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Abstract
This paper deals with analyzing the nonlinear vibration of an isotropic cracked plate interacting with an air cavity. A part-
through surface crack with variable orientations and positions is considered and modeled using the modified line spring 
model. In the first step, based on the Von Karman theory, the governing equation of the nonlinear vibration related to the 
cracked plate–cavity is presented. Then, by employing the Euler equation along with the Galerkin method, the coupling effect 
between the fluid–solid media inside the enclosure is eliminated. In the next step, the variational iteration method (VIM) 
is introduced as an appropriate method for nonlinear analysis of the mentioned system. To this end, the convergence of the 
nonlinear coupled natural frequencies with high precision is proved by performing four iterations of VIM. Finally, the effect 
of the length, angle, and position corresponding to the crack as well as the cavity depth on the frequency ratio is inspected 
for various boundary conditions by plotting three and four-dimensional backbone curves. It is revealed that the crack angle 
is the most effective parameter on the frequency ratio.
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1 Introduction

Plates, as one of the most practical structures, have gained 
great importance these days, so that their applications can 
be observed abundantly in engineering practices, such as air-
craft and shipbuilding factories, automobiles, and train cab-
ins. What is of much importance is to identify cracks created 
in the structure, since the existence of even a small crack can 
cause failure and reduce the permanence of the structure, 
dramatically. Therefore, it is necessary to be presented some 
models in order to inspect such defects. Many authors have 
presented analytical models for crack plates. For example, 
Rice and Levi [1] introduced line spring model for analysis 
of a part-through surface crack at the center of an isotropic 
plate. Their model was based on a two-dimensional theo-
rem of plates and shells, which was a threshold and ana-
lytic method for solving cracked plate problems. Therefore, 
Israr et al. [2–4] developed Rice and Levi’s model [1] to 

investigate the nonlinear vibration of a centrally cracked 
plate. Both stretching and bending compliances of the crack 
were considered into the problem, so that stretching compli-
ance would essentially lead to nonlinear terms. Additionally, 
the crack directly had a significant effect on the stiffness of 
the structure. Yang et al. [5], based on Reddy’s third-order 
shear deformation plate theory, derived governing equations 
in regard to linear and nonlinear vibration of an FGM plate 
containing only a horizontally overall surface crack. Despite 
the examination of the position and depth of the crack, they 
avoided investigating the effect of the crack angle as well as 
the crack size on the natural frequencies. Subsequently, in 
order for Israr’s method to be more practical, this method 
was extended by Ismail and Cartmell [6] for various crack 
angles at the plate center. The obtained results showed that 
with considering the plate under uniaxial load, the funda-
mental frequency of the vertical cracked plate is the same as 
that of an intact one. Following the previous research, Bose 
and Mohanty [7], based on the modified line spring model, 
developed nonlinear vibration of a plate including a part-
through surface crack at an arbitrary position and angle by 
supposing that a biaxial load was exerted to the plate. Unlike 
the results achieved by Ismail and Cartmell [6], the funda-
mental frequency of the vertical cracked plate was not the 
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same as that of intact one due to considering biaxial load. In 
another research, following Israr’s work, a plate having two 
internal perpendicular cracks was studied by Joshi et al. [8]. 
They indicated that maximum and minimum reduction of 
the plate stiffness could occur when the cracks were, respec-
tively, internal and external. Diba et al. [9], by considering 
more vibration modes and the proposed model by Ismail and 
Cartmell [6], extended the nonlinear dynamic response of a 
simply supported cracked plate. Joshi et al. [10] expanded 
their work to present the nonlinear vibration of a cracked 
orthotropic plate for different boundary conditions. It was 
revealed that a crack parallel to the fibers had less effect 
on the natural frequencies in comparison with a crack per-
pendicular to the fibers. Moreover, Joshi et al. [11], Azizi 
et al. [12], and Safaei et al. [13, 14] also considered thermo-
mechanical loads in the governing equations to extend their 
research for a micro-plate, nano-platelet, and sandwich plate, 
respectively.

Most of the vibration analysis is devoted to investigat-
ing structures in the absence of fluid [15, 16]. Nevertheless, 
dynamic responses of engineering structures are influenced 
by environmental fluid surrounding these structures. One 
of the main areas used to simulate solid–fluid interaction is 
the plate–cavity system which has gained extensive attention 
in industries. Vibroacoustic characteristics of structures via 
such a model have been investigated by many researchers. 
Pretlove [17] considered a plate coupled with a rectangular 
cavity. In order for the problem to be solved, he expressed 
the acoustic modes in terms of an arbitrary plate mode esti-
mated by Fourier transform, thereby reducing the coupled 
problem into an uncoupled one. Subsequently, the first 
four natural frequencies of the system were obtained with 
a suitable precision. Moreover, he evaluated the effect of 
the cavity depth and revealed that the parameter was effec-
tive just for low-frequency domain. Following the previous 
research, Quisi [18] studied a rectangular plate interacting 
with an enclosure by considering a few numbers of acous-
tic modes in terms of the plate displacement. A reflected 
spherical wave off an infinite plate–cavity was studied by 
Nakanishi et al. [19]. In another work, Lee [20] inspected 
large amplitude vibration of a backed plate, by the aid of 
the Harmonic Balance Method. In addition, Lee et al. [21] 
extended the previous research for a composite plate, as one 
of the most practical materials in industries [22–24], and 
presented a method which did not need the nonlinear matrix 
to be updated. Li and Cheng [25, 26] examined acoustical 
behavior of a plate and enclosure comprising an inclined 
wall, which disclosed that such a system had different modal 
features. Gorman et al. [27] analyzed different geometry of a 
plate–cavity system. In their work, a circular plate was eval-
uated which was in contact with a fluid inside a cylindrical 
cavity. To obtain coupled natural frequencies, they applied 
the Galerkin method along with modal energy analysis. 

