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Abstract
In this article, a modified version of heat transfer search (HTS) is proposed for multi-objective structural optimization. Con-
trary to the basic HTS optimizer which activates only one of the three phases of HTS at a time, multi-objective HTS simulta-
neously exploits the effect of all phases. The proposed modified optimizer is based on the principle of thermodynamics with 
design solutions being thought of molecules that interact with other molecules of the system itself, and simultaneously with 
the surrounding molecules through the three modes of heat transfer, namely conduction, convection, and radiation phases. 
To examine the effectiveness and feasibility of the proposed modification, five truss optimization benchmark problems are 
used for the performance test. Truss mass minimization and nodal displacement maximization are taken as objectives, while 
design variables are discrete. The new method along with several recent multi-objective meta-heuristics including ant system, 
ant colony system, symbiotic organism search, and HTS is used to solve the test problems and compared for the hypervolume 
and spacing-to-extent indicators. The results reveal that the improved version of HTS is superior to its previous version and 
the other optimizers. The statistical examination of this study has been performed by conducting Friedman’s rank. Results 
show the dominance of the proposed optimizer performance in comparison with the others.

Keywords  Structural optimization · Simultaneous search · Meta-heuristics · Discrete design · Engineering problems

1  Introduction

Design of optimal structures has been a dynamic field of 
investigation from a recent couple of decades due to its 
widespread engineering applications such as bridges, tow-
ers, roof supports, building exoskeletons, space frameworks, 

mechanical parts, and industries. It has been recognizing that 
structural optimization with multiple and conflicting design 
objectives is a challenging task that requires efficient and 
robust optimization methods to search optimal solutions [29, 
56]. The design of a truss basically consists of defining its 
elemental sizes, shape, and topology so as to get minimum 
weight or cost under safety constraints [23, 51, 52].

The application of meta-heuristics (MHs) in multi-objec-
tive truss design is currently receiving growing attention 
from researchers around the globe. Owing to the dominance 
of MHs over classical gradient-based methods as they are 
easy to study, need low computation cost, and are flexible 
in nature, recently lots of effort have been made for their 
implementation in truss optimization problems. Some of 
the well-recognized MHs for single-objective truss design 
problems are genetic algorithms (GAs) [12, 17], particle 
swarm optimization (PSO) [18], simulated annealing [27], 
teaching–learning-based optimization (TLBO) [51], cuckoo 
search algorithm [19], tug-of-war optimization algorithm 
[26], artificial bee colony algorithm [43], sine–cosine opti-
mization algorithm [31], ray optimization [24], and flower 
pollination algorithm [13]. The literature also demonstrated 
the enhancement in the performance of original MHs 
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with further modification, hybridization, integration, and 
improvement in solving more intricate truss design prob-
lems. Some prominent optimizers are modified symbiotic 
organisms search (SOS) [23], modified GA [25], modified 
TLBO [6], improved dolphin echolocation algorithm [20], 
hybrid gray wolf optimizer and self-adaptive differential 
evolution [35], improved fireworks algorithm [21], hybrid-
ized passing vehicle search [57], improved harmony search 
algorithms [14], and adaptive SOS [51].

Often, a designer poses a real-world truss design prob-
lem with more than one objective to be optimized, which 
is called multi-objective optimization. Such a problem has 
multiple-objective functions usually conflicting in nature 
causing design more intricate. Contrary to single-objective 
design which has one solution, a multi-objective design 
problem leads to a set of optimal solutions. This optimal 
set is termed as a Pareto optimal set if it is viewed in the 
design domain. Alternatively, it is called Pareto front if it 
is observed in the objective domain. The literature demon-
strates the superiority of MHs in finding these non-domi-
nated optimal solutions set in truss design problems due to 
their simplicity and flexibility. More importantly, MH can 
search for a Pareto front within one run. For dealing with 
multi-objective optimization problem, from the last two dec-
ades, a number of multi-objective meta-heuristics (MOMHs) 
have been developed such as multi-objective GA [17], multi-
objective PSO [7], multi-objective immune optimizer [28], 
multi-objective symbiotic organism search [36], and NSGA-
II [15]. The first objective is usually truss weight an indica-
tor for cost, while another objective function can be added 
for structural performance maximization. The second objec-
tive thus can be stress, natural frequency, structure stiffness, 
and nodal displacement. Owing to more than one optimal 
solution set, more than one distinct optimization objective 
and further two distinct search arena multi-objective optimi-
zation problems constitute, inefficient MOMHs may fail in 
obtaining a reliable solution. Consequently, modification of 
and improvement in MOMHs are always interesting subjects 
for numerous researchers. Some successful modified and 
improved optimizers are modified dragonfly optimization 
optimizer [3], modified adaptive SOS [58], hybrid muta-
tion PSO [62], improved multi-objective GA [34], improved 
multi-objective PSO [44], hybrid multi-objective evolution-
ary optimizer [63], multi-objective improved cuckoo search 
optimizer [30], improved multi-objective JAYA optimization 
optimizer [39], modified multi-objective Pareto genetic opti-
mizer for [8], modified multi-objective game theory opti-
mizer [40], modified multi-objective immune optimizer [45], 
hybrid multi-objective modified artificial bee colony, and 
cuckoo search optimizers [64].

