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Abstract
Recycled aggregate concrete is used as an alternative material in construction engineering, aiming to environmental protec-
tion and sustainable development. However, the compressive strength of this concrete material is considered as a crucial 
parameter and an important concern for construction engineers regarding its application. In the present work, the 28-days 
compressive strength of recycled aggregate concrete is investigated through four artificial intelligence techniques based 
on a meta-heuristic search of sociopolitical algorithm (i.e. ICA) and XGBoost, called the ICA-XGBoost model. Based on 
performance indices, the optimum among these developed models proved to be ICA-XGBoost model. Namely, findings 
demonstrated that the proposed ICA-XGBoost model performed better than the other models (i.e. ICA-ANN, ICA-SVR, 
and ICA-ANFIS models) in estimating compressive strength of recycled aggregate concrete. The suggested model can be 
used in construction engineering in order to ensure adequate mechanical performance of the recycled aggregate concrete 
and allow its safe use for building purposes.

Keywords Green construction · Recycled aggregate concrete · ICA-XGBoost · Hybrid artificial intelligence · Compressive 
strength

1 Introduction

Urbanisation is an unquestionable trend in developing coun-
tries. The construction of infrastructure systems, as well as 
buildings, is an essential requirement for urbanisation. How-
ever, this trend has led to a series of negative effects [1, 
2]. From an environmental point of view, a large number 
of natural aggregates have been exploited for construction 
purposes [3–6]. This has a serious negative impact on the 
environment due to construction materials mining activities, 
such as blasting, loading/unloading, transporting, crushing, 
to name a few [7–12]. Moreover, the amount of demoli-
tion and construction waste has also increased significantly, 
due to urban development, especially regarding construc-
tion waste from old, demolished buildings [13–15]. Aiming 
towards the achievement of sustainable development, many 
scientists have researched and applied recycled aggregate 
concrete (RAC) in construction. This has a double benefit, as 
construction and demolition waste is managed sustainably, 
while the exploitation of natural construction materials is 
considerably lower, thus succeeding in lowering the envi-
ronmental impact of concrete and preventing the degradation 
of the ecological environment [16–20]. However, the main 
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disadvantages of RAC are low compression load capacity, 
and low elastic modulus [21–23]. Therefore, an accurate 
prediction of the compressive strength (CS) of RAC is a 
necessity, which can allow the safe use of RAC in buildings.

To this aim, artificial intelligence (AI) has been exten-
sively studied and applied as a robust computer engineering 
tool in the service of construction engineering [24–26]. For 
predicting CS of RAC, Duan et al. [27] successfully used 
an ANN with 168 sets of data, highlighting the excellent 
potential of the ANN model for forecasting CS of RAC in 
their study. MLR and nonlinear regression analysis have 
also been applied for predicting CS of RAC, in a study of 
Younis, Pilakoutas [28]. The same research revealed that 
recycled tires’ steel fibres could improve the CS of RAC. 
Deshpande et al. [29] also used ANN to predict CS of RAC 
with promising results. ANN is one of the most popular 
and widely used algorithms; however, it displays also some 
drawbacks, mainly poor prediction capacity, especially when 
the range of the testing dataset coincides with the training 
data. ANN also has a limited prediction performance when 
the number of datasets, used to develop and train the model, 
is limited in number. These drawbacks lead to the junction 
of ANNs with fuzzy logic (FL) and ANFIS algorithm. In 
another study, Khademi et al. [30] investigated the predict-
ability of three AI techniques in predicting CS of RAC, 
namely ANN, ANFIS, and MLR. They concluded that the 
ANN model was capable of predicting CS of RAC more 
accurately, achieving an  R2 of 0.919 and a MSE of 19.768. 
The ANFIS algorithm, however, displays a weakness in the 
determination of the weights in the membership function; 
thus, some optimisation algorithm (or meta-heuristic algo-
rithms) was applied to solve the disadvantages of ANFIS 
and enhance the model’s performance [31, 32]. Several AI 
algorithms such as SVM and ELM have been applied; how-
ever, these algorithms have some disadvantages (e.g. large 
time and memory for computing large datasets; slow learn-
ing speed, poor computational scalability) [33–35]. In one 
study, Abdollahzadeh et al. [36] used GEP to predict CS 
of RAC, showing the high applicability of the GEP model 
for the CS prediction of RAC. Their GEP model was thus 
introduced as a tool for predicting CS of RAC containing 
silica fume. However, several issues, such as optimisation 
of GEP, comparison with the benchmark algorithms, were 
not considered in their study. The feasibility of deep learn-
ing theory (i.e. convolutional neural networks—CNN) in 
AI was also considered by Deng et al. [37] for predicting 
CS of RAC; 74 sets of concrete block were investigated to 
this purpose. Higher generalisation ability, higher efficiency, 
and higher precision than the traditional methods were the 
main findings in their study for the CNN model. Analogous 
techniques for estimating CS of RAC can be found in the 
following papers [38–41]. More details of CS prediction, 
as well as more extended state-of-the-art on AI techniques 

