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Abstract
A novel hybrid many-objective evolutionary algorithm called Reference Vector Guided Evolutionary Algorithm based on 
hypervolume indicator (H-RVEA) is proposed in this paper. The reference vectors are used in a number of sub-problems to 
decompose the optimization problem. An adaptation strategy is used in the proposed algorithm to adjust the reference vec-
tor distribution. The proposed algorithm is compared over well-known benchmark test functions with five state-of-the-art 
evolutionary algorithms. The results show H-RVEA’s superior performance in terms of the inverted generational distance and 
hypervolume performance measures than the competitor algorithms. The suggested algorithm’s computational complexity 
is also analysed. The statistical tests are carried out to demonstrate the statistical significance of the proposed algorithm. In 
order to demonstrate its efficiency, H-RVEA is also applied to solve two real-life constrained many-objective optimization 
problems. The experimental results indicate that the proposed algorithm can solve the many-objective real-life problems. 
Note that the source codes of the proposed technique are available at http://dhima ngaur av.com/.

Keywords Many-objective optimization · Hypervolume estimation algorithm · Reference vector guided evolutionary 
algorithm · Constrained optimization · Pareto optimality

1 Introduction

Researchers have developed and designed the number of 
new evolutionary multi-objective algorithms over the past 
few years to solve problems with more than two objectives 
[1–3]. multi-objective evolutionary algorithms (MOEAs) 
are a type of population based heuristics [4–9] that, during 
simulation runs, can get a group of solutions. Nonetheless, 
some real-life issues, such as vehicle engine tuning problems 
[10], water distribution systems [11], and land use manage-
ment problems [12] and so on [13–22] also require a large 

number of objectives. MOEAs also face some challenges in 
tackling these multiple objectives. The selection methods are 
the reason behind the failure of most MOEAs. To converge 
the population to the Pareto front, such methods are use-
ful. When the number of objectives increases, it is difficult 
to maintain the diversity, as the solutions are very sparsely 
allocated within the objective search space.

Non-dominated Sorting Genetic Algorithm (NSGA-II) [23] 
and Strength Pareto Evolutionary Algorithm 2 (SPEA2) [24] 
are the most popular multi-objective evolutionary algorithms. 
Both of these algorithms use dominance based selection strat-
egy that fails to solve problems with more than three objectives.

To address this issue, researchers have developed new 
optimization algorithms to deal with a large number of 
objectives [25–30], also referred to as the Many-Objective 
Problems (MaOPs). The main challenges in MaOPs are:

• Pareto’s front visualization in a search space requires 
special procedures [31].

• The fact of the dominance resistance (DR), in which the 
gap between the solutions is caused by an increase in the 
amount of non-dominated solutions [32–34].
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• The number of solutions has increased exponentially to 
define the multi-dimensional Pareto front problems [35, 
36].

Most of the MaOPs concentrate on maintaining diversity and 
enhancing convergence. Such algorithms are not about using 
preferences for many-objective problems. This is because the 
researchers may be interested in optimal Pareto solutions and 
less computational effort [37–44] to achieve a demonstrative 
subset of the Pareto front [45].

There are several evolutionary algorithms that have been 
developed to improve the effectiveness of algorithms to solve 
MaOPs [46–48]. Reference Vector Guided Evolutionary 
Algorithm (RVEA) [49] is a recently developed decomposi-
tion based approach that can produce optimal solutions using 
reference points for a Pareto subset of solutions. Such points 
of reference are useful for greater convergence. Despite this, 
the most common algorithm based on hypervolume indica-
tor is the Hypervolume Estimation Algorithm (HypE) [50] 
which uses the Monte Carlo simulation to estimate the exact 
hypervolume values and maintain diversity.

The main contribution of this work is the development of 
a novel hybrid evolutionary algorithm using the principles of 
RVEA and HypE algorithms. The algorithm is called Refer-
ence Vector Guided Evolutionary Algorithm based on the 
Hypervolume indicator (H-RVEA). H-RVEA’s four main 
strategies are mating selection, variation, environmental 
selection, and adaptation strategy for reference vectors. The 
mating selection strategy is used to exchange information 
between individuals, and to select from the current popu-
lation the most promising optimal solution. The variation 
method utilize operators of recombination and mutation to 
generate new offspring. It is the task of the environmental 
selection strategy to break and merge the strategies into non-
dominated fronts. The Adaptation technique for the refer-
ence vector is used to enhance the search process and to 
decompose the problem into a sub-problem.

H-RVEA’s performance is tested on well-known bench-
mark test problems. The two performance measures, namely 
Inverted Generational Distance (IGD) [51] and Hypervol-
ume (HV) [52], have been used to assess the algorithms. 
The results have been compared with five approaches 
such as Reference Vector Guided Evolutionary Algorithm 
(RVEA) [49], Hypervolume Estimation Algorithm (HypE) 
[50], Non-dominated Sorting Genetic Algorithm (NSGA-
III) [53], Many-Objective Evolutionary Algorithm based 
on Dominance and Decomposition (MOEA/DD) [54], and 
Approximation-guided Evolutionary Algorithm (AGE-II) 
[55]. Therefore, to illustrate its usefulness, H-RVEA has 
been applied to two real-life many-objective problems.