Sound transmission through another various structure con-
taining a double–walled panel and a cavity was studied ana-
lytically by Xin et al. [28–30]. First, research was conducted 
for a clamped panel. Then, in another research, analytical 
results were compared with experimental ones. In following 
their research, the same procedure was also done for a triple-
walled structure. Also, Xin et al. [31] presented the wave 
propagation analysis in a sandwich structure making up of a 
double plate with corrugated core. Hui et al. [32] employed 
the elliptical integral solution to evaluate the nonlinear 
vibration of a plate backed by a multi-acoustic mode cavity. 
They investigated the convergence criterion to obtain appro-
priate acoustic mode. Natural frequencies of an interacting 
plate–cavity system were examined differently by Tanaka 
et al. [33]. They presented eigenfunctions of sound pressure 
in terms of an infinite summation of degenerate eigenfunc-
tions. Shen et al. [34] inspected effective parameters in order 
to diminish transmitted noise through a sandwich panel in 
contact with a fluid inside an enclosure. The obtained results 
showed that some parameters such as core damping, vis-
coelastic core density, and the plate thickness were of great 
importance for noise reduction. In following nonlinear prob-
lems, Sadri and Younesian [35, 36] considered the free and 
force nonlinear vibration of a rectangular plate inside an air 
cavity. First, to obtain the harmonic response of such a cou-
pled system, they supposed an arbitrary transverse excitation 
force exerted to the plate. Then, the multiple-scale method 
was utilized to solve nonlinear equations. Furthermore, they 
analyzed free oscillation of such a coupled system by means 
of variational iteration method. In addition, they continued 
their work to investigate the random vibration of a platform 
modeled by a backed plate [37]. Through this model, it was 
revealed that the more irregular the track is, the more signifi-
cant influence it has on the vibrational behavior and acous-
tical pressure inside the cabin. The interaction between a 
rectangular cavity and a plate containing a distributed mass 
was examined by Pirnat et al. [38]. They were able to reduce 
the complexity of obtaining mode shapes and coupled fre-
quencies by employing some analytical models based on 
the Rayleigh–Ritz method. Bose and Mohanty [39] applied 
corner functions to model a side crack in a rectangular plate 
and study the transmitted sound through the structure. Sadri 
and Younesian [40], in another work, represented free and 
force responses of a sandwich panel considered as two plates 
connected via springy layer. Free vibration analysis of an 
extended cavity coupled with a nonlinear plate was inves-
tigated by Lee [41]. He determined the cavity length as an 
effective parameter on the nonlinear fundamental frequency, 
so that increasing the cavity length results in a remarkable 
reduction in the nonlinear frequency. Lee [42], in continu-
ation of his research, assessed leakage effect on the nonlin-
ear fundamental frequency at the edges of an enclosure. He 
concluded that with enlarging the leakage size, the higher 
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fundamental frequency would be obtained. Vibroacoustic 
behavior of a plate and an acoustic irregular cavity includ-
ing a tilted wall was investigated by Chen et al. [43]. Such a 
structure was evaluated for elastic boundary conditions by 
disassembling the irregular enclosure into some sub-cavities. 
A study on the vibration characteristics of a partially opened 
enclosure interacting with an isotropic plate was also con-
ducted by Shi et al. [44]. The results showed that a consider-
able effect on the vibroacoustic behavior of the system was 
observed due to the opening size. An investigation of effec-
tive parameters on vibroacoustic behavior of a composite 
plate inside a cavity, such as numbers of layers, ply angles, 
and constitutive materials, was carried out by Sarigul and 
Karagozlu [45]. Additionally, their results indicated that the 
cavity had more effect on a plate involving elastic materials 
and fewer layers. Zhang et al. [46] continued the previous 
work and carried out linear analysis of a double compos-
ite plate for elastic boundary conditions. The authors [47] 
examined the linear analysis concerned with the acoustical 
interaction between a cracked plate and an air enclosure for 
different parameters. Nevertheless, in some cases, nonlinear 
phenomena predominate where the large deflections are of 
high importance. Therefore, in the present paper, the nonlin-
ear behavior of a cracked plate–cavity is developed.