A recently developed state-of-the-art and highly effi-
cient MH called heat transfer search (HTS) [37] based on 
the principle of the heat transfer process is modified and 

implemented for multi-objective structure optimization prob-
lems. After HTS initial invention, it has been implemented 
in various optimization design problems [10, 16, 22, 41]. 
Furthermore, it has been modified and improved by numer-
ous researchers [32, 33, 46, 53, 58]. The work presented by 
Savsani et al. [47] displays that MOHTS can accomplish 
results with more diverse Pareto fronts compared to NSGA-
II. Also, the correlation of Pareto front extreme points illus-
trates the robustness of MOHTS being better than that of 
multi-objective uniform GA variety, integrated PSO–GA-
based multi-objective EA and NSGA-II. In another finding, 
Tawhid and Savsani [50] proposed an effective ∈-constraint 
multi-objective HTS algorithm, which results in superiority 
to other multi-objective forms of GA, PSO, DE, and WCA. 
Recently, Tejani et al. [56] implemented the HTS algorithm 
in a multi-objective truss optimization problem subject to 
discrete design variables. The effectiveness of the algorithm 
was examined by different benchmark problems, while it is 
compared with multi-objective ant system (MOAS), multi-
objective ant colony system (MOACS), and multi-objective 
symbiotic organism search (MOSOS). The outcome demon-
strates the dominance of HTS over the others. The MOHTS 
algorithm is applied for the investigation on optimum heat 
exchanger [42]. The findings show good promise between 
optimization and analysis of experiments. Shah et al. [48] 
analyzed a nanoscale irreversible Stirling engine by using 
HTS with two and three conflicting objectives. Prajapati 
and Patel [38] implemented HTS for the optimization of 
the nanofluid-based organic Rankine cycle with multiple 
objectives of thermal efficiency maximization and levelized 
energy cost minimization.

Accordingly, there is a gap for further research and analy-
sis as the HTS optimizer has just been proposed. Moreo-
ver, as MOHTS has limited investigation records in the 
literature, its modification should be investigated for vari-
ous problems. As a result, this examination is proposed to 
modify the viability of MOHTS by consolidating synchro-
nized transmission of heat by conduction, convection, and 
radiation of fundamental HTS during the search process to 
maintain a good balance between local intensification and 
global diversification.

In this study, the proposed MOMHTS optimizer is applied 
for multi-objective truss optimization problems with objec-
tive functions being weight minimization and maximization 
of nodal displacement. Five constrained benchmarks truss 
optimization problems (i.e., 10-, 25-, 60-, 72-, and 942-bar 
trusses) are taken into account for checking the potential of 
MOMHTS. Moreover, the obtained results of MOMHTS are 
compared with other MOMHs, which manifest the domi-
nance of the proposed modification.

The rest of the study is structured as follows: Sect. 2 
illuminates the basic HTS with all three phases. Section 3 
gives details about the proposed MOMHTS optimizer. 
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Section 4 defines the multi-objective design problem with 
its formulation. Section 5 comprises a detailed discussion 
about the truss design problems and result obtained. The 
suggested work is recapitulated in Sect. 6 followed by its 
future prospects.

2 � Heat transfer search (HTS)

HTS is one of the advanced meta-heuristic proposed by 
Patel and Savsani [37]. HTS is inspired by the basic princi-
ple of heat transfer and thermodynamics. The law implies 
that, with conduction, convection, and radiation modes of 
heat transfer, a thermal system can achieve the thermal 
equilibrium within a system or its surroundings to make 
the system stable. Consequently, all three modes of heat 
transfer systems are assumed as the search procedures 
of the HTS optimizer. Here, it is presumed that all three 
modes will be fairly likely to participate in the search pro-
cess. The equal selection probability of each mode in the 
search process is regulated in each iteration by the uniformly 
distributed random number ‘P,’ which ranges from 0 to 1. 
In the search process, conduction mode is picked when the 
value is P ∈ [0 − 0.3333] , radiation mode is selected when 
P ∈ [0.3333 − 0.6666] , and convection mode is selected if 
P ∈ [0.6666 − 1] . Thus, based on the values of P, during the 
search process, the obtained results are updated as per the 
executed mode of heat transfer in each iteration.

In the HTS algorithm, the population resembles various 
molecules that experience the heat transfer process, while 
the design variables show the temperature levels of various 
molecules. Herein, the energy level of the system molecules 
is representing the value of the objective function while the 
surrounding mimicked the best solution. A population size 
is equivalent to ‘n’ number of molecules, and the design 
variables are equivalent to temperature level ‘m.’ In each 
generation ‘g’ the population is reproduced by randomly 
selecting one of the modes. The revised result in HTS will 
only be approved if it has a superior functional value.

2.1 � Thermal conduction mode

In conduction, the molecules exchange heat due to the con-
duction mode between them. For achieving the thermal 
equilibrium, the molecules with higher energy state transfer 
energy to the lower energy-level molecules. The system and 
surrounding molecules can also exchange heat if they are in 
physical contact. This mode of the HTS algorithm is divided 
into two segments based on the number of iteration ‘i.’ The 

formulation for the new solution is shown in Eqs. (1) and 
(2):

Segment 1: when i ≤ Imax/CDF

Segment 2: when i > Imax/CDF

In the above equations, S′

a,�
 symbolizes the updated 

molecules; a = 1, 2, 3,… , n ; b represents a solution 
which is selected at random; a ≠ b ; b ∈ (1, 2, 3,… ., n) ; 
� is a design variable index which is selected randomly; 
� ∈ (1, 2,… ,m) ; i is the current iteration; Imax is the maxi-
mum number of iteration; CDF is the conduction factor; 
probability variable is P where P ∈ [0, 0.3333] ; p� is an 
arbitrary number varying from 0 to 1; P2 and p� represent 
the Fourier’s equation [11]; conductance parameters Sa 
and Sb signify the temperature change of molecules; and 
CDF is assigned as 2 to balance the intensification and 
diversification [16, 37, 41]. It should be noted that, in each 
iteration, only one design variable is modified during the 
conductive process.