The rest of the paper has the following structure: Sect. 2 
represents the basics of many-objective problems and two 

many-objective evolutionary algorithms. Section 3 presents 
the motivation and brief description of proposed H-RVEA 
algorithm. Results and discussions of experiments are given 
in Sect. 4. Section 5 presents the performance of H-RVEA 
on two real-life problems followed by conclusions and future 
works in Sect. 6.

2  Background

In this section, the basic concepts of Multi-Objective Prob-
lems (MOPs) are presented. Then, the brief descriptions of 
RVEA and HypE algorithms are presented.

2.1  Basic concepts

Multi-Objective Optimization Problems (MOPs) involve 
more than one objective which is to be optimized. The 
MOPs can be formulated as follows:

where n defines the number of objective functions and f (x⃗) 
defines the objective function. However, the feasible space R 
is a subset of decision space (D), which consists the decision 
vectors x⃗ = (x⃗1, x⃗2,… , x⃗m)

T.

2.2  Reference Vector Guided Evolutionary 
Algorithm (RVEA)

Reference Vector Guided Evolutionary Algorithm (RVEA) 
is an evolutionary algorithm for many-objective optimiza-
tion problems [49]. The main components of the RVEA 
algorithm are offspring production, guided selection of the 
reference vector, and strategies for adapting the reference 
vector. The genetic operators, as used in NSGA-III and 
HypE, are employed to build the offspring population. The 
guided selection method for the reference vector consists of 
four steps, namely objective value translation, population 
partitions, Angle Penalized Distance (APD) calculation and 
elitism selection [49]. RVEA uses their strategies of elitism 
and offspring as similar to the NSGA-III algorithm. Its selec-
tion strategy adopts a set of reference vectors. Angle Penal-
ized Distance (APD) is used to align the convergence and 
diversity properly. An adaptive technique is used to modify 
the reference vectors to ensure a consistent distribution of 
solutions within the objective space. The preferential articu-
lation method based on the reference vector is used to get 
optimal solutions in a chosen area uniformly distributed by 
Pareto. The RVEA is described in the Algorithm 1 [49]. 

(1)
Minimize f (x⃗) = (f1(x⃗), f2(x⃗), f3(x⃗),… , fn(x⃗))

Subject to: x⃗ ∈ R
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2.3  Hypervolume Estimation Algorithm (HypE)

Bader and Zitzler [50] have proposed a MOEA based rapid 
hypervolume indicator, namely Hypervolume Estimation 
Algorithm (HypE). The main concept behind HypE is the 
rating by the hypervolume of solutions achieved. HypE uses 
a generalized technique of granting fitness. The hypervol-
ume values are calculated using Monte-Carlo simulation. 
Mating selection, variation, and environmental selection are 
key components of HypE. Selection of binary tournament is 
used to select offspring. The variation employed operators of 
recombination and mutation to produce offspring. Through-
out environmental selection, the populations of parents and 
children are integrated and decomposed into non-dominated 
fronts, and the new population is added with the best fronts. 
The HypE is described in Algorithm 2 [50]. 

3  Proposed H‑RVEA Algorithm

This section describes the motivation and overall procedure 
of proposed H-RVEA algorithm.

3.1  Motivation

The researchers have pointed to difficulties of convergence 
and diversity with more than four objectives for real-life 
problems. Therefore, an algorithm must be established 
which maintains the convergence and diversity. In this paper 
the hypervolume indicator is used to preserve the diversity. 
The reason for preferring this measure over others is: 

1. Hypervolume indicator removes the lack of selection 
pressure.

2. The value of this indicator is optimized directly, without 
the need for niching, which helps to maintain the diver-
sity.

3. This indicator ensures that any approximation set with 
a high quality value for a specific problem includes all 
optimal objective vectors from Pareto [56].
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Hypervolume calculation, however, requires a high compu-
tational effort. We have used fast HypE algorithm to solve 
this problem. HypE suffers from the overheads of having the 
information needed. We have used reference vector adapta-
tion strategy to preserve the knowledge. The reference vector 

adaptation strategy is taken from RVEA algorithm. There-
fore, a novel hybrid algorithm is proposed which employs 
both HypE and RVEA features.

Fig. 1  Flowchart of the pro-
posed H-RVEA algorithm
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3.2  Proposed algorithm

The intend to propose the H-RVEA is to solve problems 
that have a large number of objectives. The basic procedure 
of proposed H-RVEA is mentioned in Algorithm 3. The 
H-RVEA is inspired by RVEA and HypE algorithms (see 
Fig. 1). H-RVEA consists of four main components. These 
are mating selection (Algorithm 4), variation, environmen-
tal selection (Algorithm 8), and reference vector adaptation 
strategy (Algorithm 9). Initially, it starts with the randomly 
generated population P and N number of individuals. The 
mating selection procedure is used to select the promising 
solutions in a search space. The variation uses the mutation 
and recombination operators to generate the N number of 
offspring. The environmental selection procedure is used 
for the selection of the best optimal solution. Finally, the 
reference vector adaptation strategy is performed to obtain 
a uniformly distributed Pareto optimal solutions set. 