Reviewing the above literature indicates that either the 
vibration of cracked plates has been studied without consid-
ering solid–fluid interaction or the vibroacoustic behavior 
of plates without considering any defects has been investi-
gated. As a result, it can be concluded that nonlinear analysis 
of a cracked plate coupled with an enclosure has not been 
studied so far. Herewith, in this research, a new approach 

the air and the cracked plate interaction. Hence, the cou-
pled equations can be changed to uncoupled equations. By 
considering the linear parts of the equations, firstly linear 
natural frequencies are calculated. In the next step, the first 
iteration of VIM is used to compare such a method with 
available literature concerning the nonlinear vibration of an 
intact plate coupled with a cavity. Likewise, four steps of 
variational iteration method are employed for the cracked 
system and three different boundary conditions, in order 
that the convergence of the nonlinear frequencies can be 
obtained. Moreover, three and four-dimensional backbone 
curves are plotted to clarify the influence of the crack direc-
tion, position, and length on nonlinear natural frequencies 
for all kinds of boundary conditions. Finally, the effect of the 
cavity depth on the cracked frequency ratio is also evaluated.

2  Governing equation of motion

Figure 1 shows an enclosure coupled with an isotropic plate 
including a part–through surface crack at an arbitrary loca-
tion and angle. The Cartesian coordinate is used to describe 
dimensions of the system, and stagnated air is considered 
inside the enclosure. The system is made up of five rigid 
walls and an elastic plate with a length of L1, width of L2, 
and thickness of h as well as a cavity with a depth of L3. In 
addition, the crack angle and length are represented by θ and 
2a, and the distance between the crack center and the plate 
center is illustrated by dc along the x-direction. Therefore, 
the governing vibration equation of such a system, based on 
proposed relation for a cracked plate at different orientations 
and locations, is presented as follows [7]:

where Eq.  (1) indicates nonlinear vibration equation of 
the system in which W(x, y, t), P(x, y, L3, t), ρ, and D are 
transverse displacement, acoustic pressure inside the cavity, 
density, and flexural rigidity of the plate, respectively. In 
addition, Nx, Ny, and Nxy are in-plane forces per unit length 
along x, y, and xy plane. Moreover, Jn (n = 1, 2, …23) are 
coefficients which are related to the presence of the crack 
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is considered to inspect the nonlinear structural–acoustic 
coupling for a rectangular box including an arbitrary part-
through surface crack. In the first step, a coupled nonlinear 
equation of the cracked plate surrounded by the cavity is 
introduced. Later, using eigenfunction expansion, the cou-
pled nonlinear equation is converted to the time domain. 
Then, the Euler equation is employed in order to model 
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and defined in Appendix 1. Here, in order for Eq. (1) to be 
achieved, it should be changed to the time domain. Hence, in 
order to be employed the Galerkin method, the displacement 
can be assumed as below:

Accordingly, by substituting Eq. (2) into Eq. (1), it can be 
deduced as follows:

In Eq. (3), Nx, Ny, and Nxy are functions of the plate mode 
shapes. Subsequently, in-plane forces should be rewritten in 
terms of the plate mode shapes. Berger [48] proposed some 
appropriate relations for in-plane forces as follows:
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By substituting Eq. (2) into Eq. (4), in-plane forces result 
in the following equations:

Now, by means of orthogonality of plate modes, each side 
of Eq. (3) should be multiplied by XiYj and then integrated 
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Fig. 1  A plate–enclosure system containing a surface crack
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over the plate dimensions. Thus, the following relation is 
concluded:

where

2.1  Linear analysis of the cracked plate–cavity

First, in order for the linear natural frequencies of Eq. (6) to 
be obtained, the acoustic pressure should be computed. There-
fore, partial differential equation corresponding to the acoustic 
wave pressure exerted on the plate can be written as follows:

where ca is the sound speed inside the air. Equation (2) can 
be attained by the aid of the separation of variables. As a 
result, the acoustic pressure is considered as below:

Related acoustic boundary conditions for such a system 
are expressed by:

Therefore, by replacing Eq. (9) into Eq. (8) and then, with 
the aid of the acoustic boundary conditions represented in 
Eq. (10) along the x and y directions, the acoustic wave 
inside the cavity is achieved in the form of below equation:
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where ω is the coupled linear natural frequency of the sys-
tem, and Tkl(t) is an unknown coefficient that can be deter-
mined via the acoustic boundary condition at z = L3. In this 
work, three modes of the plate for converging the problem 
are taken into account, namely mode numbers of (1, 1), (1, 

2), and (2, 1). Now, by substituting Eq. (2) into Eq. (10) at 
z = L3 as well as considering the three modes, the following 
equation can be found:

Three different boundary conditions can be introduced as 
below:
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(3) For simply supported edges along the x-direction and 
clamped edges along the y-direction, boundary condi-
tions are expressed as (SSCC):

