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Abstract
To test the impact of different mixture ratios on backfilling strength in Fankou lead–zinc mine, various mixture ratio designs 
have been conducted. Meanwhile, to improve the strength of ultra-fine tailings-based cement paste backfill (CPB), two kinds 
of fibers were utilized in this study, namely polypropylene (PP) fibers and straw fibers. To achieve these, a total of 144 CPB 
backfilling scenarios with different combinations of influenced factors were tested by uniaxial compressive tests. The test 
results indicated that polypropylene fibers improve the strength of CPB, while in some scenarios the addition of straw fibers 
decreases the strength of CPB. In this research, the support vector machine (SVM) technique coupled with three heuristic 
algorithms, namely genetic algorithms, particle swarm optimization and salp swarm algorithm (SSA), was developed to 
predict the strength of fiber-reinforced CPB. Also, the optimal performance of metaheuristic algorithms was compared with 
one fundamental search method, i.e., grid search (GS). The overall performance of four optimal algorithms was calculated 
by the ranking system. It can be found that these four approaches all presented satisfactory predictive capability. But the 
metaheuristic algorithms can capture better hyper-parameters for SVM prediction models compared with GS-SVM method. 
The robustness and generalization of SSA-SVM methods were the most prominent with the R2 values of 0.9245 and 0.9475 
for training sets and testing sets. Therefore, SSA-SVM will be recommended to model the complexity of interactions for 
fiber-reinforced CPB and predict fiber-reinforced CPB strength.

Keywords Fiber-reinforced strength · Compressive strength · Support vector machine · Salp swarm algorithm · Hybrid 
SVM-based technique

1 Introduction

The cemented paste backfill (CPB) technique, as one of the 
most widely used treatment and disposal methods of min-
ing waste, has been successfully applied for alleviating the 

stress from accumulation of tailings [1–3]. The fresh CPB 
materials are liquid and can be transported to the stopes 
of underground mine by their own gravities or pumping 
stresses [4]. After a period of chemical reaction, the mechan-
ical properties of CPB materials are strengthened, and thus, 
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CPB plays a crucial role in supporting the stability of sur-
rounding stopes and providing working faces for excavation 
equipment and operators [5]. To satisfy these requirements, 
the properties of CPB must be designed carefully [6–8] and 
usually the uniaxial compressive strength (UCS) of CPB 
is denoted as an effective parameter used for evaluating its 
endurance capability [2, 9]. Therefore, the UCS value of 
CPB is considered as a representative parameter which can 
be used for estimating the stability of mining stope [10, 11].

For the conventional composition of CPB, tailings, bind-
ers and water are indispensable. Apart from that, some stud-
ies exhibited the advantages of the CPB materials with the 
addition of fibers [12–15] and blast furnace slag [16]. These 
materials have been proved to be beneficial to the mechani-
cal properties of backfilling bodies and reduce the usage of 
binding agents.

To characterize the influence of different components on 
the UCS of CPB, several scholars [16, 17] designed vari-
ous scenarios and performed numerous UCS tests. For these 
traditional methods, unconfined compressive tests (UCTs) 
have to be conducted until the curing time finished and thus 
tend to be time-consuming; in addition, insufficient test sam-
ples may bring devious results. Considering this, some other 
studies proposed alternative methods which employ elec-
trical resistivity (ER) and ultrasonic pulse velocity (UPV) 
measurements. According to the bibliography [18–20], these 
innovative measurements have been widely used for deter-
mining the strength of CPB or rock materials because of 
their quick and easy implementation, low cost and, most 
importantly, nondestruction. However, the test results of 
these methods are significantly influenced by the homoge-
neity of materials which means same components of CPB 
samples may obtain different values. Particularly, for large-
size samples, nondestructive methods hardly reflect their 
actual strength.

Recently, artificial intelligence (AI)-based models are 
frequently proposed to solve different problems of mining 
and geotechnical engineering [21–40]. Particularly, many 
scholars applied AI techniques to investigate the effects 
of different components on strength development of CPB 
and predict the UCS of CPB [3, 5, 9, 11, 41]. Among these 
methods, neural network-based methods presented outstand-
ing prediction performance on the UCS of CPB. However, 
there are some disadvantages in existing research methods 
that need to be addressed. For instance, the most prominent 
disadvantage of neural network methods is that the number 
of hidden layer(s) is difficult to determine [42]. In order to 
predict the UCS of fiber-reinforced cemented paste backfill-
ing, as far as the authors know, there is no study available 
in the literature. Therefore, more novel methods are worth-
while to explore and understand the relationships between 
the UCS of CPB and its important factors. The prediction 
of fiber-reinforced CPB strength would be a good strategy 

to examine the generalization capability of artificial intel-
ligence in this specific field.

The support vector machine (SVM) [43], as one of the 
most effective regression tools for predicting the system out-
put, has been applied in mining issues such as blasting envi-
ronmental issues [44], hard rock pillar stability [45], rock-
burst phenomenon [46] and blast-induced rock movement 
[47]. In SVM, few hyper-parameters are involved and it is 
more effective when handling small sample data. Thus, SVM 
is considered to utilize in this study to predict the strength of 
fiber-reinforced CPB. Meanwhile, four optimal algorithms 
and cross-validation methods are combined to optimize the 
hyper-parameters. In this regard, different hyper-parameter 
optimization techniques based on the SVM has been pro-
posed in this study, namely the grid search (GS), the genetic 
algorithm (GA), the particle swarm optimization (PSO) and 
salp swarm algorithm (SSA). The aforementioned tech-
niques are used for evaluating the strength of fiber-reinforced 
CPB. This is an innovative work as the strength prediction 
of fiber-reinforced CPB has not been investigated before. 
The potential of optimizing the hyper-parameters of SVM 
models for fiber-reinforced CPB datasets is worthwhile to 
investigate. This study will promote the application of the 
SVM in mining operations and other geotechnical areas; 
meanwhile, it will be helpful for interpreting the strength 
development of fiber-reinforced CPB.