2.2 � Thermal convection mode

In this HTS mode, the system continuously seeks to elimi-
nate the existing energy-level disparity between the system 
and the surrounding by means of convection heat transfer. 
The system molecules (at Smean ) interrelate to establish 
thermal equilibrium with the surrounding ( Ssurr ). The 
updated solution is obtained by the mathematical formu-
lation as shown in Eqs. (3) and (4):

where S′

a,�
 serves as an updated solution; a = 1, 2, 3,… , n ; 

� ∈ (1, 2,… ,m) ; i is the function evaluations; COF 
is a convection factor; probability variable is P where 
P ∈ [0.6666, 1] ; p� is an arbitrary number varying from 0 
to 1; P2 and p� represent the Newton’s law of cooling [11] 
convection parameters; Ssurr is the surrounding temperature 
considered as a reference (the best solution) which remains 
constant; Smean denotes the mean temperature of the sys-
tem which changes during convection; TCF is a tempera-
ture change factor to trade-off between exploitation and 

(1)S
�
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=
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)
, if F

(
Sa
)
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Sb
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)
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(
−p𝛽 × Sb,𝜇

)
, if F

(
Sa
)
> F

(
Sb
)

Sa,𝜇 +
(
−p𝛽 × Sa,𝜇

)
, if F

(
Sa
)
< F

(
Sb
) .

(3)S
�
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)
, if i ≤ Imax∕COF
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(
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)
, if i > Imax∕COF
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exploration in the convection phase; and COF is assigned 
10 [16, 37, 41].

2.3 � Thermal radiation mode

In this process, due to its temperature level, heat transfer 
occurs due to radiation released in the form of electromag-
netic waves. The system, therefore, interacts with the sur-
rounding temperature or within the system (i.e., another 
solution) in order to achieve a thermal equilibrium state. 
This is governed by the Stefan–Boltzmann law of thermo-
dynamics [11]. Here, the solution is updated continuously 
according to the mathematical formulation given in Eqs. (5) 
and (6):

where S
′

a,�
 symbolizes the updated molecules; 

a = 1, 2, 3,… , n ; � ∈ (1, 2,… ,m) ; a ≠ b ; b ∈ (1, 2, 3,… , n) ; 
b represents a randomly selected molecule; i is the current 
iteration; a probability variable is denoted as P ∈ [0.3333, 
0.6666]; p� is an arbitrary number varying from 0 to 1; P2 
and p� represent the Stefan–Boltzmann equation radiation 
parameters; and Sa and Sb signify the temperature difference 
in molecules of the system and the surrounding, respectively. 
The radiation factor is RDF which is set as 2 [16, 37, 41] to 
balance the intensification and diversification of the search 
process in the radiation phase. Here, all the design variables 
are modified during the course of the iteration process. The 
procedure of the MHTS optimizer is detailed in Fig. 1.

3 � Multi‑objective modified heat transfer 
search (MOMHTS)

As a general rule, a MH optimizer can be efficient only if 
it poses some particular competencies. One of these is the 
potential to generate new solutions that can usually improve 
previous or existing solutions and should cover important 
areas of search where a global optimum can possibly be 
found. Another competency is that an optimizer should be 
able to leave the trap of local optima [60]. A good fusion of 
the above competencies under appropriate conditions will 
lead to the excellent performance of MHs. This often needs 
balancing two important mechanisms of as MH: explora-
tion and exploitation (or diversification and intensifica-
tion) [5, 59, 60]. Empirical knowledge of popular MHs and 

(5)S
�

a,𝜇
=

{
Sa,𝜇 + P ×

(
Sb,𝜇 − Sa,𝜇

)
, ifF

(
Sa
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> F

(
Sb
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Sb
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(6)S
�

a,𝜇
=
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simulations of their convergence habit reveals that intensi-
fication tends to increase the convergence rate. Exploration, 
on the other hand, tends to reduce the rate of convergence. 
Notwithstanding, overly exploration augments the likelihood 
of discovering global optimality but with lesser efficiency, 
whereas large exploitation leads to premature convergence. 
Hence, the correct quantity of exploration and the accurate 
degree of exploitation should be in a fine balance [61]. This 
issue itself, however, is an unresolved task of optimization.

In HTS, the system molecules interact with the other 
system molecules and surrounding molecules through the 
transfer of heat to reduce the thermal imbalance. Also, at 
an instant energy transfer process, it is assumed to be done 
through one of the three modes of HTS. However, accord-

ing to Patel and Savsani [37], the radiation process is more 
powerful in solving polynomial functions, while, for linear 
and nonlinear functions, the convection and conduction 
processes are efficient in providing solutions, respectively. 
Consequently, throughout the optimization process, if any 
phase gets more chance to work, then it will work efficiently 
for only one kind of function but might not work well for 
the rest. Nevertheless, a system transfers heat concurrently 
to speed up the thermal balance.

