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Abstract
Recent studies have demonstrated the high efficiency of metaheuristic algorithms for various optimization engineering 
problems. The main focus of the present study is to apply a novel notion of stochastic search methods, namely evaporation 
rate-based water cycle algorithm (ER-WCA) to the problem of soil shear strength (SSS) prediction. The ER-WCA, as the 
name indicates, is a modified version of the water cycle algorithm that is used to computationally modify an artificial neural 
network (ANN) for the mentioned purpose. The sensitivity analysis showed that the most proper values for the number of 
rivers + sea and the population size are 5 and 300, respectively. The performance of the ER-WCA–ANN hybrid is compared to 
an ANN typically trained by the Levenberg–Marquardt algorithm to evaluate the effectiveness of the proposed metaheuristic 
technique. The findings showed that incorporation of the ER-WCA results in reducing the root-mean-square error by 5.87% 
and 4.92% in the training and testing phases, respectively. Meanwhile, the coefficient of determination rose from 84.27 to 
86.11% and from 78.80 to 80.83% in these phases. It indicates that the weights and biases suggested by the ER-WCA can 
construct a considerably more reliable ANN. Therefore, the introduced method is recommended for practical uses in the 
early prediction of the SSS in civil engineering projects.

Keywords Geotechnical engineering · Soil shear strength · Neural computing improvement · Metaheuristic schemes

1 Introduction

The resistance of the soil for sustaining load (against shear-
ing stresses) reflects soil shear strength (SSS). In many civil/
geotechnical engineering projects, the safety and cost of the 
work are highly dependent on the SSS parameters [1, 2]. 
Various analytical and numerical methods, up to now, have 
been proposed for analyzing the SSS and its parameters [3, 
4]. Gao et al. [5] investigated the impact of soil type on 
the SSS. Also, they proposed new equations for unsaturated 
soil by taking the relationship between the average skeleton 
stress and the suction over a wide suction range. Likewise, 
the effect of water content and fractal dimension on the SSS 
(for red soil in southern China) was evaluated by Zhang et al. 
[6]. Zhai et al. [7] used soil–water characteristic curve for 
estimating the SSS. Regarding the complicated relationship 
between the soil parameters and shear strength, many schol-
ars have recommended the use of machine learning models 
as more reliable predictors, due to their high capability in 
the nonlinear analysis [8, 9].
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In this sense, different types of artificial intelligence tech-
niques have been successfully used for predicting many geo-
technical parameters [9–15]. Mola-Abasi and Eslami [16] 
evaluated the efficiency of group method of data handling 
(GMDH) artificial neural network (ANN) for estimating 
two parameters of cohesion and friction angle, which are 
essential in measuring the SSS. Jokar and Mirasi [17] com-
pared the neuro-fuzzy system with empirical approaches in 
SSS prediction and found that the results of both “c-mean” 
and “subtractive” clustering models of this system are more 
accurate than empirical ones. Various attempts for prov-
ing the efficiency of ANNs can be found in earlier litera-
ture [18–25]. But utilizing the ANNs, sometimes, meets 
with some computational drawbacks like trapping in local 
minima. To remedy this problem, scholars have suggested 
employing metaheuristic search schemes.

By combining metaheuristic algorithm, scholars have 
achieved powerful predictors for the simulation of soil 
parameters [26–35]. Moayedi et al. [9] suggested four wise 
metaheuristic optimizers including elephant herding opti-
mization (EHO), shuffled frog leaping algorithm (SFLA), 
wind-driven optimization (WDO), and salp swarm algorithm 
(SSA) for optimizing the performance of ANN to predict the 
SSS. Their case study was a local project in Vietnam. Evalu-
ation of the results revealed that the SSA (with the error of 
0.0386 and around 82% correlation) is the most powerful 
optimizer. The foraging behavior of animals (like grasshop-
per and Harris hawk), invasive weed growing process, and 
sports league scheduling were studied by Moayedi et al. 
[36], Nagaraju et al. [37], and Moayedi et al. [38] for pre-
dicting the compression coefficient of soil. Samui et al. [39] 
investigated the efficiency of artificial bee colony algorithm 
for the same objective and showed that the proposed hybrid 
model (with a mean absolute percentage error of 12.58% 
and correlation of 84.1%) outperforms typical ANN. Bui 
et al. [40] tested the applicability of cuckoo search optimiza-
tion for adjusting the hyperparameters of an SVM-oriented 
model. The proposed ensemble was fed by data collected 
from an expressway project in Vietnam to estimate the SSS. 
The findings proved the superiority of the algorithm over 
popular predictors like ANN and regression tree. Further 
attempts in the field of metaheuristic algorithms for SSS 
modeling can be found in studies like [41, 42].