developed and used for the prediction of CS, can be found 
in [42–47].

The review of the related literature highlights the impor-
tance of the issue under examination in construction engi-
neering. Although a number of research have been con-
ducted for predicting CS of RAC [48–58], further research 
is still necessary to find a robust algorithm capable of reveal-
ing the different aspects of its design and which can allow 
its generalised use. Furthermore, in the present study, four 
new hybrid AI techniques, including hybrid algorithms of 
XGBoost, ANN, ANFIS, and SVR with ICA optimisation 
algorithm called ICA-XGBoost, ICA-ANN, ICA-SVR, and 
ICA-ANFIS were developed and applied for predicting CS 
of RAC. The results of this research add further insight into 
this very interesting and necessary subject in the field of 
civil and construction engineering.

2  Experimental data

According to our review of the relevant literature, the CS 
of RAC is influenced by many factors, such as the fine 
aggregate density (FA) portion used, the water–cement 
ratio (WCR), the recycled coarse aggregate density (RCA), 
the water–total material ratio (WTMR), water absorption 
(WA), and the natural coarse aggregate density (NCA) [37, 
41, 59]. Therefore, 209 RAC experimental results aiming 
to determine the CS of RAC were conducted, based on the 
influencing mentioned above factors. The experiments were 
performed in the laboratory, applying different mixing ratios 
and parameters. Through the experimental procedure imple-
mented, the WA of RAC samples was determined in the 
range of 0.338 to 21.604%; WCR lay in the range of 0.307 
to 0.736; FA lay in the range of 278.1 to 1211.8 kg/m3; RCA 
lay in the range of 0 to 1324.2 kg/m3; NCA lay in the range 
of 0 to 1340.3 kg/m3, and WTMR lay in the range of 0.035 
to 0.2. Aiming to indicate the 28-day compressive strength 
(CS) of RAC samples, the servo press machine 2000 kN was 
used. Strain gauges were used to measure the deformation 
of RAC samples through pressure sensors. Experimental 
results were recorded with the CS of RAC lies in the range 
of 15.01 to 73.08 MPa, with different mixing ratios. In the 
present study, WA, WCR, FA, RCA, NCA, and WTMR were 
considered as the input variables, whereas the CS of RAC 
at 28 days was selected as the output variable. In Figs. 1 and 
2, the properties of the RAC datasets used were depicted.

For description of the database used, the mean values, 
maximum, minimum, and standard deviation (STD) values 
are presented in Table 1. Basically, some of the RAC vari-
ables could be dependent on each other. High positive or 
negative amounts of the correlation coefficient among the 
input variables can lead to poor efficiency of the approaches. 
Besides, it can make difficult explaining the influences 
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expository variables on the respond. Subsequently, the cor-
relation coefficients between all possible variables have been 
specified and presented in Table 2. It should be noted that 
the values of the correlation matrix are symmetric to its 
main diagonal (italicized values in Table 2). There are no 
significant correlations among the independent input vari-
ables (Table 2).  

