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Abstract
In this article, thermal buckling and frequency analysis of a size-dependent laminated composite cylindrical nanoshell 
in thermal environment using nonlocal strain–stress gradient theory are presented. The thermodynamic equations of the 
laminated cylindrical nanoshell are based on first-order shear deformation theory, and generalized differential quadrature 
element method is implemented to solve these equations and obtain natural frequency and critical temperature of the pre-
sented model. The results show that by considering C–F boundary conditions and every even layers’ number, in lower value 
of length scale parameter, by increasing the length scale parameter, the frequency of the structure decreases but in higher 
value of length scale parameter this matter is inverse. Finally, influences of temperature difference, ply angle, length scale 
and nonlocal parameters on the critical temperature and frequency of the laminated composite nanostructure are investigated.

Keywords Laminated nanoshell · Hamilton’s principle · NSGT · GDQEM · Frequency response

1 Introduction

Owing to the recent advancement in mechanical and mate-
rial sciences [1–3], FG and laminated composites have 
attracted in plenty of applications [4–14]. Many researches 
show that [15–19] the laminated composite structures have 
a better dynamic response in comparison with the isotropic 
and other materials. Safarpour et al. [20] modeled a lami-
nated nanoshell in a thermal environment and investigated 
the wave dispersion of the structure. They analyzed  the 
size effects with the aid of NSGT. They found that it is not 

accepted which by increasing the number of layers of the 
laminated structure the dynamic stability improves. They 
reported that the number of layers has an optimum number. 
Zeighampour et al. [21] presented a mathematical mode-
ling for investigation of wave dispersion of the laminated 
nanoshell MSGT and thin theory. They claimed that MSGT 
encounter us with accurate result in comparison with clas-
sical theory. Sahmani et al. [22] presented the dynamic and 
static response of the laminated beams which are reinforced 
with GPLs. They modeled the structure with the aid of 
NSGT. They found that initial load decreases the frequency 
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of the structure. Nonlocal effects on the dynamic and static 
responses of the micro-/nanostructure are presented in Refs 
[23–29].

In the scope of dynamic behavior of the piezoelectric 
cylindrical shell [30–32], Shojaeefard et al. [33] dealt with 
frequency analysis for different boundary conditions on a 
rotary cylindrical piezoelectric nanoshell surrounded by an 
elastic foundation. Also, they used GDQ method for solv-
ing the problems. Dehkordi et al. [34] studied vibrational 
behavior of a piezoelectric conic nanotube using moder-
ately thin model and a size-dependent theory. They inves-
tigated the effects of flex electric on the frequency of the 
nanosmart tube. Arefi [35] employed nonlocal elasticity 
theory and FSDT for investigation of bending behavior of 
a doubly curved piezoelectric nanoshell. The nanostructure 
is exposed to transverse loads, voltage and surrounded with 
Winkler–Pasternak foundation. They in this work examined 
the effects of nonlocal parameter, applied voltage, viscoe-
lastic parameters on the electromechanic behaviors of the 
piezonanostructure. Razavi et al. [36] modeled a piezoelec-
tric nanoshell which is composed with functionally graded 
(FG) and piezoelectric materials. They presented influences 
of dimensional parameters on the frequency behavior of the 
piezoelectric nanostructures. Ninh and Bich [37] demon-
strated the nonlinear dynamic behavior of the electrically 
FG nanocylindrical shells in the thermal conditions. A FG 
shell reinforced with carbon nanotube is modeled in a con-
dition that outer and inner surfaces were surrounded by 
piezolayers. Fangand et al. [38] engaged with thick theory 
and electromechanic theory for investigation of nonlinear 
frequency of a nanoshell surrounded by a piezolayer. They 
studied the amplitude frequency curves of the nanoshell. 
Eftekhari et al. [39] investigated vibrational property of a 
FG cylindrical shell reinforced with carbon nanotube and 
the structure surrounded by PIAC in an orthotropic elas-
tic medium and thermal site. They in this work employed 
an analytical method and DQ method in other to figure out 
the equations, and they presented influences of electromag-
netic field and various patterns of CNT ratio on dynamic 
behaviors of the system. Vinyas [40] encountered with FE 
modeling for frequency analysis of a plate which this struc-
ture has an MEE property. He considered moderately thick 
theory for modeling the problem. He emphasized that CNT 
pattern and volume of the reinforcement have a significant 
impact on the free vibration of the structure. Zhu et al. [41] 
did a study on the free vibration of a PIAC nanocylindri-
cal shell, and by employing the perturbation method, they 
solved the governing equations. They investigated the impact 
of surface energy on the dynamic behaviors of the nanosmart 
structure. Singh et al. [42] with the aid of a numerically 
method modeled curved panel. The structure covered with 
the PIAC. Their results showed the effect of piezolayer on 
the frequency of the nanostructure. Fan et al. [43] conducted 

