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Abstract

This paper deals with analyzing the nonlinear vibration of an isotropic cracked plate interacting with an air cavity. A part-
through surface crack with variable orientations and positions is considered and modeled using the modified line spring
model. In the first step, based on the Von Karman theory, the governing equation of the nonlinear vibration related to the
cracked plate—cavity is presented. Then, by employing the Euler equation along with the Galerkin method, the coupling effect
between the fluid—solid media inside the enclosure is eliminated. In the next step, the variational iteration method (VIM)
is introduced as an appropriate method for nonlinear analysis of the mentioned system. To this end, the convergence of the
nonlinear coupled natural frequencies with high precision is proved by performing four iterations of VIM. Finally, the effect
of the length, angle, and position corresponding to the crack as well as the cavity depth on the frequency ratio is inspected
for various boundary conditions by plotting three and four-dimensional backbone curves. It is revealed that the crack angle

is the most effective parameter on the frequency ratio.
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1 Introduction

Plates, as one of the most practical structures, have gained
great importance these days, so that their applications can
be observed abundantly in engineering practices, such as air-
craft and shipbuilding factories, automobiles, and train cab-
ins. What is of much importance is to identify cracks created
in the structure, since the existence of even a small crack can
cause failure and reduce the permanence of the structure,
dramatically. Therefore, it is necessary to be presented some
models in order to inspect such defects. Many authors have
presented analytical models for crack plates. For example,
Rice and Levi [1] introduced line spring model for analysis
of a part-through surface crack at the center of an isotropic
plate. Their model was based on a two-dimensional theo-
rem of plates and shells, which was a threshold and ana-
lytic method for solving cracked plate problems. Therefore,
Israr et al. [2-4] developed Rice and Levi’s model [1] to
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investigate the nonlinear vibration of a centrally cracked
plate. Both stretching and bending compliances of the crack
were considered into the problem, so that stretching compli-
ance would essentially lead to nonlinear terms. Additionally,
the crack directly had a significant effect on the stiffness of
the structure. Yang et al. [5], based on Reddy’s third-order
shear deformation plate theory, derived governing equations
in regard to linear and nonlinear vibration of an FGM plate
containing only a horizontally overall surface crack. Despite
the examination of the position and depth of the crack, they
avoided investigating the effect of the crack angle as well as
the crack size on the natural frequencies. Subsequently, in
order for Israr’s method to be more practical, this method
was extended by Ismail and Cartmell [6] for various crack
angles at the plate center. The obtained results showed that
with considering the plate under uniaxial load, the funda-
mental frequency of the vertical cracked plate is the same as
that of an intact one. Following the previous research, Bose
and Mohanty [7], based on the modified line spring model,
developed nonlinear vibration of a plate including a part-
through surface crack at an arbitrary position and angle by
supposing that a biaxial load was exerted to the plate. Unlike
the results achieved by Ismail and Cartmell [6], the funda-
mental frequency of the vertical cracked plate was not the
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same as that of intact one due to considering biaxial load. In
another research, following Israr’s work, a plate having two
internal perpendicular cracks was studied by Joshi et al. [8].
They indicated that maximum and minimum reduction of
the plate stiffness could occur when the cracks were, respec-
tively, internal and external. Diba et al. [9], by considering
more vibration modes and the proposed model by Ismail and
Cartmell [6], extended the nonlinear dynamic response of a
simply supported cracked plate. Joshi et al. [10] expanded
their work to present the nonlinear vibration of a cracked
orthotropic plate for different boundary conditions. It was
revealed that a crack parallel to the fibers had less effect
on the natural frequencies in comparison with a crack per-
pendicular to the fibers. Moreover, Joshi et al. [11], Azizi
et al. [12], and Safaei et al. [13, 14] also considered thermo-
mechanical loads in the governing equations to extend their
research for a micro-plate, nano-platelet, and sandwich plate,
respectively.