3  Background of intelligent techniques 
used

3.1  Imperialist competitive algorithm (ICA)

The ICA was proposed by Atashpaz-Gargari, Lucas [60] 
obtained by simulating human social evolution for solv-
ing optimisation issues. It is known as one of the evolu-
tion algorithms which may decode continuous function 
with high performance [61–63]. Actually, ICA is a global 
search algorithm that is developed based on imperialist 
competition and social policies [64]. Therefore, the most 
powerful empire can overcome different colonies along 

with their resource. Other realms can compete together to 
obtain the territory when an empire collapses. The ICA 
core may be demonstrated by the eight steps below. Fig-
ure 3 shows the pseudo-code of the ICA.

1. Create initial empires and search spaces by randomly;
2. Colony assimilation: the position of colonies is changed 

according to the location of the countries;
3. Accidental modifications occur in the features of each 

country as a revolution;
4. Swapping the territory position for the empire. A colony 

with a better position can rise and control the empire, 
and it will replace the previous empire;

5. The empires compete to conquer the other’s colonies;
6. The weaker empires will be defeated and eliminated. 

The entire colonies of the weaker empires will be lost. 
In this step, natural selection rules are applied;

7. Check the stop criteria. If the stop criteria are satisfied, 
then stop the competitive process. Otherwise, return to 
the step of colony assimilation (step 2).

8. End.

Fig. 1  Histograms of the database parameters
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Fig. 2  Description of the RAC dataset used

Table 1  Statistics of the 
experimental database utilised 
herein

Variable Units Category Statistics

Min Mean Max STD

Water absorption (WA) (%) Input 0.338 9.21 21.604 4.856
Water–cement ratio (WCR), (w/w) Input 0.307 0.523 0.736 0.087
Fine aggregate (FA) kg/m3 Input 278.1 734.9 1211.8 192.57
Recycled coarse aggregate (RCA) kg/m3 Input 0.00 630.8 1324.2 304.886
Natural coarse aggregate (NCA) kg/m3 Input 0.00 466.4 1340.3 311.298
Water–total material ratio (WTMR) – 0.035 0.095 0.2 0.032
Compressive Strength (CS) MPa Output 15.01 39.58 73.08 12.774

Table 2  Correlation matrix of 
the input variables

Parameter WA WCR FA RCA NCA WTMR

WA 1.000
WCR 0.057897 1.000
FA 0.066803 0.002484 1.000
RCA 0.22484 -0.05408 0.024306 1.000
NCA 0.017756 -0.07275 0.011245 0.121822 1.000
WTMR 0.484716 0.045375 -0.06693 0.355126 0.049732 1.000
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3.2  Extreme gradient boosting (XGBoost)

For the first one, Chen, He [65], the XGBoost is an ensem-
ble tree algorithm developed. After that, it is enhanced 
according to the gradient boosting (GB) Friedman [66] 
decision. It may deal with both classification and regres-
sion issues efficiently because the boosted trees are gener-
ated and worked parallel [67]. In XGBoost, an objective 
function (OA) is defined based on the conditions of gra-
dient boosting conditions. It is taken into account as the 
core of the XGBoost algorithm, and similar to many dif-
ferent optimisation methods. Like the GB machine and GB 
decision tree, XGBoost proposes a reliable and fast model 
for different engineering simulations based on the paral-
lel boosting trees [10]. Actually, in order to increase the 
precision of estimations, it can symbolise a soft computing 
library, which can combine novel algorithms together with 
approach of GB decision tree.

The XGBoost can be described as below:

Let D =
{
(xi, yi)

}
 is a dataset including of n samples as 

well as m features ( |D| = n, xi ∈ Rm, yi ∈ R ). The suggested 
tree ensemble model uses z additive functions for approxi-
mating the system response as:

in which F is the space of regression trees. It is defined as:

q stands as the tree structure, T and w are the number of 
leaf nodes and their weights. In addition, the fk term consid-
ered a function, which shows to w and q corresponded to an 
independent tree.

