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Abstract
In this paper, a recently developed meta-heuristic algorithm, shuffled shepherd optimization algorithm (SSOA), is employed 
for optimal design of reinforced concrete cantilever retaining wall structures under static and seismic loading conditions. 
The concepts of set theory are employed to express the SSOA in a set theoretical term. The Rankine and Coulomb theories 
are utilized in order to estimate the lateral earth pressures under the static loading condition, whereas the Mononobe–Okabe 
method is employed for the seismic one. Optimization aims to minimize the cost of cantilever retaining wall while satisfy-
ing some constraints on stability and strength limits. The design is based on the requirements of ACI 318-05. In order to 
investigate the efficiency of the SSOA, one benchmark cantilever retaining wall problem is considered from the literature. 
Comparing the optimization results obtained by the SSOA with those of other meta-heuristics shows the efficient performance 
of the SSOA in both aspects of accuracy and convergence rate.

Keywords Shuffled shepherd optimization algorithm · Set theory · Cantilever retaining wall structures · Structural 
optimization · Meta-heuristic algorithms

1 Introduction

Retaining wall structures are designed and constructed for 
the purpose of supporting vertical or near-vertical slopes of 
soil or other loose materials [1]. These structures are used 
for design situations in which there is an abrupt difference 
in the ground level of adjacent areas of land. Retaining walls 
are among the most common geotechnical structures used 
in many locations, including railways embankments, roads, 
culverts, bridge abutments, etc. Therefore, it is very impor-
tant to design a safe and low-cost retaining wall structure. 
Retaining wall structures can be categorized into two main 
groups of gravity retaining walls and cantilever retaining 
walls. Gravity retaining walls are usually built of plain 
concrete and rely solely on their own weight for stability 
against sliding and overturning. This kind of retaining walls 
is economical for height up to 2 m [2]. Cantilever retaining 
walls are built of reinforced concrete and generally consist 

of a vertical stem, a base slab, and a shear key. Different 
types of forces act on a cantilever retaining wall, including 
self-weight of the wall, surcharge loads, lateral pressures 
due to soil and surcharge, etc. [3]. The design process of 
a cantilever retaining wall includes two distinct steps. The 
first step is focused on the estimation of forces acting on 
the wall. In this step, the structure is controlled for stability 
against overturning, sliding, and bearing capacity failure. 
In the second step, each component of the retaining wall 
in checked for strength and the required reinforcement of 
each component is calculated. Therefore, proper design of 
a cantilever retaining wall requires an accurate estimation 
of the acting forces, especially lateral earth pressures. The 
Coulomb and Rankine theories are two well-known classical 
theories for determining lateral earth pressures under static 
loading condition. Mononobe–Okabe method is still the first 
choice of geotechnical engineers to estimate lateral earth 
pressures under seismic loading condition [4].

Optimization approaches can be categorized into two 
main groups of mathematical programming techniques and 
meta-heuristic algorithms. Mathematical programming 
techniques are analytical and employ the techniques of dif-
ferential calculus for finding the optimum points [5]. These 
techniques are useful only in cases where the objective 
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function is continuous and differentiable. Due to the limita-
tions of mathematical programming techniques, some non-
traditional optimization methods, known as meta-heuristic 
algorithms, have been developed over the past few decades 
[6]. Meta-heuristic algorithms, which are conceptually dif-
ferent from mathematical programming techniques, try to 
integrate rule-based theories and randomization with the aim 
of exploring effectively the search space of the optimization 
problem [7].

Different meta-heuristic algorithms have been employed 
for optimal design of cantilever retaining wall structures, 
including big bang–big crunch (BB–BC) algorithm [8], 
gravitational search algorithm (GSA) [9], charged system 
search (CSS) algorithm [10], hybrid firefly algorithm [11], 
swarm intelligence techniques [12], dolphin echolocation 
optimization (DEO) algorithm [13], teaching–learning-
based optimization [14], evolutionary algorithms [15], 
biogeography-based optimization (BBO) algorithm [16], 
simulated annealing (SA) algorithm [17], gray wolf opti-
mization (GWO) algorithm [18], neural network, and bee 
colony techniques [19, 20]. Kaveh et al. [21] optimized cost 
design of cantilever retaining walls by means of eleven pop-
ulation-based meta-heuristics including artificial bee colony 
(ABC), big bang–big crunch (BB–BC), cuckoo search (CS), 
charged system search (CSS), imperialist competitive algo-
rithm (ICA), ray optimization (RO), tug of war optimization 
(TWO), and water evaporation optimization (WEO). Mergos 
and Mantoglou [22] applied the flower pollination algorithm 
(FPA), for the first time, to the optimum design of reinforced 
concrete cantilever retaining walls. Kazemzadeh Azad and 
Akış [23] performed optimum cost design of mechanically 
stabilized earth walls using adaptive dimensional search 
algorithm.

Shuffled shepherd optimization algorithm (SSOA) is a 
new population-based meta-heuristic developed by Kaveh 
and Zaerreza [24]. The SSOA algorithm is inspired by the 
herding behavior of shepherds who takes care of and guards 
a flock of sheep. SSOA has recently been utilized to solve 
truss layout optimization problems, and the optimal design 
results confirm its efficient performance in both aspects of 
accuracy and convergence speed [25].

This study aims to optimal design of cantilever retaining 
wall structures utilizing a recently developed population-
based meta-heuristic algorithm called shuffled shepherd 
optimization algorithm (SSOA). The optimization goal is 
to minimize the cost of cantilever retaining walls while satis-
fying some constraints on stability and strength. The design 
is based on the requirements of American Concrete Institute 
code for structural concrete (ACI 318-05) [26]. A benchmark 
cantilever retaining wall problem is investigated to demon-
strate the performance of the SSOA algorithm. The design is 
performed under static and seismic loading conditions. The 
Rankine and Coulomb theories are employed for the static 

loading condition, whereas the Mononobe–Okabe method 
is utilized for the seismic one.