Most of the vibration analysis is devoted to investigat-
ing structures in the absence of fluid [15, 16]. Nevertheless,
dynamic responses of engineering structures are influenced
by environmental fluid surrounding these structures. One
of the main areas used to simulate solid—fluid interaction is
the plate—cavity system which has gained extensive attention
in industries. Vibroacoustic characteristics of structures via
such a model have been investigated by many researchers.
Pretlove [17] considered a plate coupled with a rectangular
cavity. In order for the problem to be solved, he expressed
the acoustic modes in terms of an arbitrary plate mode esti-
mated by Fourier transform, thereby reducing the coupled
problem into an uncoupled one. Subsequently, the first
four natural frequencies of the system were obtained with
a suitable precision. Moreover, he evaluated the effect of
the cavity depth and revealed that the parameter was effec-
tive just for low-frequency domain. Following the previous
research, Quisi [18] studied a rectangular plate interacting
with an enclosure by considering a few numbers of acous-
tic modes in terms of the plate displacement. A reflected
spherical wave off an infinite plate—cavity was studied by
Nakanishi et al. [19]. In another work, Lee [20] inspected
large amplitude vibration of a backed plate, by the aid of
the Harmonic Balance Method. In addition, Lee et al. [21]
extended the previous research for a composite plate, as one
of the most practical materials in industries [22-24], and
presented a method which did not need the nonlinear matrix
to be updated. Li and Cheng [25, 26] examined acoustical
behavior of a plate and enclosure comprising an inclined
wall, which disclosed that such a system had different modal
features. Gorman et al. [27] analyzed different geometry of a
plate—cavity system. In their work, a circular plate was eval-
uated which was in contact with a fluid inside a cylindrical
cavity. To obtain coupled natural frequencies, they applied
the Galerkin method along with modal energy analysis.
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Sound transmission through another various structure con-
taining a double—walled panel and a cavity was studied ana-
lytically by Xin et al. [28-30]. First, research was conducted
for a clamped panel. Then, in another research, analytical
results were compared with experimental ones. In following
their research, the same procedure was also done for a triple-
walled structure. Also, Xin et al. [31] presented the wave
propagation analysis in a sandwich structure making up of a
double plate with corrugated core. Hui et al. [32] employed
the elliptical integral solution to evaluate the nonlinear
vibration of a plate backed by a multi-acoustic mode cavity.
They investigated the convergence criterion to obtain appro-
priate acoustic mode. Natural frequencies of an interacting
plate—cavity system were examined differently by Tanaka
et al. [33]. They presented eigenfunctions of sound pressure
in terms of an infinite summation of degenerate eigenfunc-
tions. Shen et al. [34] inspected effective parameters in order
to diminish transmitted noise through a sandwich panel in
contact with a fluid inside an enclosure. The obtained results
showed that some parameters such as core damping, vis-
coelastic core density, and the plate thickness were of great
importance for noise reduction. In following nonlinear prob-
lems, Sadri and Younesian [35, 36] considered the free and
force nonlinear vibration of a rectangular plate inside an air
cavity. First, to obtain the harmonic response of such a cou-
pled system, they supposed an arbitrary transverse excitation
force exerted to the plate. Then, the multiple-scale method
was utilized to solve nonlinear equations. Furthermore, they
analyzed free oscillation of such a coupled system by means
of variational iteration method. In addition, they continued
their work to investigate the random vibration of a platform
modeled by a backed plate [37]. Through this model, it was
revealed that the more irregular the track is, the more signifi-
cant influence it has on the vibrational behavior and acous-
tical pressure inside the cabin. The interaction between a
rectangular cavity and a plate containing a distributed mass
was examined by Pirnat et al. [38]. They were able to reduce
the complexity of obtaining mode shapes and coupled fre-
quencies by employing some analytical models based on
the Rayleigh—Ritz method. Bose and Mohanty [39] applied
corner functions to model a side crack in a rectangular plate
and study the transmitted sound through the structure. Sadri
and Younesian [40], in another work, represented free and
force responses of a sandwich panel considered as two plates
connected via springy layer. Free vibration analysis of an
extended cavity coupled with a nonlinear plate was inves-
tigated by Lee [41]. He determined the cavity length as an
effective parameter on the nonlinear fundamental frequency,
so that increasing the cavity length results in a remarkable
reduction in the nonlinear frequency. Lee [42], in continu-
ation of his research, assessed leakage effect on the nonlin-
ear fundamental frequency at the edges of an enclosure. He
concluded that with enlarging the leakage size, the higher
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fundamental frequency would be obtained. Vibroacoustic
behavior of a plate and an acoustic irregular cavity includ-
ing a tilted wall was investigated by Chen et al. [43]. Such a
structure was evaluated for elastic boundary conditions by
disassembling the irregular enclosure into some sub-cavities.
A study on the vibration characteristics of a partially opened
enclosure interacting with an isotropic plate was also con-
ducted by Shi et al. [44]. The results showed that a consider-
able effect on the vibroacoustic behavior of the system was
observed due to the opening size. An investigation of effec-
tive parameters on vibroacoustic behavior of a composite
plate inside a cavity, such as numbers of layers, ply angles,
and constitutive materials, was carried out by Sarigul and
Karagozlu [45]. Additionally, their results indicated that the
cavity had more effect on a plate involving elastic materials
and fewer layers. Zhang et al. [46] continued the previous
work and carried out linear analysis of a double compos-
ite plate for elastic boundary conditions. The authors [47]
examined the linear analysis concerned with the acoustical
interaction between a cracked plate and an air enclosure for
different parameters. Nevertheless, in some cases, nonlinear
phenomena predominate where the large deflections are of
high importance. Therefore, in the present paper, the nonlin-
ear behavior of a cracked plate—cavity is developed.
Reviewing the above literature indicates that either the
vibration of cracked plates has been studied without consid-
ering solid—fluid interaction or the vibroacoustic behavior
of plates without considering any defects has been investi-
gated. As aresult, it can be concluded that nonlinear analysis
of a cracked plate coupled with an enclosure has not been
studied so far. Herewith, in this research, a new approach