In order to optimise the ensemble tree along with to 
decrease errors, the OA of XGBoost can be minimised as 
follows:

(1)ŷi = 𝜙(xi) =

Z∑

z=1

fz(xi), fz ∈F

(2)F =
{
f (x) = �q(x)

}
(q ∶ Rm

→ T , � ∈ RT )

Fig. 3  The ICA’s pseudo-code
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l stands as a convex function (i.e. loss function) which is 
applied to determine the difference between exact and calcu-
lated values, yi is considered as a measured value,ŷi stands as 
a predicted value. For minimising the errors, the number of 
iteration (t) is used, whereas � is the penalty factor for the 
complication of the regression tree approach:

3.3  Support vector regression (SVR)

For estimating problems, Cortes and Vapnik [68] introduced 
SVM with the capability of wide application as a benchmark 
machine learning approach. It has two essential branches 
(i.e. support vector classification (SVC) and support vec-
tor regression (SVR) that SVR is utilised as the most usual 
figure of SVM [69, 70]. The nature of SVR coming from 
target values, which detect a �(x) function for mapping data 
to flat space aiming to achieve a space as flat as feasible. By 

(3)L(t) =

n∑

i=1

l(yi,ŷ
(t−1)

i
+ ft(xi)) +𝛺(ft)

(4)�(fk) = �T +
1

2
�‖w‖2

considering two forms of nonlinear and linear regression, 
solving complex problems is l [71].

As can be seen in Fig. 4, optimised and linear regression 
problems may be performed by a convex optimisation of 
calculation with constraints and solutions by SVR for the 
linear regression problems.

In terms of nonlinear regression problems, optimisation 
and nonlinear regression problems by SVR can be used with 
a convex optimisation of calculation along with kernel func-
tions for transforming the dataset in a higher dimensional 
of the dataset in the feature space. The kernel functions 
with two different forms that are the most commonly used, 
including radial and also polynomial basis function are addi-
tionally shown in Fig. 5.

3.4  Artificial neural network (ANN)

ANN has wide applications in different areas. This 
approach has been introduced since the 1970s [6, 72–76]. 
ANN is a family of approaches in AI that is constructed 
based on the learning capability of the human brain. 
Basically, the ANN model structure has a layer in input 
and hidden layer(s) as well as a layer in output [77]. The 
essential parameters of ANN were the neurons or nodes 
known as their connections and processing elements [78, 

Fig. 4  Linear SVR

Fig. 5  Nonlinear SVR



3335Engineering with Computers (2021) 37:3329–3346 

1 3

79]. In the input layer, the input neurons provide the input 
signals (i.e. properties of the dataset). Accurately, in the 
present work, the nodes in input achieve the messages 
of WA, WCR, FA, RCA, NCA, and WTMR. Then, the 
hidden nodes get the signal from the input neurons and 
implementing a computational with weights. They are then 
delivered to the subsequent nodes for the next calcula-
tions [80]. For simple regression problems, an ANN sys-
tem with only one hidden layer can provide the outcome 
predictions with the acceptable [81]. The ANN algorithm 
that has two hidden layers is commonly utilised for more 
complex problems [82, 83]. Also, the output nodes in the 
output layer achieve signals from nodes in hidden layers 
and computational of output amounts. In the present paper, 
for the ANN model, the CS of RAC is utilised and used as 
an output variable. Figure 6 shows the architecture of the 
ANN algorithm that is useful to estimate the CS of RAC.

3.5  Adaptive neuro‑fuzzy inference system (ANFIS)

ANFIS is one of the ANN branches, which is developed 
based on a combination of ANN and a fuzzy system [84]. 
It was introduced by [85] first in 1993 and was widely 
applied in many fields [32, 86–90]. In ANFIS, the mem-
bership functions are assigned and adjusted by the training 
capability of ANN. The BP algorithm is used to adjust the 
parameter of the ANN model until the error is satisfied 
[91].

In ANFIS, IF–THEN rules are used to predict any prob-
lems. Assume x and y are the inputs, and z is the output 
in a fuzzy inference system. The IF–THEN rules are then 
applied, as illustrated in Fig. 7.

In theoretical, ANFIS includes five layers (except input 
and output layers), as shown in Fig. 8:

• Layer 1: Generating the membership grades 
( �A1, �A2, �B1, �B2 ) from the inputs (i.e. a and y) by 
adaptively act.

 where i is the number of input variables.
• Layer 2: Getting an output using AND/OR rule node, 

called firing strengths.

• Layer 3: Computing the normalised firing strength by an 
average node.

• Layer 4: Turning the parameters of p, q, and r and show-
ing them as consequent nodes.