The rest of this paper is organized as follows: In Sect. 2, 
the shuffled shepherd optimization algorithm (SSOA) is pre-
sented briefly. The set theoretical shuffled shepherd optimi-
zation algorithm (STSSOA) is presented in Sect. 3. The opti-
mization problem is defined in Sect. 4. Section 5 is devoted 
to analysis of reinforced concrete cantilever retaining wall 
structures. In Sect. 6, the optimization results are discussed 
in detail. Eventually, the last section concludes the paper.

2  Shuffled shepherd optimization algorithm 
(SSOA)

The shuffled shepherd optimization algorithm (SSOA) is a 
novel population-based meta-heuristic that mimics the herd-
ing behavior of shepherds. Humans have learned over time 
that they can use animal abilities to achieve their goals. For 
instance, shepherds have learned to use fast-ridden horses to 
herd animals like domesticated sheep and cows. Shepherds 
try to steer their herds to the right direction. For this pur-
pose, shepherds usually put animals like horses or herding 
dogs in their herds and use the herding instinct of these ani-
mals to direct the herd and guard it from predation and theft. 
This behavior is the basis for obtaining the step size of sheep 
in the SSOA algorithm [24]. In the SSOA algorithm, the 
set of candidate solutions is considered as a herd of sheep. 
There are many herds that use a common pasture. Hence, in 
the SSOA algorithm, the population of candidate solutions 
(the main herd) is divided into some subpopulations (smaller 
herds) with the same number of sheep. SSOA starts with a 
randomly generated herd of sheep. The sheep are evaluated 
and sorted in ascending order of their penalized objective 
function values. Next, the herd of sheep is divided into a pre-
determined number of smaller herds with the same number 
of sheep. The division is done in such a way that the smaller 
herds are close to each other in terms of average quality. In 
the next step, a unique step size is calculated for each sheep. 
For this purpose, each sheep is selected and considered as a 
shepherd. Naturally, the selected sheep (shepherd) belongs 
to one of the herds. In the herd containing the selected sheep 
(shepherd), obviously there are some better and worse sheep 
compared to the selected sheep. The better and worse sheep 
are called horses and sheep, respectively. A horse and a 
sheep are selected randomly with respect to the selected 
sheep (shepherd). The shepherd rides the horse and moves 
from the current position to his new position. Therefore, 
the current position is obtained and evaluated. The current 
position is updated in a greedy manner so that the better 
position is considered as the current position. This process 
is repeated for the sheep of all herds. Next, the herds merge 
together and the sheep are sorted in ascending order of their 
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penalized objective function values. Again, the sheep are 
divided into some smaller herds with equal cardinality, and 
the above-mentioned process is repeated until the stopping 
criterion is satisfied.

3  Set theoretical shuffled shepherd 
optimization algorithm (STSSOA)

In this section, the concepts of set theory are employed 
to generalize the concepts of shuffled shepherd optimiza-
tion algorithm (SSOA). Taking a close look at the shuffled 
shepherd optimization algorithm, one can find an analogy 
between the concepts of set theory and the SSOA. The set 
of candidate solutions (a flock of sheep) can be considered 
as a set of elements. The weight of an element is defined as 
the value of its penalized objective function. Similarly, the 
weight of a subset is defined as sum of the weights of its ele-
ments. In each iteration of the SSOA, the sheep (elements) 
are sorted in ascending order of weight. Next, the flock of 
sheep (the set of elements) is divided into a predetermined 
number of smaller flocks (subsets). The subsets have the 
same cardinality. The subsets are generated in such a way 
that their weights are close to each other. Next, a unique 
step size of movement is defined for each element as fol-
lows: A horse (a better element, i.e., an element with smaller 
weight) and a sheep (a worse element, i.e., an element with 
larger weight) are randomly chosen for the element under 
consideration (shepherd). These better and worse elements 
are chosen from the subset of which the element under con-
sideration belongs. Therefore, the set of new elements is 
generated. The old elements are compared and replaced with 
their corresponding newly generated elements in a simple 
greedy manner so that the element with smaller weight will 
be preferred. Again, the subsets are generated and the pro-
cess is repeated until the stopping criterion is satisfied. The 
set theoretical shuffled shepherd optimization algorithm 
(STSSOA) is stated in five steps as follows:

Step One (Forming the Initial Elements) Like other 
population-based meta-heuristics, shuffled shepherd opti-
mization algorithm (SSOA) starts with a set of randomly 
generated initial candidate solutions named as elements. 
In other words, in SSOA, the initial candidate solutions 
(initial population) can be considered as a set with nEL 
elements. The set of elements ( EL ) can be generated by 
the following equation:

where nEL is the number of elements. In addition, nV  is the 
number of design variables. Ub and Lb are the upper and 
lower bounds of the design variables, respectively.

(1)EL = Lb + (Ub − Lb) × rand (nEL, nV)

It is worse to mention that the computational efficiency of 
the algorithm can be improved by seeding the initial popula-
tion with feasible solutions [27].

Step Two (Forming the Subsets) Initially, the elements are 
sorted in ascending order of their penalized objective func-
tion ( PFit ). Next, the set of initial candidate solutions (initial 
set) is divided into k subsets with the same cardinality. For 
this purpose, k null subsets are considered. In the first step of 
forming the subsets, the first k best elements of the sorted set 
are removed from the sorted set, and each element is put in 
a subset randomly. Consequently, all k subsets have an ele-
ment at this step. At the next step, the next k best elements 
of the sorted set are removed from the sorted set and each of 
them is put in a subset randomly. Consequently, all k subsets 
have two elements at this step. This process is repeated until 
no more element remains in the initial set. At the end of the 
process (the last step), all k subsets have an equal number 
of m elements. The subsets are close to each other in terms 
of average penalized objective function values. It is obvious 
that the first and last elements of a subset have the lowest 
and highest values of penalized objective function among 
the elements of the subset, respectively. It can be said that

where nEL is the number of elements. In addition, k and m 
are the number of subsets and the number of elements of 
each subset, respectively.