o*w o*w

the air and the cracked plate interaction. Hence, the cou-
pled equations can be changed to uncoupled equations. By
considering the linear parts of the equations, firstly linear
natural frequencies are calculated. In the next step, the first
iteration of VIM is used to compare such a method with
available literature concerning the nonlinear vibration of an
intact plate coupled with a cavity. Likewise, four steps of
variational iteration method are employed for the cracked
system and three different boundary conditions, in order
that the convergence of the nonlinear frequencies can be
obtained. Moreover, three and four-dimensional backbone
curves are plotted to clarify the influence of the crack direc-
tion, position, and length on nonlinear natural frequencies
for all kinds of boundary conditions. Finally, the effect of the
cavity depth on the cracked frequency ratio is also evaluated.

2 Governing equation of motion

Figure 1 shows an enclosure coupled with an isotropic plate
including a part-through surface crack at an arbitrary loca-
tion and angle. The Cartesian coordinate is used to describe
dimensions of the system, and stagnated air is considered
inside the enclosure. The system is made up of five rigid
walls and an elastic plate with a length of L,, width of L,,
and thickness of & as well as a cavity with a depth of L. In
addition, the crack angle and length are represented by 8 and
2a, and the distance between the crack center and the plate
center is illustrated by d_ along the x-direction. Therefore,
the governing vibration equation of such a system, based on
proposed relation for a cracked plate at different orientations
and locations, is presented as follows [7]:
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is considered to inspect the nonlinear structural-acoustic
coupling for a rectangular box including an arbitrary part-
through surface crack. In the first step, a coupled nonlinear
equation of the cracked plate surrounded by the cavity is
introduced. Later, using eigenfunction expansion, the cou-
pled nonlinear equation is converted to the time domain.
Then, the Euler equation is employed in order to model

where Eq. (1) indicates nonlinear vibration equation of
the system in which W(x, y, 1), P(x, y, L3, t), p, and D are
transverse displacement, acoustic pressure inside the cavity,
density, and flexural rigidity of the plate, respectively. In
addition, N,, Ny, and ny are in-plane forces per unit length
along x, y, and xy plane. Moreover, J, (n=1, 2, ...23) are
coefficients which are related to the presence of the crack
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By substituting Eq. (2) into Eq. (4), in-plane forces result
in the following equations:

ZZ mn(t)/ / [X2Y? + 0X?Y*| dxdy

Fig.1 A plate—enclosure system containing a surface crack Ny L L2h2 el =1
and defined in Appendix 1. Here, in order for Eq. (1) to be = ZlmnWm,,(t)
achieved, it should be changed to the time domain. Hence, in
order to be employed the Galerkin method, the displacement x4, = L L h2 / / Xm Yj + in f ]dxdy
can be assumed as below: 2% m=1n=l
(5-a)
Wiy, 1) = W (X, (DY, () ) [ / / XY + X2 2] dud
n12=:l ,; y L L2h2 r; nz mn() [1) ] y
= )(Zmnwm,l(t)
Accordingly, by substituting Eq. (2) into Eq. (1), it can be Ly 22y
deduced as follows: Ao = T L2h2 ~ 1 / / VX Y2 +X) Y, ] dxdy
(5-b)
DDA (= d10)XPY, + (2= T) XY + (1= 711) X, YD }w,,, (1)
m=1 n=1
o — ph P(x7y9L37t) O — "o m
+ Z Z EXm n mn(t) - D + Z Z {JZZX Y +‘]23‘)( Y }Wmn(t)
m=1 n=1 m=1 n=1
mz;‘l ; {X)Y, +0X,,Y, }W,, () X mz;l ; +2 115 XmYn W (1)
Z’l ; (XY, + X, Y, } W, () X Z’l ; { i Y Wy (1) 3)
IR o N [ J1oX Y, 4 JpX,, Y
« D)mz=l ;Xm o0 XZ? Z{ { +20,,X,Y, Wnnl1)
Now v [IX Y, +,X,Y Ny v [ IX Y, + X, Y
+ 3 Z Z { +2J3Xr Yr Wmn(t) + B Z Z +2J6Xr Yr Wmn(t)
m=1 n=1 m-n m=1 n=1
Ny @ [ KXY, + X, Y
R 8 9 n
¥ D mZ::] r,z:; { +2J7Xm Yn }Wmn(t)
In Eq. (3), N,, N, and N, are functions of the plate mode 12D(1 = v) =
shapes. Subsequently, in-plane forces should be rewritten in Ny = LLiE "; ; Wy (0) / / X, Y, dady = 3,071
terms of the plate mode shapes. Berger [48] proposed some L )
. . . 12D(l -0) — ! 2,
appropriate relations for in-plane forces as follows: Xmn = L.L NN / / X, Y, dxdy
2 m=1 n=1 0
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Now, by means of orthogonality of plate modes, each side
of Eq. (3) should be multiplied by X;¥; and then integrated
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over the plate dimensions. Thus, the following relation is
concluded:

Mw(t)+Kw(t)+Hw (t)+Gw (1)
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where o is the coupled linear natural frequency of the sys-
tem, and 7T,(¢) is an unknown coefficient that can be deter-
mined via the acoustic boundary condition at z=L,. In this
work, three modes of the plate for converging the problem
are taken into account, namely mode numbers of (1, 1), (1,

L
2{ (1=Ty0) XY, + (2= Jp) X0 + (1= J,)) X, Y = (Jp) XY = (J53) X, Y} X;Y,dxdy (7-b)
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m n

2.1 Linear analysis of the cracked plate-cavity

First, in order for the linear natural frequencies of Eq. (6) to
be obtained, the acoustic pressure should be computed. There-
fore, partial differential equation corresponding to the acoustic
wave pressure exerted on the plate can be written as follows:
0P  0°P  0*P 10°P

ox2  0y> 02 2

where c, is the sound speed inside the air. Equation (2) can
be attained by the aid of the separation of variables. As a
result, the acoustic pressure is considered as below:

Px,y,z,t) = X(0) Y(y) Z(2) T(1) )

Related acoustic boundary conditions for such a system
are expressed by:

I

a |x=O,L1 =Y a_y |y=0,L2 -

a_P | _ a_P | _ ()2 w (10)
R Pa™5p

Therefore, by replacing Eq. (9) into Eq. (8) and then, with
the aid of the acoustic boundary conditions represented in
Eq. (10) along the x and y directions, the acoustic wave
inside the cavity is achieved in the form of below equation:

2), and (2, 1). Now, by substituting Eq. (2) into Eq. (10) at
z=L; as well as considering the three modes, the following
equation can be found:

o

Z Z T, (g, sinh (gk,L3) cos <Iﬁx> cos (lﬂy> =
L L,

k=0 1=0
- Pair{ Wi (DX, (0, (0) + 31,(NX, ()Y, (3) + Wiy, (DX, (0 (}’)}
(12)

Three different boundary conditions can be introduced as
below:

(1) For fully simply supported edges, related boundary
conditions are defined-SSSS:

mnr

X,,(x) = sin (amx), Oy =7 m= 1,2,...
1
. n (13-21)
Y,0) =sin(B,y), B, = L—” n=1,2, ...
2

(2) Fully clamped edges can be defined as (CCCC):

X,,(x) = cosh (amx) —cos (amx) — ¥,»(sinh (a,,x) — sin (amx))
4.730041 7.853205 10.995607
B 7R A
1 1 1
Y,(y) = cosh (B,y) — cos (B,y) — 4,(sinh (B,y) — sin (B,y))
p = 4.730041 f, = 7.853205 f, = 10.995607
Y (13-b)
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(3) For simply supported edges along the x-direction and
clamped edges along the y-direction, boundary condi-
tions are expressed as (SSCC):

X, (x) = sin (a,x), a,= ?, m=1,2,...
1
Y, (y) = cosh (ﬂ,,y) — cos (ﬂn ) - /ln(sinh (ﬂ,,y) — sin (ﬂny))
fr = 4.730041 f, = 7.853205 f, = 10.995607
1——L2 > 2——L2 ) 3——L2

(13-¢)
In Egs. (13-b) and (13-c), the coefficients y,, and 1, are
cosh (a,,L; )—cos (a,,L;) di = cosh (8,L,)—cos (B,L,)
sinh (@, L, )-sin (a,,L,) n sinh (,L,)—sin (B,L,) "
Thus, substituting each type of these boundary conditions into
Eq. (12), and afterward by using orthogonality of eigenfunc-
tions related to the acoustic pressure, the unknown coefficients
are acquired in terms of the plate time modes. Finally, the
acoustic pressure can be introduced as:

equaltoy,, =

P(x, 9, Ly, 1) 2y ¥ (0) 4 W2 0015(0) + Yoy i, (7) (14)

where y,, y,, and y,, are defined in Appendix 2 for all
kinds of boundary conditions. Here, Eq. (14) is substituted in
Eq. (6), and then, neglecting nonlinear parts of Eq. (6) leads
to the linear differential equation of the coupled system as:

1 L] L2
Myivy(0) + Kywy(0) = — /0 /0

{ w1171, (0) + w1005 (0) 4y iy, (2) } X, Y dxdy (15)
Equation (15) can be rewritten as below:

Mivg(0) + Kwi(0) = By (0) + B2 15(0) + B3 iy, (1)
(16)

L, .
using

0 OLZ W, X;Ydxdy . By
wi(t) = a; cos(a)t), substituting such a relation into Eq. (16)
results in

1
where ﬂ;j’.”’ =3

2 ___aqall 12 21
—0)2M11311 + Ky a, = _wz{ﬁHa“ +ﬂ1121 a12+ﬁ2111 ay }
—szlz ap+Kpap = —602{ 1112011 + 11%a12 +ﬂ21% ay}
—0°My, ay, + Kyy ayy = —o*{ B3, a1y + B, ap + B35, }

17

Equation (17) can be rearranged in matrix form as

ap
[CI{ a, ¢ =0
ay
Ky — @’ (M, = Bi}) o’ B
1= "™ wmon <o
"By o

Ky - wz(MZI - 2])

Finally, the natural frequencies of the coupled cracked
plate and cavity are determined by considering the fact that
determination of matrix [C] is zero.