In Eqs. (13-b) and (13-c), the coefficients γm and λn are 
equal to �m =

cosh (�mL1)−cos (�mL1)
sinh (�mL1)−sin (�mL1)

 and �n =
cosh (�nL2)−cos (�nL2)
sinh (�nL2)−sin (�nL2)

 . 
Thus, substituting each type of these boundary conditions into 
Eq. (12), and afterward by using orthogonality of eigenfunc-
tions related to the acoustic pressure, the unknown coefficients 
are acquired in terms of the plate time modes. Finally, the 
acoustic pressure can be introduced as:

where ψ11, ψ12, and ψ21 are defined in Appendix 2 for all 
kinds of boundary conditions. Here, Eq. (14) is substituted in 
Eq. (6), and then, neglecting nonlinear parts of Eq. (6) leads 
to the linear differential equation of the coupled system as:

Equation (15) can be rewritten as below:

w h e r e  �mn
ij

=
1

D
∫ L1
0

∫ L2
0

�mnXiYjdxdy  .  B y  u s i n g 
wij(t) = aij cos(�t

)
 , substituting such a relation into Eq. (16) 

results in

Equation (17) can be rearranged in matrix form as

(13-c)

Xm(x) = sin
(
�mx

)
, �m =

m�

L1
, m = 1, 2,…

Yn(y) = cosh
(
�ny

)
− cos

(
�ny

)
− �n

(
sinh

(
�ny

)
− sin

(
�ny

))

�1 =
4.730041

L2
, �2 =

7.853205

L2
, �3 =

10.995607

L2

(14)P
(
x, y,L3, t

)
≅ 𝜓11ẅ11(t) + 𝜓12ẅ12(t) + 𝜓21ẅ21(t

)

(15)

Mijẅij(t) + Kijwij(t) =
1

D ∫
L
1

0
∫

L
2

0{
𝜓
11
ẅ
11(t) + 𝜓

12
ẅ
12(t) + 𝜓

21
ẅ
21
(t
)}

XiYjdxdy

(16)
Mijẅij(t) + Kijwij(t) = 𝛽11

ij
ẅ11(t) + 𝛽12

ij
ẅ12(t) + 𝛽21

ij
ẅ21(t)

(17)

−�2M11 a11 + K11 a11 = −�2{�11
11
a11 + �12

11
a12 + �21

11
a21}

−�2M12 a12 + K12 a12 = −�2{�11
12
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12
a12 + �21

12
a21}
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21
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21
a12 + �21

21
a21}

(18)

[C]
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⎪⎨⎪⎩

a11
a12
a21

⎫
⎪⎬⎪⎭
= 0

[C] =

⎡⎢⎢⎣

K11 − �2(M11 − �11
11

�
�2�12

11
�2�21

11

�2�11
12
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12

�
�2�21

12

�2�11
21

�2�12
21

K21 − �2(M21 − �21
21

�
⎤⎥⎥⎦

Finally, the natural frequencies of the coupled cracked 
plate and cavity are determined by considering the fact that 
determination of matrix [C] is zero.

2.2  Nonlinear analysis of cracked plate–cavity 
system

In the previous section, the acoustic pressure and linear natu-
ral frequencies of the coupled system were computed. Now, 
it is possible to analyze the nonlinear equation of the system, 
namely Eq. (6). By substituting the coupled linear natural 
frequencies resulting from Eq. (18) into the acoustic pres-
sure represented in Eq. (11) and then replacing into Eq. (6), 
it can be changed as follows:

where in Eq. (19), μij is the added effective mass due to the 
acoustic pressure. Equation (19) is a well-known nonlinear 
equation named Duffing equation. Herewith, to solve such 
a nonlinear problem, variational iteration method (VIM) is 
employed as a semi-analytical method.

Researchers have been utilized different numerical 
methods, such as harmonic balance method [49], per-
turbation method [50, 51], generalized differential quad-
rature method (GDQ) [52–54], domain decomposition 
method [55], in order to analyze nonlinear problems. 
Among available numerical methods, VIM is introduced 
as one of the fast convergent methods for numerical 
problems. VIM was firstly introduced by He [56, 57] in 
order to solve linear and nonlinear problems analytically. 
Accordingly, it is supposed that the following relation is 
available [58, 59]:

where L and N represent linear and nonlinear operators. 
Then, it is assumed that u0(x) is the solution of Lu = 0, 
thereby being employed as the first approximation. Subse-
quently, correction functional is introduced in order to cor-
rect the solution of Eq. (20) as follows [60, 61]:

(19)
(
Mij + 𝜇ij

)
ẅij(t) + Kijwij(t) + Hijw

2
ij
(t) + Gijw

3
ij
(t) = 0

(20)Lu + Nu = g(x)
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where λ, known as Lagrange multiplier, is a function of 
x and ξ, and it is found optimally via variational theory. 
Such a procedure is a repetitive method and stopped at an 
appropriate precision. Here, VIM can be handled in order 
for Eq. (19) to be solved. Firstly, both sides of Eq. (19) are 
divided by (Mij + μij), and the outcome will be as:

where �2
ij
 , � ij and φij are defined

Correction functional for Eq. (22) is presented as fol-
lows so that VIM can be started:

The Lagrange multiplier is determined by using the 
variational theory. Therefore, applying variation on both 
sides of Eq. (24), and knowing δwij(t) = 0, the following 
relation is deduced as:

Stationary conditions are concluded from Eq. (25) as 
follows:

Finally, the Lagrange multiplier is obtained as:

Now, the obtained Lagrange coefficient is replaced into 
Eq. (24). Finally, the correction functional can be written as:

(21)un+1(x) = un(x) + ∫
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0
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{
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}
d�
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As it was declared, VIM starts by an initial approxi-
mation. Thus, by assuming that initial conditions are 
wij(t)|t=0 = Aij and ẇij(t)|t=0 = 0 , the first approximation is 
presented as:

where Aij is the vibration amplitude and αij is the nonlinear 
frequency of the coupled system, so that it is found by the 
following procedure. By replacing Eq. (29) into Eq. (28), 
and knowing that the structure vibrates with limited ampli-
tude, it must be eliminated a secular term appearing at each 
iteration, which appears in form of cos(ωijt).

3  Numerical results

3.1  Validation

In the previous section, variational iteration method was 
introduced as an appropriate technique for linear and non-
linear problems. In order to prove the accuracy of the pre-
sent method, the outcomes are compared with those of Lee 
[20] as listed in Table 1. Hence, the first iteration of VIM is 
applied to obtain the ratio of nonlinear and linear coupled 
fundamental frequency for an intact aluminum plate under 
simply supported boundary conditions with dimensions 
of 0.3048 m × 0.3048 m × 1.2192 mm. The inspection of 
Table 1 shows that there is a proper validity between the 
two outcomes, which indicates the reliability of the present 
method.

For further verification, the results are also compared 
with Lee [41] by considering another value for the cavity 
depth as L3 = 0.1524 m, as shown in Fig. 2. Comparing the 
present results with those of Lee [41] indicates an excellent 
agreement, particularly in high-frequency ranges more than 
frequency ratio of �11

�11

= 1.8.

(29)
(
(wij(t)

)
0
= Aij cos

(
�ijt

)

Table 1  Comparison of frequency ratio between the present method 
and those of harmonic balance method (Lee [20])

Amplitude ratio VIM Lee [20] Error (%)

0.2 2.084 2.083 0.04
0.4 2.114 2.114 0
0.6 2.164 2.165 0.04
0.8 2.231 2.233 0.08
1 2.315 2.316 0.04
1.2 2.414 2.412 0.08
1.4 2.527 2.518 0.35
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3.2  Nonlinear natural frequencies of the cracked 
plate–cavity system

In this section, the solution procedure is followed to 
obtain the nonlinear natural frequencies of the cracked 
plate–cavity system. For this purpose, the geometrical 
characteristics and physical properties of the present 
model are assumed to be L1 = 0.18 (m), L2 = 0.38 (m), 
h = 0.8 (mm), L3 = 0.866 (m), E = 206 (GPa), and 
� = 7900

(
kg

m3

)
 . Besides, the following values are used for 

the specifications of the air cavity as ca = 340
(
m
s

)
 and 

�a = 1.21
(

kg

m3

)
 . In order to demonstrate the defect on the 

plate, arbitrary amounts are chosen for parameters of the 
crack. In fact, it is assumed that the crack is located paral-
lel to the x-axis at non-dimensional distance of ξc = 0.2 
and length of Γ = 0.3, respectively. By considering these 
characteristics, variational iteration method is carried out 
for such a system by four iterations. It is noteworthy that 
applying this method leads to create some terms at each 
iteration which are a function of the nonlinear frequen-
cies, known as secular terms causing to intensify the 
vibration amplitude. Since the amplitude of vibration is a 
certain amount, it can be deduced that these terms must 
be equal to zero at each iteration. Hence, by eliminating 
the secular terms at each iteration, the nonlinear frequen-
cies are computed. Therefore, it is carried out four itera-
tions, and the nonlinear frequency at each iteration is 
extracted. In order to show the accuracy and convergence 
of the present method, three mode numbers are arbitrarily 
taken into account, including mode (1, 1) of fully simply 
supported, (1, 2) of fully clamped and (2, 1) of simply 
supported-clamped boundary conditions. However, due 
to the complexity of displaying all of the iterations, only 
the secular term associated with the first iteration is dis-
played for the above mode numbers, respectively, as 
follows: 

(30)

1012A11

{(
13.33 ⋅ 10−11A11 + 5.63 ⋅ 10−12

)
�6
11
+
(
−1.67A2

11
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�4
11

+
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11
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)
�2
11
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− 1437.69

}
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)
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)
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21
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(
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)
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+
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21
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)
�2
21
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− 1.82 ⋅ 1018 − 1.38 ⋅ 107�4