2  Materials, testing procedure and input 
parameters

2.1  Fiber properties

The Fankou lead–zinc mine which is located in Shao-
guan, Guangdong Province of China, is one of the biggest 
lead–zinc mine corporations in Asia, and it produces enor-
mous tailings every year. According to current production 
process, raw tailings are classified and only those tailings 
with particle size larger than 19 μm are used for underground 
backfilling. The main reason is that fine tailings will cause 
the decrease in strength of backfill bodies [12]. Therefore, 
most of tailings are discharged into tailing reservoirs and 
thus cause many pollution and safety problems. In order to 
address these problems, some studies advised that utiliz-
ing fibers additives in the backfilling slurry and is able to 
improve mechanical properties of backfilling bodies [12, 
48–52]. Therefore, in the experimental section, the main 
objective is to explore the influence of novel fiber additives 
on the UCS of CPB. To achieve this goal, all tailings were 
extracted from ore processing plants without the process 
of filtration and sedimentation, and hence, the experiments 
were implemented in the laboratory of Fankou lead–zinc 
mine. In this study, two kinds of fibers are employed, namely 
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straw fibers and polypropylene (PP) fibers. The polypropyl-
ene fibers have stable chemical properties and powerful 
physical properties. In addition, they have been proved to 
be positive for improving the mechanical properties of CPB 
[12]. The straw fibers were collected from the farm, and they 
are composed of lots of cellulosic substances with stable 
chemical properties and mechanical strength. Additionally, 
they are environmentally friendly, and thus, they will not 
create additional pollution problems to underground envi-
ronment. Therefore, these two kinds of fibers are developed 
in this study. The main properties of PP fibers, the main 
components of straw fibers and the main properties of straw 
fibers are presented in Tables 1, 2 and 3, respectively. Fig-
ure 1a, b shows the shape and appearance of PP fibers and 
straw fibers.   

2.2  Specimen preparation and important factors

The concentration of raw tailings is too low; therefore, 
tailings are dried in an oven with the temperature around 
100° to prevent the chemical properties of the tailings 
from changing. Next, the traditional gravitational sedi-
mentation and filtering methods are implemented for 
measuring tailings size distribution as shown in Fig. 2. 

The test results indicated that the tailing size larger than 
74 μm, 37 μm, 19 μm, 15 μm and 10 μm accounts for 
20.4%, 36.7%, 47.5%, 54.9% and 60.2% of the total tail-
ings, respectively. That is to say, the tailing size smaller 
than 10 μm accounts for about 40% of the total tailings; 
thus, the raw tailings can be classified as ultra-fine tail-
ings which will greatly reduce the filling performance of 
the tailings. As mentioned before, only size larger than 
19 μm can be used for underground backfilling; thus, more 
than 50% of the total tailings are wasted and discharged 
into reservoirs. According to the relevant laws and regu-
lations of Guangdong Province, all mine reservoirs have 
been forced to shut down in the next few years; thus, all 
tailings must be recycled. That is to say, current backfilling 
scenarios must be modified and raw tailings will be used 
for underground backfilling instead of classified tailings. 
For achieving this, it is imperative to conduct detailed 
mechanical tests to analyze the impact of different fac-
tors on the strength of CPB. And then, various important 
factors were employed, i.e., fiber properties, cement type, 
curing time, cement–tailings ratio and concentration. For 
fiber properties description, two appearance parameters 
(fiber length and fiber weight) and one mechanical param-
eter (textile strength) were identified as fiber indexes. The 
design of cement–tailings ratio and concentration refer-
enced previous practical scenarios of Fankou lead–zinc 
mine. The cement–tailings ratio was categorized as 1:2, 
1:3, 1:4, 1:5, 1:6, 1:8 and 1:10. The concentration was 
categorized as 66%, 68%, 70%, 72% and 73%. Different 
cement–tailings ratio designs were planned for different 
stope requirements. The concentration was projected to be 
higher than previous mining scheme, because the particle 
size of current tailings is lower than previous one. The 
curing time was set to 3, 7 and 28 days. For simulating 
the engineering practice, two kinds of cement, namely 
Fankou Dachang cement and Portland 42.5 R cement, 

Table 1  Main properties of polypropylene fibers

Property Value

Average diameter 19 μm
Shape Fascicular 

monofila-
ment

Length 12 mm
Acid and alkali resistance Very high
Thermal conductivity Very low
Elastic modulus > 3.5 Gpa
Toxicity Null
Density 0.91 g/cm3

Fracture strength > 350 Mpa
Textile strength > 500 MPa
Melting point >165 °C
Absorbent Null
Low temperature resistance Strong
Self-dispersion Good

Table 2  Main components of 
straw fibers

Component Cellulose Hemi-cellulose Lignin Ash Solution extract Pectin

Cold water Hot water 1% Ca(OH)2

Wheat straw 60.8 14.5 17.6 7.9 8.3 14.5 33.7 0.3
Straw 53.4 19.4 14.3 12.7 6.5 18.3 37.0 Null
Corn stalk 42.6 23.4 18.5 4.8 11.0 21.3 44.7 0.5

Table 3  Main properties of 
straw fibers

Property Value

Average length 10 mm
Bulk density 85 kg/m3

Specific gravity 0.36
Absorbent 300–517%
Textile strength > 5.4 MPa
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were selected as the binder because they are being used in 
Fankou lead–zinc mine. The 28-day minimum compressive 
strength of cement was applied to characterize the cement 
type. As mentioned before, PP fibers and straw fibers were 
chosen for improving the CPB strength. For developing 
the SVM-based prediction model, these parameters were 
undertaken to emulate the couple effect of the fiber-rein-
forced CPB strength and an intuitive schematic diagram is 
demonstrated in Fig. 3. 

3  Uniaxial compression strength tests

The UCTs were conducted for each specimen to compare 
and analyze the influence of different components on CPB 
strength. To this end, specimens were tested utilizing a semi-
automatic pressure testing machine (TYE-300D, Wuxi Test 
Instruments Corporation, China) as shown in Fig. 4. During 
the process of testing, the upper surface of specimens was 
parallel to the lower surface of the pressure sensor. For the 
test piece with high compressive strength, the instrument 
will automatically stop pressurizing, while, for the test piece 
with low compressive strength, it is necessary to manually 
stop pressurizing. To ensure the precise test results, for each 
scenarios, three same specimens were tested and the average 
values were retained. Finally, 144 different test results were 
obtained. These results will be used for establishing the CPB 
strength datasets. Among these test results, 44 results were 
added with fibers: 36 results were added with straw fibers, 
and 8 results were added with PP fibers according to differ-
ent design requirements. According to partial testing results, 
it is found that PP fibers play an important role in improving 
the CPB strength which is complied with previous studies 
[12]. However, straw fibers cannot ensure the increase of 
CPB strength; in some scenarios they even decrease the CPB 
strength. The detailed results can be further presented in 
Fig. 5 and Table 4.