This paper suggests the application of a novel notion of 
recently developed optimizers, namely evaporation rate-
based water cycle algorithm (ER-WCA) for the problem of 
soil shear strength modeling. Going through the literature 
shows that recent studies have been mostly dedicated to 
testing new methodologies (e.g., shuffled frog leaping algo-
rithm [43], ant lion optimization [44], genetic algorithm 
[45]) in order to find the best-fitted SSS predictive model. 
This paper, therefore, provides supplementary information 
by evaluating the ER-WCA algorithm. According to the 

best knowledge of the authors, in spite of high capability 
[46–51], this algorithm has been previously used neither for 
neural network optimization, nor SSS analysis.

2  Methodology

The steps that need to be taken for fulfilling the objective of 
the study are shown in Fig. 1. In this regard, after a field sur-
vey and providing the soil information, the data are arranged 
in Excel format. As will be explained in the following, they 
are then divided into two sets for training and testing the 
models. On the other side, the WCA algorithm which is 
modified by evaporation-based relationships is applied to 
an ANN to create the proposed hybrid tool. After sensitivity 
analysis and complexity optimization, this model, along with 
typical ANN, is implemented to predict the SSS. The results 
are evaluated by popular accuracy criteria, and the effects of 
the applied metaheuristic algorithm are assessed.

2.1  Artificial neural network

Recent advances in soft computing have resulted in the 
advent of capable predictive models. ANN is almost the 
most well-known notion of intelligent models, designed by 
simulating the mechanism of the biological neural system 
[52, 53]. The main neural processors are called neurons 
which are completely connected by weights. An ANN origi-
nally benefits the Levenberg–Marquardt training algorithm 
[54] and backpropagation adjustment method [55] for tun-
ing the parameters. In this method, after each completed 
epoch, the error is calculated and propagated in a backward 
direction to be reduced. This enhancement in accuracy is 
achieved by adjusting the weights and biases.

Multilayer perceptron (MLP) [56] is a capable type of 
ANNs with at least three layers. The neurons are embedded 
in these layers. Figure 2 shows the calculation process in a 
neuron. As is seen, after receiving the input (I), a weight factor 
(W) is assigned, and then, the bias term (b) is added. Depend-
ing on the selected activation function (f), the resulted value 
is then released as the neuron output (O). The structure of the 
used MLP network will be better discussed in the next section.

2.2  Evaporation rate‑based water cycle algorithm

Evaporation rate-based water cycle algorithm (ER-WCA) is 
one of the most recent search schemes proposed by Sadollah 
et al. [47]. It presents a modified version of the WCA algo-
rithm [57]. The WCA is a nature-inspired algorithm based 
on the water cycle process and flowing of water streams 
toward the sea. In the water (or hydrologic) cycle, water in 
streams is evaporated and plants transpire it by doing photo-
synthesis. The vapor moves to the air and generates clouds. 
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Under weather conditions, the water returns to the earth 
in different forms [58]. The rivers, in this algorithm, are 
chosen as individuals with high goodness, and the remain-
ing streams are called streams. Assuming K as the problem 
dimension, the candidate streams will be x1, x2,…, xK. The 
initial population is randomly generated as follows:

(1)