research into free vibration of a conical nanostructure. Inner 
and outer layers of a conical CNTRC are surrounded by pie-
zolayers. In the field of critical temperature of the cylindrical 
shell structures, Refs [20, 44] presented thermal static and 
dynamic behaviors of FG shells beneath some geometri-
cal imperfection and various load conditions. Their results 
demonstrate that the behavior of the cylindrical structure 
beneath the nonlinear change of temperature is more stable 
in comparison with a linear change in temperature through 
thickness. Vibration, buckling, wave propagation and bend-
ing responses of the nanocomposite-reinforced structures are 
investigated in Refs [45–60].

Also, Wang et al. [61] carried out research into critical 
thermal loading for a shell based on a theoretical method. 
The main conclusion of the paper reported a theoretical 
method for finding the critical temperature of that structure. 
Safarpour et al. [62] presented an exact numerical method 
for investigation buckling, free and forced vibration of a FG 
nanoshell in a thermal site. Some theories with consideration 
thickness stretching effect are employed in Refs [63–70] for 
investigation vibrational behavior of the composite struc-
tures. In the field of stability analysis of the structures, Safa-
rpour et al. [30, 33, 71–82] presented buckling and vibra-
tional analysis of the structures with various geometrical 
parameters.

For the first time, the presented study investigates the 
thermodynamic analysis of a laminated composite cylindri-
cal nanoshell based on NSGT considering the exact values 
of nonlocal constants and material length scale parameters. 
The thermodynamic equations of the laminated cylindrical 
nanoshell are based on FSDT, and GDQEM is implemented 
to solve these equations and obtain natural frequency and 
critical temperature of the current model. Finally, using 
mentioned continuum mechanics theory, the investigation 
has been made into the influence of the temperature differ-
ence and the different types of the laminated composites on 
the critical temperature difference and dynamic stability of 
the laminated composite nanostructure.

2  Theory and formulation

In Fig. 1, a laminated composite nanoshell with considera-
tion of thermal effects is sketched, where R is the radius of 
tube’s middle surface and h is the thickness of the nanoshell. 
Also, �̄� is the ply angle of each layer. The material of the 
nanostructure is considered as a laminated composite.

2.1  NSG model

The fundamental equation can be expressed as follows due 
to the NSG model [83]:
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where ∇2 = �2∕�x2 + �2∕R2��2 ; tij , Cijck and �ck , respec-
tively, are the NSG stress, elasticity tensors and strain. The 
tensor of NSG stress can be defined as follows [83]:

where �ij and �(1)

ij
 presented the components of basic and 

nanosize stresses, respectively. The l and µ are constant val-
ues standing for the higher-order strain gradient stress and 
noninvariant influence. Recent experimental researches also 
demonstrated the calibrated values of the size-dependent 
factors. The strain tensor could be written as:

where ui stands for the elements of the displacement vector. 
Due to Eq (2), the relation between stress and strain of the 
mentioned structure would be presented as [84]:

Equation (4) defines temperature changes as well as thermal 
expansion as ΔT  and � , respectively. In the case of lami-
nated composites, the elements of the tensor of elasticity 
are defined as the orthotropic material’s lessened elastic 
constants of the Lth layer, and the next equations express 
the mentioned relations [84]:

(1)(1 − �2∇2)tij = Cijck(1 − l2∇2)�ck

(2)tij = �ij − ∇�
(1)

ij

(3)�ij =
1

2

(
ui,j + uj,i

)

(4)

⎡⎢⎢⎢⎣

txx

t��

tx�

⎤
⎥⎥⎥⎦
=

(1 − l2∇2)

(1 − �2∇2)

⎡⎢⎢⎣

C11 C12 0

C12 C22 0

0 0 C66

⎤⎥⎥⎦

(L)⎡⎢⎢⎣

�xx − �ΔT

��� − �ΔT

�x�

⎤⎥⎥⎦
,

�
t�z

txz

�
=

(1 − l2∇2)

(1 − �2∇2)

�
C44

0

0

C55

�(L)�
��z

�xz

�

The aforementioned equations express the relation between 
stress and strain components for the Lth orthotropic lamina 
referred to the lamina’s principal material axes x, � , and z. 
In Eq (5), Qij components are expressed by the following 
equations:

2.2  Displacement field

FSDT enables us to define the displacement field of a lami-
nated nanoshell in the following equations [16, 47, 50, 53, 
85–91]:

Also, u(x, �, t) , v(x, �, t) and w(x, �, t) , respectively, dem-
onstrate the displacements of the neutral surface in x and 
� axes. �x(x, �, t) and ��(x, �, t) illustrate the cross section 
rotations around � and x directions. By inserting Eq (7) into 
Eq (3), the strain tensor’s components can be obtained by 
the following equations:

(5)

C11 = Q11 cos
4 �̄� + 2(Q12 + 2Q44) sin

2 �̄� cos2 �̄�

+ Q22 sin
4 �̄�

C12 = (Q11 + Q22 − 4Q44) sin
2 �̄� cos2 �̄�

+ Q12(sin
4 �̄� + cos4 �̄�)

C22 = Q11 sin
4 �̄� + 2(Q12 + 2Q44) sin

2 �̄� cos2 �̄�

+ Q22 cos
4 �̄�

C44 = Q44 cos
4 �̄� + Q55 sin

4 �̄�

C55 = Q55 cos
4 �̄� + Q66 sin

4 �̄�

C66 = (Q11 + Q22 − 2Q12) sin
2 �̄� cos2 �̄�

+ Q66(cos
2 �̄� − sin

2 �̄�)2

(6)

Q11 =
E1

1 − �12�21
, Q12 =

�12E2

1 − �12�21
, Q22 =

E2

1 − �12�21

Q66 = G12, Q44 = G23, Q55 = G13

(7)

U(x, �, z, t) = u(x, �, z) + z�x(x, �, t)

V(x, �, z, t) = v(x, �, z) + z��(x, �, t)

W(x, �, z, t) = w(x, �, t)

(8)

�xx =
�u

�x
+ z

��x

�x
, ��� =

1

R

�v

��
+

z

R

���

��
+

w

R
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1

2

(
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)
, ��z =

1

2

(
�� +

1
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�w

��
−

v

R

)

�x� =
1

2

(
1

R

�u

��
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�v

�x

)
+

z
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��x

��
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���
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)

Fig. 1  The geometry of a laminated composite nanoshell
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2.3  Governing equations and boundary conditions

The motion equations along with the possible BCs related to 
the mentioned structure would be extracted applying energy 
methods (Hamilton principle) based on FSDT and the NSG 
model by the following equation:

where K illustrates the kinetic energy, �s defines strain 
energy and the work done by forces imposed can be shown 
as �w . For a usual nanoshell exposed to high level of tem-
perature situation, it is suggested that the temperature dis-
tributes through its thickness.