3.1  Input and output variables

As mentioned in Sect. 2.2, various important factors were 
selected to explore the UCS of ultra-fine tailings-based CPB. 
In addition, the fiber length is determined as 12 mm for PP 
fibers and as 10 mm for straw fibers. The additive amount 
of PP fibers and straw fibers are obtained as 5 g/kg and 3 g/
kg, respectively. The textile strength of PP fibers and straw 
fibers is identified as 500 and 5.4 MPa, respectively. Then, 
the minimum 28-day compressive strength of two kinds of 
cement with 42.5 MPa and 39.5 MPa for Portland 42.5 R 

Fig. 1  a The appearance of PP fibers. b The appearance of straw fib-
ers

Fig. 2  The particle size test of 
raw tailings by gravitational and 
filtering methods
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cement and Fankou Dachang cement, respectively, is set 
as input variables. As a result, seven parameters, namely 
cement–tailings ratio (CtT), concentration (Co), curing 
time (T), fiber length (Fl), fiber weight (Fw), fiber’s tensile 
strength (Fs) and 28-day minimum strength of cement (S), 
were set as input variables and the UCS of CPB was consid-
ered as the output variable. Figure 6 demonstrates all input 
and output parameters used for developing the prediction 
models of CPB strength with their range, mean and outlets.

4  Principles of the used techniques

4.1  Support vector machine

SVM was first proposed and developed by Vapnik [43] based 
on statistical learning theory and has been prioritized for 
considering to solve various pattern recognition problems 
among many available supervised learning methods [53]. 
As mentioned before, we have conducted many uniaxial 
compressive tests to examine the compressive properties 
of different backfilling scenarios. However, in the future, 
different backfilling scenarios will be applied to satisfy dif-
ferent design requirement. Conducting more experiments 
will cost much time, and for addressing the CPB strength 
prediction problems, this study applies SVM techniques as 
a regression tool. In such a situation, this section presents a 
concise introduction and description about how to employ 
SVM techniques to solve regression problems. More details 
about SVM theory and its implementation can be found in 
other available studies [54–56].

At first, SVM was proposed for addressing classifi-
cation problems, and then, by means of introducing the 
ε-insensitive loss function, it can be used for doing lin-
ear or nonlinear regression tasks as shown in Fig. 7a, b. 
In the processing of the linear regression, the training data 
are described as ( xc, yc ), (c = 1,2,3…n) where the input x 
is M-dimensional, x ∈ RM represents the input values and 

Fig. 3  Parameters selected for 
developing the SVM-based 
models

Fig. 4  The conducted UCT 
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y ∈ R represents the corresponding output results. The goal 
of SVM is to maximize the function relationship between 
the input data and the output values by a repeated training 
optimization process.

Then, the training set is trained by SVR nonlinear regres-
sion model represented as:

where ω and e, respectively, refer to weight coefficient and 
model error values and �(x) is introduced to transform the 
nonlinear problem into a linear problem [59]. After training 
process, assuming that the difference between the predictive 

(1)f (x) = (� ⋅ �(x)) + e

Fig. 5  The UCT results of 
3-day and 28-day curing time 
for fiber-reinforced and no-fiber 
CPB
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Table 4  The compression test results of 3-day and 28-day curing time for fiber-reinforced and no-fiber CPB

Cement type Concentra-
tion (%)

Cement–tail-
ing ratio

3-day UCS (MPa) 28-day UCS (MPa)

No fiber Straw fiber PP fiber No fiber Straw fiber PP fiber

Portland 42.5 R cement 66 0.333 1.13 1.63 2.2 4.3 4 6.87
66 0.250 0.7 0.87 1.4 3.07 2.8 5.03
68 0.333 1.73 2.6 3.1 4.93 5.6 9.07
68 0.250 0.9 1.57 2.0 3.67 3.9 6.5

Fig. 6  Boxplot of input and out-
put variables used in modeling 
process
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values f (xpa) and the corresponding actual values f (xr
a
) is 

approximate to zero, then the process of nonlinear regression 
can be regarded as an optimization problem shown in Eq. 2 
by means of the ε-insensitive loss function.

In order to ensure the constraint condition feasible, two 
slack variables � , �∗ and the punishment coefficient C are intro-
duced. Then, Eq. (2) is transformed into the following convex 
optimization problem.

(2)
�

min�(�) =
1

2
‖�‖2

−� ≤ f (x
p
a) − f (xr

a
) ≤ �, a = 1, 2,… , n

(3)

min𝜙(𝜔, 𝜉) =
1

2
‖𝜔‖2 + C

m�
a=1

(𝜉∗
a
+ 𝜉a)

s.t.

⎧⎪⎨⎪⎩

𝜉a, 𝜉
∗
a
> 0

f (a) −
�
𝜔 ⋅ xi + e

�
≤ 𝜀 + 𝜉a

𝜔 ⋅ xi + e ≤ 𝜀 + 𝜉∗
a

The first item in Eq. (3) shows the complexity of the pro-
posed model, and the empirical error is mentioned in the 
second item. The constant C is a regularization factor which 
can be used for adjusting the tradeoff between the complica-
tion of the model and empirical deviations.

Further, by introducing the Lagrange multipliers � and 
�∗ [60, 61], the constrained optimization of Eq. (3) can be 
transformed into a new form as shown in Eq. (4):

where the function h
(
xa, x

)
 represents the kernel function 

which maps the input data to a high-dimensional feature 
space [43]. There are mainly four principal kernel functions 
of SVM, i.e., the radial basis function (RBF), the linear, the 
sigmoid and the polynomial [62–65]. Among them, the RBF 

(4)

g(x) = e +

n∑
a

h(xa, x) ⋅ (�a, �
∗

a
)

s.t.{
�a ≥ 0

�∗
a
≤ C

Fig. 7  a Data space transformation by SVM [57]. b Linear SVM regression by means of the ε-insensitive loss function [58]
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of Gaussian kernel function will yield good generalization 
ability for different range of datasets. Therefore, its function 
can be shown as follows:

In terms of the nonlinear regression, the kernel function 
which satisfies the Mercer condition is introduced and the 
kernel function can replace the inner product of the linear 
regression condition. Finally, the nonlinear regression func-
tion can be represented as:

As aforementioned earlier, the Gaussian kernel func-
tion is employed to optimize the SVM model; hence, the 
two important parameters C (penalty factor) and g (RBF 
kernel deviation) were chosen as optimal parameters. For 
conducting the parametric optimization and reducing the 
parametric searching time, many metaheuristic algorithms 
have been widely used, such as GS [46, 66], GA [67–69], 
PSO [70, 71], and recently developed fruit fly optimization 
algorithm [72, 73] and imperialist competitive algorithm 
[74, 75]. To compare the performance of different optimal 

(5)f (x) = e +

n∑
a

(
�a − �∗

a

)(
xa ⋅ x

)
.

