesimal area in

the presented superelement are calculated as follows:

J ¼

ou
oc

oh
oc

ou
ol

oh
ol

2

664

3

775 ¼

Pnpe

i¼1

oNi c; lð Þ
oc

�ui 0

Pnpe

i¼1

oNi c; lð Þ
ol

�ui p

2

6664

3

7775

dA ¼ R2 sin uð Þdudh ¼ det Jð ÞR2 sin
Xnpe

i¼1

Ni c;lð Þ �ui

 !

dcdl

ð22Þ

where �u represents the nodal values of the superelement in

the meridional coordinate.

5 Results

In this section, several examples are presented to investi-

gate the accuracy of the presented shell superelement under

various types of loadings. In these problems, the achieved

results using the offered shell superelement model are

compared to the results obtained by using four-node shell

elements of ANSYS software and also available results in

the literature. In problems 1 and 2, static analysis and free

vibration behavior of the isotropic spherical shell are

studied and the optimum number of nodes and elements in
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sixth natural frequency to the

number of conventional shell

elements and shell

superelements in problem 2

Table 4 Material properties of

the studied composite spherical

shell

Parameter E1 GPað Þ E2 GPað Þ G12 GPað Þ G13 GPað Þ G23 GPað Þ m12 ¼ m21 q kg=m3ð Þ

Value 138 10.6 6 3.9 3.9 0.28 1500
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the superelement model is obtained. In the next problems,

free vibration and linear/nonlinear static analysis of com-

posite spherical shells will be numerically investigated.

5.1 Problem 1

In this problem, the internal pressure of 1MPa is applied to

the hemispherical shell displayed in Fig. 7. The main

objective of this problem is to find the optimum values of

N and M (the number of nodes in the circumferential and

meridional directions) in the presented shell superelement

for static analysis of spherical shells. For this purpose,

Figs. 8 and 9 illustrate the obtained radial displacements

along u direction in paths #1 and 2 by two different

methods: (1) using the presented spherical shell superele-

ment with varied values of N and (2) employing conven-

tional shell elements of ANSYS software. Figures 8 and 9

show that setting N ¼ 4 and 8 is not computationally

accurate for this analysis, and the optimum value of N to

obtain the acceptable accuracy results is 16. Also, the

effects of considering two different values of M on the

radial displacement at point A are investigated in Table 1.

As presented in Table 1, M ¼ 2 and M ¼ 3 lead to a

comparable accuracy, though setting M ¼ 3 requires fewer

elements and nodes. Therefore, this study recommends

using the presented shell superelement with N ¼ 16 and

M ¼ 3 for static analysis of spherical shells.

5.2 Problem 2

Vibration analysis of the spherical shell depicted in Fig. 10

is presented. The aims of this problem are (1) to evaluate

the performance of the spherical shell superelement in the

prediction of natural frequencies, (2) to investigate the

required number of nodes in each spherical shell

superelement and (3) to study the effects of superelement

size on the solution accuracy.

Table 2 compares the natural frequencies obtained by

conventional shell elements and different types of shellTa
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Fig. 13 The spherical shell in problem 4
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superelements. This table shows that using the spherical

shell superelements with four and eight nodes in the h
direction cannot predict the natural frequencies of the

studied shell accurately. On the other hand, although the

accuracy of results cannot be meaningfully improved by

employing N = 32, the solution time is significantly

increased in this case. Therefore, similar to static analysis

carried out in example 2, spherical shell superelements

with N ¼ 16 are selected for vibration analysis of the

spherical shell. Furthermore, Table 3 compares the natural

frequencies calculated by two different M values. As can

be seen in Table 3, less number of elements and nodes is

required for setting M ¼ 3, while retaining the same level

of accuracy. Therefore, the optimum values of N and M

that minimize the solution time and maximize the result

accuracy are obtained by setting N ¼ 16 and M ¼ 3 for

vibration analysis of the spherical shells.

Figures 11 and 12 illustrate the dependency of the first

and sixth natural frequencies of the studied shell to the

number of conventional shell elements and shell

superelements. As displayed in these figures, the number of

required shell superelements for converging the solution is

approximately 15 (481 nodes), while this number is about

4238 (4342 nodes) in the case of using conventional shell

elements. Therefore, the number of required elements and

nodes is significantly decreased when the problem is dis-

cretized via the presented shell superelement.