Total population =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sea

River1
River2

⋮

StreamKsr + 1

StreamKsr + 2

⋮

StreamKpop

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣

x1
1
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… x1
K

x2
1
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… x2
K

⋮ ⋮ ⋮ ⋮

x
Kpop

1
x
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2
… x

Kpop

N

⎤⎥⎥⎥⎥⎦

where Kpop gives the size of the population. The flow inten-
sity is then calculated for each algorithm using Eq. 2:

Among the elite individuals, Ksr are selected as rivers, as 
well as a sea. The number of the rest of the population which 
may flow to the rivers or the sea is represented by KStream . The 
volume of the water attracted by the river/sea is varied based 
on their flow power. The streams assigned to each river and 
sea are determined as follows:

(2)Costi = f (xi
1
, xi

1
, ..., xi

K
) I = 1, 2,… ,Kpop

Fig. 1  Methodology applied in 
the current research

Fig. 2  General structure of the MLP neural network

Fig. 3  Way in which the stream flows to a specific river
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Fig. 4  Graphical description of 
the used dataset

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

SS
S 

(k
G

/c
m

2
)

Depth of sample (m)

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80

SS
S 

(k
G

/c
m

2
)

Percentage of sand

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60

SS
S 

(k
G

/c
m

2
)

Percentage of loam

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

SS
S 

(k
G

/c
m

2
)

Percentage of clay

0

0.2

0.4

0.6

0.8

1

15 25 35 45 55 65 75

SS
S 

(k
G

/c
m

2
)

Percentage of moisture content

0

0.2

0.4

0.6

0.8

1

1.4 1.6 1.8 2 2.2

SS
S 

(k
G

/c
m

2
)

Wet density (g/cm3)

0

0.2

0.4

0.6

0.8

1

0.8 1 1.2 1.4 1.6 1.8

SS
S 

(k
G

/c
m

2
)

Dry density (g/cm3)

0

0.2

0.4

0.6

0.8

1

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
SS

S 
(k

G
/c

m
2

)

Void Ratio

(e) (f) 

(g) (h) 

0

0.2

0.4

0.6

0.8

1

15 25 35 45 55 65 75

SS
S 

(k
G

/c
m

2
)

Liquid limit (%)

0

0.2

0.4

0.6

0.8

1

15 20 25 30 35 40 45

SS
S 

(k
G

/c
m

2
)

Plastic limit (%)

0

0.2

0.4

0.6

0.8

1

4 8 12 16 20

SS
S 

(k
G

/c
m

2
)

Plastic Index (%)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

SS
S 

(k
G

/c
m

2
)

Liquidity index 



3351Engineering with Computers (2021) 37:3347–3358 

1 3

where NSn shows the number of streams flowing to the 
specific sea or rivers. Since the larger number of streams 
tends to flow to the sea, the fitness function is defined to 

(3)Cn = Costn − CostKsr + 1
n = 1, 2,… ,Ksr

(4)

NSn = round

�������
Cn∑Ksr

n=1
Cn

������
× KStreams

�
n = 1, 2,… ,Ksr

proportionally hand out the streams among the sea and riv-
ers. In nature, however, some streams join each other and 
make new rivers.

Among Kpop individuals, assuming the presence of one sea 
and Ksr−1 rivers, Fig. 3 depicts how a stream flows toward a 
river along their connecting paths.

More details about the proposed technique are presented 
in similar studies like [59–61].

Table 1  Descriptive statistics of 
the SSS and input factors

Features Descriptive index

Mean Standard error Standard 
deviation

Sample variance Minimum Maximum

Depth of sample (m) 17.93 0.45 10.08 101.66 1.80 52.80
Sand (%) 33.44 0.45 10.07 101.39 17.90 71.00
Loam (%) 43.23 0.25 5.61 31.44 22.10 51.40
Clay (%) 23.20 0.25 5.54 30.73 5.20 37.50
Moisture content (%) 41.45 0.36 8.11 65.84 20.30 66.70
Wet density (g/cm3) 1.75 0.00 0.08 0.01 1.55 2.05
Dry density (g/cm3) 1.24 0.01 0.13 0.02 0.93 1.67
Void ratio 1.15 0.01 0.20 0.04 0.58 1.83
Liquid limit (%) 44.04 0.27 5.92 35.03 23.20 58.30
Plastic limit (%) 30.37 0.23 5.07 25.73 16.80 43.60
Plastic index (%) 13.67 0.12 2.64 6.95 5.20 19.10
Liquidity index 0.81 0.01 0.29 0.09 0.11 1.99
Shear strength (kG/cm2) 0.33 0.01 0.12 0.01 0.11 0.99

