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Abstract
In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are 
explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric 
actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas 
the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule 
of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of 
the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by taking perfect bonding between the 
core and PIAC into consideration. Maxwell’s equation is employed to capture the piezoelectricity effects. The numerical 
results revealed the important role of ratios of length scale and nonlocal to thickness, outer-to-inner ratio of radius ( R

o
∕R

i
 ), 

ratio of piezoelectric to core thickness (hp/h), and GPL weight fraction ( g
GPL

 ) on the critical voltage of the system. Another 
important consequence is that by increasing R

o
∕R

i
 , the critical voltage of the smart structure increases more intensely in 

comparison with the g
GPL

.
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1 Introduction

Reinforced laminated composites are increasingly used in 
various applications due to its outstanding features, namely 
high tensile strength, high modulus, and lightweight [1–20]. 
Because of some important requirements in science and 
technology for promoting the mechanical response and per-
formance of the systems, reinforcing with GPL attracted 
the attention of numerous researchers for providing an 
impressive enhancement in the construction of the practical 

composite structures. Also, frequency response is more 
important in many applications [21–31]. Suna et al. [32] 
performed a study to compare the fracture performance of 
the functionally graded (FG) cemented carbide in the pres-
ence and absence of GPL reinforcement. They concluded 
that the superb properties of GPLs in the content of nano-
composites can be considered as a barrier in the way of 
growing microcracks. Also, according to the results of an 
experimental study, Rafiee et al. [33] asserted that the com-
posites reinforced with GPL present more strength in com-
parison with the structures employing SWCNT, DWCNT, 
and MWCNT as the reinforcement. In the current decade, 
exploring the dynamic response of GPL-reinforced nano-
structures becomes the hot topic of many surveys as a con-
sequence of remarkable progress in nanotechnologies. In this 
field of research, the stability and the vibrational response of 
a thermo-elastic circular plate are analyzed in Refs [11–16, 
34–59]. Vibration, buckling, wave propagation, and bend-
ing responses of the nanocomposite-reinforced structures are 
investigated in Refs. [60–65].

High-speed rotation and exposure to the thermal site are 
considered as the main assumptions in the mathematical 
modeling of the system to acquire the critical spinning speed 
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of thermos-whirling circular plates. The impressive effect of 
damping coefficients on the transient forced oscillation and 
stability of the FG circular plate with viscoelastic boundary 
edges is revealed by Alipour [66]. Within the framework of 
classical theory, Ebrahimi and Rastgoo [67] explored solu-
tion methods to analyze the vibration performance of the 
FG circular plate covered with piezoelectric. As another 
survey, Ebrahimi and Rastgoo [68] studied flexural natural 
frequencies of FG annular plate coupled with layers made of 
piezoelectric materials. Shasha et al. [69] introduce a novel 
exact model on the basis of surface elasticity and Kirchhoff 
theory to determine the vibration performance of a double-
layered microcircular plate. The surface effect is captured in 
their model as the main novelty. The results obtained with 
the aid of their modified model showed that the vibration 
performance of the double-layered microstructure is quite 
higher than the single-layered one. On the basis of FSD 
theory, Mohammadimehr et al. [70] conducted a numerical 
study in the dynamic and static stability performance of a 
composite circular plate by implementing GDQM. More-
over, they considered the thermo-magnet field to define 
the sandwich structure model. As another work, Moham-
madimehr et al. [71] applied DQM in the framework of MCS 
to describe stress filed and scrutinize the dynamic stability 
of an FG boron nitride nanotubes-reinforced circular plate. 
They claimed that using reinforcement in a higher volume 
fraction promotes the strength and vibration response of the 
structure. Nonlinear oscillation and stability of microcircular 
plates subjected to electrical field actuation and mechanical 
force are studied by Sajadi et al. [72]. They concluded that 
pure mechanical load plays a more dominant role on the 
stability characteristics of the structure in comparison with 
electromechanical load. Also, they confirmed the positive 
impact of AC or DC voltage on the stability of the system 
in different cases of application. In order to determine the 
critical angular speed of spinning circular shell coupled with 
sensor at its end, Safarpour et al. [36] applied GDQM to 
analyze forced and free oscillatory responses of the struc-
ture on the base of thick shell theory. Through a theoreti-
cal approach, Wang et al. [73] obtained critical temperature 
and thermal load of a nanocircular shell. Safarpour et al. 
[44] introduced a numerical technique with high accuracy 
to study the static stability, forced and free vibration per-
formance of a nanosized FG circular shell in exposure to 
thermal site. In addition, some researchers showed that some 
geometrical and physical parameters have important role on 
the stability or instability of the structures [36–39, 40–52, 
54, 74–77]. Based on the NSG theory, the nonlocal effects 
on the dynamic and static responses of the micro/nanostruc-
ture are presented in Refs. [61, 78–85].