5.3 Problem 3

The main purpose of this problem is evaluating the per-

formance of the composite spherical shell superelement in

prediction of natural frequencies. For this purpose, free

vibration analysis of a hemispherical shell (R ¼ 1000mm)

with the boundary conditions u0 ¼ v0 ¼ w0 ¼ bu ¼ bh ¼
0 at the bottom edge and u0 ¼ v0 ¼ bh ¼ 0 at the apex is

0
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Fig. 14 Variations of
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Fig. 15 Pressure vessel in problem 5
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conducted for different shell thicknesses and fiber orien-

tations. Material properties of this composite spherical

shell are given in Table 4. In Table 5, fundamental natural

frequency parameter (x1R
ffiffiffiffiffiffiffiffiffiffiffiffi
q=E2Þ

p
obtained by the com-

posite spherical shell superelements is compared with the

results presented in Refs. [18, 22] and conventional shell

elements of ANSYS software. Results comparisons con-

firm the credibility of the composite spherical shell

superelement in free vibration analysis.

5.4 Problem 4

The composite spherical shell displayed in Fig. 13 is sub-

jected to the concentrated force (F). Material properties of

this spherical shell are given in Table 4. Here, linear and

nonlinear solutions are compared. Figure 14 shows the

maximum deflection calculated by shell superelements and

conventional shell elements for different values of F. As

depicted in Fig. 14, by increasing the F value, the differ-

ence between the results obtained by linear and nonlinear

solutions grows significantly. The achieved results indicate

that the same trend and proper consistency are observed

between the conventional shell element of ANSYS soft-

ware and the presented shell superelement model in both

linear and nonlinear solutions. The solution procedure for

the nonlinear equations is given in Appendix 3.

5.5 Problem 5

The purpose of this problem is the linear static analysis of

the composite spherical vessel shown in Fig. 15 with three

different methods: using the proposed shell superelement,

spherical superelements according to [15] and conventional

shell elements of ANSYS software. Material properties of

the used composite are given in Table 4. Since the spher-

ical superelement developed in [15] is 3-dimensional, 3D

elasticity equations are used to analyze the problem using

this superelement. A total of 2524 shell elements in

ANSYS, three spherical superelements with 228-node [15]

and 16 spherical shell superelements with N ¼ 16 andM ¼
3 of this work are employed to study this problem. Table 6

compares the maximum dimensionless radial displacement

parameter (wmax

h ) obtained by these methods for different

fiber orientations, shell radius-to-thickness ratios (R=h) and

internal pressures (q). In all simulations, the radius of the

vessel (R) and dimensionless parameter Q ¼ q
E2

� 	
� R

h

� �3

are set as 300mm and 50. Table 6 shows that high accu-

racy results are obtained in both superelement models.

However, the required time for solving this problem using

the proposed shell superelements is less, compared to 3D

spherical superelements. This outcome is caused by the

fewer Gaussian points in the presented shell superelementsTa
bl
e
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compared to the 3D spherical superelement. Therefore, by

employing the presented shell superelement, the mechani-

cal behavior of spherical vessels can be studied with a high

level of accuracy and decreased computational cost.

It should be noted that the detailed information regard-

ing the required number of Gaussian points in the spherical

superelement can be found in Ref. [15].

5.6 Problem 6

The purpose of this problem is to evaluate the accuracy of

the presented superelement model in comparison with the

experimental results reported in Ref. [44]. In this problem,

asymmetrical natural frequencies of a steel shallow

spherical shell with clamped boundary conditions are

studied. The material properties and geometry parameters

of this spherical shell are given in Ref. [44]. Table 7 pre-

sents the asymmetrical natural frequencies resulted from

experiment and the present shell superelement model.

Comparisons of natural frequencies indicate the credibility

of the superelement model, with the maximum error

between the superelement model and experiment being

around 3%.

6 Conclusions

In this paper, a new shell superelement for finite element

analysis of spherical shell structures has been presented.