Fig. 5  Optimal structure of the 
used LM-ANN
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3  Data and statistical analysis

For training intelligent models, providing proper data sam-
ples is an essential step. In this work, a set of real-world 
data is used to train the ANN and its hybrid (i.e., ER-
WCA–ANN). The soil information is collected by a field 
survey in the Vinhomes Imperia housing project, constructed 
in Hai Phong city, Vietnam [42].

The shear strength (target variable) is considered to be a 
function of 12 influential factors, namely depth of sample 
(DOP), sand percentage (SP), loam percentage (LP), clay 
percentage (CP), percentage of moisture content (PMC), 
wet density (WD), dry density (DD), void ratio (VR), liquid 
limit (LL), plastic limit (PL), plastic index (PI), and liquidity 
index (LI). These factors are taken as input data during the 
training process. The distribution of these parameters versus 
the SSS is illustrated in Fig. 4. Descriptive statistics are also 
shown in Table 1. A total of 496 data are provided. With 
respect to the division ration of 80:20, 397 samples are used 
to discover the relationship between the SSS and input fac-
tors, and the remaining 99 samples are considered as unseen 
soil conditions to evaluate the generalization power of the 
applied models.

4  Results and discussion

A multilayer perceptron is selected to represent the neu-
ral network in this study. This network is supposed to 
be trained by the ER-WCA algorithm. The MLP, as is 
known, is composed of at least three layers with a fixed/
variable number of computational neurons in them. The 
number of neurons in the input and output layer is fixed 
and equals to the number of these variables. But when it 
comes to the middle layer, this value needs to be deter-
mined by a trial and error process. By testing ten differ-
ent neural networks, it was shown that the MLP which 
contains seven hidden neurons reflects the most suit-
able structure. Hence, the structure of the used MLP is 
depicted in Fig. 5.

4.1  Hybridizing the MLP using the ER‑WCA 

The selected MLP is converted to the equation form and 
fed by considered training data. The variables of this equa-
tion are the connecting weights and biases. The ER-WCA 
is then applied to adjust these parameters according to the 
relationship between the SSS and influential factors. The 
ER-WCA is a population-based metaheuristic algorithm 
that tries to minimize the training error by updating the 
solution at each iteration. A total of 1000 iterations are set 
for the created ensemble [62, 63], and root-mean-square 

error (RMSE) plays the role of the objective function 
to measure the error. Assuming Zi predicted and Zi observed, 
respectively, as the modeled and measured SSSs, this func-
tion is defined as follows:

where K shows the number of samples.
The size of the acting population (population size), as 

well as “the number of rivers + sea (RS),” is an important 
parameter that affects the goodness of the optimization by 
the ER-WCA algorithm. Like the number of hidden neurons 
in the MLP, a sensitivity analysis is carried out for each 
one to achieve the best-fitted ER-WCA–ANN. Nine different 
population sizes of 10, 25, 50, 75, 100, 200, 300, 400, and 
500 are tested where the RS is set 4. The results are shown in 
Fig. 6. As is seen, the lowest objective function is recorded 
for the population size = 300. Next, the ER-WCA–ANN with 
this population size is tested for ten different RS values (1, 
2,…, 10). It can be seen that the RS = 5 gives the most accu-
rate understanding of the SSS pattern. Figure 7 illustrates 
the convergence curve of the selected ER-WCA–ANN. Like 
many other optimization algorithms, the majority of the 
error is minimized before the 500th iteration. The obtained 
RMSE is 0.0433082113478439 for that.