3.2.1  Mating selection

The mating selection is a procedure for exchanging the 
information between individuals and to select the promis-
ing optimal solutions from the current population. The mat-
ing selection strategy of proposed H-RVEA is described in 
Algorithm 4. When the number of objectives is less than 3 
( ≤ 3 ), then the computation of hypervolume is done through 
Computehypervolume procedure which is mentioned in 
Algorithm 5. Otherwise, the computation of hypervolume 
is done through the Estimatehypervolume procedure which 
is mentioned in Algorithm 7.

The Computehypervolume procedure uses the recursive 
function Slicing and returns a fitness assignment � and a 

multi-set containing a pair ( a,wa ), where wa is fitness value 
and a ∈ P . The Slicing procedure mentioned in Algorithm 6, 
recursively cut the dominated space into hyper-rectangles 
and returns a partial fitness assignment �′ . The scanning 
process is performed at each recursive level l with u′ , where 
u′ represents the current scan position. The scan positions 
are included in vector (s1, s2,… , sn) which contains all the 
dimensions. The partial volume PV is updated and reference 
points are filtered out during whole the recursive process 
(Line 2 and 3). Example 1 is used to describe the working 
of Computehypervolume procedure.

The Estimatehypervolume procedure returns a fitness 
assignment � corresponding to the estimated hypervolume as 
mentioned in Algorithm 7. The first step is to determine the 
sampling box S which is a superset of approximate hyper-
volumes. Thereafter, the volume of sampling space S is com-
puted (Line 6). For sampling process the M objective vectors 

(y1, y2,… , yM) are selected from S randomly. Based on the 
sampling point an estimation of hypervolume is done. The 
hypervolumes values are then updated during procedure call.

Example 1 (Hypervolume computation) Consider the pop-
ulation contains four solutions i.e., w, x, y, z with objec-
tive vectors f (w) = (−9,−2,−1), f (x) = (−7, 0,−7), f (y)

= (−5,−7,−9), f (z) = (−3,−4,−10) , fitness parameter 
fp = 2 , reference points r = (−1, 0, 0) , and y = (−1,−2,−3).

Firstly, call the Slicing procedure in which the value of l 
is set to 3 and U contains all objective vectors and reference 
points. According to the third vector components, the U with 
its elements are sorted in ascending order.
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The variable u′ assigned the third vector value of 
these elements to f3(z) = −10, f3(y) = −9, f3(x) = −7,

y3 = −3, f3(w) = −1, r3 = 0 . During iteration process, 
U is reduced and assign u� = f3(x) = −7 and update the 
value of PV� = 1 × (−3 − (−7)) = 4 with scan positions 
(s1, s2, s3) = (∞,∞,−7) . Now, these values are passed to 
next recursion level l = 2 and process the Line 13 in Slicing 
procedure, where U is initialized.

In the next level, the sorting is performed according to 
second dimension of these elements.

Therefore, variable u′ assigned the second vector value 
t o  f2(y) = −7, f2(z) = −4, y2 = −2, f2(x) = 0, r2 = 0  . 

U =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f (z) = (−3,−4,−10)

f (y) = (−5,−7,−9)

f (x) = (−7, 0,−7)

y = (−1,−2,−3)

f (w) = (−9,−2,−1)

r = (−1, 0, 0)

U =

⎧
⎪⎪⎨⎪⎪⎩

f (y) = (−5,−7,−9)

f (z) = (−3,−4,−10)

y = (−1,−2,−3)

f (x) = (−7, 0,−7)

r = (−1, 0, 0)

U is further reduced and assign u� = f2(x) = 0 . The 
value of PV� = 1 × 4 × (0 − 0) = 0 and scan positions 
(s1, s2, s3) = (∞, 0,−7) . For the next recursion level l = 1 in 
which the sorting is performed according to first vector, then 
the U is computed as follows.

In the second iteration, variable u′ assigned the first vec-
tor value to f1(x) = −7, f1(y) = −5, f1(z) = −3, r1 = −1 
a n d  h o l d s  u� = f1(y) = −5  .  T h e  v a l u e  o f 
PV� = 1 × 4 × 0 × (−3 − (−5)) = 0 and scan positions 
(s1, s2, s3) = (−5, 0,−7) . Once the recursion level is reached 
at level 0 ( l = 0 ), the � is computed with N number of pop-
ulation size, fitness parameter fp = 2 , and hyperrectangle 
RS = 0 . Therefore, the whole procedure is applied to all 
slices to identifies all hyperrectangles of the search space.