21
+ 1.00 ⋅ 1013�2

21
− 1.00 ⋅ 106�21 + 1.00 ⋅ �3
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As observed clearly in Eq. (30), the numerator of each 
fraction must be equal to zero in order that the nonlinear 
frequencies for the first iteration can be obtained. A simi-
lar procedure is also followed by four iterations to prove 
the convergence of the nonlinear frequencies for the mode 
numbers (1, 1), (1, 2) and (2, 1), and the results are listed 
in Tables 2, 3 and 4. The achieved outcomes display that 
the integral part of each nonlinear frequency for an arbi-
trary vibration amplitude ratio converges. This issue also 
implies a high convergence rate for nonlinear problems. In 
addition, it should be noted that the first iterations reported 
in Tables 2, 3 and 4 are computed by the aid of Eq. (30). 
Accordingly, since the fourth iteration of these tables rep-
resents the convergence of the frequencies, four iterations 

Fig. 2  Comparison of backbone curve between the present study 
(VIM) and multi-level residue harmonic balance method (HBM), 
offered by Lee [41] for an intact simply supported plate surrounded 
by an air cavity
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of VIM are also implemented for the other modes of the 
boundary conditions, and finally the nonlinear frequen-
cies associated with the fourth iteration of all modes are 
reported in Table 5.

Figures 3, 4 and 5 present the influence of the crack 
orientation with respect to various boundary conditions. It 
is shown that by increasing the crack angle, the frequency 
ratio for mode numbers of (1, 1) and (2, 1) is continu-
ally reduced. Still, an opposite behavior is seen for mode 

number of (1, 2). It is worth to note that the enhance-
ment of such a factor at each amplitude ratio presents an 
extremum value. Additionally, for low amplitude ratio, 
although the frequency ratio is approached to the unit, the 
increase of the crack angle cannot remarkably affect it. 
Meanwhile, when the amplitude ratio is increased, not only 
is the frequency ratio raised due to increase of nonlineari-
ties, but the effect of the crack orientation is also easily 
seen. According to this fact that the maximum stiffness of 
the structure corresponds to clamped boundary conditions, 
it is inferred that the frequency ratio for mode numbers of 
(1, 1) and (2, 1) decreases with lower rate compared to the 
other boundary conditions.

In the following, in order to highlight the simultaneous 
effect of the non-dimensional distance of the crack and 
amplitude ratio on the frequency ratio, some other three 
dimensional configurations are plotted. Accordingly, Fig. 6 
is presented, including some subfigures from (a) to (c). As 
it is obvious, each of these figures is shown for the funda-
mental frequency ratio with respect to various boundary 
conditions. Based on the outcomes, it is concluded that 
when the crack is approached to the edges of the plate, the 
frequency ratio reduces. This trend is due to the fact that 
the closer the crack is to the plate edges, the more rigid 
the plate is, which subsequently the difference between the 
nonlinear and linear frequency decreases. It is worth to 
emphasize that this matter for the other modes are simi-
larly affected; therefore, they are neglected for avoiding 
repetitive plots.

Table 2  Convergence of nonlinear frequency related to mode number 
(1, 1) of the fully simply supported cracked plate–cavity system

A
11

h
Intact plate Cracked plate

Iteration

1 2 3 4

0.1 74.75 73.17 73.17 73.17 73.17
0.2 75.72 74.12 74.12 74.12 74.12
0.3 77.33 75.67 75.67 75.67 75.67
0.4 79.54 77.79 77.80 77.79 77.79
0.5 82.30 80.43 80.45 80.44 80.44
0.6 85.56 83.55 83.59 83.57 83.58
0.7 89.28 87.10 87.17 87.12 87.14
0.8 93.39 91.03 91.15 91.05 91.08
0.9 97.86 95.28 95.47 95.29 95.37
1 102.64 99.81 100.12 99.80 99.97
1.1 107.68 104.59 105.06 104.53 104.87
1.2 112.95 109.57 110.27 109.42 109.91

Table 3  Convergence of nonlinear frequency related to mode number 
(1, 2) of fully clamped cracked plate–cavity system

A
12

h
Intact plate Cracked plate

Iteration

1 2 3 4

0.1 186.68 172.91 172.91 172.91 172.91
0.2 191.00 176.40 176.39 176.39 176.39
0.3 198.01 182.09 182.06 182.06 182.06
0.4 207.47 189.79 189.71 189.71 189.71
0.5 219.09 199.31 199.14 199.14 199.14
0.6 232.56 210.40 210.11 210.10 210.10
0.7 247.59 222.85 222.40 222.38 222.38
0.8 263.91 236.43 235.79 235.77 235.77
0.9 281.30 250.97 250.13 250.09 250.09
1 299.58 266.30 265.25 265.20 265.19
1.1 318.58 282.31 281.02 280.96 280.95
1.2 338.18 298.87 297.35 297.27 297.26

Table 4  Convergence of nonlinear frequency related to mode number 
(2, 1) of simply supported-clamped cracked plate–cavity system