To alleviate these demerits, we come up with a modi-
fied version of HTS for multi-objective truss optimization 
leading to MOMHTS. In this modification, heat transfer 
proposed through all three modes in the fundamental HTS 
is synchronized. As the new solution in HTS is very much 
motivated by the mean solution, randomly selected solution, 
and the best solution of the population, there is a higher 
chance of premature convergence and local optima stagna-
tion. This is due to the high proximity of solutions to each 
other. Therefore, based on the above facts we modified the 
basic HTS through the inclusion of synchronous heat trans-
fer search, which results in a good balance between local 
intensification and global diversification of the optimizer. 
The details about the suggested modification are as follows:

3.1 � Synchronous heat transfer

In the fundamental HTS optimizer, the energy interac-
tion occurs in the form of heat between system molecules 
and surrounding molecules for achieving thermal equilib-
rium. It is assumed that this energy interaction is taken 
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into account because of one of the three phases with equal 
likelihood throughout for all generations. However, heat 
transfer is likely to occur due to one or more than one 
of the three heat transfer modes being combined. There-
fore, in the modified HTS optimizer, synchronized heat 
transfer is implemented resulting in speeding up the search 
process. The possibility of heat transfer modes in this 

state depends on probability factor for conduction mode 
(PFCD), probability factor for convection mode (PFCV), 
and probability factor for radiation mode (PFRD). Here, 
the values of these factors vary from 0 to 1, i.e., PFCD, 
PFCV, PFRD ∈ [0, 1] and PFCD + PFCV + PFRD = 1. Hence, 
during the activation of the conduction mode of heat trans-
fer, the first one-third of the molecules in a population are 

Fig. 1   The heat transfer search algorithm
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updated. Similarly, the second one-third of solutions are 
updated during the activation of radiation mode, and the 
remaining solutions are updated using convection. In the 
original HTS optimizer, the conduction mode works better 
for nonlinear functions. The convection mode works more 
effectively for linear function, whereas the radiation mode 
works more efficiently for polynomial function. As a con-
sequence, all the three operators should be activated in the 
synchronized form during optimization to obtain a more 
efficient HTS algorithm [22, 37]; Tejani et al. [52–54].

With such view, the PFCD, PFCV, and PFRD values are 
set at 0.3333 to take into account the effect of equal prob-
ability of each mode of energy interaction. Furthermore, 
to implement all three modes concurrently here three vari-
ables (i.e., P1, P2, and P3) are introduced to substitute the 
probability variable (P) where P1 is a conduction prob-
ability variable, P2 is a radiation probability variable, and 
P3 is a convection probability variable. This modification’s 
mathematical formulation is specified in the algorithm’s 
implementation steps. The procedure of the MOMHTS 
optimizer is detailed in Fig. 2.

4 � Problem definition

Essentially, almost all problems in the physical world are 
ideally suitable to be shown as multi-objective optimiza-
tion problems consisting of multiple design objectives with 
diverse nature. Moreover, these real-world search and opti-
mization problems mostly consist of nonlinear computa-
tional problems such as quadratic, cubic and polynomial, 
which are subject to multiple conflicting objectives. For-
merly, due to deficiency of convenient solution techniques to 
obtain results these problems were transformed into a single 
objective artificially. The complexity of these problems is 
due to the generation of multiple optimal solutions, unlike 
single-objective problems that generate only one solution. 
Also, the designer has to make a trade-off between a set of 
multiple optimal solutions Pareto optimal sets as per the 
obligation. Furthermore, Pareto optimal solutions are typi-
cally unknown for a given problem. So, it becomes essential 
to search for multiple optimal solutions as much as possible 
within one run, rather than just one solution.

The formulation of the optimization of multi-objective 
truss problem is shown as follows:

Fig. 2   Modified heat transfer search algorithm
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to minimize mass and maximize nodal deflection of truss

Subject to: Behavior constraints:

Side constraints:

Here, Ai stand for the design variable; �i represents the 
mass density; Li and Ei are the elemental length and Young 
modulus, respectively; and �i are elemental stress on the ele-
ments. ‘ �j ’ are nodal displacements. The superscripts ‘max’ 
and ‘min,’ respectively, mean the upper and lower.

4.1 � Dynamic penalty function

In handling design constraints such as the stress constraints 
expressed in (7) for use with MHs, a penalty function is 
the most popular choice as it provides an equivalent uncon-
strained problem to that with constraints. A good penalty 
function works in such a way that a feasible solution should 
have a better penalty function value than an infeasible solu-
tion. For two particular feasible solutions, one with a lower 
objective function is better. For two infeasible solutions, 
one with less constraint violation is the better. Given that 
objective function values which are all positive in the design 
domain, one of the most efficient penalty functions is the 
multiplication-based penalty function [26], which can be 
written as:

where pi is the dimension of requirement infringement hav-
ing the limits as p∗

i
 . The number of constraints is presented 

by q. The factors �1 and �2 are pre-specified by a user. In this 
investigation, the estimations of both �1 and �2 are set at 3, 
which were gotten from testing their impact on the parity of 
the investigation balance [51]; Tejani et al. [52–55].

5 � Benchmark problems and discussion

The five benchmark truss problems are used to examine the 
proposed algorithms. These trusses have been examined by 
numerous researchers, including Angelo et al. [1, 2] and 

(7)Find, A =
{
A1,A2, ..,Am

}

f1(A) =

m∑

i=1

Ai�iLi and f2(A) = max
(|||�j

|||
)

g(A) ∶ Stress constraints, |�i| − �max
i

≤ 0

Discrete cross - sectional areas, Amin
i

≤ Ai ≤ Amax
i

where, i = 1, 2,… ,m; j = 1, 2,… , n.