Wang et al. [86] reported the nonlinear dynamic perfor-
mance of size-dependent circular plates with the piezoelec-
tric actuator in the exposure of a thermal site with the aid of 

MCS incorporated with surface elasticity theory to consider 
the size effects. They highlighted the considerable effect of 
geometrical nonlinearity on the dynamic characteristics of 
the system. By employing FSDT, NSGT, DQM, and Hamil-
ton’s principle, Mahinzare et al. [87] presented a comprehen-
sive parametric investigation in the size-dependent vibration 
performance of FG circular plate by considering the electro-
elastic, thermal, and rotational effects. They showed the con-
siderable impact of spinning velocity on the natural frequen-
cies of nanosized systems. In another investigation, the same 
authors [88] studied the size-dependent vibration response 
of a spinning two-directional FG circular plate integrated 
with the PIAC on the basis of DQM, Hamilton’s principle, 
and FSDT. The results confirmed the high dependency of the 
dynamic performance of the circular plate to spinning load 
and external applied voltage. In a huge number of researches 
[79, 89–96], the results of nonlocal elasticity compared with 
those results by nonlocal strain gradient elasticity.

None of the published articles focused on analyzing the 
electrically analysis of the GPLRC microdisk joint with 
PIAC using NSGT. In this survey, the extended model of 
Halpin–Tsai micromechanics is applied to determine the 
elastic characteristics of the composite structure. A numeri-
cal approach is employed to solve differential governing 
motion equations for different cases of boundary conditions. 
Eventually, a complete parametric study is carried out to 
reveal the impact of Ro∕Ri , h/hp, applied voltage, and gGPL 
on the critical voltage response of the GPLRC microdisk 
integrated with PIAC.

2  GPLRC microdisk

A GPLRC microdisk and coupled with the PIAC is depicted 
in Fig. 1. The volume fraction for four patterns is described 
by a specific function as expressed follows [97]:

The parameters participated in Eqs. (1–4) are introduced 
in Ref. [97] in detail. The explicit relation between V∗

GPL
 and 

gGPL can be described by:

(1)VGPL(k) = V∗
GPL

GPL-U

(2)VGPL(k) = 2V∗
GPL

||−1 + 2k − NL
||

NL

GPL-X

(3)VGPL(k) = 2V∗
GPL

[
1 −

(||2k − NL − 1||
NL

)]
GPL-O

(4)VGPL(k) = 2V∗
GPL

(2k − 1)∕NL GPL-A
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in which �GPL and �m are corresponding mass density of 
GPL and polymer matrix, respectively. The effective elastic 
modulus of the structure is approximated with the extended 
model of Halpin–Tsai micromechanics [98]

Also, �L = 2
LGPL

tGPL
 , �W = 2

wGPL

tGPL
 , �L =

(
EGPL∕EM

)
−1

(
EGPL∕EM

)
+�L

 and 

�W =

(
EGPL∕EM

)
−1

(
EGPL∕EM

)
+�W

 . Finally, by utilizing the well-known 

rule of mixture, corresponding Poisson’s ratio �c and mass 

(5)V∗
GPL

=
gGPL

gGPL + (�GPL∕�m)(1 − gGPL)

(6)

Ē =

(
3

8

(
1 + 𝜉L𝜂LVGPL

1 − 𝜂LVGPL

)
+

5

8

(
1 + 𝜉W𝜂WVGPL

1 − 𝜂WVGPL

))
× EM

density �c of the microcomposite consisted of GNP and 
polymer are approximated as:

2.1  Displacement fields in the circular plate

HOSD theory is chosen to define the corresponding dis-
placement fields of the GPLRC disk according to the subse-
quent relation [82, 83, 90, 99–111]:

(7)
�̄� = 𝜈GPLVGPL + 𝜈MVM ,

�̄� = 𝜌GPLVGPL + 𝜌MVM .