A
21

h
Intact plate Cracked plate

Iteration

1 2 3 4

0.1 258.56 256.19 256.18 256.18 256.18
0.2 266.21 263.80 263.78 263.78 263.78
0.3 278.55 276.08 275.99 275.99 275.99
0.4 295.06 292.50 292.27 292.27 292.27
0.5 315.12 312.45 312.00 311.98 311.98
0.6 338.12 335.32 334.57 334.54 334.54
0.7 363.50 360.56 359.46 359.41 359.41
0.8 390.81 387.71 386.22 386.15 386.15
0.9 419.67 416.39 414.49 414.40 414.39
1 449.78 446.30 443.98 443.86 443.85
1.1 480.89 477.22 474.46 474.31 474.30
1.2 512.82 508.94 505.75 505.56 505.55
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Following the discussed issues, some other four-dimen-
sional configurations involving Figs. 7, 8 and 9 are demon-
strated to remark the simultaneous influences of the crack 
angle, non-dimensional length, and amplitude ratio on the 
frequency ratio for the mode numbers (1, 1) of fully simply 
supported (Fig. 7), (1, 2) of fully clamped (Fig. 8) and (2, 1) 
of simply supported-clamped boundary conditions (Fig. 9). 
As perceived from the outcomes, it is easily seen that the 
crack length does not have any effect on the results, so that 
by increasing this factor, no variation is created in all four-
dimensional figures. Hence, the influence of such a param-
eter is negligible on the frequency ratio. However, as previ-
ously concluded from Figs. 3, 4 and 5, it can be deduced that 
enhancing the crack angle parameter makes the frequency 
ratio decrease for both the mode numbers (1, 1) and (2, 1). 
Meanwhile, the trend of the figure for the mode number (1, 
2) is different. In fact, by increasing this parameter, although 
the frequency ratio has increasing trend to a certain angle, it 
decreases after this angle.

Here, the aim is to show the effect of the cavity depth 
on the ratio of the cracked coupled nonlinear frequency 
and the intact plate linear frequency. Hence, a specific 
crack is assumed with characteristics ξc = 0.2, Γ = 0.3 
and θ = 30°. Subsequently, the frequency ratio is plotted 
versus the cavity depth and amplitude ratio, represented 
in Figs. 8, 9 and 10 for the three boundary conditions. 
Inspection of these figures presents that the cavity depth 
has a remarkable influence on the frequency ratio, so that 
with increasing the cavity depth at an arbitrary ampli-
tude ratio, the frequency ratio continuously decreases. 
Additionally, as clearly observed, it can be inferred that 
increasing the cavity depth for a low amplitude ratio 
causes the amount of the cracked coupled nonlinear 
frequency to become less than the plate intact linear 

frequency, namely less than the unit. Furthermore, the 
effect of the cavity depth is seen more obvious by increas-
ing the amplitude ratio.

4  Conclusion

In this paper, the nonlinear vibration of a plate, as well as 
a surrounding cavity, was studied. The plate included a 
part-through surface crack considered at an arbitrary posi-
tion and direction, modeled by the modified line spring 
model. In the first step, the Euler equation was employed 
to introduce solid–fluid interaction. Subsequently, the 
linear analysis of the cracked plate–cavity system could 
be analyzed. In the next step, in order for the nonlin-
ear part of the problem to be solved, variational itera-
tion method (VIM) was introduced as a practical method 
with high precision. Therefore, by implementing such a 
method by four iterations, the convergence of nonlinear 
frequencies of all boundary conditions was indicated. 
Additionally, the examination of the crack direction, 
as the most effective parameter on the frequency ratio, 
revealed that the frequency ratio of modes (1, 1) and (2, 
1) decreased continuously as the crack angle increased, 
and the reduction was more obvious for a higher vibration 
amplitude. However, the frequency ratio related to mode 
(1, 2) increased to a specific angle and then decreased. 
Also, the inspection of the crack position indicated that 
the closer the crack is to the plate edges, the less the 
amount of the frequency ratio is. Further, presenting four-
dimensional backbone curves for studying the effect of 
the crack length on the frequency ratio proved that this 
crack parameter had less effect on the frequency ratio than 

Table 5  The nonlinear 
frequencies related to three 
modes of cracked plate–cavity 
systems for different boundary 
conditions