U =

⎧⎪⎨⎪⎩

f (x) = (−7, 0,−7)

f (y) = (−5,−7,−9)

f (z) = (−3,−4,−10)

r = (−1, 0, 0)
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Fig. 2  Uniformly distributed reference vectors in 3D search space

3.2.2  Environmental selection

Environmental selection is a procedure to obtain a well-dis-
tributed population and to keep it in a memory. It chooses 
the best optimal solutions from the previous and newly cre-
ated population. The proposed H-RVEA algorithm imple-
ments the environmental selection strategy with hypervol-
ume subset selection problem [50]. Algorithm 8 describes 
the environmental selection strategy for creating a new 
population. Firstly, the nondominated sorting approach [23, 
57] is used for partitioning the union of parent and offspring 
into disjoint partitions. The partition that fits into the new 
population is further processed [50]. The fitness value of 
each partition is computed and remove the individual with 
the worst fitness assignment. The parents and offsprings are 



3025Engineering with Computers (2021) 37:3017–3035 

1 3

merged into population P which truncates the non-fitted 
solutions. Therefore, the dominated solutions do not affect 
the overall value of hypervolume. Algorithm 8 is repeated 
until the desired size of a partition is not found and returns 
the generated new population T. 

3.2.3  Reference vector adaptation strategy

The proposed H-RVEA algorithm uses reference vector 
adaptation [49] strategy to obtain a set of Pareto optimal 
solutions as shown in Fig. 2.
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Algorithm 9 mentions this strategy. These solutions are 
the points of intersection between each reference vector and 
the Pareto front. However, when the objective function val-
ues are normalized in the same range, these reference vectors 
won’t produce uniformly distributed solutions. The range of 
the reference vectors will be modified as follows to eliminate 
this conflict:

(2)vk+1,j =
v0,j◦(O

max
k+1

− Omin
k+1

)

∣∣ v0,j◦(O
max
k+1

− Omin
k+1

) ∣∣

where j = 1, 2,… ,N , vk+1,j defines the jth reference vector 
adapted for generation k + 1 , v0,j represents the jth uniformly 
distributed reference vector. Omin

k+1
 and Omax

k+1
 are the minimum 

and maximum values of objective function, respectively. The 
◦ operator indicates the Hadamard product that element-wise 
multiply the two vectors of same size [49]. The adaptation 
strategy for the reference vector is capable of obtaining uni-
formly distributed solutions even if the objective functions 
are not normalized in the same range. 

Table 1  The IGD values 
obtained by proposed H-RVEA 
and other competitor algorithms 
on DTLZ test suite

The obtained best results are in bold

F M Analysis H-RVEA RVEA HypE NSGA-III MOEA/DD AGE-II

DTLZ1 3 Mean 3.91E−05 4.69E−04 1.53E−04 4.90E−04 3.20E−04 3.55E−02
Median 4.07E−05 4.99E−04 2.08E−01 1.40E−03 5.90E−04 3.95E−02

5 Mean 2.54E−05 3.11E−05 1.85E−01 5.25E−04 2.65E−04 2.34E−02
Median 1.21E−05 3.57E−05 2.20E−01 9.91E−04 2.96E−04 2.83E−02

10 Mean 5.12E−05 1.50E−04 1.50E−01 2.25E−03 1.90E−03 3.63E−02
Median 1.11E−04 6.69E−04 1.92E−01 3.53E−03 2.26E−03 3.89E−02

15 Mean 3.07E−05 1.77E−04 1.82E−01 2.95E−03 2.90E−03 1.03E−02
Median 2.00E−04 2.04E−04 2.60E−01 5.15E−03 4.25E−03 1.58E−02

DTLZ2 3 Mean 1.00E−04 1.71E−04 6.80E−02 1.35E−03 6.81E−04 2.73E−02
Median 1.03E−04 1.90E−04 6.98E−02 1.42E−03 8.10E−04 2.97E−02

5 Mean 1.03E−03 1.23E−04 2.80E−01 4.35E−03 1.18E−03 1.35E−02
Median 1.91E−03 3.11E−04 2.92E−01 5.15E−03 1.40E−03 1.63E−02

10 Mean 1.39E−03 1.35E−03 6.90E−01 1.40E−02 3.30E−03 2.25E−02
Median 2.11E−02 2.03E−03 7.01E−01 1.61E−02 3.81E−03 2.69E−02

15 Mean 2.22E−04 5.03E−04 6.35E−01 1.40E−02 4.60E−03 2.74E−02
Median 4.90E−04 5.95E−04 7.62E−01 1.83E−02 5.90E−03 2.95E−02

DTLZ3 3 Mean 2.71E−05 1.11E−04 1.70E−02 9.80E−04 5.90E−04 2.35E−02
Median 5.10E−05 2.20E−04 1.82E−02 4.11E−03 1.95E−03 2.79E−02

5 Mean 3.18E−04 1.33E−02 1.19E−02 3.15E−03 6.25E−04 2.01E−02
Median 1.10E−03 1.87E−02 1.93E−02 6.01E−03 1.36E−03 2.94E−02

10 Mean 1.22E−03 2.01E−01 1.86E−02 8.90E−03 1.95E−03 2.38E−02
Median 2.08E−03 2.71E−01 2.93E−02 1.25E−02 2.35E−03 2.93E−02

15 Mean 2.56E−04 1.98E−01 4.35E−02 1.43E−02 5.90E−03 1.11E−02
Median 4.45E−03 2.90E−01 6.93E−02 2.20E−02 7.50E−03 2.04E−02