(8)

uc(R, z, t) = zcuc
1
(R, t) + uc

0
(R, t) −

[
uc
1
(R, t) +

�wc
0
(R, t)

�R

]
c1z

c 3

vc(R, z, t) = 0

wc(R, z, t) = wc
0
(R, t).

Fig. 1  GPLRC microdisk cov-
ered with piezoelectric layer
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Based on the conventional form of HOSDT [112–129], 
c1 is equal to 4/3h2.

2.2  Strain–stress of core

According to HOSDT, one can formulate the strain–stress 
relations as follows:

and strain components would be written as:

2.3  Piezoelectric displacement fields

On the basis of HOSDT, the piezoelectric microdisk dis-
placement fields can be obtained as follows:

2.4  Strain–stress of piezoelectric

The corresponding stress and strain tensors of the PIACs 
are associated with each other according to the following 
equations:

where sim, emij, and Qij in order stand for the dielectric and 
piezoelectric constants, and elasticity matrix. Em and Di 

(9)

⎧
⎪⎨⎪⎩

�c
RR

�c
��

�c
rz

⎫
⎪⎬⎪⎭
=

⎡
⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q55

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

�c
RR

− �ΔT

�c
��

�c
rz

⎫
⎪⎬⎪⎭

Q11 = Q22 =
Ec

1 − �c 2
, Q12 =

Ec�c

1 − �c 2
, Q55 =

Ec

2(1 + �c)
,

(10)

⎧⎪⎨⎪⎩

�c
RR

�c
��

�c
Rz

⎫⎪⎬⎪⎭
=

⎡
⎢⎢⎢⎢⎣

z�uc
1

�R
+

�uc
0

�R
− z3c1

�
�uc

1

�R
+

�2wc
0

�R2

�
uc
0

R
+ z

uc
1

R
− zc 3c1

�
uc
1

R
+

�wc
0

R�R

�
�
uc
1
+

�wc
0

�R

�
(−3zc 2c1 + 1)

⎤
⎥⎥⎥⎥⎦
.

(11)

up(R, z, t) = zpu
p

1
(R, t) + u

p

0
(R, t) −

[
�w

p

0
(R, t)

�R
+ u

p

1
(R, t)

]
c1z

p 3

vp(R, z, t) = 0

wp(R, z, t) = w
p

0
(R, t).

(12)

⎧⎪⎨⎪⎩

�
p

RR

�
p

��

�
p

Rz

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

Q11 Q12 0

Q12 Q22 0

0 0 Q55

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�
p

RR

�
p

��

�
p

Rz

⎫⎪⎬⎪⎭
−

⎡⎢⎢⎣

0 0 e31
0 e32 0

e15 0 0

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

E
p

R

E
p

�

Ep
z

⎫⎪⎬⎪⎭

(13)

⎧⎪⎨⎪⎩

D
p

R

D
p

�

Dp
z

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

0 0 e15
0 e22 0

e31 0 0

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

�
p

RR

�
p

��

�
p

Rz

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎣

s11 0 0

0 s22 0

0 0 s33

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

E
p

R

E
p

�

Ep
z

⎫⎪⎬⎪⎭

indicate electric fields strength and electric displacements 
of the piezoelectric disk, respectively. Corresponding elec-
tric and magnetic field strength, i.e., Ex, Eθ, Ez, which are 
participated in Eqs. (12) and (13), would be formulated as:

Wang [130] explored that the electric potential 
( Φ(x, �, z, t) ) can be accounted as:

in which β = π/h and �0 stands for the initial external electric.

2.5  E‑compatibility equations

Following relations present mathematical expression for the 
conditions of compatibility taking perfect bonding between 
the core and PIAC section and taken into consideration at 
zp = −hp∕2:

Based on Eq. (16), the displacement-dependent param-
eters are related to each other in the PIAC as follows:

2.6  Extended Hamilton’s principle

In order to acquire the governing equations and related 
boundary conditions, we can utilize Hamilton’s principle 
as follows:

the following relation describes the components involved in 
the process of obtaining the strain energy of the aforemen-
tioned microdisk:

(14)
ER = −

𝜕Φ̃

𝜕R

Ez = −
𝜕Φ̃

𝜕z
.

(15)Φ(R, z, t) =
2z�0

h
− �(R, t) cos(�z)

(16)
uc|zc=hc∕2 = up|zp=−hp∕2,
wc|zc=hc∕2 = wp|zp=−hp∕2.