2.2 Nonlinear analysis of cracked plate-cavity
system

In the previous section, the acoustic pressure and linear natu-
ral frequencies of the coupled system were computed. Now,
it is possible to analyze the nonlinear equation of the system,
namely Eq. (6). By substituting the coupled linear natural
frequencies resulting from Eq. (18) into the acoustic pres-
sure represented in Eq. (11) and then replacing into Eq. (6),
it can be changed as follows:

(M + py )i (1) + Kywy(0) + Hywi () + Gywi (0 =0 (19)
where in Eq. (19), p;; is the added effective mass due to the
acoustic pressure. Equation (19) is a well-known nonlinear
equation named Duffing equation. Herewith, to solve such
a nonlinear problem, variational iteration method (VIM) is
employed as a semi-analytical method.

Researchers have been utilized different numerical
methods, such as harmonic balance method [49], per-
turbation method [50, 51], generalized differential quad-
rature method (GDQ) [52-54], domain decomposition
method [55], in order to analyze nonlinear problems.
Among available numerical methods, VIM is introduced
as one of the fast convergent methods for numerical
problems. VIM was firstly introduced by He [56, 57] in
order to solve linear and nonlinear problems analytically.
Accordingly, it is supposed that the following relation is
available [58, 59]:

Lu + Nu = g(x) (20)

where L and N represent linear and nonlinear operators.
Then, it is assumed that uy(x) is the solution of Lu=0,
thereby being employed as the first approximation. Subse-
quently, correction functional is introduced in order to cor-
rect the solution of Eq. (20) as follows [60, 61]:

(18)

s
wZﬁZl

12
21
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'4n+1(X)=u,,(X)+/ A{Luy (&) + Nu, (&) — g(& }dE  (21)
0

where A, known as Lagrange multiplier, is a function of
x and &, and it is found optimally via variational theory.
Such a procedure is a repetitive method and stopped at an
appropriate precision. Here, VIM can be handled in order
for Eq. (19) to be solved. Firstly, both sides of Eq. (19) are
divided by (M;;+ 1), and the outcome will be as:

20+ Wi =0 22)

.. 2
Wi (1) + wi].wij(t) + Yi/wi/

where a)i Yl-j and @, are defined
K. H. G..

a)zz—lj Y:—lj @; = Y
oMyt T Myt T Myt

(23)

Correction functional for Eq. (22) is presented as fol-
lows so that VIM can be started:

(950)1 = (30), + [ 2] (65600, + 5 050),

+;(7,(0) + 0 (72 e
(24)
The Lagrange multiplier is determined by using the
variational theory. Therefore, applying variation on both
sides of Eq. (24), and knowing éw (1) =0, the following
relation is deduced as:

0= 6(wy(0), + 28 (Wy(D)) L=y = A6 (WD), | o=
+ /O |2+ 2y |8 (o) de 05

Stationary conditions are concluded from Eq. (25) as
follows:

M+ @2d; =0

g ooty

l-2;=0 7=t (26)
/lij=0 T=1

Finally, the Lagrange multiplier is obtained as:
1 .
/11-]» = a)— sin (COU(T — l‘)) 27
i

Now, the obtained Lagrange coefficient is replaced into
Eq. (24). Finally, the correction functional can be written as:

(). ., = (w,0), + /0 L sin (e = D) { (672,

ij
+02 ((05()),, + Y5 (w(0)); + @5 (w5(0)), }dT
(28)

As it was declared, VIM starts by an initial approxi-
mation. Thus, by assuming that initial conditions are
wi(D]=o = A; and w;(1)|,¢ = 0, the first approximation is
presented as:

(W), = Ay cos (ayt) (29)

where A;; is the vibration amplitude and q; is the nonlinear
frequency of the coupled system, so that it is found by the
following procedure. By replacing Eq. (29) into Eq. (28),
and knowing that the structure vibrates with limited ampli-
tude, it must be eliminated a secular term appearing at each
iteration, which appears in form of cos(w;?).

3 Numerical results

3.1 Validation

In the previous section, variational iteration method was
introduced as an appropriate technique for linear and non-
linear problems. In order to prove the accuracy of the pre-
sent method, the outcomes are compared with those of Lee
[20] as listed in Table 1. Hence, the first iteration of VIM is
applied to obtain the ratio of nonlinear and linear coupled
fundamental frequency for an intact aluminum plate under
simply supported boundary conditions with dimensions
of 0.3048 mx0.3048 mx 1.2192 mm. The inspection of
Table 1 shows that there is a proper validity between the
two outcomes, which indicates the reliability of the present
method.