(8)f (X) ∗
(
1 + �1 ∗ C

)�2 , C =

q∑

i=1

Ci, Ci =
|||||
1 −

pi

p∗
i

|||||

Tejani et al. [55–57]. This study considers the similar param-
eters used in the earlier studies [1, 2, 55–57]. Therefore, all 
five benchmark problems were executed with 100 population 
size and 50,000 functional evaluations. The considered algo-
rithms are examined for 100 runs. The Pareto front hyper-
volume (PFHV) test is considered for the assessment. The 
average of the PFHV is measured to check the convergence 
rate of the algorithms and the standard deviation (SD) of 
PFHV is measured to check the algorithms’ reliability.

Likewise, a front spacing (S) measure is adopted to com-
pute the comparative separation in the non-dominated set 
between the consecutive solutions [49]. Since a procedure 
of Pareto front P (having M objective functions) is obtained 
from using a specific method, the spacing of such a front is 
computed as:

where di is the Euclidian distance of the vector of objective 
function ‘i’ to its nearest neighbor. The expression |P| is the 
number of members in the set P. d̄ is the mean value of di.

The proportion of front expansion is:

where fmax
i

 and fmax
i

 are the minimum and maximum val-
ues, respectively, for an ith objective function shorted from 
all the members in P. The lower values of Spacing represent 
the superior Pareto front, while the higher value of Extent 
demonstrates the better Pareto front. The blend of the two 
indicators prompts another performance metric, which esti-
mates both front spacing and extent, which is characterized 
as the proportion of spacing to the extent,

Equation (11) implies that the superior non-dominated 
front has a lower FSTE value.

Also, a statistical test, Friedman’s rank, is used to rank the 
various MHs. The truss optimization problems are presented 
in the following sections.

5.1 � A 10‑bar truss

The first benchmark problem which is broadly used, a 10-bar 
truss, is illustrated in Fig. 3. The figure also depicts geo-
metrical information (i.e., elements, nodes, loading condi-
tions, constraints, dimensions, etc.) of the truss. The details 
of design variables, material properties, and constraints are 
shown in Table 1. The design variables are considered from 
42 discrete cross sections (i.e., 1.62, 1.8, 1.99, 2.13, 2.38, 
2.62, 2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 

(9)Spacing =
1

|P| − 1

|P|∑

i=1

(
di − d̄

)2

(10)Extent =

M∑

i=1

|||f
max
i

− fmin
i

|||

(11)Front Spacing - to - Extent(FSTE) = Spacing∕Extent.
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3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.8, 4.97, 5.12, 5.74, 
7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16, 16.9, 18.8, 19.9, 
22, 22.9, 26.5, 30, and 33.5 in.2) taken from Angelo et al. [2] 
and Tejani et al. [55–57].

The statistical results of the 10-bar truss are derived as 
the PFHV values presented in Table 2. The best PFHV, 
average PFHV, and SD of PFHVs are measured to check 
the effectiveness of the presented algorithms. The best 

average results found by using AS, ACS, SOS, HTS, and 
MHTS algorithms are 52,318.34, 55,094.06, 58,292.61, 
58,735.88, and 58,849.96, respectively. Also, the SD of 
PFHVs found by using AS, ACS, SOS, HTS, and MHTS 
algorithms is 1307.00, 323.84, 149.79, 83.71, and 73.69, 
respectively. The results reveal that MHTS outperforms 
the other optimizers, while HTS and SOS rank second and 
third for the measure of search consistency. Also, a statisti-
cal test, Friedman’s rank, is used to compare the results 
of PFHVs obtained by three algorithms. The Friedman’s 
ranks for AS, ACS, SOS, HTS, and MHTS algorithms 
are 100, 200, 300, 413, and 487, respectively. As per the 
Friedman’s rank test at 95% significance, MHTS beats 
other algorithms followed by HTS and SOS. The results 
also show a considerable difference among the considered 
algorithms.

The front spacing-to-extent (FSTE) metric is tested, and 
the results are reported in Table 3. The Friedman’s rank 
shows that MHTS outperforms other MHs followed by 
HTS and AS, and similar solutions stated as per the mean 
value of FSTE. Also, MHTS is superior to its original 
version, HTS.

Fig. 3   The 10-bar truss

Table 1   Design considerations of the truss problems

The 10-bar truss The 25-bar truss The 60-bar truss The 72-bar truss The 942-bar truss

Design variables A
i
, i = 1, 2,… , 10 A

i
, i = 1, 2,… , 8 A

i
, i = 1, 2,… , 25 A

i
, i = 1, 2,… , 16 A

i
, i = 1, 2,… , 59

Design constraints σmax = 25 ksi σmax = 40 ksi σmax = 40 ksi σmax = 25 ksi σmax = 25 ksi
Material density ρ = 0.1 lb/in.3 ρ = 0.1 lb/in.3 ρ = 0.1 lb/in.3 ρ = 0.1 lb/in.3 ρ = 0.1 lb/in.3

Modules of elasticity E = 104 ksi E = 104 ksi E = 104 ksi E = 104 ksi E = 104 ksi

Table 2   The PFHV values for 
the 10-bar truss

Algorithms Min. Max. Average SD Friedman rank Algo-
rithms’ 
rank

MOAS 48,719.46 54,558.99 52,318.34 1307.00 100 5
MOACS 54,060.22 55,889.88 55,094.06 323.84 200 4
MOSOS 57,972.16 58,544.08 58,292.61 149.79 300 3
MOHTS 58,447.32 58,859.51 58,735.88 83.71 413 2
MOMHTS 58,631.22 58,953.12 58,849.96 73.69 487 1

Table 3   The FSTE values for 
the 10-bar truss

Algorithms Min Max Mean SD Friedman test Fried-
man 
rank

MOAS 0.005387 0.024711 0.010590 0.003781 355 3
MOACS 0.007219 0.029625 0.014219 0.004558 453 5
MOSOS 0.009190 0.018880 0.010927 0.001145 389 4
MOHTS 0.004924 0.006564 0.005840 0.000407 203 2
MOMHTS 0.003870 0.005331 0.004467 0.000267 100 1
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The median Pareto fronts of the considered algorithms 
obtained for the 100 independent runs are displayed in 
Fig. 4. This can be noted that the median Pareto fronts found 
for AS and ACS are discontinuous and broken. On the other 
hand, median Pareto fronts found by using the MHTS, HTS, 
and SOS are smooth, are continuous, and have a vast array of 
varied solutions, while the solutions are well spread. Overall, 
the assessments confirm that MHTS is the better algorithm 
among the considered algorithms and the considered modi-
fication advances the effectiveness of HTS.