(6)f (x) = e +

n∑
a

H(x) ⋅
(
�a − �∗

a

)
.

algorithms, i.e., GS, GA, PSO and SSA were selected in 
this study to improve the prediction capability of SVM on 
the strength of fiber-reinforced CPB. The SVM regression 
program is implemented in the environment of MATLAB 
R2016b. Figure 8 depicts a general implementation process 
of SVM-based models with SSA, GS, GA and PSO optimi-
zation scenarios.

4.2  Grid search algorithm

The GS, as a typical global optimization method, has been 
applied to most of parametric algorithms [46]. The main 
model parameters of the SVM models are penalty factor, 
C, and the RBF deviation, g, which greatly determine the 
performance of model learning, analyzing and generaliza-
tion. As a kind of exhaustive search method, all combination 
parameters are listed and these combinations form a param-
eter selection form where each cell of the form represents 
a candidate solution (a grid). By iterations of the loop, the 
optimal parameter combination was obtained. The detailed 
description of obtaining the best C and g by means of utiliz-
ing the grid searching method is depicted in the literature 
[55, 66]. Although the GS tends to be described a time-
consuming method, it has an outstanding effect to solve the 
complicated nonlinear problem and is able to transform the 
problem of the optimal evaluation function to the optimal 

Fig. 8  The process architectures of the proposed SVM-based models with GS, GA, PSO and SSA optimization strategies
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combination of parameters (C and g), which solve the prob-
lems of the coupling of multi-function.

4.3  Particle swarm optimization

The PSO, as an evolutionary populated search method, gets 
inspiration from the simulation of the fish schooling and 
bird flocking, and therefore, it is a powerful technique in 
solving the parametric optimization problems [76–78]. In 
PSO, the bird flocking represents the swarm of particles 
and the food source denotes the objective function. To find 
out the location of food source, many individuals of birds 
exchange and convey their information about the distance 
of food source. By means of such cooperation, the whole 
bird flocking screens optimal information about the loca-
tion of food source and finally is able to accumulate around 
the food. In other words, the most optimal solution can be 
found through the said process. To achieve this purpose, 
PSO initializes an amount of particles and each particle has 
the equal probability to be acceptable as a candidate solution 
in the optimization of solution. In the search space, each par-
ticle is endowed with two properties: velocity (V) and posi-
tion (X) where velocity denotes the speed of movement and 
position demonstrates the direction of movement. Accord-
ing to this, each particle represents a potential solution and 
estimates the target function based on its current position. 
After appraising the fitness function, particles move toward 
the next location which influenced by their present location, 
other particles’ location and some accidental perturbations 
[79]. Eventually, particle swarms move toward the user-
defined fitness function iteratively.

The equations of updating the velocity and position of 
each particle can be defined as follows:

where R1 and R2 denote random numbers in the range of (0, 
1); pbest and gbest signify the single particle’s best position 
and the best position of the particle swarms, respectively; 
L1 and L2 denote positive acceleration constants; the current 
position and velocity of particle are denoted by X and V; X′ 
and V′ specify the updated position and velocity of particles, 
respectively; and w denotes the inertia weight which is used 
for controlling the particle velocity [79].

In SVM, the purpose of the PSO method is to optimize 
the parameters C and g. By operating the velocity and posi-
tion updating formulas, the particle swarm finally reaches a 
global minimum in the process of updating iteratively. The 

(7)

V
�

= wV + �1(pbest − X) + �2(gbest − X)

X
�

= X + V
�

�1 = L1R1

�2 = L2R2

main process of optimizing the SVM’s parameters with PSO 
is described as below:

(1) Data preparation: separating the datasets to training sets 
and testing sets in the proper proportion.

(2) Initialize parameters: setting the PSO parameters 
including swarm size, number of minimal iterations, 
inertia weight and the speed and velocity of particles, 
etc.

(3) Fitness evaluation: computing the fitness function and 
evaluating fitness of each particle before optimizing the 
values of the objective parameters.

(4) Update: the velocity and position of the particles 
are updated until the parameters C and g satisfy the 
requirement of the SVM model.

(5) Stop condition checking: if iteration is achieved or the 
accuracy meets the stop requirement, stop the iterative 
process; then the optimal parameters are obtained.

4.4  Genetic algorithm

The GA, as one of the most widely used global optimiza-
tion algorithms, was first developed by Holland [80]. GA is 
originated from computer simulation of biological systems 
and gets inspiration from the theory of natural reproduc-
tion and genetics. GA drew based on Darwin’s theory of 
evolution which introduced strategies for the survival of the 
fittest. In GA, each individual represents a candidate solu-
tion aiming at a specific problem. It is a stochastic global 
search and optimization method and by means of the adap-
tive search process, the location of a better optimal solu-
tion is acquired and substitutes the former research result. 
By iterating the search process, the best optimal strategy 
can be obtained. During these search process, four stages 
are involved, namely population initialization, chromosome 
selection, chromosome crossover and mutation [81, 82].

The first stage is population initialization, and within this 
stage each individual of genetic structure (called chromo-
some) is given an equal opportunity to be chosen as a solu-
tion. After initialization stage, the selection of chromosomes 
is important which determines the preservation and propa-
gation of chromosomes. For evaluating the performance of 
these chromosomes, it tends to be a critical step to introduce 
a user-defined fitness function, and utilizing this function, 
the performance of chromosome is encoded numerically. 
According to the value of scoring, chromosomes corre-
sponding to the solution with a higher user-defined scoring 
standard will acquire the right to replicate and generate off-
spring. The parameter optimization process will be contin-
ued based on those chromosomes with high performance, 
whereas low-performing structural chromosomes will not 
participate in the next search process. By iterating aforemen-
tioned parametric selective process, the chromosomes which 
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can bring better performance in the solution space take up 
the majority proportion of the population. To ensure the sta-
bility of evolutionary process, crossover randomly selects 
two good-performing chromosomes as “parents” and they 
generate a “child”. Crossover permits the parental chromo-
somes to recombine and exchange their strings which rep-
resent the characteristic of chromosomes and carry out the 
mating process by searching various attractive solutions. It 
is noted that there are different methods of crossover that can 
be implemented: the one-point, the two-point, and the uni-
form type [83]. After implementing the crossover operation, 
the evolutionary process tends to develop aiming at adap-
tive optimal solutions. Similar to the evolutionary process 
of organisms, the mutation is also critical which can prevent 
the searching from falling into local convergence in GA and 
arbitrarily introduces some new chromosomes to improve 
the flexibility and diversity of chromosome population. If the 
mutant individual improves the performance, it substitutes 
the original individual. By means of the mutation process, 
GA fulfills the global search and thus ensures the generaliza-
tion of final search results.