(17)

c1

(
−hc

2

)3
[
�wc

0

�R

]
+ c1

(
hp

2

)3

[
+
�w

p

0

�R

]

= u
p

0
− uc

0
+ uc

1

[
c1

(
hc

2

)3

−
hc

2

]
− u

p

1

[
c1

(
hp

2

)3

+
hp

2

]
,

wc
0
= w

p

0
.

(18)∫
t2

t1

(�Ui − �Wi)dt = 0

i = c, p
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(19)

�Uc =
1

2 ∭
V

�c
ij
��c

ij
dV

= ∫
⎡⎢⎢⎢⎢⎣

�
Nc
RR

��uc
0

�Rc
+Mc

RR

��uc
1

�Rc
− Pc

RR
c1

�
��uc

1

�Rc
+

�2�wc
0

�Rc2

��

+
�
Nc
��

�uc
0

Rc
+Mc

��

�uc
1

Rc
− Pc

��
c1

�
�uc

1

Rc
+

��wc
0

R�Rc

��

+
�
(Qc

Rz
− 3Sc

Rz
c1)

�
�uc

1
+

��wc
0

�Rc

��

⎤⎥⎥⎥⎥⎦
dR

(20)

�Up =
1

2 ∭
V

�
p

ij
��

p

ij
dV − ∭

Vpiezolayer

(D
p

R
�E

p

R
+ Dp

z
�Ep

z
)dVpiezolayer

= ∫
⎡
⎢⎢⎢⎢⎣

�
N

p

RR

��u
p

0

�Rp
+M

p

RR

��u
p

1

�Rp
− P

p

RR
c1

�
��u

p

1

�Rp
+

�2�w
p

0

�Rp2

��

+
�
N

p

��

�u
p

0

Rp
+M

p

��

�u
p

1

Rp
− P

p

��
c1

�
�u

p

1

Rp
+

��w
p

0

Rp�Rp

��

+
�
(Q

p

Rz
− 3S

p

Rz
c1)

�
�u

p

1
+

��w
p

0

�Rp

��

⎤
⎥⎥⎥⎥⎦
dRp

− ∫
2�

0 ∫
Ro

Ri
∫

hp∕2

−hp∕2

�
D

p

R

�
cos(�z)

�

�Rp
��

�

−D
p
z (� sin(�z)��)

�
RdRd�

where

The first variation of the external work applied by an 
external electrical load to the structure can be obtained as 
follows [51]:

where Ni
P represents the external electric load which could 

be acquired as follows:

Eventually, differential equations of motion of the micro-
structure are extracted as follows:

(21)

∫z

{
�i
RR
, z�i

RR
, z3�i

RR

}
dz =

{
Ni
RR
,Mi

RR
,Pi

RR

}
= ; i = c, p

∫z

{
�i
��
, z�i

��
, z3�i

��

}
dz =

{
Ni
��
,Mi

��
,Pi

��

}
= ;

∫z

{
�i
Rz
, z2�i

Rz

}
dz =

{
Qi

Rz
, Si

Rz

}
= ;

(22)W1 =
1

2 ∫
z

[
(NP

i
)w2

,x

]
dR, i = 1, 2

(23)NP
i
= −2

(
e31 −

c13e33

c33

)
�0.

(24)

�ui
0
∶

�Ni
RR

�R
−

Ni
��

R
= 0,

�wi
0
∶

c1
�2Pi

RR

�Ri2
− c1

�Pi
��

Ri�Ri
+

�Qi
Rz

�Ri
− 3c1

�Si
Rz

�Ri
− N

p

1
wi

0,x2
= 0,

�ui
1
∶

�Mi
RR

�Ri
−

�Pi
RR

�Ri
c1 −

Mi
��

Ri
+

Pi
��
c1

Ri
− Qi

Rz
+ 3Si

Rz
c1 = 0,

�� ∶

− (X11 − 3X12)

(
u
p

1

�

�Rp
�� +

�w
p

0

�Rp

�

�Rp
��

)

+
�

�Rp
��X41��∕�R

p

+

(
X31

�u
p

0

�R
�� + X32

�u
p

1

�R
�� − X33

(
�u

p

1

�R
�� +

�2w
p

0

�R2
��

))
+ X42��� = 0, i = c, p
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where

and

Moreover, the parameters involved in the equation of the 
PIAC can be given as follows: 