4.2  Accuracy evaluation

After the optimization and implementation of the LM-ANN 
and ER-WCA–ANN models, the results are extracted and 
evaluated in this section. Along with the RMSE, two other 
popular accuracy indices of mean square error (MAE) and 
the coefficient of determination (R2) are defined to measure 
the learning/prediction error and the correlation between the 
modeled and measured SSSs. These criteria are expressed 
by Eqs. 6 and 7.

(5)RMSE =

√√√√ 1

K

K∑
i=1
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Fig. 6  Sensitivity analysis based on the RS and population size of the 
proposed ER-WCA–ANN
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The training and testing results of the LM-ANN and ER-
WCA–ANN models are first shown in the regression charts 
of Fig. 8. According to these charts, the correlation of the 
ANN results is increased from 84.27 to 86.11% in the train-
ing phase, as the effect of replacing the LM with ER-WCA. 
It means that the ANN optimized by the latter algorithm can 
analyze the relationship between the SSS and influential fac-
tors in a more accurate way. As for the testing data, the rise 
of R2 from 0.7880 to 0.8083 indicates that the hybrid model 
has produced more consistent results in this phase which 

(6)MAE =
1

K

K∑
I=1

|Ziobserved − Zipredicted |

(7)R2 = 1 −

∑K

i=1
(Zipredicted − Ziobserved)

2
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Fig. 7  Convergence curve of the proposed ER-WCA–ANN with pop-
ulation size = 300 and RS = 5

Fig. 8  Correlation of the training and testing results for the a, b LM-ANN and c, d ER-WCA–ANN models



3354 Engineering with Computers (2021) 37:3347–3358

1 3

indicates the higher capability of this model in predicting 
the SSS for unseen soil condition.

The training and prediction errors are also measured for 
both applied models. Figure 9 shows the results in three 
forms: (1) A comparison between the modeled and measured 
SSSs is shown to compare the real and simulated patterns, 
(2) the error is defined as the difference between the modeled 
and measured SSSs and is shown in the second part, and (3) 
the frequency of these error values is depicted by histogram 
charts. A comparison between Fig. 9a and Fig. 9c demon-
strates that the training SSSs produced by the ER-WCA–ANN 
are more compatible with real data. The lower RMSE (0.0460 
vs. 0.0433) and MAE (0.0370 vs. 0.0349) values confirm 
this statement. Also, Fig. 9b, d demonstrates that the predic-
tion error of the ANN (RMSE = 0.0528 and MAE = 0.0419) 

is larger than ER-WCA–ANN (RMSE = 0.0502 and 
MAE = 0.0405). From this, it can be derived that the weights 
and biases suggested by the ER-WCA metaheuristic algorithm 
construct a more reliable MLP in comparison with those 
adjusted by the typical LM algorithm.

Evaluating the obtained results showed the efficiency 
of the evaporation rate-based water cycle algorithm in 
optimal modification of ANN parameters that reveal the 
relationship between the SSS and DOP, SP, LP, CP, PMC, 
WD, DD, VR, LL, PL, PI, and LI as the key factors. In 
comparison with previous efforts, the method of the cur-
rent study achieved more reliable results. In the study car-
ried out by Moayedi et al. [64], four capable optimizers 
of elephant herding optimization (EHO), shuffled frog 
leaping algorithm (SFLA), salp swarm algorithm (SSA), 

Fig. 9  Obtained training and testing errors and a comparison between the results for the a, b LM-ANN and c, d ER-WCA–ANN models
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and wind-driven optimization (WDO) were assessed and 
compared for the same objective. The training MAEs of 
the models were 0.0471, 0.0449, 0.0368, and 0.0402, 
respectively. This is while the MAE of our proposed ER-
WCA–ANN was 0.0349. In the prediction phase, ER-WCA 
outperformed the EHO and SFLA algorithms (RMSE of 
0.0502 vs. 0.0597 and 0.0546).