The average penalized objective function value of the i th 
subset ( meansi ) can be calculated as:

where k and m are the number subsets and the number of 
elements of each subset, respectively. In addition, PFiti,j is 
the value of penalized objective function of the j th element 
of the i th subset.

Step Three (Elements Movement) In this step, a unique 
step size of movement is defined for each element of each 
subset as follows. For this purpose, the first element of the 
first subset is selected. Next, a better element and a worse 
one are chosen with respect to the selected element. These 
better and worse elements are chosen from the subset of 
which the selected element belongs. For instance, for j th 
element of a subset, there are j − 1 better elements and m − j 
worse elements. It is clear that there is no better element for 
the first element of a subset. Furthermore, there is no worse 
element for the last element of a subset.

(2)nEL = k × m

(3)
meansi =

1

m

(
PFiti,1 + PFiti,2 +⋯ + PFiti,m

)
; i = 1, 2,… , k

(4)

stepsizei,j = � × rand1 ×
(
ELB − ELi,j

)
+ � × rand2

×
(
ELW − ELi,j

)
; i = 1, 2,… , k j = 1, 2,… ,m
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where ELi,j is the element under consideration. In addition, 
ELB and ELW are the better and worse elements compared 
to the element under consideration. Figure 1 illustrates the 
movement of an element to its new position. It is again 
emphasized that the better and worse elements are chosen 
from the subset of which the element under consideration 
belongs. rand1 and rand2 are random numbers chosen from 
the continuous uniform distribution on the [01] interval. For 
the first element of each subset, the first term of the above 
equation will be equal to zero. In addition, for the last ele-
ment of each subset, the second term of the above equation 
will be equal to zero. According to the above equation, when 
a good element attracts the element under consideration, the 
exploitation ability for the algorithm is provided, and vice 
versa, if a bad element attracts the element under considera-
tion, the exploration is provided. In addition, � and � are the 
factors that control the exploitation and exploration, respec-
tively. An efficient optimization algorithm should perform 
good exploration in early iterations and good exploitation 
in the final iterations [7]. Thus, � and � are increasing and 
decreasing functions, respectively, and are defined as:

The new position of the j th element of the i th subset is 
calculated by:

(5)� = �0 +
�Max − �0

MaxIter
× Iter

(6)� = �0 −
�0

MaxIter
× Iter

(7)newELi,j = ELi,j + stepsizei,j

Step Four (Replacement Strategy) Each new element is 
evaluated and compared with its corresponding old element 
based on the penalized objective function. The old element 
is replaced with the newly generated one in a simple greedy 
manner so that the element with smaller penalized objective 
function is preferred. In this way, the new set of elements 
is formed.

Step Five (Termination Criteria) If the number of itera-
tion of the algorithm ( Iter ) becomes larger than the maxi-
mum number of iterations ( MaxIter ), the algorithm termi-
nates. Otherwise go to Step two.

The pseudo-code of the STSSOA algorithm is provided 
as follows:

• Define the algorithm parameters: nEL ,   k , m , �0 , �Max , 
�0 ,  and MaxIter.

• Generate random initial solutions or elements ( EL).
• Evaluate the initial population (set of elements) and form 

its corresponding vectors of the objective function ( Fit ) 
and penalized objective function ( PFit).

• While Iter < MaxIter.
• Sort the set of elements in an ascending order based on 

their penalized objective function ( PFit).
• Form the subsets based on the method described in step 

two.
• Determine the new movement matrix ( stepsize ) using 

Eq. (4).
• Generate new elements ( newEL ) using the stepsize 

matrix based on Eq. (7).
• Evaluate the new elements.
• Apply replacement strategy between old and new ele-

ments based on the method described in step four.
• Update the number of algorithm iterations ( Iter).

Fig. 1  Movement of an element 
to the new position
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• Monitor the best element found by the algorithm so far.
• End While.

The flowchart of STSSOA is shown in Fig. 2. As Fig. 2 
suggests, it is not possible explicitly to distinguish between 
exploration and exploitation phases of the algorithm because 
the STSSOA involves these two abilities together in the ele-
ments movement step (step three) using movement toward 
better and worse elements. Figure 3 illustrates the elements 
of STSSOA at different steps of the algorithm.

4  Definition of the optimization problem

The aim of this study is optimal design of cantilever retain-
ing walls structures. The optimal design is defined as the 
one which results in the least possible cost while satisfying 
some stability and strength constraints. Figure 4 shows 
that the continuous design variables of the problem con-
sist of seven geometric parameters related to the configu-
ration of cantilever retaining wall. The design variables 

Fig. 2  Flowchart of the 
STSSOA algorithm
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Fig. 3  Elements of the STSSOA 
algorithm
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include the thickness of top stem ( L1 ), the thickness of 
key and stem ( L2 ), the toe width ( L3 ), the heel width ( L4 ), 
the height of top stem ( L5 ), the footing thickness ( L6 ), and 
the key depth ( L7 ). The wall is analyzed and designed with 
respect to these geometric dimensions. The optimization 
problem can be formulated as follows [13]:

where {L} is the vector of design variables which determines 
the configuration of the wall; Li is the i th design variable; 
Cost({L}) denotes the cost function of the structure; VC rep-
resents the volume of concrete per unit length of the struc-
ture; and WS is the weight of reinforcing steel per unit length 
of the structure. Additionally, C1 , C2 , C3 , and C4 are the costs 
of concrete, reinforcing steel, concreting, and reinforcement, 
respectively. The value of the parameter C3+C4

C1+C2

 (cost param-
eter) depends on many factors, such as country, economic 
conditions, type of structure, and work conditions, but stud-
ies show that a value in the range of 0.035–0.045 can be 
appropriate for it [13]. In this study, similar to [10], the value 