(5)
O1,i = �Ai

(x) for i = 1, 2 or O1,i = �Bi−2
(y) for i = 3, 4

(6)O2,i = �Ai
(x)�Bi

(y), i = 1, 2,…

(7)O3,i = �̄�i =
𝜛i

𝜛1 +𝜛2

, i = 1, 2,…

(8)O4,i = �̄�ifi = �̄�i(pix + qiy + ri)

Fig. 6  The ANN structure for 
estimating the CS of RCA 

Fig. 7  IF-THEN rules of ANFIS model



3336 Engineering with Computers (2021) 37:3329–3346

1 3

• Layer 5: Computing the total average of output. This 
layer uses a sum of input signals to calculate output 
nodes.

4  Framework of the proposed ica‑xgboost 
model

As regarded above, the primary purpose of this work is to 
present a novel technique of AI for predicting the CS of 
RAC based on the XGBoost model and the ICA optimi-
sation, called ICA-XGBoost technique. Accordingly, the 
RAC dataset with different mixing ratios and different CS 
has been divided into two sections for testing and training 
purposes, as the first stage. Of the total dataset, 80% of the 
data (approximate 169 experimental datasets) was used for 
the development of the ICA-XGBoost model, whereas the 
remaining 20% (approximate 40 experimental datasets) was 
used for testing the precision of the developed ICA-XGBoost 
model. In the second stage, an initial XGBoost model is 
developed based on the training dataset. Subsequently, the 
hyper-parameters of the developed XGBoost model are cho-
sen as the main parameters to optimise by the ICA. Before 
optimising the hyper-parameters of the initial XGBoost 
model, the settings of ICA need to be established in the third 
stage. Then, the ICA-XGBoost model was generated in the 
fourth stage by adjusting the factors of the initial XGBoost 
model (by the established ICA optimisation). In this way, 
the accuracy of the XGBoost model can be enhanced. To 
check the improvement of the ICA-XGBoost model, the fit-
ness of the generated ICA-XGBoost model was evaluated 

(9)O5,i = f =
∑

i

�̄�ifi

via error values, i.e. RMSE, as the fifth stage. Stopping cri-
teria is checked through the RMSE for the sixth stage. If 
the model errors are satisfied with the stop condition (i.e. 
lowest RMSE), the optimisation process by ICA is horned 
there. Subsequently, the testing dataset with 40 experimental 
datasets was used to re-check the accuracy/error level of 
the developed ICA-XGBoost model, as the final stage. The 
optimisation procedure of the XGBoost model by the ICA 
for predicting the CS of RAC is shown in Fig. 9.

5  Development of the models

As described in Fig. 8, the original dataset includes 209 
experimental results and was divided into two parts (80/20) 
before proceeding to develop predictive models. Note that 
the dataset was divided randomly. Also, all the stated models 
are generated based on the same training dataset.

5.1  ICA‑XGBoost model

For the development of the ICA-XGBoost model, an initial 
XGBoost model was developed with the following hyper-
parameters: subsample percentage ( � ), boosting iterations 
(k), minimum loss reduction ( � ), max tree depth (d), shrink-
age ( � ), minimum sum of instance weight ( � ), and subsam-
ple ratio of columns ( � ). Subsequently, the ICA’s parameters 
were established for optimising the hyper-parameters of the 
XGBoost model. In the present work, the ICA’s parameters 
were set up as follow:

• The number of initial countries (Ncountry): a trial and 
error procedure with various Ncountry was conducted with 
Ncountry of 50, 100, 150, 200, 250, 300, 350, 400, 450, 
500, respectively.

Fig. 8  Architecture of ANFIS
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• The initial imperialists (Nimper): 30
• The lower–upper limit of the optimisation region (L): 

[− 10, 10]
• The assimilation coefficient (As): 2.8
• The revolution of each country (r): 0.6
• The maximum number of iterations (Ni): 1000 times

After establishing the parameters of the ICA, imperial 
competition is implemented to find the most substantial 
empire, corresponding to the most optimal values of the 
XGBoost model with the lowest RMSE. The competition 
process was repeated 1000 times to ensure the obtained 
values are the most optimal. Eventually, an optimal ICA-
XGBoost model was found with the following parameters: 
� = 0.427, k = 856, � = 4.288, d = 3, � = 2, � = 0.022, and 
� = 0.692. The optimisation process of the XGBoost model 
by the ICA is shown in Fig. 10.