DTLZ4 3 Mean 1.00E−04 5.03E−04 8.49E−02 2.94E−04 1.10E−04 2.23E−02
Median 1.50E−04 6.84E−04 9.40E−02 6.11E−04 1.71E−04 2.48E−02

5 Mean 5.61E−05 1.00E−01 2.80E−01 9.90E−04 1.11E−04 1.04E−02
Median 6.45E−05 1.69E−01 2.93E−01 1.37E−03 1.37E−04 1.54E−02

10 Mean 1.00E−03 1.94E−03 6.81E−01 5.80E−03 1.32E−03 2.30E−02
Median 1.52E−03 2.31E−03 6.93E−01 6.43E−03 1.70E−03 2.83E−02

15 Mean 1.22E−04 1.96E−04 6.08E−01 7.87E−03 1.50E−03 3.02E−02
Median 2.00E−04 2.31E−04 6.41E−01 3.11E−02 1.90E−03 3.73E−02
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Table 2  The HV values 
obtained by proposed H-RVEA 
and other competitor algorithms 
on DTLZ test suite

The obtained best results are in bold

F M Analysis H-RVEA RVEA HypE NSGA-III MOEA/DD AGE-II

DTLZ1 3 Mean 8.51E−02 4.69E−05 4.98E−03 3.15E−04 4.81E−02 3.95E−02
Median 3.80E−01 4.13E−06 2.57E−05 3.00E−04 4.11E−03 3.55E−02

5 Mean 4.61E−02 4.42E−04 3.49E−05 3.73E−04 3.09E−02 2.00E−02
Median 4.90E−01 2.03E−05 2.99E−05 1.63E−04 2.00E−03 1.05E−02

10 Mean 5.30E−02 1.39E−03 3.08E−03 2.15E−04 1.49E−E−02 4.11E−03
Median 2.17E−01 1.69E−04 4.18E−04 1.15E−05 2.80E−03 1.79E−04

15 Mean 5.07E−04 6.69E−05 4.18E−05 2.15E−05 1.81E−06 3.97E−07
Median 7.46E−05 3.00E−06 3.19E−07 3.97E−07 1.03E−06 2.97E−07

DTLZ2 3 Mean 4.22E−02 2.69E−05 3.99E−03 4.05E−04 3.85E−02 2.90E−02
Median 3.69E−01 3.03E−06 2.67E−05 2.97E−04 3.19E−03 3.57E−02

5 Mean 3.75E-01 3.40E−04 2.09E−05 2.77E−04 2.91E−02 3.87E−02
Median 2.46E−02 2.03E−05 1.09E−05 1.67E−04 2.01E−03 1.07E−02

10 Mean 3.91E−02 1.19E−03 3.09E−03 3.17E−04 1.57E−02 3.10E−03
Median 3.97E−03 1.59E−04 3.18E−04 1.05E−05 2.73E−03 2.70E−04

15 Mean 4.70E−04 5.60E−05 3.85E−05 3.37E−05 3.01E−06 2.97E−07
Median 5.13E−05 3.97E−06 2.19E−07 3.06E−07 1.19E−06 2.00E−07

DTLZ3 3 Mean 7.48E−02 5.57E−03 3.98E−03 2.05E−04 5.83E−02 2.90E−02
Median 4.36E−03 4.13E−04 3.07E−04 3.78E−05 3.11E−04 3.97E−04

5 Mean 3.96E−01 3.47E−02 2.39E−03 1.77E−03 2.49E−02 1.37E−02
Median 2.36E−02 2.57E−03 2.00E−04 1.95E−04 2.33E−03 1.69E−03

10 Mean 6.82E−01 2.30E−02 3.18E−03 4.09E−03 2.33E−02 3.03E−02
Median 3.48E−02 1.23E−03 4.26E−04 3.37E−04 2.49E−03 2.70E−04

15 Mean 4.58E−02 4.60E−03 3.08E−03 2.67E−03 2.98E−02 1.23E−03
Median 2.60E−03 3.01E−04 2.10E−04 3.92E−04 2.50E−05 2.67E−04

DTLZ4 3 Mean 3.81E−02 3.48E−03 3.00E−03 2.02E−03 3.69E−04 4.57E−05
Median 2.19E−03 4.49E−04 4.07E−04 2.84E−05 1.66E−04 2.39E−05

5 Mean 4.70E−02 4.24E−03 2.49E−04 4.58E−03 2.43E−03 3.47E−04
Median 4.48E−03 3.01E−04 1.90E−05 4.61E−04 5.17E−04 6.69E−05

10 Mean 9.59E−02 2.30E−04 3.57E−03 3.79E−03 2.08E−04 3.96E−03
Median 2.62E−03 1.63E−04 4.10E−04 1.15E−05 2.81E−04 1.39E−04

15 Mean 4.58E−03 6.17E−05 3.58E−04 2.99E−05 3.02E−04 3.43E−05
Median 5.95E−04 1.00E−05 3.10E−06 4.69E−07 1.13E−05 2.90E−06
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There is a Fc controlling parameter which controls the 
frequency of use of the adaptation strategy. This parameter 
means that the reference vector adaptation strategy has to be 
carried out in a selected generation, since this strategy is not 
needed very often [58]. Example 2 illustrates the working of 
control parameter Fc in adaptation strategy.