(8)Find {L} =
{
L1, L2,… , L7

}

(9)to minimize Cost({L}) = VC +WS ×

(
C3 + C4

C1 + C2

)

subjected to:

⎧
⎪⎪⎨⎪⎪⎩

SFo ≥ 1.5

SFs ≥ 1.5

SFb ≥ 2

Mu

��
𝜙bM̄n

�
≤ 1

Vu

��
𝜙vV̄n

�
≤ 1

(10)

(11)

(12)

(13)

(14)

of cost parameter is considered to be equal to 0.04. Equa-
tions (10)–(14) represent constraints of the optimization 
problem, including stability and strength constraints. SFo , 
SFs , and SFb are the factors of safety against overturning 
about the toe, sliding, and bearing capacity failure, respec-
tively. The factors of safety against sliding and overturning 
failure under seismic loading condition may be reduced to 
75% of them under static loading condition. Furthermore, 
the allowable soil pressure may be increased by 33% under 
seismic loading condition [28]. Vu , V̄n , Mu , and M̄n denote 
the maximum shear force, nominal shear strength, maximum 
bending moment, and nominal flexural strength, respec-
tively. In addition, �b and �v are the strength reduction fac-
tors for flexure and shear, respectively. Equations (13) and 
(14) must be controlled for all critical sections of the struc-
ture. These sections are given in Fig. 4.

5  Analysis of reinforced concrete cantilever 
retaining wall structure

Many forces act on a cantilever retaining wall, including 
surcharge load, lateral pressures due to the soil and sur-
charge, soil pressures acting on the footing, weight of the 
wall, weight of the soil above the base, etc. Figure 5 shows 
the forces acting on a cantilever retaining wall. WS is the sur-
charge load, WB is weight of the backfill above the heel, WC 
is weight of the wall, HA,S is the active force due to the sur-
charge, HA,B is the active force due to the soil, HP is the pas-
sive force acting on the wall, and FB is the resultant vertical 

Fig. 4  Design variables of the reinforced concrete cantilever retaining 
wall

Fig. 5  Forces acting on a cantilever retaining wall
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load. In addition, qmax and qmin are the pressures of the toe 
and heel sections, respectively.

5.1  Active and passive earth pressures

There are various relationships to determine the active and 
passive pressures acting on a cantilever retaining wall. In 
this study, the structure has been investigated under the 
static and seismic loading conditions. The Rankine and 
Coulomb theories are employed to estimate the lateral earth 
pressures under static loading condition, whereas the Mon-
onobe–Okabe method is utilized for seismic loading condi-
tion. According to the Rankine theory, the active and passive 
earth pressure coefficients are estimated through the follow-
ing equations [29]:

where � is angle of the backfill soil with respect to the hori-
zontal, and � is angle of internal friction of the backfill soil. 
In addition, kA,R and kP,R are the Rankine active and passive 
earth pressure coefficients, respectively.

Based on the Coulomb earth pressure theory, the active 
and passive earth pressure coefficients can be calculated 
through the following equations [29]:

where � is angle of friction between the soil and the base 
slab, and � is angle of the back face of the retaining wall 
with respect to the horizontal. In addition, kA,C and kP,C are 
the Coulomb active and passive earth pressure coefficients, 
respectively.

According to the Mononobe–Okabe method, the active 
and passive earth pressure coefficients under seismic loading 
condition can be calculated as [30]:

(15)kA,R = cos �

�
cos � −

√
cos2 � − cos2 �

cos � +
√
cos2 � − cos2 �

�

(16)kP,R = cos �

�
cos � +

√
cos2 � − cos2 �

cos � −
√
cos2 � − cos2 �

�

(17)kA,C =
sin2 (� + �)

sin2 (�) sin (� − �)

[
1 +

√
sin (�+�) sin (�−�)

sin (�−�) sin (�+�)

]2

(18)kP,C =
sin2 (� − �)

sin2 (�) sin (� + �)

[
1 −

√
sin (�+�) sin (�+�)

sin (�+�) sin (�+�)

]2

(19)

kA,M =
sin2 (� + � − �)

cos(�) sin2 (�) sin (� − � − �)

[
1 +

√
sin (�+�) sin (�−�−�)

sin (�−�−�) sin (�+�)

]2

where kA,M and kP,M are seismic earth pressure coefficients 
according to the Mononobe–Okabe method for active and 
passive states, respectively. � can be calculated as [30]:

In the above equation, kh and kv are the horizontal and 
vertical acceleration coefficients, respectively. These coef-
ficients can be expressed as [30]:

5.2  Stability control

The factor of safety against overturning about the toe (about 
point O in Fig. 5) can be calculated by the following equa-
tion [29]:

where 
∑

MR is sum of the moments of forces resisting over-
turning about the toe, and 

∑
MO is sum of the moments of 

forces tending to cause overturning about the toe. Weight 
of the wall, weight of the soil above the base, and surcharge 
load are those forces that contribute to the resisting moment, 
whereas lateral pressures due to the soil and surcharge are 
those contribute to the overturning moment. The factor of 
safety against sliding can be calculated as [29]:

where 
∑

FR is sum of the horizontal resisting forces, and ∑
FD is sum of the horizontal driving forces. In addition, ∑
V  is sum of the vertical forces, including surcharge load, 

weight of the backfill above the heel, and weight of the wall. ∑
V  can be expressed as:

The factor of safety against bearing capacity failure may 
be expressed as [29]:

(20)

kP,M =
sin2 (� − � − �)

cos (�) sin2 (�) sin (� + � − �)

[
1 −

√
sin (�+�) sin (�+�−�)

sin (�+�−�) sin (�+�)

]2

(21)� = tan−1

[
kh(

1 − kv
)
]

(22)kh =
horizontal earthquake acceleration component

acceleration due to gravity, g

(23)kv =
vertical earthquake acceleration component

acceleration due to gravity, g

(24)SFo =

∑
MR∑
MO

(25)SFs =

∑
FR∑
FD

=
HP +

∑
V × tan(�)