For further verification, the results are also compared
with Lee [41] by considering another value for the cavity
depth as L;=0.1524 m, as shown in Fig. 2. Comparing the
present results with those of Lee [41] indicates an excellent
agreement, particularly in high-frequency ranges more than

frequency ratio of =* = 1.8.
11

Table 1 Comparison of frequency ratio between the present method
and those of harmonic balance method (Lee [20])

Amplitude ratio VIM Lee [20] Error (%)
0.2 2.084 2.083 0.04

0.4 2.114 2.114 0

0.6 2.164 2.165 0.04

0.8 2.231 2.233 0.08

1 2.315 2.316 0.04

1.2 2414 2.412 0.08

1.4 2.527 2.518 0.35
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3.2 Nonlinear natural frequencies of the cracked
plate-cavity system

In this section, the solution procedure is followed to
obtain the nonlinear natural frequencies of the cracked
plate—cavity system. For this purpose, the geometrical
characteristics and physical properties of the present
model are assumed to be L; =0.18 (m), L,=0.38 (m),
h=0.8 (mm), L;=0.866 (m), E=206 (GPa), and
p = 7900 <% > Besides, the following values are used for
the specifications of the air cavity as ¢, = 340 (%) and

p, =121 (k—g ) In order to demonstrate the defect on the

m3
plate, arbitrary amounts are chosen for parameters of the
crack. In fact, it is assumed that the crack is located paral-
lel to the x-axis at non-dimensional distance of £.=0.2
and length of I'=0.3, respectively. By considering these
characteristics, variational iteration method is carried out
for such a system by four iterations. It is noteworthy that
applying this method leads to create some terms at each
iteration which are a function of the nonlinear frequen-
cies, known as secular terms causing to intensify the
vibration amplitude. Since the amplitude of vibration is a
certain amount, it can be deduced that these terms must
be equal to zero at each iteration. Hence, by eliminating
the secular terms at each iteration, the nonlinear frequen-
cies are computed. Therefore, it is carried out four itera-
tions, and the nonlinear frequency at each iteration is
extracted. In order to show the accuracy and convergence
of the present method, three mode numbers are arbitrarily
taken into account, including mode (1, 1) of fully simply
supported, (1, 2) of fully clamped and (2, 1) of simply
supported-clamped boundary conditions. However, due
to the complexity of displaying all of the iterations, only
the secular term associated with the first iteration is dis-
played for the above mode numbers, respectively, as
follows:

1012A11{ (

1.4
1.05 |
All 0.7
h
0351 # multi-level residue HBM ||
VIM
0 1L 1 1 1 1
1.4 1.5 1.6 1.7 1.8 1.9 2
an1
w11

Fig.2 Comparison of backbone curve between the present study
(VIM) and multi-level residue harmonic balance method (HBM),
offered by Lee [41] for an intact simply supported plate surrounded
by an air cavity

As observed clearly in Eq. (30), the numerator of each
fraction must be equal to zero in order that the nonlinear
frequencies for the first iteration can be obtained. A simi-
lar procedure is also followed by four iterations to prove
the convergence of the nonlinear frequencies for the mode
numbers (1, 1), (1, 2) and (2, 1), and the results are listed
in Tables 2, 3 and 4. The achieved outcomes display that
the integral part of each nonlinear frequency for an arbi-
trary vibration amplitude ratio converges. This issue also
implies a high convergence rate for nonlinear problems. In
addition, it should be noted that the first iterations reported
in Tables 2, 3 and 4 are computed by the aid of Eq. (30).
Accordingly, since the fourth iteration of these tables rep-
resents the convergence of the frequencies, four iterations

13.33 - 107"A}; +5.63 - 107'2)a®, + (—1.67A? +0.00- A}, —16.03 - 1077)a],
+(137501.09A%, +3.94,, +0.10)a;, — 68175.53A,; — 2.62 - 10°A? — 1437.69