4.5  Salp swarm algorithm

The SSA, as a novel swarm-based intelligent optimizer, is 
originated from the foraging behavior of salp swarms [84]. 
Salps are transparent with barrel-shaped body which are 
similar to jelly fish. For struggling for more food sources, 
this creature is connected with each other by salp chain so 
that food source information can be conveyed and located 
quickly [85]. Among the salp swarms, various salps play 
different roles: leaders and followers. The leaders guide the 
whole population, while the followers follow the direction 
of leaders.

The ultimate purpose of salp swarms is to find the best 
food source denoted as F in the search domain. Similar to 
other swarm-based optimizers, an initial population is pre-
defined including the number and positions of individuals. 
Each single individual represents a potential candidate solu-
tion for the optimal target. The space of whole solutions can 
be denoted by a two-dimensional matrix called Ui as defined 
in Eq. (8):

Then, the initialized salps are updated following the 
mathematical model, where leaders and followers obey dif-
ferent equations. As mentioned before, the salp leaders play 
a significant role in foraging and navigation and they are 
updated through Eq. (9):

(8)Ui =

⎡⎢⎢⎢⎣

u1
1
u1
2
⋯ u1

d

u2
1
u2
2
⋯ u2

d

⋮ ⋮ ⋯ ⋮

un
1
un
2
⋯ un

d

⎤⎥⎥⎥⎦
.

where u1
m

 represents the position of the leader in the mth 
dimension, Fm denotes the position of the food source for 
the mth dimension, kbm and jbm represent the upper and 
power bounds of the mth dimension, respectively. Variables 
c2 and c3 are random numbers in the range of [0, 1]. These 
two variables determine the later search direction in the 
search domain toward +∞ or −∞ and search step size. c1 is 
a variable acting as a tradeoff between exploration space and 
exploitation depth. Generally, it dwindles with the increase 
in iterations and can be obtained by Eq. (10):

where j and J represent current iteration number and maxi-
mum iteration number, respectively.

For salp followers, their positions are updated according 
to Eq. (11):

where i ≥ 2 and ui
m
 represents the position of ith salp for the 

mth dimension.
Similar to other metaheuristic algorithms, SSA optimiz-

ers avoid local optima with powerful flexibility. In SVM, 
the ultimate aim for hybridization of SSA is to optimize 
the hyper-parameter combination (C, g) according to the 
objective function. Before implementing the program of 
SSA-SVM, the population size of salps is generated ini-
tially. After that, the fitness function is defined as the food 
source F. All salps explore this function in the search space 
with the lead of salp leaders. Then, by updating the position 
of salp swarms, the search results are gradually optimized. 
Before the optimal results satisfy the stopping criteria, afore-
mentioned process is repeated recursively excepted from the 
initialization process.

5  Data pre‑processing and evaluation 
metrics

In this study, the CPB strength prediction models were 
developed in MATLAB environment and the computation 
code was updated by the open-source toolbox invented by 
Chang and Lin [55]. The code was implemented on the 
computer with Intel (R) Core (TM) i7-7500U CPU run-
ning at 2.70 GHz and 2.90 GHz. For constructing the CPB 
strength prediction models, seven evaluation indices were 
selected, namely cement–tailings ratio, concentration, curing 
time, fiber length (mm), fiber weight (g/kg), fiber’s tensile 
strength (MPa) and 28-day minimum strength of cement 

(9)u1
m
=

{
Fm + c1
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kbm − jbm

)
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)
c3 ≥ 0

Fm − c1
((
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)
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(MPa). Therefore, these seven parameters are used as input 
parameters in each SVM-based prediction model. The UCS 
values of specimens were chosen as the output parameter. 
For removing the dimension and magnitude interference of 
different indices, the input data and output data were scaled 
into the range of [− 1, 1] by means of the following normali-
zation Eq. (12):

where x* denotes the normalized values, x represents the 
original values, xmax signifies the maximum value and xmin 
represents minimum value of this label, respectively.

To evaluate the difference between original and predicted 
values for all CPB strength samples, two effective mathe-
matical measures were employed in this study, namely mean 
squared error (MSE) and coefficient of determination (R2). 
Generally, the closer value of MSE to 0 and R2 closer to 1 
indicate the higher prediction performance of the predictive 
models

where m denotes the number of samples,yi , y∗i  , y
avr

i
 repre-

sent the actual values, predicted values and average values, 
respectively.

After implementing the normalization process, principal 
component analysis (PCA) was employed. The PCA, also 
known as Karhunen–Loeve Transform, is a technique that 
can be used to explore high-dimensional data structures. 
PCA is often used for the exploration and visualization of 
high-dimensional datasets. In this study, it was used for 
extracting the important features from important variables 
and reducing the calculation time and complexity. Therefore, 
five character variables were chosen as the principle com-
ponent (occupied 95% of total information amount).More 
details about PCA can be found in the literature [86, 87].

The overall robustness and generalization ability of the 
training model was essential because it influences the predic-
tion accuracy of testing models. Currently, two mainstream 
methods for assessing the regression performance on train-
ing datasets are k-fold [88] and leave-one-out cross-valida-
tion [89]. For k-fold cross-validation, the training samples 
are separated into k disjointed subsets, and the sample num-
ber of these subsets is equal. Then, take one subset as the 
testing set while the other k-1 subset as the training set. This 
process is computed for k times. In this way, k prediction 
results for training sets are obtained and the final prediction 

(12)x∗ =
2(x − xmin)

(xmax − xmin)
+ (−1)

(13)MSE =
1

m

m∑
i=1

(yi − y∗
i
)2

(14)R2 = 1 −

∑
i (y

∗
i
− yi)

2

∑
i (y

avr

i
− yi)

2

accuracy for training sets is the average of these prediction 
accuracies. For different characteristic of datasets, the num-
ber of cross-validation is varied, typically five- or tenfold 
cross-validation is well performed [90]. In this study, five-
fold cross-validation is employed. By combining the afore-
mentioned performance metrics and k-fold cross-validation, 
the ultimate prediction performance of every model can be 
procured.