Based on NSG model, Eq (10) defines the strain energy 
[83]:

And also, the strain energy can be defined as the following 
equation due to the NSG model [83]:

(9)∫
t2

t1

(�K − ��s + �W) dt = 0

(10)

�K = ∫
Z

∬
A

�

⎧
⎪⎪⎨⎪⎪⎩

�
�u

�t
+ z

��x

�t

��
�

�t
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�

�t
��x

�

+
�

�v
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���

�t

��
�

�t
�v + z

�

�t
���

�

+
�

�w

�t

�
�

�t
�w

⎫
⎪⎪⎬⎪⎪⎭

dV

For a typical isotropic cylindrical shell which is in the high-
temperature environment, it is assumed that the temperature 
can be distributed across its thickness. Hence, the work done 
depended on the temperature change can be obtained as:

where NT
1

 and NT
2

 are the thermal resultants which can be 
obtained as follows:

It is assumed that the temperature varies linearly along the 
thickness from Tm at the outer surface to Tc at the inner sur-
face. Governing motion equations for a nanoshell due to the 
FSDT as well as NSG model are presented inserting Eqs. (10), 
(12), and (13) into Eq (9) and integrating as follows:

(11)

�s =
1

2 ∭
V

(
�ij�ij + �

(1)

ij
∇�ij

)
dV

⇒ ��s=∭
S

tij��ijdV +∬
A

�
(1)

ij
��ij

|||
L
0
dS

(12)
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A
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NT
2

)(�w0
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)
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NT
1
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)
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]
Rdx d�

(13)

NT
1
= ∫

hc∕2

−hc∕2
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NT
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(16)
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where the defined elements in Eqs. (14) - (18) are explained 
as:

3  Solution procedure

One of the best numerical methods which is well known for 
its accuracy and convergence is differential quadrature method 
(DQM) [92–94]. In this method, it is really important that 
the numbers of seed should be optimal; it means that due to 
an increase in the computational charge, too many seeds or 
elements are not applicable; and employing the few seeds, 
however, would lead to a negative impact on accuracy of the 
results [95–105]. At first, this method encounters its users 
with a limitation which they could not use too many seed 
owning to the weighting function was algebraic. GDQEM is 
employed with the aim of finding the solutions of governing 
equations beneath various boundary conditions (Fig. 2). The 
flowchart of the aforementioned solution method is as below:

With a view of this method, the estimated rth is defined 
by f(x) as follows:

n and Cij are the number of seeds and weighting coefficients 
in order that the second one is computed as below:

where

(19)

{
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}
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dz
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(
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)

(
xi − xj

)
M
(
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Also, these higher-order weight coefficients are as follows:

In the present research investigation, a seeds’ nonuniform 
set is chosen along x and � excess:

The freedom degrees can be taken into consideration as 
follows:

(23)
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, i = 1, 2, 3,… ,Ni

u(x, �, t) = U(x) cos(n�)ei�t,

v(x, �, t) = V(x) sin(n�)ei�t,

w(x, �, t) = W(x) cos(n�)ei�t,

�x(x, �, t) = �x(x) cos(n�)e
i�t,

��(x, �, t) = ��(x) sin(n�)e
i�t.

Fig. 2  The flowchart of GDQEM
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Reorganizing the quadrature analogs of boundary condi-
tions along with field equations into the generalized eigen-
value problem’s fabric, we obtain:

where the subscripts d and b are pertained to the grid points’ 
domain and boundary, respectively. Also, displacement vec-
tor is shown by � . Equation (25), however, may be changed 
to a basic problem of eigenvalue:

Also, dimensionless natural frequency and dimensionless 
temperature difference are defined as follows:

4  Results section

In this paper, the laminated composite nanoshell’s material 
properties are given in Table 1. The most prominent supe-
riority of AS/3501 composite compared with conventional 
composites is their higher stiffness and strength as well as 
less density [106].

4.1  Convergence

A sufficient number of grid points are necessary to achieve 
accurate results in GDQM [20, 44, 107–127]. The conver-
gence studies are conducted for different boundary condi-
tions as well as different materials. Moreover, it can be seen 
that the structure with (C–C) boundary conditions is stiffer 

(25)
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]
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(27)� = 10 × �L(

√
�

E
)

than the structure with C–F boundary conditions which will 
lead to a smaller natural frequency. Also, GPLRC cylindrical 
nanoshell, due to the addition of GPL reinforcing nanofill-
ers, has a higher natural frequency in comparison with pure 
epoxy. According to Table 2, for results convergence, thir-
teen grid points are suitable.