HA,S + HA,B

(26)
∑

V = WB +WC +WS
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where qu is the ultimate bearing capacity of the soil, and 
qmax is the maximum pressure occurring at the end of the 
toe section. The maximum and minimum pressures can be 
determined by the following equation [29]:

where e is the eccentricity of the resultant vertical load, 
and B is width of the base slab. If the value of eccentricity 
becomes greater than B

6
 , qmin will be negative, which means 

there will be some tensile stress at the end of the heel sec-
tion. In such cases, the value of qmax is equal to [31]:

The magnitude of e can be calculated as:

6  Results and discussion

In order to investigate the efficiency of the SSOA algorithm, 
the algorithm is employed for optimal cost design of reinforced 
concrete cantilever retaining wall structures. The cantilever 
retaining wall is designed under static and seismic loading 
conditions. The Coulomb and Rankine theories are employed 
to model the static loading condition, whereas the seismic 
loading condition is modeled by the Mononobe–Okabe 
method. For the seismic loading condition, the optimization 
is carried out for different values of horizontal and vertical 
acceleration coefficients, as shown in Table 1. Table 2 lists 

(27)SFb =
qu

qmax

(28)qmax,min =

∑
V

B

�
1 ±

6e

B

�
; e ≤

B

6

(29)qmax =
4
∑

V

3(B − 2e)
; e >

B

6

(30)e =
B

2
−

∑
MR −

∑
MO∑

V

the lower and upper bounds of design variables. The specified 
parameters of the problem, including soil parameters, design 
parameters, and retaining wall parameters are listed in Table 3. 
It should be mentioned that our problem is not a large-scale 
one. For large-scale problems one can use special methods as 
discussed in [32, 33].

Table 4 shows the statistical results of SSOA in 50 
independent runs. The initial population of each run is 
generated in a random manner. For all cases, the best, 
worst, and average optimized costs and the standard devi-
ation of optimized costs are reported. Results in Table 4 
indicate that the cantilever retaining wall structures 
designed based on the Coulomb theory are heavier com-
pared to those designed based on the Rankine theory. This 
result was predictable, because the Coulomb theory takes 
the friction between the soil and the base slab into consid-
eration, whereas the Rankine theory does not. Therefore, 
the maximum active and minimum passive earth pres-
sures against the wall are related to the Coulomb theory 
and Rankine theory, respectively. The results show that 
the horizontal acceleration coefficient has a direct effect 
on the cost design of the cantilever retaining wall, while 
the vertical acceleration coefficient has a reverse effect 
on it. For all cases, the shear and stability capacity ratios 
are calculated at four critical sections of the structure and 
the results are listed in Table 5. A close examination of 
Table 5 reveals that the design is controlled by two fac-
tors, which are the shear strength of critical section of 
the toe slab, and bearing strength of the soil under the toe 
slab. Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 
present the optimal design results obtained by the SSOA 
algorithm and those previously reported by Kaveh et al. 
[21]. The results obtained utilizing the Coulomb theory 
are listed in Tables 6 and 7, whereas those obtained uti-
lizing the Rankine theory are listed in Tables 8 and 9. In 
addition, the results obtained by the Mononobe–Okabe 
method for different values of horizontal and vertical 
acceleration coefficients are listed in Tables 10, 11, 12, 
13, 14, 15, 16, and 17. For all cases, the maximum num-
ber of objective function evaluation is considered equal to 
5000 as the stopping criterion. Comparison of the optimal 
design results obtained by the SSOA algorithm and those 
of the other considered meta-heuristics indicates that the 
SSOA algorithm has better performance in the aspects 
of best optimized cost, average optimized cost, and the 
standard deviation of optimized costs. For example, as 
Table 6 demonstrates, the best optimized cost obtained 

Table 1  Horizontal and vertical acceleration coefficients

Case number Horizontal acceleration 
coefficient ( k

h
)

Vertical accelera-
tion coefficient ( k

v
)

Case 1 0 0
Case 2 0.15 0
Case 3 0.15 0.15
Case 4 0.15 0.075

Table 2  Lower and upper 
bounds of design variables

Design variable L1 L2 L3 L4 L5 L6 L7

Lower bound (cm) 30 30 45 180 150 30 20
Upper bound (cm) 60 60 120 300 610 90 90
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by the SSOA algorithm is 6.941, while it is 6.946, 6.946, 
6.951, 6.970, 6.961, 6.968, 6.957, and 6.963 for ABC, 
BB–BC, CS, CSS, ICA, RO, TWO, and WEO, respec-
tively. Furthermore, the standard deviation of the opti-
mized costs obtained by the SSOA algorithm is 0.171, 
while it is 1.337, 0.346, 1.161, 0.506, 1.187, 1.071, 1.014, 
and 0.906 for ABC, BB–BC, CS, CSS, ICA, RO, TWO, 
and WEO, respectively. Figures 6, 7, 8, 9, 10, and 11 
show the convergence histories of the SSOA algorithm 
and those obtained by other considered meta-heuristics. 
A zoomed part is attached to the convergence histories in 
order to simplify the comparison of convergence curves. 
A close examination of the convergence curves shows that 
the convergence rate of the SSOA algorithm is consider-
ably higher than those of other considered meta-heuris-
tics. As the curves suggest, the convergence of the SSOA 
algorithm is almost achieved for all cases within the first 

Table 3  Parameters of the 
optimization problem

Parameter Symbol Unit Value

Factor of safety against overturning SFo – 1.5
Factor of safety against sliding failure SFs – 1.5
Factor of safety against bearing capacity failure SFb – 2
Surcharge load WS kN/m2 10
Height of stem H m 6.1
Allowable soil pressure qa kN/m2 300
Concrete cover dc cm 5
Unit weight of concrete �c kN/m3 24
Unit weight of reinforcement steel �s kN/m3 78
Unit weight of backfill soil �b kN/m3 22
Angle of the backfill soil with respect to the horizontal � ° 0
Angle of internal friction of the backfill soil � ° 35
angle of friction between the soil and the base slab � ° 1