It should be noticed that based on the compatibility 
relation (Eq. 16), the number of corresponding unknown 
variables of the core is declined from 5 to 3. Thus, the total 

(25)

Ni
RR

=

[
Ai
11

�ui
0

�Ri
+ Bi

11

�ui
1

�Ri
− Di

11
c1

(
�ui

1

�Ri
+

�2wi
0

�Ri2

)]
+

[
Ai
12

ui
0

Ri
+ Bi

12

u1

R
− Di

12
c1

(
ui
1

Ri
+

�wi
0

Ri�Ri

)]

− X31�

Mi
RR

=

[
Bi
11

�ui
0

�Ri
+ Ci

11

�ui
1

�Ri
− Ei

11
c1

(
�ui

1

�Ri
+

�2wi
0

�Ri2

)]
+

[
Bi
12

ui
0

Ri
+ Ci

12

ui
1

Ri
− Ei

12
c1

(
ui
1

Ri
+

�wi
0

Ri�Ri

)]

− X32�

Pi
RR

=

[
Di

11

�ui
0

�Ri
+ Ei

11

�ui
1

�Ri
− Gi

11
c1

(
�ui

1

�Ri
+

�2wi
0

�Ri2

)]
+

[
Di

12

ui
0

Ri
+ Ei

12

ui
1

Ri
− Gi

12
c1

(
ui
1

Ri
+

�wi
0

Ri�Ri

)]

− X33�
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��

=

[
Ai
12

�ui
0

�Ri
+ Bi

12

�ui
1

�Ri
− Di

12
c1

(
�ui

1

�Ri
+

�2wi
0

�Ri2

)]
+ Qi

22

[
Ai
22

ui
0

Ri
+ Bi

22

ui
1

Ri
− Di

22
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(
ui
1

Ri
+

�wi
0
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=

[
Bi
12

�ui
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+ Ci

12

�ui
1

�Ri
− Ei

12
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(
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�Ri
+
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0
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)]
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[
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(26)

[
Ai
ij
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ij
,Ci

ij
,Di

ij
,Ei

ij
,Fi

ij
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ij

]
=

h∕2

∫
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Qij

[
1, zi, zi2, zi3, zi4, zi5, zi6

]
dz; i = c, p

(27)

X
11

= ∫ e
15
cos(�z), X

12
= ∫ e

15
z2c

1
cos(�z),

X
31

= ∫ �e
31
sin(�z),

X
32

= ∫ z�e
31
sin(�z), X

33
= ∫ z3c

1
�e

31
sin(�z),

X
41

= ∫ s
11(cos(�z))

2
, X

42
= ∫ s

33(� sin(�z))
2

number of unknowns in the piezoelectric face sheet and the 
GPLRC core is reduced to 8.

2.7  NSG theory

In the present article, the size-dependent effects are captured 
in the mathematical model through NSG theory. Accord-
ing to the theory, corresponding stain and stress tensors of 
microstructure are correlated with each order as follows:

where ∇2 = �2∕��2 + �∕R�� , Cijck , �ck , and tij are tensors of 
elasticity, strain, and stress of NSGT, respectively. Accord-
ing to NSGT, the tensor of stress would be presented by the 
subsequent relation [43]:

Based on Eq.  (29), the extended form of the relation 
between stress and strain would be expressed as follows 
[131]:

(28)(1 − �2∇2)ti
ij
= Ci

ijck
(1 − l2∇2)�i

ck
; i = c, p

(29)ti
ij
= �i

ij
− ∇�

i(1)

ij
; i = c, p
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Thus, the governing differential equations of motion of 
the microdisk in thermal environment joint with the PIAC 
are derived as follows:

(30)(1 − �2∇2)
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Table 1  The effect of the 
number of grid points on the 
results convergence for the 
critical voltage of the GNPRC 
microdisk with respect to 
different piezoelectric thickness 
and boundary conditions (B. 
Cs) when Ro/Ri = 1.3, h/R = 0.1, 
l = R/10, pattern 1

B. Cs hp/h N = 9 N = 11 N = 13 N = 15 N = 17 N = 19

S–S 0 38.10933 37.99989 37.89160 37.782388 37.72372 37.713261
0.05 42.56944 42.415034 42.26195 42.109183 42.08659 42.079991
0.1 45.15809 44.973400 44.791203 44.612032 44.59265 44.589659
0.15 47.97213 47.765279 47.562300 47.363099 47.34256 47.336598
0.2 52.30575 52.072106 51.843569 51.619029 51.58658 51.578963