Example 2 (Control parameter) For instance, the value 
of Fc is set to 0.4. The reference vector will be adapted 
only at k = 0, k = 0.4 ×Maxiteration, k = 0.8 ×Maxiteration,

k = 0.12 ×Maxiteration and so forth.

3.3  Computational complexity

The computational complexity of the proposed algorithm is 
debated in this subsection. The proposed algorithm’s com-
plexities in terms of time and space are given below.

3.3.1  Time complexity

1. H-RVEA population initialization needs O(M × N) time, 
where M and N represent the number of objectives and 
population size, respectively.

2. The selection procedure for mating requires time of 
O(M × N2).

3. Variation procedure uses O(N) time. Environmental 
selection method uses O(NlogN) and the adaptation 
technique for the reference vector includes O(N∕Fc) 
time, where Fc represents the control parameter.

The summary of the complexities of all the above 
steps and the total time complexity of H-RVEA for 
the maximum number of generations is therefore 
O(M × N2) + (N∕Fc) ×Maxiteration).

3.3.2  Space complexity

H-RVEA algorithm’s space complexity is the cumulative 
amount of space that is perceived during its initialization 
process at any given point. Hence, the total space complexity 
of H-RVEA algorithm is O(M × N).

4  Experimental results and discussions

The proposed algorithm H-RVEA is compared with five 
algorithms, namely Reference Vector Guided Evolution-
ary Algorithm (RVEA) [49], Hypervolume Estimation 
Algorithm (HypE) [50], Non-dominated Sorting Genetic 
Algorithm (NSGA-III) [53], Many-Objective Evolution-
ary Algorithm based on Dominance and Decomposition 

Fig. 3  The non-dominated fronts obtained from six algorithms for 15-objectives on DTLZ1, DTLZ2, DTLZ3, and DTLZ4 test functions
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(MOEA/DD) [54], and Approximation-guided Evolution-
ary Algorithm (AGE-II) [55]. The well-known benchmark 
test problems from DTLZ test suite [59] are taken for 

experimentation. The findings are measured with two well-
known performance measures such as Inverted Generational 
Distance (IGD) [51] and Hypervolume (HV) [52].

Fig. 4  The non-dominated solutions obtained from six algorithms for 3-objectives on DTLZ1, DTLZ2, DTLZ3, and DTLZ4 test functions
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4.1  Benchmark test problems

The four (DTLZ1-DTLZ4) test functions from DTLZ [59] 
test suite are employed. The number of objectives is varied 
from 3 to 15, i.e., {3, 5, 10, 15}. The number of decision 
variables is set to n = m + r − 1 for DTLZ test problems 
[59], where r = 5 for DTLZ1 and r = 10 for DTLZ2-DTLZ4.

4.2  Experimental setup

The mean and median solutions are reported in tables which 
are obtained in final iteration. The simulations are done in 
Matlab R2019a environment on Microsoft Windows 10 (64-
bit) using Core i7 and 3.15 GHz processor with 16 GB main 
memory.

4.3  Performance evaluation on DTLZ test suite

Tables 1 and 2 display the values of IGD and HV obtained 
through the suggested and competitor algorithms for the 
DTLZ test suite of 3-, 5-, 10- and 15-objectives. The results 
reveal that for DTLZ1 test problem H-RVEA offers better 
values of IGD and HV. Except for H-RVEA, RVEA and 
MOEA/DD achieve better values of IGD and HV than the 

Table 3  Wilcoxon signed-rank 
test results between proposed 
H-RVEA and other algorithms 
based on average IGD and HV 
performance measures

Algorithms IGD HV

RVEA = +
HypE + +
NSGA-III + −
MOEA/DD + +
AGE-II + +

Fig. 5  Schematic view of multi-
objective travelling salesman 
problem

Table 4  The IGD values 
obtained by proposed H-RVEA 
and other competitor algorithms 
on MOTSP

The obtained best results are in bold

M Analysis H-RVEA RVEA HypE NSGA-III MOEA/DD AGE-II

3 Mean 6.11E−05 7.61E−05 2.34E−04 3.24E−04 2.11E−04 1.50E−02
Median 6.39E−05 3.10E−04 1.77E−03 2.51E−03 4.70E−03 2.99E−01

5 Mean 3.72E−05 2.00E−04 2.83E−02 4.21E−03 4.14E−05 1.31E−03
Median 4.10E−04 2.54E−03 4.22E−02 7.90E−02 6.66E−04 1.70E−02

10 Mean 9.09E−04 3.39E−03 2.80E−02 7.26E−02 2.10E−02 8.60E−01
Median 2.70E−03 6.66E−02 1.92E−01 4.01E−01 2.23E−01 9.84E−01

15 Mean 1.00E−05 4.35E−04 7.38E−03 3.45E−02 6.63E−02 2.07E−03
Median 4.14E−04 7.75E−03 4.34E−02 8.13E−02 9.45E−02 5.67E−02
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others. RVEA and MOEA/DD are therefore the second and 
third best algorithms, respectively. Whereas, NSGA-III’s 
output for all objectives is almost identical to the HypE 
algorithm on DTLZ1 test problem.