In this work, the solution was excerpt among a wide vari-
ety of candidates. Based on Fig. 6, (9 + 8 =) 17 different 
complexities were tested where each one performed for 1000 
iterations. In other words, a total of 17,000 solutions were 
tested to find the most proper one. Also, referring to the 
structure of the used MLP (Fig. 5), the algorithm has found 
the optimal values of 99 hyperparameters (91 connecting 
weights and eight biases) at each iteration. Manually doing 
such calculations, definitely, is an impossible and time-con-
suming task. Therefore, we proposed an automatic search 
scheme which enables engineers to benefit more accurate 
and time-effective model for predicting the SSS. Figure 10 
depicts the calculation time required for implementing the 
ER-WCA–ANN by different population sizes. As is seen, 
the time increases by enlarging the population. The used 
ER-WCA needed around 4017 s (on the operating system 
at 2.5 GHz and 6 Gigs of RAM) for optimizing the ANN.

4.3  Presenting the neural predictive formula

Based on the accuracy improvement resulted from incor-
porating the ER-WCA metaheuristic algorithm, the hybrid 
model was found to be superior to the unreinforced ANN. 
Hence, the content of the proposed ER-WCA–ANN is 

presented in the form of a nonlinear formula to predict 
the SSS. In fact, the formula is composed of two parts: (1) 
Eq. 8 which reflects the weights and biases belonging to 
the unique output neuron of the MLP network and (2) Eq. 9 
that gives the same parameters for the neurons in the hidden 
layer (see Fig. 5). As is seen, calculating the SSS requires 
obtaining seven middle parameters of R1, R2,…, R7 that 
represent the hidden neurons’ outputs. A Tansig function is 
also applied for calculating these parameters.

(8)

SSSER−WCA−ANN = 0.3618 × R1 + 0.9013 × R2 − 0.8974 × R3

+ 0.1830 × R4 − 0.0226 × R5 + 0.6373

×R6 − 0.6481 × R7 + 0.5261

(9)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R1

R2

R3

R4

R5

R6

R7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= Tansig

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 0.5778 0.3986 − 0.7759 − 0.2127 0.4799 0.4383

− 0.4231 0.8404 0.4949 − 0.2602 − 0.1691 0.7839

− 0.2714 − 0.1212 0.3350 0.4114 − 0.0849 0.7783

− 0.3717 − 0.5214 0.7293 0.4180 − 0.5083 − 0.2739

0.1232 0.0498 − 0.1843 0.0755 0.6224 0.6128

− 0.5162 − 0.2147 − 0.6284 0.2924 0.0725 − 0.6376

0.5469 − 0.6605 − 0.5301 − 0.4976 − 0.3407 − 0.2957

− 0.0497 0.2212 − 0.5651 − 0.2978 0.7656 − 0.3209

− 0.4359 − 0.3317 − 0.5087 0.5344 − 0.1592 0.0111

− 0.1021 0.5379 − 0.0771 − 0.8058 0.8538 0.2104

0.0783 − 0.6740 − 0.7385 0.1656 − 0.4641 0.1103

− 0.5653 − 0.2727 − 0.5574 − 0.6988 0.7255 − 0.4141

− 0.7007 0.3718 0.2455 0.7242 0.3634 0.4002
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5  Conclusions

This work investigated the efficiency of a novel 
metaheuristic technique, namely the evaporation rate-
based water cycle algorithm for predicting the soil shear 
strength which is a highly important geotechnical param-
eter. The model is applied to a neural network for the 
first time to modify its computational parameters. The 
ER-WCA–ANN hybrid model was created, and its results 
were compared to a typically trained ANN to evaluate the 
effect of the proposed metaheuristic model. The results 
of the sensitivity analysis showed that the best popula-
tion size and the number of rivers and seas for the cur-
rent problem are 300 and 5, respectively. In the training 
phase, it was shown that the learning RMSE of the ANN 
was reduced from 0.0460 to 0.0433 and the correlation 
rose from 0.8427 to 0.8611. It indicates that the ER-WCA 
algorithm has adjusted the weights and biases of the ANN 
more properly than the LM method. The same improve-
ments in the testing phase also revealed the higher capabil-
ity of the ER-WCA–ANN in predicting the SSS in stranger 
environments. Therefore, the proposed model can be reli-
ably used for practical projects.
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