4.2  Validation

For results verification of this work with other articles, Table 3 
gives a comparison of results for dimensionless natural fre-
quency of the nanostructure with the results of Ref [128], for 
different geometrical parameters. Moreover, the results reveal 
that the decrease in dimensionless length scale parameter (h/l) 
would lead to the reduction of the dimensionless natural fre-
quency. In order to validate the proposed formulation, some 
comparative studies are conducted between the obtained results 
in this study and those available in the literature. Table 3 shows 
that there is a very good agreement between the results. 

5  The effects of length scale parameter 
and temperature on the frequency 
for different boundary conditions

Figures 3, 4 and 5 present the effect of length scale param-
eter (l) on the dimensionless frequency with different 
boundary conditions. In this study, for reliability of result 
four quantities are considered for l (l = 0.1, 0.15, 0.2 and 
0.25 nm). It is observed that for l = 0.25 nm dimensionless 
frequency was higher in all the boundary conditions that 
evaluated; also, for this among of l critical temperature was 
more, compare other one. It can be seen from figures that an 
increase in the l causes an increase in the critical tempera-
ture and increases the stability of the nanostructure. Also, it 
can be observed that by increasing temperature, frequency 
has been decreased. This is because increasing the tempera-
ture is eventuated to decrease the stiffness and frequency of 
the nanostructure. When one draws a comparison between 

Table 1  The effect of the 
number of grid points on the 
results convergence for the 
dimensionless frequency of 
the GNPRC micropanel with 
respect to different patterns 
and boundary conditions (B. 
Cs) when a/b = 6.5, h = a/9, 
R1 = R2 = 10a, Δ T = 10 (K), 
 gGPL = 0.5%

N = M=7 N = M = 9 N = M = 11 N = M = 13 N = M = 15

CFFF Pure epoxy 0.0152839 0.0171311 0.0122786 0.0184308 0.0185104
Pattern 2 0.0320457 0.0333990 0.0379272 0.0340140 0.0340840

CSFS Pure epoxy 0.0245107 0.0279184 0.0205209 0.0205209 0.0205209
Pattern 2 0.0411726 0.0410866 0.0407444 0.0407444 0.0407444

SSSS Pure epoxy 0.0328041 0.0328039 0.0328039 0.0328039 0.0328039
Pattern 2 0.0685672 0.06850382 0.06844328 0.06839187 0.0683808

CSSS Pure epoxy 0.0551124 0.05553747 0.05366811 0.05552384 0.0555205
Pattern 2 0.0971378 0.0989422 0.09917005 0.09929541 0.0992978

CCCC Pure epoxy 0.0763170 0.0763555 0.0763567 0.0763567 0.0763567
Pattern 2 0.1388539 0.13889832 0.13889978 0.1389035 0.1389035
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Figs. 3, 4 and 5, it can be inferred that while a boundary 
condition changes from clamp to simply, both frequencies 
and critical temperature decrease. This results in a decrease 
in the stability of the nanostructure.   

6  The effects of nonlocal parameter 
and temperature on the frequency 
for different boundary conditions

The dimensionless temperature versus the dimensionless 
natural frequency for different nonlocal parameters and S–S, 
C–S and C–C boundary conditions is depicted in Figs. 6, 
7 and 8, respectively. It can be observed that by increas-
ing temperature, dynamic stability of the nanostructure has 
been decreased as long as critical temperature is seen. As a 
best result for the literature, it is seen that increasing in the 
dimensionless nonlocal parameter doesn’t have any effects 
on the critical temperature for each boundary condition. 
The difference between Figs. 6, 7 and 8 is that, for a spe-
cific value of dimensionless nonlocal parameter, the critical 
temperature and dimensionless frequency of C–C boundary 
conditions are higher than S–S and C–S boundary condi-
tions. It is clear from these figures that nonlocal parameter 
and temperature have a same or direct effect on the dynamic 
stability (dimensionless frequency) of the nanostructure but 
nonlocal parameter doesn’t show any effects on the static 
stability (critical temperature) of the cylindrical nanoshell.