Fig. 9  Optimisation procedure of the XGBoost model by the ICA for predicting the CS of RAC 

Fig. 10  The optimisation pro-
cess of the XGBoost model by 
the ICA for predicting the CS 
of RAC 
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5.2  ICA‑ANN model

For the development of the ICA-ANN model, the similar 
techniques and the same training dataset were used. Note 
that all the parameters of the ICA are the same as those 
used for the development of the ICA-XGBoost model. How-
ever, unlike the XGBoost model, an ANN model with the 
backpropagation algorithm was selected as the background 
of the optimisation. Indeed, an ANN model includes two 
hidden layers (i.e. ANN 6-16-21-1), which was developed 
for the prediction of the CS of RAC in the Python plat-
form. The min–max scale method was used to transfer the 
input data in the range of -1 to 1 to avoid overfitting. Herein, 
the weights and biases of the ANN 6-16-21-1 model were 
optimised by the ICA. RMSE also utilised to analyse the 
performance of the optimisation process for the ICA-ANN 
model, as shown in Fig. 11. Finally, the optimal ICA-ANN 

model was determined with the optimal weights and biases, 
as shown in Fig. 12.

5.3  ICA‑SVR model

Similar to the ICA-XGBoost and ICA-ANN models, the 
ICA-SVR model was developed based on the optimisation 
of ICA for the SVR model. The same training dataset and 
parameters of the ICA were applied as those used for the 
previous models (i.e. ICA-XGBoost and ICA-ANN mod-
els). In this regard, the radial basis function of the kernel is 
utilised for the development of the SVR model. Hence, the 
sigma ( � ) and cost (C) are optimised by the ICA to enhance 
the accuracy of the SVR model. Lowest RMSE was used as 
the final goal for the development of the ICA-SVR model. 
Finally, an optimal ICA-SVR model was developed with 
C of 27.509 and � 0.015. The optimisation process of the 

Fig. 11  The optimisation 
process of the ANN model by 
the ICA for predicting the CS 
of RAC 

Fig. 12  The ICA-ANN structure 
for estimating the CS of RAC 
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ICA-SVR model for predicting the CS of RAC is shown in 
Fig. 13.

5.4  ICA‑ANFIS model

For the ICA-ANFIS modelling, an initial ANFIS model is 
developed as the first step; after that, the ICA was applied to 
optimise the developed ANFIS model. The parameters of the 
membership functions of the generated ANFIS model were 
optimised/trained by the ICA in this task. The same training 
dataset and ICA’s parameters were applied as those devel-
oped the previous models (i.e. ICA-XGBoost, ICA-ANN, 
and ICA-SVR models). A fitness function, i.e. RMSE, also 
utilised to assess the precision of the optimisation process 
for the ICA-ANFIS model. Ultimately, the optimal ICA-
ANFIS model was found with the number of fuzzy terms of 
15 and maximum iterations of 24. The training process of 
the ICA-ANFIS algorithm on the training dataset is shown 
in Fig. 14.

6  Statistical criteria for model assessment

Once the models were developed, the testing dataset includes 
40 experimental datasets, which were used to evaluate the 
accuracy in practical engineering of the models. Five statisti-
cal criteria, such as RMSE,  R2, MAE, MAPE, and VAF, were 
suggested to evaluate the models’ performances, as follow:

(10)RMSE =

√√√√ 1

m

k∑

i=1

(yiRAC − ŷiRAC)
2

(11)R
2 = 1 −

∑
i=1 (yiRAC − ŷiRAC)

2

∑
i (yiRAC − ŷiRAC)

2

(12)MAE =
1

n

k∑

i=1

||yiRAC − ŷiRAC
||

Fig. 13  The optimisation 
process of the SVR model by 
the ICA for predicting the CS 
of RAC 

Fig. 14  The optimisation 
process of the ANFIS model by 
the ICA for predicting the CS 
of RAC 
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k stands as the number of instances; ȳ , yiRAC , and ŷiRAC 
show the average, measured, and modelled amounts of the 
response variable, respectively.