Before conducting SVM-based prediction models, the 
partition of training sets and testing sets is essential. For 
training sets, it is used for fitting the predicted models and 
selecting hyper-parameters in SVM models, and the optimal 
parameters will be used for examining the goodness of test-
ing models. Too large training sets will cause the overfitting 
condition and thus weaken the predicted ability of models, 
while too small training sets will fail to provide reliable con-
figuration parameters. For testing sets, it is used for validat-
ing the robustness of proposed models. It can be regarded to 
be completely independent which means it did not partici-
pate in the development of predicted models. Generally, the 
ratio of training and testing sets which equal to 8:2 is recom-
mended [91]. For achieving this, the whole datasets were 
randomly sorted utilizing the rand() function in Excel and 
then divided into two datasets according to the proportion 
of 8:2. Therefore, 115 datasets from the whole datasets (144 
datasets) were included in the training sets and the remaining 
29 datasets were considered as testing samples. All models 
will comply with this ratio in the later calculation.

6  SVM‑based model development

6.1  GS‑SVM

As one of the most classical parameter optimization strate-
gies, the grid search method has been effectively employed 
in solving parametric optimization problems in SVM models 
[92–94]. As a kind of exhaustive search method, the grid 
search method explores the influence of different combina-
tions of hyper-parameters on prediction accuracy. For reduc-
ing the local minimum and overfitting problems, the results 
of grid search method can be strengthened by employing 
cross-validation. Based on the number of datasets, a five-
fold cross-validation process was carried out to improve the 
robustness of prediction models.

The main routine of the parameter search in GS-SVM is 
described as follows:

1. Through the experiment and testing, determine the 
bound of the grid search and grid step.

2. To obtain the best parameter combination, a preproc-
ess step of the training datasets A is needed. The origi-
nal training datasets are divided into five equal subsets 
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where the other four sets are chosen to fit models and the 
rest of the training sets are used for selection parameters. 
According to the exhaustion method, all combinations 
are experimented and tested. The aforementioned pre-
process will be repeated 5 times.

3. Finally, we selected the new parameter pairs of (C, g) 
taking the optimum parameters previously obtained as 
a reference point to make the accuracy of the model 
higher.

To tune two significant parameters utilizing the GS, the 
grid search bound and grid search step must be determined 
carefully. And fivefold cross-validation methods were 
employed in this study to reduce the contingency of search 
results. In GS, each grid corresponds to one search result and 
generally, with the decrease in search step, more grids will 
be generated and meanwhile it will consume more search 
time. With the expansion of search bound, more search 
results will be found, and similarly, more search time will 
be cost. However, if the value of search bound is too less and 
the value of search step is too large, the search results tend to 
be easy to get stuck in local minimum. By comparison and 
calculation, it can be observed that when the search bound 
of C and g is equal to  (2−8,  28) and the grid step for C and g 
is equal to 0.5, the GS will produce better results and cost 
less calculation time. The search results are demonstrated in 
Fig. 9. In this figure, with the change of grid color, it can be 
found that yellow lines correspond to worse search results 
and blue lines correspond to better search results. In addi-
tion, by observing the GS-SVM optimal curve, it is found 
that with the change of  log2C and  log2g, the whole image 
presents concave transformation. When C is equal to 125 
and g is equal to 0.03125, the GS-SVM model receives best 
prediction results with MSE values of 0.01464 and 0.01655 

for training sets and testing sets, respectively, and R2 val-
ues of 0.9165 and 0.9445 for training data and testing data, 
respectively.

6.2  PSO‑SVM optimization

According to previous investigations, the PSO parameter 
optimization strategy has the strong ability when assisting 
searching and optimizing hyper-parameters [91, 95]. There-
fore, it was applied to optimize the hyper-parameters in 
SVM-based prediction models. In the PSO algorithm, there 
are some crucial parameters which can influence the opti-
mization velocity and results need to be selected carefully. 
Among these parameters, coefficients of velocity equation 
δ1 and δ2 dominate the local search ability and global search 
ability, respectively. When these parameters are equal to 2, 
the PSO algorithm demonstrates better prediction perfor-
mance [91, 96, 97]. Therefore, these results were adopted 
in all PSO-SVM models. In addition, another two signifi-
cant parameters which control the updating speed of search 
velocity and particle are both set to 1 according to the default 
values. To determine the other parameters: swarm size and 
iteration number, the trial-and-error and variable-controlling 
approach were employed. By a series of testing results, it can 
be found that when the number of iteration is bigger than 
1000, the change of swarm size was not influential much 
in results of the system. Therefore, the number of iteration 
was set as 1000. For the number of swarm size, it also needs 
to be selected carefully. After lots of tests, it can be found 
that too less swarm size will produce unstable fitness values 
with the increase in iteration, while too large swarm size 
will increase the calculation time. Finally, several models 
with swarm size values of 50, 100, 150, 200, 250, 300, 350, 
400, 450 and 500 were selected to test and corresponding 

Fig. 9  GS-SVM optimal curve 
for the best parameters of C 
and g 
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fitness values were used for evaluating their performance as 
shown in Fig. 10. From this figure, we can observe that all 
fitness values are invariable after iterations of 500. These 
results showed that selected parameters can produce stable 
prediction results. In addition, different swarm sizes will 
output different MSE values. To further compare the swarm 
size values, the ranking system proposed by Zorlu [98] was 
used in this study. According to the relative training (TR) 
accuracy, testing (TS) accuracy, training MSE and testing 
MSE of each swarm size, different scores can be procured 
and better performance will be given better scores as shown 
in Table 5. It can be observed that when swarm size is equal 
to 250 (total rank value of 40), corresponding performance 
score is the highest for each item. Then, an intuitive figure 
which can reflect the ranking results is depicted in Fig. 11.

6.3  GA‑SVM

To realize the powerful parametric adjustment and optimi-
zation, there are some crucial parameters that need to be 
determined initially. Crossover possibility and mutation 
possibility are set as 0.4 and 0.01, respectively. Then, the 
number of generation and population size will be selected 
by means of iterative calculation and comparison. Differ-
ent with PSO algorithms, when the number of generation 
reaches 200, the fitness values will stop changing for differ-
ence population size. Regarding this, the number of genera-
tion was determined as 200. To choose the best population 

size, the population size values of 5, 15, 20, 25, 30, 35, 40, 
45 and 50 were selected and corresponding fitness values 
were employed as performance index. As shown in Fig. 12, 
a value of 200 generation was allocated as stopping cri-
teria. An interesting result can be found that for different 
population size, their obtained best fitness values would not 
change after 75 generations which means the optimal pro-
cess has completed after 75 generations. Their obtained R2 
and MSE values are very close to each other and selecting 
the best model is difficult. Therefore, the ranking system 
was applied to assist selecting the best population size as 
shown in Table 6, and to better display the ranking results, 
a ranking score chart is drawn as Fig. 13. As a result, the 
population size with 15 shows comparatively better overall 
performance.