5.2 � A 25‑bar 3D truss

The second benchmark problem, a 25-bar 3D truss, 
is shown in Fig.  5. The details of design variables, 
material properties, and constraints are depicted 
in Table  1. Loading conditions are considered as 
P
x1 = 1Klb,P

y1 = P
z1 = P

y2 = P
z2 = −10Klb,P

x3 = 0.5Klb,

andP
x6 = 0.6Klb . Also, 25 elements of the truss are grouped 

into eight groups by having structural symmetry with respect 
to planes x–z and y–z [1, 2, 55–57]. The design variables are 
considered from 30 discrete cross sections (i.e., 0.1, 0.2, 0.3, 
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 
1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3, 3.2, and 3.4 in.2) 
taken from Angelo et al. [1, 2] and Tejani et al. [55–57].

The statistical results of the 25-bar truss are derived as 
the PFHV values and presented in Table 4. The best PFHV, 
average PFHV, and SD of PFHVs are measured to check the 
effectiveness of the presented algorithms. The best average 
results found by using AS, ACS, SOS, HTS, and MHTS 
algorithms are 1846.55, 1858.58, 1906.23, 1910.88, and 
1913.17, respectively. Also, the SD of PFHVs found by 
using AS, ACS, SOS, HTS, and MHTS algorithms is 9.51, 

13.90, 0.54, 0.51, and 0.38, respectively. The results reveal 
that MHTS presents the finest convergence and consistency 
in results’ accuracy, while HTS and SOS rank second and 
third, respectively, for the measure of search consistency. 
Also, a statistical test, Friedman’s rank, is used to compare 
the results of PFHVs obtained by the considered algorithms. 
The Friedman’s ranks for AS, ACS, SOS, HTS, and MHTS 
algorithms are 121, 179, 300, 400, and 500, respectively. It 
is revealed that MHTS is the best, while the second and third 
best, respectively, is HTS and SOS. The results also show a 
considerable difference among the considered algorithms.

The comparative FSTE values are given in Table 5. The 
Friedman’s rank MHTS, HTS, and SOS rank first, second, 
and third, respectively. The mean values of FSTE sug-
gested a similar trend where MHTS outperforms its basic 
algorithm.

The median Pareto fronts of all the algorithms obtained 
for the 100 independent runs are shown in Fig. 6. The 
obtained figure demonstrates the broken and intermittent 
nature of AS and ACS median Pareto fronts, whereas the 
MHTS, HTS, and SOS median Pareto fronts are smooth, 
are continuous, and have a broad range of varied solutions 
with well spread. Overall, the assessments confirm that the 
proposed MHTS is the best algorithm among the considered 
algorithms.

5.3 � A 60‑bar ring truss

The third benchmark problem, a 60-bar ring truss, is pre-
sented in Fig. 7. The details of design variables, mate-
rial properties, and constraints are given in Table 1. The 
design variables are considered from 45 discrete cross 
sections as [0.5, 0.6, 0.7,…, 4.9] in.2. Also, 60 elements 
of the truss are grouped into 25 groups by considering 

Fig. 4   Median Pareto fronts of the 10-bar truss
Fig. 5   The 25-bar space truss
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structural symmetry as per Angelo et al. [1, 2] and Tejani 
et al. [55–57]. Multiple loading conditions are considered 
as load case 1: Px1 = −10Klb andPx7 = 9Klb , load case 2: 
Px15 = Px18 = −8Klb and Py15 = Py18 = 3Klb , and load case 
3: Px22 = −20Klb andPy22 = 10Klb.

The comparative results of the 60-bar truss are derived as 
the PFHV values and presented in Table 6. The best PFHV, 
average PFHV, and SD of PFHVs are computed to check the 
effectiveness of the presented algorithms. The best average 
results found by using AS, ACS, SOS, HTS, and MHTS 
algorithms are 3179.88, 3106.68, 4293.25, 4316.10, and 

4324.61, respectively. Also, the SD of PFHVs found from 
the results of AS, ACS, SOS, HTS, and MHTS is 166.65, 
74.18, 5.92, 2.04, and 1.51, respectively. The findings indi-
cate that the MHTS obtains the best convergence and per-
formance efficiency, while the second best is HTS. Also, the 
Friedman’s ranks for AS, ACS, SOS, HTS, and MHTS algo-
rithms are 173, 127, 300, 400, and 500, respectively. MHTS 
is the best followed by HTS and SOS. Here, the obtained 

Table 4   The PFHV values for 
the 25-bar truss

Algorithms Min. Max. Average SD Friedman rank Algo-
rithms’ 
rank

MOAS 1816.72 1869.67 1846.55 9.51 121 5
MOACS 1819.86 1885.73 1858.58 13.90 179 4
MOSOS 1904.56 1907.25 1906.23 0.54 300 3
MOHTS 1909.89 1911.76 1910.88 0.51 400 2
MOMHTS 1911.93 1913.89 1913.17 0.38 500 1