For test problem DTLZ2, H-RVEA gets a better value of 
IGD for 3- and 15-objectives. RVEA performs better results 
for these objectives than the other algorithms after H-RVEA. 
H-RVEA performs second best algorithm in terms of the 
performance measurement IGD for 5- and 10-objectives. 
RVEA provides better results for those objectives than all 
other approaches. H-RVEA generates optimal results for all 
objectives of the DTLZ2 test function for performance meas-
urement HV. Whereas, for the efficiency indicator of HV, 
RVEA and HypE algorithms are very close to one another.

In terms of IGD and HV performance measures for all 
objectives, H-RVEA is significantly better than other algo-
rithms on DTLZ3. Nonetheless, MOEA/DD and NSGA-III 
are the second and third strongest methods, respectively, 
for IGD efficiency assessment. The NSGA-III obtained the 
second best solution for HV efficiency estimation after the 
original H-RVEA algorithm.

For DTLZ4 test issue, H-RVEA’s success measurements 
for 3-, 5-, 10- and 15-objectives are higher than others in 
terms of IGD and HV. MOEA/DD and NSGA-III comprise 
the second and third best methods for IGD and HV.

From Tables 1 and 2 it has been found that H-RVEA’s 
consistency and efficiency is highest on most of the test 
functions. For IGD, H-RVEA performs well on 3 out of 4 
assessment features. For values of HV, H-RVEA delivers the 
best results on 4 out of 4 test functions.

For visualization of the solutions, Figs. 3 and 4 dis-
play the non-dominated fronts obtained from the proposed 
H-RVEA and other 15- and 3-objectives competitor algo-
rithms on the DTLZ test functions. RVEA and MOEA/
DD have consistent convergence for 15-objectives DTLZ 
test functions but fail to reach certain regions of the Pareto 
front. HypE, NSGA-III, and AGE-II ensure good integra-
tion across most of Pareto’s fronts. Fig. 3 demonstrates that 
H-RVEA’s non-dominated front provides greater consist-
ency and variety than other strategies. It has been observed 
for 3-objectives DTLZ test functions that the Pareto front 
obtained from H-RVEA, RVEA, NSGA-III, and MOEA/DD 
has uniform convergence and better diversity as shown in 
Fig. 4. Nonetheless, over the Pareto front HypE and AGE-II 
struggle to get a good coverage.

4.4  Wilcoxon signed‑rank test

It has been observed in the literature [60] that the perfor-
mance measures IGD and HV do not provide any guarantee 
for better convergence and diversity, because sometimes 
the solutions obtained are not close to the optimal Pareto 
front. The Wilcoxon signed-rank test [61] is performed on 

the average value of performance measures of IGD and HV 
to solve this problem. For increasing issue the gap between 
each pair of average outcomes is calculated. Such variations 
are ordered in ascending order, and a rank is given from 
the smallest to the highest. If more than one discrepancy is 
equivalent, then each of them is given an average rank [61]. 
The ranks are subsequently converted to signed ranks. It is 
used in pair-wise analysis of H-RVEA to other algorithms. 
The positive rank is granted to the proposed algorithm if it 
is stronger for a specific output factor (i.e., IGD and HV) 
than the competitor algorithms. Otherwise, it is assigned 
negative rank. A meaning level is set to 0.10 for compari-
son and sums up all the positive and negative rank [61]. 
Tabulate the effects of the Wilcoxon test in Table 3, where 
+,−, and = mean that H-RVEA efficiency is superior, infe-
rior, and equivalent to competitor algorithms, respectively. 
From Table 3, it is observed that H-RVEA outperforms with 
IGD and HV efficiency measures over all competitor algo-
rithms except for NSGA-III which finds superior on the HV 
measure.

5  H‑RVEA for real‑life applications

In this section, the performance of proposed H-RVEA has 
been tested on two real-life problems namely, Multi-Objec-
tive Travelling Salesman Problem (MOTSP) and Car Side 
Impact Problem (CSI). These problems are used to show the 
efficiency and effectiveness of proposed H-RVEA in real-life 
problems.

5.1  Multi‑objective travelling salesman problem 
(MOTSP)

The traveling salesman problem in combinatorial optimi-
zation is a difficult and most studied NP-hard issue. The 
number of cities and the cost of travel are provided in this 
problem. The challenge with the traveling salesman is to find 

Fig. 6  Schematic view of car side impact problem [64]
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the cheapest tour to reach each area precisely once and return 
to the point of departure (see Fig. 5).

The mathematical formulation of multi-objective travel-
ling salesman problem is as follows [62]: Given a set n cities 
and p cost ck

ij
, k = 1, 2,… , p to travel from city i to j. The 

main aim of MOTSP is to find a tour, i.e., a cyclic permuta-
tion R of n cities.