6.4  SSA‑SVM

To procure the best optimal results, in the initialization 
stage, upper bound and lower bound values which control 
the parametric exploration range are set to be 100 and 0.01, 
respectively. As a member of swarm intelligence techniques, 
two crucial parameters need to be tuned carefully, namely 
swarm number and iterations. In order to determine these 
two parameters, various models were established and their 
performance was evaluated by R2 and MSE values. Because 
more iterations will cost more calculation time and after 400 
iterations, the change of swarm size won’t induce obvious 

Fig. 10  PSO-SVM optimiza-
tions with different swarm sizes
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change of the best fitness values, the number of iterations is 
determined as 400. In order to identify the salp size, ten salp 
sizes were designed, i.e., 20, 40, 60, 80, 100, 120, 140, 160, 
180 and 200. Their optimal results are presented in Fig. 14. 
It can be observed that after about 175 iterations, the optimal 
results are inclined to be stable. Similar to previous sections, 
ranking system was used and the best predictive SSA-SVM 
model was selected accordingly (Table 7). The most satis-
factory optimal parametric group was considered as the one 
with 400 iterations and 180 salp size. Corresponding R2 and 
MSE values are 0.9245 and 0.01309 for training sets and 
0.9475 and 0.01555 for testing sets, respectively. Detailed 
description of results will be analyzed in the next section. 
Similarly, an intuitive figure which can reflect the ranking 
results is displayed in Fig. 15.

7  Results and discussion

To predict the strength of fiber-reinforced CPB, four opti-
mal algorithms were combined with SVM, i.e., GS, GA, 
PSO and SSA. According to the aforementioned optimiza-
tion results, different parameter configurations and algo-
rithms were obtained different prediction performances. 
Table 8 shows the results of performance indices as well as 
the ranking system for the selected 4 models of SVM-PSO, 
SVM-GS, SVM-GA and SVM-SSA in predicting the CPB 
strength.

It can be found that SSA-SVM presented best prediction 
accuracy for training sets and testing sets with R2 values of 
92.45% and 94.75%, respectively, compared to other three 
optimal strategies. This proves that for the fiber-reinforced 
CPB datasets, SSA-SVM optimization networks can fit the 
sophisticated relationship between CPB parameters and CPB 
strength better and whose generalization abilities are more 
outstanding. It can also indicate that SSA algorithms are 
more capable and flexible.

For GS-SVM approach, it provided inferior calculation 
results whatever aiming at the predictive accuracy or MSE 
compared to other three metaheuristic algorithms. As men-
tioned before, as a kind of exhaustive searching algorithm, 
it is possible to miss some more effective parameter opti-
mization strategies and easy to get stuck in local optima. 
Therefore, the GS-SVM strategies tend to be strengthened 
by cross-validation methods. That is to say, the predictive 
results of GS-SVM will be largely influenced by the number 
of cross-validation.

For GA-SVM algorithm and PSO-SVM algorithm, their 
prediction accuracy level is lower than SSA-SVM algorithm. 
But for GA-SVM algorithm, it shows the best result for MSE 
value of testing sets. Therefore, its prediction capability can-
not be ignored because the prediction performance of super-
vised machine learning methods would be influenced by the 

Table 5  Ranking values of 
the PSO-SVM models with 
different swarm sizes

Model no. Swarm size Testing results Ranking Total rank

TR TS TR TS

R2 MSE R2 MSE R2 MSE R2 MSE

1 50 0.9164 0.01449 0.9457 0.01639 7 6 7 6 26
2 100 0.9125 0.01521 0.9421 0.01702 2 1 2 1 6
3 150 0.9161 0.01453 0.9446 0.01644 6 5 4 5 20
4 200 0.9158 0.01458 0.9445 0.01647 5 4 3 4 16
5 250 0.9170 0.01439 0.9460 0.01631 10 10 10 10 40
6 300 0.9156 0.01463 0.9449 0.01653 4 3 6 3 16
7 350 0.9155 0.01466 0.9448 0.01656 3 2 5 2 12
8 400 0.9166 0.01446 0.9459 0.01636 9 9 9 9 36
9 450 0.9165 0.01448 0.9458 0.01638 8 8 8 7 31
10 500 0.9165 0.01447 0.9458 0.01637 8 7 8 8 31
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Fig. 11  Intuitive ranking with different swarm sizes for PSO-SVM 
algorithm
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properties and dimension of datasets. For different datasets, 
GA-SVM algorithm and PSO-SVM algorithm probably 
show better prediction results. It is worth mentioning that 
for GA-SVM and PSO-SVM algorithms, there is a complex 
nonlinear relationship between their predictive capability 
and swarm (population) size when the number of iteration 
(generation) is constant. This phenomenon indicates that the 
number of swarm (population) size needs to be set carefully.

Finally, it can be concluded that all predictive models 
obtained satisfactory prediction results. According to the 
ranking system, the overall model performances were sorted 

by SSA-SVM, GA-SVM, PSO-SVM and GS-SVM. These 
results indicated that the proposed metaheuristic algorithms 
were superior to exhaustive search method (grid search 
method) and selected optimal parameters improved predic-
tion capability for SVM-based models successfully.

Predicted CPB strengths together with their actual val-
ues for GS-SVM, GA-SVM, PSO-SVM, and SSA-SVM 
are demonstrated in Figs. 16, 17, 18 and 19, respectively. 
From these figures, it can be observed that each model 
has the outstanding ability to predict CPB strengths, 
while SSA-SVM algorithms display a little bit better 

Fig. 12  GA-SVM optimizations 
with different population size 
values
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Table 6  Ranking values of the 
GA-SVM models with different 
population sizes

Model no. Popula-
tion size

Testing results Ranking Total rank

TR TS TR TS

R2 MSE R2 MSE R2 MSE R2 MSE

1 5 0.9235 0.01328 0.9453 0.01597 7 5 3 3 18
2 10 0.9234 0.01327 0.9476 0.01550 6 6 10 10 32
3 15 0.9238 0.01319 0.9467 0.01553 8 9 8 9 34
4 20 0.9245 0.01311 0.9472 0.01565 9 10 9 5 33
5 25 0.9238 0.01320 0.9466 0.01556 8 8 7 8 31
6 30 0.9284 0.01323 0.9456 0.01591 10 7 4 4 25
7 35 0.9238 0.01320 0.9465 0.01557 8 8 6 7 29
8 40 0.9238 0.01320 0.9465 0.01557 8 8 6 7 29
9 45 0.9238 0.01319 0.9465 0.01557 8 9 6 7 30
10 50 0.9238 0.01320 0.9463 0.01559 8 8 5 6 27



3534 Engineering with Computers (2021) 37:3519–3540

1 3

fitness; therefore, SSA-SVM algorithms will be superior 
to apply in evaluating the CPB strengths. Particularly for 
large datasets, slight deviations will cause the magnifica-
tion of prediction errors.