Table 5   The FSTE values for 
the 25-bar truss

Algorithms Min Max Mean SD Friedman test Fried-
man 
rank

MOAS 0.007937 0.058983 0.022595 0.008424 455 5
MOACS 0.005254 0.044937 0.017026 0.008361 394 4
MOSOS 0.011763 0.013790 0.013255 0.000364 350 3
MOHTS 0.005435 0.007534 0.006498 0.000413 201 2
MOMHTS 0.004375 0.006027 0.005000 0.000283 100 1

Fig. 6   Median Pareto fronts of the 25-bar truss

Fig. 7   The 60-bar ring truss
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results from Friedman’s rank test also reflect the appreciable 
difference between the optimizers being considered.

The comparative FSTE results are shown in Table 7. The 
Friedman’s rank test shows that MHTS outperforms other 
MHs followed by HTS and SOS, while similar outcomes 
are obtained from ranking the mean values of FSTS. Also, 
MHTS is better than its original version.

Figure 8 displays the median Pareto fronts of the various 
algorithms obtained for 100 independent runs. This can be 
noted that the median Pareto fronts found for AS and ACS 
are irregular and spread in a tiny area. On the other side, 

Pareto fronts found by using the MHTS and HTS are con-
tinuous, diversified in nature, and well distributed.

5.4 � A 72‑bar space truss

The fourth benchmark problem, a 72-bar 3D truss, is illus-
trated in Fig. 9. The details of design variables, material 
properties, and constraints are reported in Table 1. The 
design variables are considered from 25 discrete cross sec-
tions as [0.1, 0.2, 0.3,…, 2.5] in.2. Also, 72 elements of the 
truss are grouped into 16 by considering structural sym-
metry as per Angelo et al. [1, 2] and Tejani et al. [55–57]. 
Multiple loading conditions are considered as load case 
1: F1x = F1y = 5 kips andF1z = −5 kips and load case 2: 
F1z = F2z = F3z = F4z = −5 kips.

The results of the 72-bar truss are compared based on 
the PFHV values and presented in Table 8. The best PFHV, 
average PFHV, and SD of PFHVs are measured to check 
the effectiveness of the presented algorithms. The mean 
values of PFHV found by using AS, ACS, SOS, HTS, and 
MHTS algorithms are 2140.24, 2142.38, 2270.93, 2282.66, 
and 2285.37, respectively. Also, the SD of PFHVs found 
by using AS, ACS, SOS, HTS, and MHTS algorithms is 
10.17, 19.50, 1.81, 0.63, and 0.39, respectively. It shows 
that MHTS is the best followed by HTS and SOS. The Fried-
man’s ranks for AS, ACS, SOS, HTS, and MHTS algorithms 
are 145, 155, 300, 400, and 500, respectively.

The result of comparing FSTE is shown in Table 9. The 
Friedman’s rank at 95% significant level shows that MHTS, 
HTS, and SOS are the top three performers in that order, 
while the mean values of FSTE also give similar results.

Table 6   The PFHV values for 
the 60-bar truss

Algorithms Min. Max. Average SD Friedman rank Algo-
rithms’ 
rank

MOAS 2465.08 3397.56 3179.88 166.65 173 4
MOACS 2905.27 3276.04 3106.68 74.18 127 5
MOSOS 4271.94 4304.66 4293.25 5.92 300 3
MOHTS 4310.91 4320.11 4316.10 2.04 400 2
MOMHTS 4320.75 4328.66 4324.61 1.51 500 1

Table 7   The FSTE values for 
the 60-bar truss

Algorithms Min Max Mean SD Friedman test Fried-
man 
rank

MOAS 0.009977 0.133920 0.034915 0.019500 456 5
MOACS 0.007890 0.074504 0.029912 0.013732 438 4
MOSOS 0.010137 0.012876 0.012025 0.000522 306 3
MOHTS 0.005360 0.007235 0.006161 0.000360 200 2
MOMHTS 0.003958 0.005794 0.004766 0.000282 100 1

Fig. 8   Median Pareto fronts of the 60-bar truss
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The median Pareto fronts of all the MHs obtained from 
performing 100 independent runs are displayed in Fig. 10. 
This can be noted that the median Pareto fronts found for 
AS and ACS are discontinuous and broken. On the other 
hand, Pareto fronts found by using MHTS, HTS, and 

SOS are continuously distributed and widely spread. The 
assessments affirm that MHTS is a superior performer to 
the other considered algorithms, which implies that the 
proposed modification improves the HTS performance.

Fig. 9   The 72-bar 3D truss

Table 8   The PFHV values for 
the 72-bar truss

Algorithms Min. Max. Average SD Friedman rank Algo-
rithms’ 
rank

MOAS 2112.10 2162.75 2140.24 10.17 145 5
MOACS 2082.81 2176.18 2142.38 19.50 155 4
MOSOS 2267.43 2274.65 2270.93 1.81 300 3
MOHTS 2280.93 2283.95 2282.66 0.63 400 2
MOMHTS 2284.42 2286.26 2285.37 0.39 500 1

Table 9   The FSTE values for 
the 72-bar truss

Algorithms Min Max Mean SD Friedman test Fried-
man 
rank

MOAS 0.010919 0.043568 0.022728 0.007183 434 4
MOACS 0.007918 0.076088 0.026837 0.013808 441 5
MOSOS 0.013350 0.015643 0.014393 0.000435 324 3
MOHTS 0.005556 0.008281 0.007206 0.000473 201 2
MOMHTS 0.004637 0.007103 0.005425 0.000287 100 1
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5.5 � A 942‑bar tower truss