9.61- 10107 —1.44-10" — 1.6 - 10%a} +5.63a®,

1012A12{ (

18.85- 107194, +36.01 - 10713)a?®, + (=35.36 - 107A,, — 9.3342, — 57.10 - 1077 )},
+(42.64 - 10°A2, +0.00 - A, + 1.87)al, —45.16 - 10'°A2, — 1655.42A, — 157902.22

(30)

~5.71 - 105, — 1.58 - 1017 + 1.90 - 10122, + 1.00 - 105ay, + 3.6a%,

1012A21{

(4.00- 107 — 15.52- 10724, )a§, + (—13.81 - 1077 — 33647 +6.25 - 10724,, ) aj,
+(1.01 +33.53 - 10°A3, — 6.65 - 107'°A, a3, — 181705.27 — 7.73 - 10" A2 14.11 - 10714,

4.00aS, — 1.82 - 1018 — 1.38 - 107aZ, +1.00 - 101302, — 1.00 - 10°ay; + 1.00 - 3,
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Table 2 Convergence of nonlinear frequency related to mode number
(1, 1) of the fully simply supported cracked plate—cavity system

Table 4 Convergence of nonlinear frequency related to mode number
(2, 1) of simply supported-clamped cracked plate—cavity system

/% Intact plate Cracked plate % Intact plate Cracked plate

Iteration Iteration

1 2 3 4 1 2 3 4
0.1 74.75 73.17 73.17 73.17 73.17 0.1 258.56 256.19 256.18 256.18 256.18
0.2 75.72 74.12 74.12 74.12 74.12 0.2 266.21 263.80 263.78 263.78 263.78
0.3 77.33 75.67 75.67 75.67 75.67 0.3 278.55 276.08 275.99 275.99 275.99
0.4 79.54 77.79 77.80 77.79 77.79 0.4 295.06 292.50 292.27 292.27 292.27
0.5 82.30 80.43 80.45 80.44 80.44 0.5 315.12 312.45 312.00 311.98 311.98
0.6 85.56 83.55 83.59 83.57 83.58 0.6 338.12 335.32 334.57 334.54 334.54
0.7 89.28 87.10 87.17 87.12 87.14 0.7 363.50 360.56 359.46 359.41 359.41
0.8 93.39 91.03 91.15 91.05 91.08 0.8 390.81 387.71 386.22 386.15 386.15
0.9 97.86 95.28 95.47 95.29 95.37 0.9 419.67 416.39 414.49 414.40 414.39
1 102.64 99.81 100.12 99.80 99.97 1 449.78 446.30 443.98 443.86 443.85
1.1 107.68 104.59 105.06 104.53 104.87 1.1 480.89 477.22 474.46 474.31 474.30
1.2 112.95 109.57 110.27 109.42 109.91 1.2 512.82 508.94 505.75 505.56 505.55

Table 3 Convergence of nonlinear frequency related to mode number
(1, 2) of fully clamped cracked plate—cavity system

/% Intact plate Cracked plate

Iteration

1 2 3 4
0.1 186.68 17291 172.91 172.91 172.91
0.2 191.00 176.40 176.39 176.39 176.39
0.3 198.01 182.09 182.06 182.06 182.06
0.4 207.47 189.79 189.71 189.71 189.71
0.5 219.09 199.31 199.14 199.14 199.14
0.6 232.56 210.40 210.11 210.10 210.10
0.7 247.59 222.85 222.40 222.38 222.38
0.8 263.91 236.43 235.79 235.77 235.77
0.9 281.30 250.97 250.13 250.09 250.09
1 299.58 266.30 265.25 265.20 265.19
1.1 318.58 282.31 281.02 280.96 280.95
1.2 338.18 298.87 297.35 297.27 297.26

of VIM are also implemented for the other modes of the
boundary conditions, and finally the nonlinear frequen-
cies associated with the fourth iteration of all modes are
reported in Table 5.

Figures 3, 4 and 5 present the influence of the crack
orientation with respect to various boundary conditions. It
is shown that by increasing the crack angle, the frequency
ratio for mode numbers of (1, 1) and (2, 1) is continu-
ally reduced. Still, an opposite behavior is seen for mode

number of (1, 2). It is worth to note that the enhance-
m