2
� ≤ � ≤

2

3
�

Angle of the back face of the retaining wall with respect to 
the horizontal

� ° 90

Base friction coefficient � – tan (�)

Height of soil in front of wall hp m 0
Yield strength of rebar fc MPa 300
Yield strength of concrete fy MPa 25
Strength reduction factors for flexure �b – 0.9
Strength reduction factors for shear �v – 0.75

Table 4  Statistical results of SSOA for the cantilever retaining wall 
problem

Method Best cost Average cost Worst cost SD

Rankine 7.370 7.760 17.630 1.927
Coulomb 6.941 6.949 7.220 0.042
Mononobe–Okabe 

(Case 1)
6.219 6.228 6.593 0.053

Mononobe–Okabe 
(Case 2)

8.676 10.204 21.759 3.553

Mononobe–Okabe 
(Case 3)

7.811 7.821 8.250 0.062

Mononobe–Okabe 
(Case 4)

8.241 8.986 18.093 2.504

Table 5  Capacity ratios of 
optimum designs obtained by 
SSOA

Method Shear capacity (%) Stability capacity (%)

A:A B:B C:C D:D Overturning Sliding Bearing

Rankine 40.49 72.71 22.56 100.00 42.12 62.82 100.00
Coulomb 39.18 67.85 21.95 100.00 41.85 56.61 100.00
Mononobe–Okabe (case 1) 41.88 67.47 26.55 100.00 35.89 44.11 100.00
Mononobe–Okabe (case 2) 41.42 77.14 29.13 100.00 37.10 48.33 100.00
Mononobe–Okabe (case 3) 41.35 73.59 28.64 100.00 36.82 47.58 100.00
Mononobe–Okabe (case 4) 41.31 75.81 28.93 100.00 36.97 47.98 100.00
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Table 6  Comparison of 
optimum designs utilizing 
Coulomb theory

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.00 30.00 30.05 30.00 30.00 30.00 30.00 30.00
L2 (cm) 49.10 50.49 48.04 53.75 47.59 49.30 50.86 47.03 49.83
L3 (cm) 109.98 109.72 110.49 109.32 111.32 110.40 109.77 110.56 109.57
L4 (cm) 230.83 230.32 230.17 228.25 228.78 231.07 230.58 231.78 230.96
L5 (cm) 325.44 324.88 325.38 337.00 325.49 333.20 324.80 325.83 325.04
L6 (cm) 45.62 45.55 45.76 45.47 45.96 45.74 45.55 45.83 45.52
L7 (cm) 20.09 20.00 20.02 20.24 20.00 20.00 21.37 20.00 20.00
As1  (cm2/m) 11.24 11.20 11.23 12.37 11.24 12.01 11.20 11.28 11.20
As2  (cm2/m) 36.51 35.22 37.55 32.56 38.02 36.31 34.90 38.62 35.82
As3  (cm2/m) 18.49 18.46 18.56 18.42 18.65 18.55 18.46 18.59 18.44
As4  (cm2/m) 18.49 18.46 18.56 18.42 18.65 18.55 18.46 18.59 18.44
Best cost 6.946 6.946 6.951 6.970 6.961 6.968 6.957 6.963 6.941
Average cost 7.270 7.042 7.343 7.072 7.384 7.169 7.234 7.243 6.986
SD 1.337 0.346 1.161 0.506 1.187 1.071 1.014 0.906 0.171
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000

Table 7  Optimized costs at 
different stages of optimization 
(Coulomb theory)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 7.136 6.984 7.303 7.105 7.465 7.024 7.147 7.247 6.960
2000 6.967 6.957 7.004 7.003 7.272 7.000 7.065 7.072 6.942
3000 6.958 6.950 6.955 6.983 6.980 6.968 6.994 7.012 6.941
4000 6.954 6.947 6.952 6.983 6.966 6.968 6.962 6.966 6.941
5000 6.946 6.946 6.951 6.970 6.961 6.968 6.957 6.963 6.941

Table 8  Comparison of 
optimum designs utilizing 
Rankine theory

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.02 30.00 30.00 30.00 30.00 30.02 30.00 30.00
L2 (cm) 49.54 52.35 51.86 50.39 52.29 51.15 51.81 51.18 51.03
L3 (cm) 117.84 117.20 117.45 117.79 117.39 117.19 117.31 117.52 117.29
L4 (cm) 241.74 241.21 240.90 241.78 240.52 242.29 241.30 241.90 241.89
L5 (cm) 313.66 313.81 314.28 313.65 313.64 308.74 315.06 312.79 313.64
L6 (cm) 48.39 48.22 48.35 48.33 48.27 48.29 48.26 48.25 48.24
L7 (cm) 20.00 20.27 20.00 20.00 20.00 20.00 20.00 20.00 20.00
As1  (cm2/m) 11.20 11.21 11.26 11.20 11.20 11.20 11.33 11.20 11.20
As2  (cm2/m) 40.00 37.26 37.71 39.13 37.32 38.38 37.76 38.35 38.49
As3  (cm2/m) 19.78 19.70 19.77 19.75 19.73 19.74 19.72 19.72 19.71
As4  (cm2/m) 19.78 19.70 19.77 19.75 19.73 19.86 19.72 19.76 19.71
Best cost 7.376 7.375 7.379 7.374 7.374 7.390 7.375 7.375 7.370
Average cost 7.850 7.430 7.688 7.476 7.684 7.691 7.709 7.589 7.404
SD 1.412 0.185 0.942 0.572 1.379 1.324 1.330 0.749 0.143
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000
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2000 analyses. This result is concluded from Tables 7, 
9, 11, 13, 15, and 17 too. Figures 12, 13, 14, 15, 16, and 
17 show final design results of SSOA in 50 independ-
ent runs. The success rate of the SSOA algorithm can be 

obtained through these figures. For example, the success 
rate of the SSOA algorithm in 96% for the Coulomb and 
Rankine theories.