Furthermore, the following new recently proposed 
[92–95], the a10-index, engineering index to the reliability 
evaluations of the expanded AI models have been used:

M stands as the number of dataset sample, and also m10 
is the number of samples along with a value of experimental 
rate value/estimated value in the range of 0.90 and 1.10. It 
is important to note that for a complete predictive approach, 
the values of a10-index were considered to be unity. The 
suggested a10-index possesses the advantage. Note that their 
value showed a physical engineering meaning. It is noted 
that the amount of the samples which satisfies calculated 
amounts with a deviation of ± 10% has compared to experi-
mental data.

Also, a ranking method and colour intensity were utilised 
to classify the developed models.

7  Results and discussion

The performance of the developed soft computing models 
(ICA-XGBoost, ICA-ANN, ICA-SVR, and ICA-ANFIS) 
regarding the prediction of compressive strength of recycled 
aggregate concrete is evaluated quantitatively both in train-
ing and testing phase (Table 3) through the six performance 
indexes (a10-index, RMSE, MAE, MAPE, VAF, and  R2) 
that have been previously presented. 

(13)MAPE =
100%

k

k∑

i=1

||||
yiRAC − ŷiRAC

yiRAC

||||

(14)VAF =

(
1 −

var (yiRAC − ŷiRAC)

var (yiRAC)

)
× 100

(15)a10 − index =
m10

M

Before the actual assessment of the models, one must 
first investigate and determine whether the well-known and 
frequent issue of “overfitting” has occurred (overfitting prob-
lem in machine learning). A reliable manner in which this 
issue can be assessed is related to the comparison of the dif-
ference performance indices, among training data and testing 
data. When overfitting occurs, the performance indices for 
the training phase are quite satisfactory; however, the perfor-
mance indices for the validation phase are quite lower. The 
smaller the difference between the performance indices of 
these phases, the lower the possibility that overfitting has 
occurred. Specifically, when the difference in the indices R2 
and VAF is less than 5%, the probability of overfitting occur-
rence is extremely low. Thus, based on the values displayed 
in Table 3, overfitting of the models developed within this 
research has been avoided.

Based on the results presented in Table 3 and having 
ensured that the overfitting problem has not occured, the 
optimum AI model is the developed ICA-XGBoost model, 
which ensures, for the case of testing datasets, the optimum 
values for all the performance indices. In contrast, the ICA-
ANFIS model indices indicate that its performance is the 
lowest among all models.

Considering the parameters (operators) of the proposed 
ICA-XGBoost, ICA-ANN, ICA-SVR, and ICA-ANFIS 
models, it can be concluded that although the settings of 
the ICA are the same, however, the accuracy of the models 
are different. This finding shows different prediction power 
of the different algorithm, as well as the ICA, seems more 
suitable when combined with the XGBoost model for esti-
mating the CS of RAC. Figure 15 illustrates the accuracy 
of the predicted values by the different hybrid models in 
determining the CS of RAC in terms of scatter plot. Also, a 
comparison of measured and predicted values by different 
models is shown in Fig. 16 in terms of histogram. According 
to Fig. 16, all applied models have efficiency for predicting 
CS of RAC.

Furthermore, in Fig. 17 the ratio of the experimental 
values concerning the predicted values is depicted, for 
the datasets which were used for testing the reliability of 

Table 3  Performance of the 
developed hybrid models both 
for training and testing datasets

The best performances are shown in bold

Datasets Model a10-index RMSE MAE MAPE VAF R2

Training ICA-XGBoost 0.953 1.375 0.908 0.026 98.920 0.989
ICA-ANN 0.899 2.013 1.377 0.039 97.649 0.976
ICA-SVR 0.888 2.130 1.481 0.042 97.366 0.974
ICA-ANFIS 0.769 2.384 2.093 0.069 93.375 0.946

Testing ICA-XGBoost 1.000 1.479 1.147 0.031 98.190 0.983
ICA-ANN 0.925 2.225 1.648 0.044 95.932 0.960
ICA-SVR 0.875 2.149 1.628 0.045 96.212 0.962
ICA-ANFIS 0.850 2.770 2.172 0.060 93.883 0.940
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the proposed ICA-XGBoost optimum neural network in 
terms of compressive strength prediction. Noted that all 
samples utilised for the testing process possess a deviation 
lower than ± 10% (points are among the two dotted lines in 
Fig. 15).