Aij

h

SSSS SSCC CCCC 

α11 α12 α21 α11 α12 α21 α11 α12 α21

0.1 73.17 102.70 251.42 77.53 114.79 256.18 143.43 172.91 388.53
0.2 74.12 103.69 255.29 79.33 117.45 263.78 146.22 176.39 402.08
0.3 75.67 105.31 261.62 82.25 120.61 275.99 150.75 182.06 423.76
0.4 77.79 107.53 270.24 86.18 124.90 292.27 156.88 189.71 452.42
0.5 80.44 110.33 280.95 90.98 130.22 311.98 164.43 199.14 486.86
0.6 83.58 113.66 293.53 96.52 136.44 334.54 173.22 210.10 525.97
0.7 87.14 117.47 307.75 102.64 143.46 359.41 183.04 222.38 568.77
0.8 91.08 121.73 323.40 109.17 151.16 386.15 193.71 235.77 614.51
0.9 95.37 126.39 340.29 115.96 159.45 414.39 205.03 250.09 662.57
1 99.97 131.41 358.23 122.79 168.24 443.85 216.79 265.19 712.48
1.1 104.87 136.74 377.09 129.42 177.45 474.30 228.78 280.95 763.86
1.2 109.91 142.36 396.73 135.54 187.03 505.55 240.75 297.26 816.43
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Fig. 3  Three-dimensional 
configurations for the frequency 
ratio versus crack angle and 
amplitude ratio for simply sup-
ported boundary conditions at 
various mode numbers a (1, 1), 
b (1, 2) and c (2, 1)
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Fig. 4  Three-dimensional 
configurations for the frequency 
ratio versus crack angle and 
amplitude ratio for clamped 
boundary conditions at various 
mode numbers a (1, 1), b (1, 2) 
and c (2, 1)
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Fig. 5  Three-dimensional 
configurations for the frequency 
ratio versus crack angle and 
amplitude ratio for simply 
supported-clamped boundary 
conditions at various mode 
numbers a (1, 1), b (1, 2) and 
c (2, 1)
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Fig. 6  Investigation of simulta-
neous effect of amplitude ratio 
and non-dimensional distance 
on fundamental frequency 
ratio for a cracked plate–cavity 
system with respect to various 
boundary conditions a simply 
supported, b clamped and c 
simply supported-clamped
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Fig. 7  Frequency ratio plotted 
versus amplitude ratio, crack 
length, and crack angle for a 
cracked plate–enclosure with 
respect to various boundary 
conditions a simply sup-
ported, b clamped and c simply 
supported-clamped
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the other parameters. At last, the examination of the cav-
ity depth showed that increasing this parameter resulted 
in diminishing the frequency ratio.

Appendix 1

The coefficients related to the crack in Eq. (1), namely Jn 
(n = 1…23), are defined as below [7]:

(31)J1 = 1 − �1 sin
4 (�) −

1

2
�5 sin

2 (2�)

(32)J2 = −�1 sin
2 (�) cos2 (�) +

1

2
�5 sin

2 (2�)

(33)J3 =
1

2
�1 sin

2 (�) sin (2�) +
1

4
�5 sin (4�)

Fig. 8  Cracked coupled nonlin-
ear frequency and intact plate 
linear frequency ratio plotted 
versus cavity depth and ampli-
tude ratio for simply supported 
boundary conditions

Fig. 9  Cracked coupled nonlin-
ear frequency and intact plate 
linear frequency ratio plotted 
versus cavity depth and ampli-
tude ratio for clamped boundary 
conditions
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(34)J4 = 1 − �4 cos
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1

2
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(43)J13 = �2 sin
4 (�) +

1

2
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2 (2�) where φn (n = 1…8) are expressed as follows:
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4
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Fig. 10  Cracked coupled non-
linear frequency and intact plate 
linear frequency ratio plotted 
versus cavity depth and ampli-
tude ratio for simply supported-
clamped boundary conditions
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where γ and Γ are the non-dimensional plate thickness and 
crack length, respectively. In addition, R and T are defined 
as follows:

(54)�1 =
1 +

3(3+�)(1−�)

2

�

�
�bb

R

(55)
�2 =

3(1−�2)
�L1

�bt

R

(56)�3 =

(3+�)(1−�)

4

�2L1

�
�bt

R

(57)�4 =
1 +

1−�2

2

�

�
�tt

R

(58)�5 =
1 +

3(1+�)

2

�

�
cbb

T

(59)�6 =

3(1+�)

2

�

�
cbt

T

(60)�7 =

(1+�)

4

�2L1

�
cbt

T

(61)�8 =
1 +

(1+�)

2

�

�
ctt

T

In (62) and (63), non-dimensional coefficients αtt, αbb, 
αbt = αtb are called compliance coefficients defined for 
symmetric loading (mode I) and introduced by Rice and 
Levi [1]. Subscripts t and b are corresponding stretching 
loading and bending loading, respectively. Likewise, the 
other non-dimensional coefficients Ctt, Cbb, Cbt = Ctb, are 
employed for anti-symmetric loading. These coefficients, 
which are a function of the non-dimensional depth of the 
crack (ξ), have been reported for ξ = 0.7 at the center of 
the plate as below [7]:

As the crack is not located at the center of the plate, 
such coefficients, based on the modified line spring model 

[62], are multiplied by 2
√

�

��
exp

(
−
(�−�c)

2
L2
1

�∕�

)
 in which 

�c =
dc

L1
 is called eccentricity ratio or non-dimensional dis-

tance between the crack center and the plate center.
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(64)

�tt = 9.8181, �bb = 2.4367, �bt = �tb = 4.8758

Ctt = 0.503067, Cbb = −0.00395861, Cbt = Ctb = −0.045906
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Appendix 2

ψ11, ψ12, and ψ21 in Eq. (14) for each kind of boundary 
conditions are defined in Tables 6, 7 and 8.   
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