Table 9  Optimized costs at 
different stages of optimization 
(Rankine theory)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 7.976 7.399 7.761 7.424 7.519 7.481 7.576 7.539 7.381
2000 7.618 7.383 7.556 7.380 7.382 7.455 7.449 7.403 7.372
3000 7.420 7.380 7.452 7.377 7.375 7.424 7.406 7.394 7.370
4000 7.380 7.375 7.384 7.374 7.374 7.400 7.383 7.390 7.370
5000 7.376 7.375 7.379 7.374 7.374 7.390 7.375 7.375 7.370

Table 10  Comparison of 
optimum designs utilizing 
Mononobe–Okabe method 
(Case 1)

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.00 30.01 30.09 30.00 30.00 30.00 30.00 30.00
L2 (cm) 49.79 52.30 49.16 48.52 48.57 51.49 49.92 51.31 50.08
L3 (cm) 69.78 69.22 69.84 70.11 70.08 69.59 69.66 69.42 69.63
L4 (cm) 225.04 224.29 225.57 225.38 225.37 224.42 225.18 224.56 225.11
L5 (cm) 337.38 336.34 338.98 339.47 337.37 335.60 337.91 337.48 337.41
L6 (cm) 39.08 38.91 39.12 39.22 39.20 38.98 39.04 38.94 39.02
L7 (cm) 20.00 20.00 20.00 20.15 20.00 20.00 20.01 20.04 20.00
As1  (cm2/m) 11.20 11.20 11.35 11.35 11.20 11.20 11.25 11.21 11.20
As2  (cm2/m) 33.54 31.52 34.09 34.67 34.63 32.15 33.43 32.29 33.29
As3  (cm2/m) 15.44 15.40 15.46 15.50 15.50 15.39 15.42 15.37 15.41
As4  (cm2/m) 15.44 15.36 15.46 15.50 15.50 15.39 15.42 15.37 15.41
Best cost 6.222 6.229 6.225 6.232 6.226 6.228 6.220 6.220 6.219
Average cost 6.335 6.286 6.330 6.368 6.380 6.322 6.341 6.433 6.257
SD 0.373 0.207 0.258 0.304 0.344 0.270 0.304 0.530 0.164
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000

Table 11  Optimized costs at 
different stages of optimization 
(Mononobe–Okabe method, 
Case 1)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 6.481 6.249 6.393 6.394 6.463 6.310 6.365 6.410 6.226
2000 6.240 6.240 6.253 6.235 6.250 6.269 6.242 6.247 6.221
3000 6.223 6.231 6.237 6.233 6.230 6.254 6.224 6.227 6.220
4000 6.222 6.230 6.230 6.233 6.226 6.228 6.221 6.221 6.219
5000 6.222 6.229 6.225 6.232 6.226 6.228 6.220 6.220 6.219
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Table 12  Comparison of 
optimum designs utilizing 
Mononobe–Okabe method 
(Case 2)

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.00 30.01 30.00 30.24 30.01 30.02 30.00 30.00
L2 (cm) 58.15 59.49 59.07 59.39 56.42 60.000 57.85 60.00 59.34
L3 (cm) 103.63 103.52 103.42 102.93 104.53 102.81 103.66 103.19 103.32
L4 (cm) 290.47 289.95 290.21 291.25 291.37 290.91 290.71 289.78 290.06
L5 (cm) 279.10 278.43 280.05 279.12 283.45 287.83 280.89 279.68 279.15
L6 (cm) 54.60 54.52 54.53 54.33 54.82 54.25 54.61 54.43 54.48
L7 (cm) 20.00 20.05 20.00 21.22 20.03 20.20 20.00 20.03 20.01
As1  (cm2/m) 11.20 11.20 11.31 11.20 11.58 12.22 11.40 11.27 11.21
As2  (cm2/m) 48.18 46.80 47.23 46.91 50.10 46.30 48.50 46.30 46.95
As3  (cm2/m) 22.68 22.64 22.65 23.19 22.78 23.19 22.69 22.62 22.62
As4  (cm2/m) 22.68 22.64 22.65 22.56 22.78 22.52 22.69 22.60 22.62
Best cost 8.679 8.683 8.679 8.697 8.704 8.696 8.682 8.677 8.676
Average cost 8.893 8.756 8.993 8.819 9.049 8.804 9.009 8.782 8.719
SD 0.851 0.216 1.047 0.660 0.995 0.362 1.171 0.464 0.196
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000

Table 13  Optimized costs at 
different stages of optimization 
(Mononobe–Okabe method, 
Case 2)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 8.713 8.721 9.070 8.768 9.018 8.731 9.140 8.713 8.699
2000 8.681 8.688 8.777 8.730 8.922 8.705 8.769 8.704 8.678
3000 8.680 8.685 8.700 8.710 8.748 8.705 8.700 8.680 8.677
4000 8.680 8.683 8.685 8.697 8.718 8.702 8.690 8.678 8.676
5000 8.679 8.683 8.679 8.697 8.704 8.696 8.682 8.677 8.676

Table 14  Comparison of 
optimum designs utilizing 
Mononobe–Okabe method 
(Case 3)