The fifth benchmark problem, a 942-bar tower truss, is 
shown in Fig. 11. Vertical loading along the axis of tower 
center (Z-direction) is − 3 kips, − 6 kips, and − 9 kips at 
each of the nodes in Sects. 1, 2, and 3, respectively; lateral 
loading along X-direction is 1.5 kips and 1 kips at each of 
the nodes on the right-hand side and left-hand side of the 
tower truss, respectively, and lateral loading along Y-direc-
tion is 1 kip at each node, respectively. The details of design 
variables, material properties, and constraints are depicted 
in Table 1. The design variables are considered from 200 
discrete cross sections as [1, 2, 3,…, 200] in.2. Also, 200 
elements of the truss are clustered into 59 groups by con-
sidering structural symmetry as per Angelo et al. [1, 2] and 
Tejani et al. [55–57].

The comparative results of the 942-bar truss based on the 
PFHV values are illustrated in Table 10. The best PFHV, 
average PFHV, and SD of PFHVs are measured to check 
the effectiveness of the presented algorithms. The mean 
values of PFHV found by using AS, ACS, SOS, HTS, 
and MHTS algorithms are 67,019,485.86, 67,205,495.61, 
78,710,767.20, 83,582,579.55, and 84,034,459.15, respec-
tively. Also, the SDs of PFHV found by using AS, ACS, 
SOS, HTS, and MHTS are 4,596,003.57, 1,247,239.78, 
785,836.41, 135,436.80, and 85,499.11, respectively. The 
results reveal that MHTS performs the best followed by HTS 
and SOS. Also, a statistical test, Friedman’s rank, is con-
sidered to compare the results of PFHVs obtained by the 
considered algorithms. As per the rank check of the Fried-
man at a significant level of 95%, it is clear that the MHTS 
outperforms other optimizers, while HTS and SOS joined 
the second and third places in the ranking. This comparative 
results show the superiority of the proposed algorithm over 

Fig. 10   Median Pareto fronts of the 72-bar truss

Fig. 11   The 942-bar tower truss
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the others for the design problem that can be considered a 
large-scale problem.

The FSTE values obtained from the various optimizers 
are given in Table 11. The Friedman’s rank at 95% signifi-
cant level presents that MHTS, HTS, and SOS are the top 
three performers in that order. The comparative average 
results of FSTE also received similar solutions.

Figure 12 illustrates the median Pareto fronts of the 
optimizers where 100 independent runs for each method 
are performed. It is understood that in a small territory, the 
obtained median Pareto fronts are discontinuous and spread 
out for AS, ACS, and SOS optimizers. Contrary to this, the 
Pareto fronts are constantly distributed, are stable, and have 
a variety of different outcomes, when they are discovered 
using the MHTS and HTS optimizers. This obtained nature 
supports the supremacy of exploring Pareto fronts using 
MHTS and HTS over AS, ACS, and SOS. In conclusion, 
MOMHTS is superior to the methods available in the previ-
ous literature. Moreover, from the findings, it can be com-
prehended that the suggested modification leads to better 
MOHTS effectiveness.

6 � Conclusions

This study presented an effective, modified version of a 
multi-objective HTS optimizer termed MOMHTS for truss 
optimization. The new algorithm is achieved by means of 
synchronizing the three heat transfer operators, which is 
further improved from the previous version of HTS. From 
the comparative results of the five standard test problems 

of truss optimization, it can be concluded that the proposed 
optimizer is superior to the others found in the literature and 
its original HTS. The gap between MOMHTS and the rest 
is even wider when the design problem is large scale. This 
implies that the proposed method is more suitable to the real 
word design of truss than the others.

For further work, one can utilize MOMHTS as a poten-
tial option for taking care of complex and real-world 
design problems that cannot be comprehended utilizing the 
current meta-heuristic optimizers. There is a fairly likely 
chance of further enhancement in the performance of the 

Table 10   The PFHV values for 
the 942-bar truss

Algorithms Min. Max. Average SD Friedman rank Algo-
rithms’ 
rank

MOAS 58,098,473.71 74,168,301.18 67,019,485.86 4,596,003.57 153 4
MOACS 63,054,516.72 69,882,829.59 67,205,495.61 1,247,239.78 147 5
MOSOS 76,625,691.80 80,699,769.69 78,710,767.20 785,836.41 300 3
MOHTS 83,267,279.40 83,858,996.35 83,582,579.55 135,436.80 400 2
MOMHTS 83,783,187.69 84,242,890.99 84,034,459.15 85,499.11 500 1

Table 11   The FSTE values for 
the 942-bar truss

Algorithms Min Max Mean SD Friedman test Fried-
man 
rank

MOAS 0.014273 0.120749 0.042659 0.020981 471 5
MOACS 0.010403 0.079907 0.029013 0.014678 415 4
MOSOS 0.012192 0.016924 0.014856 0.000761 314 3
MOHTS 0.006056 0.008145 0.006795 0.000401 200 2
MOMHTS 0.004479 0.005968 0.005329 0.000300 100 1

Fig. 12   Median Pareto fronts of the 942-bar truss
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proposed optimizer which can be obtained with further 
modification, hybridization, integration, and improvement 
that can be used in solving more intricate truss design 
problems. Moreover, the application can be extended to 
the multi-objective problems with conflicting and dynamic 
constrained design problems.
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