According to Box-plot finding (Fig. 18), ICA-XGBoost 
and ICA-ANN algorithms could predict the minimum value 
of CS of RAC properly, but neither ICA-XGBoost and ICA-
ANN nor other applied models could not predict maximum 
value accurately. The ICA-XGBoost algorithm has a higher 
performance in terms of median values, followed by ICA-
ANN, ICA-SVR and ICA-ANFIS models. ICA-ANFIS 
and ICA-SVR algorithms have a higher prediction power 

in predicting third quartile  (Q3) and first quartile  (Q1), 
respectively.

Based on the result of the Taylor diagram (Fig. 19), the 
proposed ICA-XGBoost model outperforms other models 
(correlation coefficient higher than 0.99) followed by ICA-
SVR, ICA-ANN, and ICA-ANFIS, respectively. This can be 
related to computing capability of different algorithms, and 
as each model have advantages and disadvantages, thus dif-
ferent models should be applied and the best one selected for 
future studies. Recently applied hybrid algorithms have been 
rapidly increased, and most of the literature review shows 
that hybrid algorithm can enhance the prediction power 
of the standalone algorithms. Khosravi et al. [96] applied 

Fig. 15  Illustrating the accuracy of the estimated values by the individual models
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standalone ANFIS as well as ANFIS hybrid with genetic, 
imperialist competitive, and differential evolution algorithms 
for reference evaporation estimation. Finally, they stated that 
all hybrid algorithms have a higher prediction power than 
standalone algorithms. Khozani et al. [97] applied four stan-
dalone algorithms of RF, RT, REPT, and M5P as well as a 
hybrid algorithm of bagging-M5P model for apparent shear 
stress prediction. They finally stated that hybrid algorithm 
outperforms others. XGBoost as one of the flexible models 

has some advantages, such as it can work on both regression 
and classification problems, parallel processing, and it can 
work effectively with large and multidimensional datasets 
[8, 98, 99].

Generally, as this kind of research such as compressive 
strength of recycled aggregate concrete prediction including 
the relationship between input variables and between inputs 
and output are not simple and have a nonlinear relation-
ship and simple and empirical models do not have sufficient 
accuracy. Thus, the more nonlinear and flexible models, the 
higher prediction power. AI algorithms with nonlinear struc-
ture especially hybrid models are more flexible and robust 
than standalone models [31]; therefore, hybrid algorithm can 
enhance the prediction power of standalone algorithms and 
completely proper to prediction of phenomena with complex 
process.

8  Conclusion

Recycled aggregate concrete is a promising material which 
could replace typical concrete. Its extensive use can con-
tribute, not only towards the improvement of economic effi-
ciency, but also towards sustainable development through 
the reduction in concrete’s environmental impact. However, 
due to the influence of mortar and cement remnants from the 
original concrete on the surface of the recycled aggregates, 
its 28-days compressive strength is often inferior to that of 
typical concrete. Therefore, an accurate prediction of the 
28-days compressive strength is necessary to optimise this 

Fig. 16  A comparison of measured and estimated values of the models

Fig. 17  Experimental to the predicted values of compressive strength 
based on the ICA-XGBoost
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concrete material and to ensure its safe application for build-
ing purposes.

In the present work, four different AI models have been 
trained and developed for the prediction of compressive 
strength of recycled aggregate concrete. Among these mod-
els, the ICA-XGBoost model is proposed as the optimum. 
Namely, based on the newly proposed performance a10-
index, all samples utilised for the testing process possess a 
deviation lower than ± 10% in relation to the actual experi-
mental values, proving the developed model as a useful tool 
for researchers, engineers, as well as for supporting not only 
teaching, but also interpretation of the mechanical behav-
iour of recycled aggregate concrete. Furthermore, based on 
the proposed ICA-XGBoost technique, recycled aggregate 
concrete can be used safely for construction purposes, when 

specific parameters are fulfilled and may thus, in the future, 
serve as an essential, environmentally friendly building 
material.
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