In this work, p is set to 3, 5, 10, and 15.
Table 4 shows the IGD value obtained from H-RVEA and 

other competitor algorithms of Multi-Objective Travelling 
Salesman Problem (MOTSP). H-RVEA can be seen per-
forming better for all test objectives than other algorithms 
(i.e., 3, 5, 10, 15). For 3- and 5-objectives, H-RVEA has a 
best IGD value and the difference between H-RVEA and its 
competitor algorithms is statistically significant. RVEA is 
the second best algorithm for 3-objectives. The MOEA/DD 
is the second best performing algorithm for 5-objectives. 
H-RVEA outperforms the other five algorithms for the 10- 
and 15-objectives. RVEA is the second best algorithm for 

(3)

Minimize fk(R) =

n−1∑
i=1

ck
R(i),R(i+1)

+ ck
R(n),R(1)

, k = 1, 2,… , p

these test objectives. It is worth mentioning that H-RVEA 
consistently performing better than other algorithms for all 
four MOTSP test objectives.

5.2  Car side impact problem (CSI)

Car side impact problem is a constrained optimization prob-
lem to optimize the vehicle side crashworthiness [63]. This 
problem involves seven design variables namely thickness of 
B-Pillar inner, B-Pillar inner reinforcement, floor side inner, 
cross-members, door beam, door beltline reinforcement, and 
roof rail (see Fig. 6). There are three objective functions of 
this problem which are described as:

• Weight of the car.
• Pubic force experienced by a passenger.
• Average velocity of the V-Pillar responsible for with-

standing the impact load.

The mathematical formulation of this problem is described 
as follows:

(4)

f1(z) = 1.98 + 4.9z1 + 6.67z2 + 6.98z3 + 4.01z4 + 1.78z5 + 0.00001z6 + 2.73z7,

f2(z) = 4.72 − 0.5z4 − 0.19z2z3,

f3(z) = 0.5 × (10.58 − 0.674z1z2 − 0.67275z2 + 16.45 − 0.489z3z7 − 0.843z5z6),

Subject to:

g1(z) = 1.16 − 0.3717z2z4 − 0.0092928z3 ≤ 1.0,

g2(z) = 0.261 − 0.0159z1z2 − 0.06486z1 − 0.019z2z7

+ 0.0144z3z5 + 0.0154464z6 ≤ 0.32,

g3(z) = 0.214 + 0.00817z5 − 0.045195z1 − 0.0135168z1

+ 0.03099z2z6 − 0.018z2z7 + 0.007176z3

+ 0.023232z3 − 0.00364z5z6 − 0.018z2z2 ≤ 0.32,

g4(z) = 0.74 − 0.61z2 − 0.031296z3 − 0.031872z7 + 0.227z2z2 ≤ 0.32,

g5(z) = 28.98 + 3.818z3 − 4.2z1z2 + 1.27296z6 − 2.68065z7 ≤ 0.32,

g6(z) = 33.86 + 2.95z3 − 5.057z1z2 − 3.795z2 − 3.4431z7

+ 1.45728 ≤ 0.32,

g7(z) = 46.36 − 9.9z2 − 4.4505z1 ≤ 0.32,

g8(z) = 4.72 − 0.5z4 − 0.19z2z3 ≤ 4.0,

g9(z) = 10.58 − 0.674z1z2 − 0.67275z2 ≤ 9.9,

g10(z) = 16.45 − 0.489z3z7 − 0.843z5z6 ≤ 15.7,

where,

0.5 ≤ z1, z3, z4 ≤ 1.5, 0.4 ≤ z6, z7 ≤ 1.2, 0.45 ≤ z2

≤ 1.35, 0.875 ≤ z5 ≤ 2.625.
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The obtained IGD values by proposed and competitor 
algorithms are shown in Table 5. H-RVEA generates the 
smaller IGD value than the others. NSGA-III and HypE are 
the second and third best optimization algorithms, respec-
tively. It can be seen that H-RVEA provides optimal results 
and very competitive than the other approaches for CSI 
problem.

6  Conclusions and future works

A novel hybrid many-objective evolutionary algorithm, 
named H-RVEA, is introduced in this article. H-RVEA 
uses the Hypervolume Estimation Algorithm (HypE) and 
Reference Vector Guided Evolutionary Algorithm (RVEA) 
methods. The proposed H-RVEA was applied and evaluated 
on well-known test functions. Comparing H-RVEA results 
to other algorithms, it was found that H-RVEA outperformed 
RVEA, HypE, NSGA-III, MOEA/DD, and AGE-II. The 
comparative work was carried out to demonstrate the statis-
tical significance of proposed H-RVEA over benchmark test 
functions. The proposed H-RVEA was tested on two real-
life constrained problems. The findings show that among 
all the successful algorithms H-RVEA has delivered better 
performance.

There are several research directions which can be rec-
ommended for future works. The variation in operators and 
selection procedure of the proposed H-RVEA algorithm 
can be the motivation of future work. Also, to extend this 
algorithm to solve more real-life constrained many-objec-
tive optimization problems can also be seen as a future 
contribution.
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