6.1  The effects of different length to radius ratio 
on the frequency for different boundary 
conditions and between odd‑ and even‑layered 
laminates

From Figs. 9, 10 and 11, it can be observed that three-lay-
ered [0° 90° 0°] laminated composite has the lowest value of 
the critical dimensionless temperature. In addition, the high-
est value of the critical temperature occurs in the six-layered 

[0° 90° 0° 90° 0° 90°] laminated composite. Another sig-
nificant result is that four-layered [0° 90° 0° 90°] has the 
higher critical temperature than five-layered [0° 90° 0° 90° 
0°] laminated composite nanostructure. It can be seen that 
increasing the number of layers causes the critical tempera-
ture to increase. It can be concluded from the results that 
the number of layers has a significant effect on the critical 
temperature of the laminated composite nanostructure.

6.2  Influences of length scale parameter 
on the frequency of the laminated composite 
nanostructure

Figures 12, 13, 14, 15, 16, 17, 18 and 19 show the effect of 
the different symmetric laminate angle, the number of layers 

Table 2  The material properties 
of AS/3501 graphite–epoxy 
layers [84]

Material properties E1 E2 G12 G13 G23 �1 �2 �s

Values 140GPa 10GPa 7 GPa 7 GPa 7 GPa −0.3 × 10
−6∕K 28 × 10

−6∕K 0.078

Table 3  Comparison of 
dimensionless first three 
natural frequencies of isotropic 
homogeneous nanostructure, 
with different thicknesses

h/R n Ref. [128] (l = 0) Present (l = 0) Ref. [128] (l = h) Present study (l = h)

0.02 1 0.1954 0.19536215 0.1955 0.19543206
2 0.2532 0.25271274 0.2575 0.25731258
3 0.2772 0.27580092 0.3067 0.30621690

0.05 1 0.1959 0.19542305 0.1963 0.19585782
2 0.2623 0.25884786 0.2869 0.28543902
3 0.3220 0.31407326 0.4586 0.45457555

Fig. 3  The effects of l and temperature of environment on the fre-
quency for C–C boundary conditions
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and length scale parameter on the frequency for different 
boundary conditions. The intended model is a laminated 
composite cylindrical nanoshell in a thermal environment 
with ΔT = 100 , R = 1 nm and h = R/10. The size-dependent 
parameters are assumed to be µ = 0.55 nm, l = 0.35 nm in the 
relevant theories [83].

6.3  The comparison between the even‑layered 
laminates

According to Figs. 12, 13, 14 and 15, for C–C, C–S and 
S–S boundary conditions, increasing the length scale 
parameter, all the figures demonstrate a similar behavior. 
By increasing the length scale parameter, the frequency of 

Fig. 4  The effects of l and temperature of environment on the fre-
quency for C–S boundary conditions

Fig. 5  The effects of l and temperature of environment on the fre-
quency for S–S boundary conditions

Fig. 6  The effects of � and temperature of environment on the fre-
quency for C–C boundary conditions

Fig. 7  The effects of � and temperature of environment on the fre-
quency for C–S boundary conditions
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the nanostructure increases. These figures present that by 
boosting the even layers’ number of the laminated compos-
ite, the frequency of the structure increases. This increment 
is remarkable for C–C boundary conditions and improves 
the structure stability. The difference between Figs. 12, 13 
and 14 is that the dimensionless frequency of C–C boundary 
condition is higher than S–S and C–S boundary conditions. 

This is because C–C boundary condition improves the nano-
structure stability. In addition, for C–F boundary condition, 
Fig. 15 presents a new result. For this regard, it can be seen 
that the effect of length scale parameter on the frequency 
is much more changeable. Moreover, for every even lay-
ers’ number, in the lower value of length scale parameter, 
by increasing the length scale parameter, the frequency of 

Fig. 8  The effects of � and temperature of environment on the fre-
quency for S–S boundary conditions

Fig. 9  The effects of L∕R and the number of layers on the frequency 
for C–C boundary conditions

Fig. 10  The effects of L∕R and the number of layers on the frequency 
for C–S boundary conditions

Fig. 11  The effects of L∕R and the number of layers on the frequency 
for S–S boundary conditions
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the structure decreases but in the higher value of length 
scale parameter this matter is inverse. In addition, this fig-
ure shows that even layers’ number effect on the frequency, 
change in l = 0.872 nm. So, for length scale parameter less 
than 0.872 nm, by increasing the number of the composite 
layers, the frequency increases, while for l > 0.872 nm the 
reverse is true.