8  Sensitivity analysis

For exploring and comparing the sensitivity of different 
influenced factors on CPB strengths, in this section, the 
cosine amplitude method [99] was employed. Each input 
variable and one input variable were transformed into a sin-
gle column matrix. Thus, eight single column matrixes were 
obtained as follows:

where the length of each single column matrix is equal to 
the number of all datasets and then the sensitivity of differ-
ent influenced factors on CPB strengths can be calculated 
as follows:

According to the results (Fig. 20), it can be observed 
that the most sensitive factor is cement–tailings ratio and 
among three fiber factors, the length of fibers is more impor-
tant. Although the sensitivity of fiber parameters is not so 
prominent than other parameters, these results can provide a 
constructive guideline for selecting fiber properties. Finally, 
the sensitivity of different parameters on CPB strengths can 
be sorted in descending order as: CtT, T, Co, S, Fl, Fw, Fs.
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Fig. 13  Intuitive ranking display with different population sizes for 
GA-SVM algorithm

Fig. 14  SSA-SVM optimiza-
tions with different swarm size 
values
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9  Conclusions

Totally 144 CPB strengths were obtained from practical 
experiments. It was found that PP fibers play an important 
role in improving the strength of CPB. For straw fibers, 
they can also increase the backfilling strength while they 
decrease the compressive strength of CPB in some condi-
tions. According to the sensitivity analysis, among three 
fiber parameters, fiber length played a more important role 
in improving CPB strengths. Although this result is limited 
by the number of specimens, it will provide an invalu-
able guideline for future study. Then, the most important 
parameters of CPB strength were used for developing the 
CPB strength predictive models by means of GS-SVM, 
GA-SVM, PSO-SVM and SSA-SVM optimal scenar-
ios. According to previous investigations and practical 
engineering conditions, seven input parameters, namely 
cement–tailings ratio, concentration, curing time, fiber 
length, fiber weight, fiber’s tensile strength and 28-day 
minimum strength of cement, are used for developing the 
training models. Aforementioned four optimal strategies 
are employed to tune the training networks and search 
ideal hyper-parameters. Via iterative tests and comparison, 
the best optimized eight CPB strength prediction models 

Table 7  Ranking values of 
the SSA-SVM models with 
different swarm sizes

Model no. Swarm size Testing results Ranking Total rank

TR TS TR TS

R2 MSE R2 MSE R2 MSE R2 MSE

1 20 0.9232 0.01332 0.9449 0.01600 5 4 2 2 13
2 40 0.9238 0.01319 0.9468 0.01551 7 6 7 10 30
3 60 0.9244 0.01312 0.9473 0.01568 9 9 9 4 31
4 80 0.9237 0.01320 0.9464 0.01558 6 5 3 5 19
5 100 0.9237 0.01320 0.9466 0.01556 6 5 5 7 23
6 120 0.9238 0.01318 0.9467 0.01556 7 7 6 7 27
7 140 0.9239 0.01317 0.9469 0.01554 8 8 8 9 33
8 160 0.9231 0.01334 0.9448 0.01599 4 3 1 3 11
9 180 0.9245 0.01309 0.9475 0.01555 10 10 10 8 38
10 200 0.9238 0.01319 0.9465 0.01557 7 6 4 6 23
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Fig. 15  Intuitive ranking display with different swarm sizes for SSA-
SVM algorithm

Table 8  Ranking results for the 
selected SVM-based models

Model no. Testing results Ranking Total rank

TR TS TR TS

R2 MSE R2 MSE R2 MSE R2 MSE

GA-SVM 0.9238 0.01319 0.9467 0.01553 3 3 3 4 13
PSO-SVM 0.9170 0.01439 0.9460 0.01631 2 2 2 2 8
GS-SVM 0.9156 0.01464 0.9445 0.01655 1 1 1 1 4
SSA-SVM 0.9245 0.01309 0.9475 0.01555 4 4 4 3 15
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for each algorithm were procured. By employing the rank-
ing system, each model was given a corresponding score. 
Ranking scores indicated that the proposed metaheuristic 
algorithms presented better performance than GS method. 
The SSA-SVM algorithm was found to be more effective 
and flexible with R2 values of 0.9245 and 0.9475 for train-
ing sets and testing sets, respectively, and MSE values of 
0.01309 and 0.01555 for training sample and testing sam-
ples, respectively. For other two metaheuristic algorithms, 

although they did not produce better performance levels 
than SSA-SVM algorithms, their predictive capability was 
still satisfactory and acceptable, because the performance 
of intelligent predictive models partially depends on the 
characteristic of datasets. Therefore, for different datasets 
they probably get better performance. Finally, it can be 
concluded that the SSA-SVM algorithms will be given 
priority to apply in view of their prominent robustness and 
predictive capability for CPB strength.
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Fig. 17  Results of GA-SVM optimization strategy for evaluating CPB strength
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Nevertheless, there are still some limitations that need 
to be addressed in the future study. First, more UCS tests 
can be undertaken in the future to enrich the CPB datasets 
and further understand the influence of different factors 
on CPB strength. Particularly for the research of 7-day 
fiber-reinforced CPB strength, this study didn’t cover. 
Other essential influencing variables such as tailing type 
and size, curing temperature and sulfur content were not 
considered in the current study. Secondly, the optimization 

ability of other novel heuristic algorithms is worthwhile 
to analyze combined with SVM models such as gray wolf 
optimization [47], whale optimization algorithm [100], 
firefly algorithm [101], Harris Hawks optimization algo-
rithm [102] and artificial bee colony algorithm [103, 104]. 
Finally, more advanced supervised learning methods such 
as Cubist algorithm [105] and random forest [106] which 
have exhibited satisfactory predicted capability on other 
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Fig. 18  Results of PSO-SVM optimization strategy for evaluating CPB strength
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Fig. 19  Results of SSA-SVM optimization strategy for evaluating CPB strength
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geotechnical engineering have not been undertaken and 
compared on CPB strength prediction.
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