C–S 0 61.70749 61.938951 62.168790 62.386126 62.009457 62.008965
0.05 76.55290 76.776339 77.000004 77.216890 77.009236 77.015658
0.1 85.51214 85.705416 86.106898 86.106898 86.108963 86.109658
0.15 93.06857 93.256267 93.660638 93.660638 93.745623 93.754698
0.2 102.7425 102.94342 103.38185 103.38185 103.60635 103.61569

C–C 0 94.222794 93.919629 93.943282 93.93402 93.945632 93.945698
0.05 126.61913 126.45657 126.41456 126.46459 126.45653 126.45659
0.1 147.63284 147.44263 147.33826 147.35698 147.36598 147.34658
0.15 163.87048 163.67296 163.55759 163.54569 163.55698 163.55985
0.2 182.46380 182.27309 182.16256 182.15895 182.15365 182.15659
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Eventually, the related boundary conditions would be 
formulated as follows:

The governing equations of the smart microstructure are 
presented in the Appendix section.

(32)
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(
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c
1

)
ni
R
,

�� = 0

Table 2  Comparison of obtained dynamic response for different h/Ro and boundary conditions with the result of Ref [79]

h/Ro Mode num-
ber = 1 (Ref 
[79])

Mode 
number = 1 
(present)

Mode num-
ber = 2 (Ref 
[79])

Mode 
number = 2 
(present)

Mode num-
ber = 3 (Ref 
[79])

Mode 
number = 3 
(present)

Mode num-
ber = 4 (Ref 
[79])

Mode 
number = 4 
(present)

Simply–simply boundary conditions
 0.001 27.280 27.621156 75.364 76.137500 148.21 149.25865 245.47 246.72681
 0.05 26.534 27.139571 71.228 71.934144 135.24 138.23412 215.08 218.86644
 0.1 24.629 25.471425 62.140 61.888783 111.12 113.50531 167.16 169.44431
 0.15 22.230 22.903314 52.762 52.671618 90.286 93.677721 131.35 132.25517

Clamped–simply boundary conditions
 0.001 34.609 35.288408 95.738 96.8504221 188.14 189.473448 311.40 312.880757
 0.05 33.533 34.121372 89.550 89.8115866 168.60 169.062419 265.78 265.572010
 0.1 30.841 31.223430 76.560 75.9270209 134.71 134.658209 200.02 201.008081
 0.15 27.545 27.717438 63.827 63.3132404 107.32 108.095118 154.20 158.820998

Clamped–clamped boundary conditions
 0.001 59.819 62.421081 198.04 202.74802 415.12 417.733480 711.12 715.369157
 0.05 57.250 59.724417 177.84 180.65834 344.35 346.333165 541.41 536.508525
 0.1 51.219 53.472342 142.71 144.05551 252.22 257.196138 369.86 368.652369
 0.15 44.443 45.565987 114.18 116.17581 192.05 190.569853 272.49 271.256987

Table 3  Material properties of the epoxy and GPL [80]

Material properties Epoxy GNP

Young’s modulus (GPa) 3 1010
Density (kg m−3) 1200 1062.5
Poisson’s ratio 0.34 0.186
Thermal expansion 

coefficient(10−6/K)
60 5

Table 4  Material properties 
of piezoelectric layer which is 
composed of  BiTiO3–CoFe2O4 
[81]

Material constants BiTiO3–CoFe2O4

Elastic (GPa) c11 = 226, c12 = 125, c13 = 124, c33 = 216, c44 = 44.2, c55 = 44.2, c66 = 50.5

Piezoelectric (C m−2) e31 = −2.2, e33 = 9.3, e15 = 5.8

Dielectric 
 (10−9 C V m−1)

s11 = 5.64, s22 = 5.64, s33 = 6.35

Piezomagnetic 
(N A m−1)

q15 = 275, q31 = 290.1, q33 = 349.9

Magnetic 
 (10−6 Ns2 C−2)

r11 = −297, r33 = 83.5

Thermal moduli 
 (105 N km−2)

�1 = 4.74, �3 = 4.53

Pyroelectric 
 (10−6 C N−1)

P3 = 25

Mass density 
 (103 kg m−3)

� = 5.55
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2.8  Solution procedure