This superelement deals with the first-order shear defor-

mation theory and considering large deformation formu-

lation. Comparing the results between the proposed shell

superelement and conventional shell elements reveals that

this superelement is capable of predicting structural,

vibratory and nonlinear behavior of the spherical shell with

high accuracy and decreased computational costs. Several

significant properties obtained by the presented shell

superelement are summarized as follows:

• The presented superelement can analyze partial spher-

ical sectors with and without apex and complete

spherical shells properly;

• For static and vibration analysis of spherical shells, the

optimum number of nodes in each superelement is

obtained by setting M ¼ 3 and N ¼ 16 resulting in

48-node superelement without apex and 33-node

superelement with apex;

• In the mechanical analysis of the spherical vessels,

employing the presented shell superelement is much

more computationally efficient than that of the 3D

spherical superelement presented in the literature, at the

comparable level of accuracy;

• The presented superelement predicts the behavior of

spherical shells under local loads and boundary condi-

tions with acceptable level of accuracy.

Appendix 1

Bm½ �; Bb½ �; Bs½ � and BNL½ � are given as the following equa-

tions:

Table 7 Comparison of natural

frequencies in problem 6
Thickness = 0.125 in.

Radius = 6 in.

Experiment [44] Superelement model

Value (rad/s) Error (%) Value (rad/s) Error (%)

1st asymmetric natural frequency 7300 – 7464 2.20

2nd asymmetric natural frequency 9300 – 9402 1.08

3rd asymmetric natural frequency 11,900 – 12,183 2.32

4th asymmetric natural frequency 15,200 – 15,631 2.76

5th asymmetric natural frequency 19,100 – 19,701 3.05
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Appendix 2

K1;K2;K3; . . .;K10 are specified as the following equations:
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Appendix 3

This research uses the Newton–Raphson algorithm for

solving the nonlinear governing equation as follows:

Kt Uf grð Þ½ � DUf g ¼ Ff g � K Uf grð Þ½ � Uf gr

Uf grþ1 ¼ Uf grþ DUf g
ð26Þ

where Kt is the tangent stiffness matrix which is expressed

as follows:

ðKt
ijÞ
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ik;jU

r
k þ Kr

ij ð27Þ
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ik;j ¼ K2ð Þrik;jþ K4ð Þrik;jþ K5ð Þrik;jþ K6ð Þrik;jþ K8ð Þrik;j
K2ð Þrik;j¼ Bmð Þpi Að Þpq BNLð Þqk;j
K4ð Þrik;j¼ ~BNL

� �
pi;j

Að Þpq Bmð Þqk;j
K5ð Þrik;j¼ ~BNL

� �
pi;j

Að Þpq BNLð Þrqkþ ~BNL

� �r
pi

Að Þpq BNLð Þqk;j
K6ð Þik;j¼ ~BNL

� �
pi;j

Bð Þpq Bbð Þqk
K8ð Þik;j¼ Bbð Þpi Bð Þpq BNLð Þq;jk
i; j; k ¼ 1 : dof � npe; p; q ¼ 1; 2; 3:

ð28Þ

Nonzero terms of BNLð Þpi;j and ~BNL

� �
pi;j

matrices are

defined as the following equations:

BNLð Þpi;j¼
BNL½ �1i;j
BNL½ �2i;j
BNL½ �3i;j

8
<

:

9
=

;
; ~BNL

� �
pi;j
¼

~BNL

 �
1i;j

~BNL

 �
2i;j

~BNL

 �
3i;j

8
><

>:

9
>=

>;
ð29Þ

where
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BNL½ �1i;j¼

B11
1NLj B12

1NLj � � � B1l
1NLj

B21
1NLj B22

1NLj � � � B1l
1NLj

..

. ..
. . .

. ..
.

Bk1
1NLj Bk2

1NLj � � � Bkl
1NLj

2

666664

3

777775
; ~BNL

 �
1i;j
¼

~B11
1NLj

~B12
1NLj � � � ~B1l

1NLj

~B21
1NLj

~B22
1NLj � � � ~B1l

1NLj

..

. ..
. . .

. ..
.

~Bk1
1NLj

~Bk2
1NLj � � � ~Bkl

1NLj

2

666664

3

777775

BNL½ �2i;j¼

B11
2NLj B12

2NLj . . . B1l
2NLj

B21
2NLj B22

2NLj . . . B1l
2NLj

..