6.4  The comparison between the odd‑layered 
laminates

The dimensionless frequency versus the length scale param-
eter for different odd layers’ numbers of the laminated com-
posite and S–S, C–S, C–C and C–F boundary conditions is 
depicted in Figs. 16, 17, 18 and 19. It is seen that increasing 

Fig. 12  The effects of l and even layers’ number on the frequency for 
C–C boundary conditions

Fig. 13  The effects of l and even layers’ number on the frequency for 
C–S boundary conditions

Fig. 14  The effects of l and even layers’ number on the frequency for 
S–S boundary conditions

Fig. 15  The effects of l and even layers’ number on the frequency for 
C–F boundary conditions
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length scale parameter causes the frequency of the system to 
increase. It is clear from Figs. 16, 17, 18 and 19 that because 
of an increase in stiffness of structure with rising odd lay-
ers’ number, the variation of frequency with an increase 
in odd layers’ number decreases. As mentioned earlier, by 
increasing the length scale parameter, the dynamic stability 
is enhanced. This enhancement is more significant in C–C 
boundary condition. The difference between these figures is 

that the effects of odd layers’ number on the frequency of the 
structure with C–F boundary condition are much less than 
in comparison with others boundary conditions. For more 
comprehensive, it is true that the odd layers’ number has a 
positive effect on the frequency of the cylindrical nanoshell 
with C–F boundary condition, but this effect is very little 
and can be ignored.

Fig. 16  The effects of l and odd layers’ number on the frequency for 
C–C boundary conditions

Fig. 17  The effects of l and odd layers’ number on the frequency for 
C–S boundary conditions

Fig. 18  The effects of l and odd layers’ number on the frequency for 
S–S boundary conditions

Fig. 19  The effects of l and odd layers’ number on the frequency for 
C–F boundary conditions
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7  Conclusion

This article investigated the thermal buckling and stabil-
ity analysis of a size-dependent laminated composite cylin-
drical nanoshell in thermal environment using NSGT. The 
governing equations of the laminated composite cylindrical 
nanoshell in thermal environment have been derived using 
Hamilton’s principle and solved with the assistance of the 
GDQEM. In the current study and for the first time, the criti-
cal temperature and dynamic stability analysis of a laminated 
composite cylindrical nanoshell in thermal environment are 
examined based on an exact continuum theory. Finally, using 
mentioned continuum mechanics theory, the investigation 
has been made into the influence of the temperature differ-
ence and the different types of the laminated composite on 
the vibrational characteristics of the nanostructure. In this 
work, the following main results have been achieved.

1. For C–F boundary conditions and every even layers’ 
number, in the lower value of length scale parameter, by 
increasing the length scale parameter, the frequency of 
the structure decreases but in the higher value of length 
scale parameter this matter is inverse.

2. For C–F boundary conditions and even layers’ number, 
the effects of length scale parameter on the frequency is 
much more changeable.

3. For C–C, C–S and S–S boundary conditions and every 
even and odd layers’ number, by increasing the length 
scale parameter and layers’ number, the frequency of the 
structure increases.

4. The results show that the odd layers’ number has a posi-
tive effect on the frequency of the cylindrical nanoshell 
with C–F boundary conditions, but this effect is very 
little and can be ignored.

5. Nonlocal parameter and temperature have a direct effect 
on the natural frequency of the cylindrical nanoshell, 
but nonlocal parameter doesn’t show any effects on the 
critical temperature of the cylindrical nanoshell.

6. The number of layers has a positive effect on the criti-
cal temperature of the laminated composite cylindrical 
nanoshell.
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