In order to explore the vibration performance of the micro-
disk in this survey, a numerical solution approach based 
on the well-known GDQM is followed. According to this 
method, the nth-order derivatives of a smooth function f 
would be obtained by the following expression [132]:

The weighting coefficients associated with nth-order 
derivative along the radius direction is defined as C(n). 
From Eq. (33), it is apparent that calculating the weight-
ing coefficients is the essential parts of DQM. To estimate 
the nth-order derivatives of function along radius direction, 
two forms of DQM developed of GDQM are adopted in this 
study. Thus, the weighting coefficients are computed from 
the first-order derivative which is shown as

here,

(33)
�nf

�Rn
=

M∑
m=1

C
(n)

j,m
fm,k

(34)

C
(1)

ij
=

M(xi)
(xi−xj)M(xj)

i, j = 1, 2,… , n

i ≠ j

C
(1)

ij
= −

n∑
j=1,i≠j

C
(1)

ij
i = j

(35)M
(
xi
)
=

n∏
j=1,j≠i

(
xi − xj

)

Likewise, the weighting coefficients for higher-order deriva-
tives can be calculated using the shown expressions.
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Fig. 2  Effects of different values and various distribution patterns of 
the GPL on the critical voltage of the GPLRC microdisk covered with 
a piezoelectric layer for simply–simply boundary conditions
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Fig. 3  Effects of different values and various distribution patterns of 
the GPL on the critical voltage of the GPLRC microdisk covered with 
a piezoelectric layer for clamped–simply boundary conditions
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Fig. 4  Effects of different values and various distribution patterns of 
the GPL on the critical voltage of the GPLRC microdisk covered with 
a piezoelectric layer for clamped–clamped boundary conditions
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Currently, in this research, a non-uniform batch of seeds 
is chosen in r axis which is shown as:

Considering the linear motion equations of the structure, 
we can obtain the total stiffness as follows:
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voltage of the GPLRC microdisk covered with a piezoelectric sensor 
for simply–simply boundary conditions
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where the subscripts b and d represent the boundary and 
domain grid points, respectively. Moreover, � denotes the 
vector of displacements. Equation  (38) would be trans-
formed into a standard form of eigenvalue problem:

2.9  Convergencey

A sufficient number of elements and grid points are essen-
tial for obtaining the accurate results in FEM and GDQM 
[55–59, 133–145]. To guarantee an acceptable accuracy in 
the results of GDQM, it is crucial to find a sufficient number 
of grid points. Accordingly, the convergence study is per-
formed for different cases of boundary conditions and also 
hp/h ratio. As shown in Table 1, N = 17 as the number of grid 
points can provide the sufficient accuracy of GDQM results. 

(39)
[K∗]{�i} = 0,

[K∗] = [Kdd − KdbK
−1
bb
Kbd]

Table 5  Effect of different 
values of the Ro/h and l/h 
parameters on the static 
response of the smart 
microcircular plate

Pure epoxy Pattern 1 Pattern 2 Pattern 3 Pattern 4

l = 0
 Ro/h = 15 14.391014 38.6950945 28.60415145 46.14308691 37.99989882
 Ro/h = 20 8.4826402 23.41557031 16.78335526 28.99959924 22.98010877
 Ro/h = 25 5.4870839 15.35638353 10.82586309 19.42324934 15.08444849

l/h = 10
 Ro/h = 15 14.6283085 39.01263973 28.76188551 46.75587503 39.66600735
 Ro/h = 20 8.57571202 23.55226797 16.85536175 29.24298815 23.52799920
 Ro/h = 25 5.53671659 15.43225670 10.86682202 19.55430072 15.32931969
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2.10  Validation

Numerical results from Table 3, for an isotropic circular 
plate and different geometrical parameters, were varied 
with those Ref. [146], to examine the efficiency and valid-
ity approach for this study. The maximal discrepancy, as 
entailed by the reconciliation reported in the table, is rela-
tively 1% (Table 2). 

3  Results

A GPL with a thickness of hGNP= 1.5 nm and radius of 
RGNP = 0.75 μm is used and presented in Table 3. It should be 
mentioned that the corresponding properties of piezoelectric 
material are provided in Table 4.

Figures 2, 3, and 4 show gGPL and GPLRC pattern’s 
effects on the critical voltage of the microdisk under vari-
ous boundary conditions.