. ..
. . .

. ..
.

Bk1
2NLj Bk2

2NLj . . . Bkl
2NLj

2

666664

3

777775
; ~BNL

 �
2i;j
¼

~B11
2NLj

~B12
2NLj � � � ~B1l

2NLj

~B21
2NLj

~B22
2NLj � � � ~B1l

2NLj

..

. ..
. . .

. ..
.

~Bk1
2NLj

~Bk2
2NLj � � � ~Bkl

2NLj

2

666664

3

777775

BNL½ �3i;j¼

B11
3NLj B12

3NLj . . . B1l
3NLj

B21
3NLj B22

3NLj . . . B1l
3NLj

..

. ..
. . .

. ..
.

Bk1
3NLj Bk2

3NLj . . . Bkl
3Lj

2

6666
64

3

7777
75
;

~BNL

 �
3i;j
¼

~B11
3NLj

~B12
3NLj � � � ~B1l

3NLj

~B21
3NLj

~B22
3NLj � � � ~B1l

3NLj

..

. ..
. . .

. ..
.

~Bk1
3NLj

~Bk2
3NLj � � � ~Bkl

3NLj

2

666664

3

777775

Bkl
1NLJ ¼

1

2R2

0 0 0 0 0

0 0 0 0 0

0 0 Nk;uNl;u 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

; ~Bkl
1NLJ ¼

1

R2

0 0 0 0 0

0 0 0 0 0

0 0 Nk;uNl;u 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

Bkl
2NLJ ¼

1

2R2 sin2 uð Þ

0 0 0 0 0

0 0 0 0 0

0 0 Nk;hNl;h 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

;

~Bkl
2NLJ ¼

1

R2 sin2 uð Þ

0 0 0 0 0

0 0 0 0 0

0 0 Nk;hNl;h 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

Bkl
3NLJ ¼

1

R2 sin uð Þ

0 0 0 0 0

0 0 0 0 0

0 0 Nk;hNl;u 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

;

~Bkl
3NLJ ¼

1

R2 sin uð Þ

0 0 0 0 0

0 0 0 0 0

0 0 Nk;hNl;u þ Nk;uNl;h 0 0

0 0 0 0 0

0 0 0 0 0

2

6666664

3

7777775

:

ð30Þ

Appendix 4

Shape functions of the spherical shell superelement

including pole in the local coordinate system are expressed

as follows:

(a) M ¼ 3;N ¼ 16:

Ni ¼
c c� 1ð Þ

2
i ¼ 1

N2;i ¼
1� cð Þ 1þ cð Þ

4
� cos 4 p lþ 1ð Þ � i� 1ð Þ � p

8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �
i ¼ 1� 16

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

N3;i ¼
c cþ 1ð Þ

8
� cos 4 p lþ 1ð Þ � i� 1ð Þ � p

8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �
i ¼ 1� 16

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

ð31Þ

(b) M ¼ 2;N ¼ 16:

Ni ¼
1� kð Þ
2

i ¼ 1

N2;i ¼
1þ kð Þ
16

� cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �
i ¼ 1� 16

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

ð32Þ

Also, the shape functions of the spherical shell

superelement without pole are given as follows:

(a) M ¼ 3;N ¼ 16:
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N1;i ¼
c c� 1ð Þ

8
� cos 4 p lþ 1ð Þ � i� 1ð Þ � p

8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

i ¼ 1� 16

N2;i ¼
1� cð Þ 1þ cð Þ

4
� cos 4 p lþ 1ð Þ � i� 1ð Þ � p

8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

i ¼ 1� 16

N3;i ¼
c cþ 1ð Þ

8
� cos 4 p lþ 1ð Þ � i� 1ð Þ � p

8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

i ¼ 1� 16

ð33Þ

(b) M ¼ 2;N ¼ 16:

N1;i ¼
1� kð Þ
16

� cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

i ¼ 1� 16

N2;i ¼
1þ kð Þ
16

� cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �

� 1þ cos 4 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos 2 p lþ 1ð Þ � i� 1ð Þ � p
8

� �� �
 �

� 1þ cos p lþ 1ð Þ � i� 1ð Þ � p
8

� �
 �

i ¼ 1� 16

:

ð34Þ
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