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.00 30.00 30.19 30.00 30.00 30.03 30.01 30.00
L2 (cm) 59.99 58.18 56.13 54.81 56.47 60.00 58.34 53.88 56.35
L3 (cm) 91.57 91.78 92.03 92.45 93.86 91.65 91.49 92.65 91.93
L4 (cm) 265.86 267.26 268.59 269.09 264.26 266.65 267.69 269.91 268.44
L5 (cm) 314.66 296.06 307.61 297.65 297.72 299.11 300.86 297.01 296.02
L6 (cm) 49.12 49.19 49.39 49.42 50.03 49.08 49.08 49.47 49.26
L7 (cm) 20.00 20.00 20.00 20.02 20.08 20.00 20.09 20.00 20.00
As1  (cm2/m) 13.40 11.25 12.55 11.32 11.43 11.58 11.76 11.34 11.24
As2  (cm2/m) 39.13 40.64 42.53 43.84 42.20 39.12 40.50 44.82 42.32
As3  (cm2/m) 20.12 20.16 20.25 20.26 20.55 20.11 20.21 20.44 20.19
As4  (cm2/m) 20.12 20.16 20.25 20.26 20.55 20.11 20.11 20.28 20.19
Best cost 7.838 7.817 7.831 7.822 7.858 7.828 7.819 7.828 7.811
Average cost 8.185 7.894 8.146 7.965 8.062 8.012 8.142 8.157 7.851
SD 1.117 0.272 0.938 0.421 0.334 0.577 1.056 0.841 0.126
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000
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Table 15  Optimized costs at 
different stages of optimization 
(Mononobe–Okabe method, 
Case 3)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 8.286 7.840 8.427 7.974 8.147 8.000 8.194 8.161 7.818
2000 7.992 7.827 7.912 7.881 8.003 7.876 7.896 7.992 7.813
3000 7.870 7.826 7.847 7.834 7.960 7.840 7.833 7.888 7.811
4000 7.843 7.821 7.835 7.824 7.867 7.828 7.825 7.834 7.811
5000 7.838 7.817 7.831 7.822 7.858 7.828 7.819 7.828 7.811

Table 16  Comparison of 
optimum designs utilizing 
Mononobe–Okabe method 
(Case 4)

Design variable Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

L1 (cm) 30.00 30.00 30.00 30.07 30.00 30.00 30.03 30.00 30.00
L2 (cm) 58.39 59.99 57.06 54.54 57.56 60.00 55.61 58.81 57.55
L3 (cm) 97.54 97.19 97.66 98.30 97.11 97.19 98.07 98.11 97.70
L4 (cm) 279.07 278.43 280.04 280.94 280.77 278.66 280.46 278.92 279.47
L5 (cm) 287.02 290.03 287.38 288.10 287.44 294.32 288.14 295.81 287.01
L6 (cm) 51.84 51.73 51.88 52.12 51.68 51.69 52.04 51.93 51.90
L7 (cm) 20.00 20.04 20.00 20.0 20.00 20.00 20.04 20.00 20.00
As1  (cm2/m) 11.20 11.54 11.24 11.29 11.25 12.04 11.31 12.21 11.20
As2  (cm2/m) 44.14 42.67 45.46 48.18 44.95 42.66 46.98 43.75 44.96
As3  (cm2/m) 21.39 21.38 21.61 21.54 22.08 21.51 21.51 21.43 21.42
As4  (cm2/m) 21.39 21.34 21.41 21.52 21.31 21.32 21.49 21.43 21.42
Best cost 8.241 8.247 8.245 8.254 8.253 8.253 8.249 8.260 8.241
Average cost 8.633 8.300 8.359 8.313 8.440 8.416 8.524 8.701 8.263
SD 1.516 0.181 0.271 0.186 0.617 0.509 0.878 1.378 0.062
No. of analyses 5000 5000 5000 5000 5000 5000 5000 5000 5000

Table 17  Optimized costs at 
different stages of optimization 
(Mononobe–Okabe method, 
Case 4)

No. of analyses Kaveh et al. [21] Present work

ABC BB–BC CS CSS ICA RO TWO WEO

1000 8.652 8.277 8.312 8.283 8.462 8.394 8.601 8.789 8.266
2000 8.299 8.277 8.263 8.283 8.297 8.293 8.331 8.449 8.244
3000 8.250 8.254 8.251 8.282 8.268 8.253 8.260 8.322 8.241
4000 8.243 8.249 8.246 8.255 8.258 8.253 8.255 8.261 8.241
5000 8.241 8.247 8.245 8.254 8.253 8.253 8.249 8.260 8.241
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7  Conclusion

This study introduced a recently developed population-based 
meta-heuristic, the shuffled shepherd optimization algorithm 
(SSOA). The concepts of set theory are employed to generalize 

the SSOA algorithm, which has led to the set theoretical shuf-
fled shepherd optimization algorithm (STSSOA). The SSOA 
algorithm is examined for optimal design of reinforced con-
crete cantilever retaining walls under static and seismic loading 

Fig. 6  Comparison of convergence histories utilizing Coulomb theory

Fig. 7  Comparison of convergence histories utilizing Rankine theory

Fig. 8  Comparison of convergence histories utilizing Mononobe–
Okabe method (Case 1)

Fig. 9  Comparison of convergence histories utilizing Mononobe–
Okabe method (Case 2)
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conditions. Optimization aims to minimize the cost of can-
tilever retaining wall structures while satisfying some con-
straints on stability and strength. The static loading condition 
is modeled by the Rankine and Coulomb theories, whereas the 
Mononobe–Okabe method is utilized for the seismic loading 

condition. The results indicate that the design based on the 
Coulomb theory leads to heavier cantilever retaining wall 
structures compared to those designed based on the Rankine 
theory. Furthermore, the horizontal and vertical acceleration 
coefficients have direct and reverse effects on the cost design of 

Fig. 10  Comparison of convergence histories utilizing Mononobe–
Okabe method (Case 3)

Fig. 11  Comparison of convergence histories utilizing Mononobe–
Okabe method (Case 4)

Fig. 12  Final results of the cantilever retaining wall obtained by 
SSOA (50 runs)

Fig. 13  Final results of the cantilever retaining wall obtained by 
SSOA (50 runs)
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the cantilever retaining wall, respectively. It can be concluded 
from the optimal design results that the design controlling fac-
tors of the problem are the shear capacity of the toe slab and 
bearing capacity of the soil under the toe slab. The optimal 
design results show the superiority of the SSOA algorithm 
over the other investigated meta-heuristics and confirm the 
efficient performance of the SSOA algorithm for the optimal 
cost design of cantilever retaining wall structures.
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