As a typical result which can label Figs. 2, 3, and 4, for 
S–S, C–S, and C–C boundary conditions and each GPLRC 
pattern, there is a direct or positive effect from on the critical 
voltage of the smart microdisk. According to these figures, 
the best pattern of the GPRC microdisk for having the high-
est critical voltage at all ranges of the parameter is pattern 3. 
For all patterns, the relation between parameter and critical 
voltage is linear, and when the boundary conditions are con-
sidered S–S, patterns 4 and 1 have not shown any effect on 
the critical voltage of the structure. As an astonishing result 
from Figs. 2, 3, and 4, when the boundary conditions change 
from S–S to C–C, the influence of GPL pattern on the criti-
cal voltage of the smart circular structure in all ranges of the 
parameter decreases.

Figures 5, 6, and 7 show the effects of different values 
of gGPL and h∕Ro parameters on the critical voltage of the 
smart microdisk.

Accordion to Figs. 5, 6, and 7, for a specific value of the 
h∕Ro parameter and all boundary conditions, by increas-
ing the value of the gGPL , critical voltage of the structure 
increases linearly. As an astonishing result for the literature, 
there is a positive and direct relation between h∕Ro and criti-
cal voltage of the structure. As a conclusion from Figs. 5, 6, 
and 7, when the rigidity of the structure increased, the influ-
ences of the h∕Ro parameter on the critical voltage decrease. 
Besides, having an exact glance to these figures can find out 
an interesting result which as well as the positive effect from 
gGPL on the critical voltage, by increasing gGPL the posi-
tive impact of h∕Ro parameter on the critical voltage of the 
structure has been intensified. For greater gGPL parameter, 
the effect of h∕Ro parameter on the critical voltage is more 
significant in comparison with at the lower value of it.

The main point of Table 5 is a presentation about the 
influences of the length scale (l/h) and Ro/h parameters on 

the critical voltage of the simply supported microcircular 
plate covered with a piezoelectric sensor. According to 
Table 5, as well as an indirect effect from Ro/h parameter on 
the frequency, increasing the length scale parameter encoun-
ters the structure with a weakness in the dynamic stability of 
the structure. By having an exact glance at Table 5, the nega-
tive effect from Ro/h on the critical voltage of the smart cir-
cular plate is much more remarkable in comparison with the 
same impact from the length scale parameter on the natural 
property of the structure. As a useful suggestion for applied 
nanoindustries, by dedicating exact attention to Table 5 can 
conclude that the highest critical voltage of the composite 
microdisk is seen when the GPLRC pattern is considered as 
pattern 1. More on this research, Figs. 8, 9, and 10 have an 
interview about the impacts of the gGPL and Ro∕Ri param-
eters on the critical voltage of the smart GPLRC microdisk. 
Correspondent to Figs. 8, 9, and 10, it would be a relevant 
result which both of gGPL and Ro∕Ri parameters have an 
enhancing effect on the static response or critical voltage 
of the microstructure. It is evident that the relation between 
gGPL and critical voltage is direct and linear. In contrast, the 
relation between Ro∕Ri and critical voltage is exponential, 
polynomial, and exponential for S–S, C–C, and C–S. For 
more comprehensive, it would be a useful suggestion for the 
literature, and by increasing the Ro∕Ri , critical voltage of 
the smart structure increases more intensely in comparison 
with the gGPL.   

4  Conclusion

For the first time, electrically responses of a GPLRC-rein-
forced microdisk covered with PIAC were explored using 
the GDQ method and NSG theory. The compatibility con-
ditions were extracted by assuming perfect bonding at the 
contact interface of the PIAC and the core. Also, the pie-
zoelectricity of the face sheet is modeled with the aid of 
Maxwell’s equation. The results displayed that ΔT  , Ro∕Ri , 
different patterns of GPLs, and gGPL have significant impact 
on the critical voltage responses of the GPLRC microdisk. 
The main results are that:

• Changing from S–S to C–C, the influence of GPL pattern 
on the critical voltage decreases.

• At the greater gGPL parameter, the effect of h∕Ro param-
eter on the critical voltage is more significant in compari-
son with the lower value of it.

• By increasing the hp/h, the critical voltage of the GPLRC 
microdisk covered with PIAC increases.

• By increasing Ro∕Ri , the critical voltage of the smart 
structure increases more intensely in comparison with 
the gGPL.
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Appendix

The governing equations of the structure are presented as 
follows: 
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The GDQ form can be given as follows:
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(P-7)
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