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Abstract
This paper aims to investigate the size scale effect on the buckling and post-buckling of single-walled carbon nanotube 
(SWCNT) rested on nonlinear elastic foundations using energy-equivalent model (EEM). CNTs are modelled as a beam 
with higher order shear deformation to consider a shear effect and eliminate the shear correction factor, which appeared in 
Timoshenko and missed in Euler–Bernoulli beam theories. Energy-equivalent model is proposed to bridge the chemical 
energy between atoms with mechanical strain energy of beam structure. Therefore, Young’s and shear moduli and Poisson’s 
ratio for zigzag (n, 0), and armchair (n, n) carbon nanotubes (CNTs) are presented as functions of orientation and force con-
stants. Conservation energy principle is exploited to derive governing equations of motion in terms of primary displacement 
variable. The differential–integral quadrature method (DIQM) is exploited to discretize the problem in spatial domain and 
transformed the integro-differential equilibrium equations to algebraic equations. The static problem is solved for critical 
buckling loads and the post-buckling deformation as a function of applied axial load, CNT length, orientations and elastic 
foundation parameters. Numerical results show that effects of chirality angle, boundary conditions, tube length and elastic 
foundation constants on buckling and post-buckling behaviors of armchair and zigzag CNTs are significant. This model is 
helpful especially in mechanical design of NEMS manufactured from CNTs.

Keywords Differential–integral quadrature method · Carbon nanotube · Energy-equivalent model · Static post-buckling 
instability · Nonlinear integro-differential equation

1 Introduction

Since 1991, carbon nanotubes (CNTs), discovered by Iijima, 
have received widespread interest of researchers due to their 
extraordinary mechanical, thermal, physical and electrical 
properties. CNTs are considered the strongest and most resil-
ient material known until now, [32]. In general, geometrical 
and mechanical properties of CNTs are controlled by two 
parameters [12], which are the orientation of the chiral angle 

and the carbon diameter. The chiral vector and tube radius 
( R ) of CNTs can be portrayed by

In which the unit vectors are �⃗a1 and �⃗a2 , and (n,m) is inte-
ger pair that specifies the structure orientation of CNTs [i.e.: 
zigzag at (n, 0) , armchair at (n, n) , and chiral orientation at 
(n,m) for m ≠ n or 0] as presented in Fig. 1. The C–C bond 
length here is l0 = 0.142 nm . Zigzag and armchair nano-

tubes radii are calculated by R =

√
3nl0

2�
 and by R =

3nl0

2�
 , 

respectively.
Nasdala et al. [34] illustrated that the standard truss and 

beam elements can be represented atomic interactions accu-
rately. Energy-equivalent model, resulting from the founda-
tion of molecular and continuum mechanics, considers the 
mechanical properties of CNTs (i.e.; Young’s modulus, shear 

(1.a)��⃗Ch = n �⃗a1 + m �⃗a2,

(1.b)R = l0

√
3
(
n2 + m2 + n*m

)
∕2�.
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modulus, and Poisson’s ratio) as a material size dependent by 
many researchers. Leung et al. [27] proposed a combined model 
of molecular and continuum mechanics to investigate mechani-
cal properties of zigzag SWCNTs. Wu et al. [42] derived the 
equivalent Young’s and shear moduli for both armchair and 
zigzag SWCNTs by combining molecular and continuum 
mechanics methods. In [30], derived an exact elastica solution 
for a clamped-simply (C-S) SWCNT by the elliptic integral 
technique. Aydogdu [1] studied, free vibration of simply sup-
ported (S–S) multi-walled carbon nanotubes (MWCNTs) using 
the higher order shear deformation beam theory (HOSDT). 
Mayoof and Hawwa [29] investigated nonlinear vibration of 
CNT with waviness along its axis based on classical continuum 
theory. Shodja and Delfani [38] and Shokrieh and Rafiee [39] 
presented analytical formulations to predict the elastic moduli 
of graphene sheets and CNTs using a linkage between lattice 
molecular structure and equivalent discrete frame structure. 
Joshi et al. [23] modeled the elastic behavior of CNT-reinforced 
composites using the multiscale representative volume element 
approach. Wang et al. [40, 41] studied the vibrations of S–S 
double-walled CNTs subjected to a moving harmonic load 
using nonlocal Euler and Timoshenko beam theories. Moham-
madi et al. [33] investigated the static instability of an imperfect 
nonlocal Eringen nanobeam embedded in elastic foundation. 
Khater et al. [25] studied buckling behavior of curved nanow-
ires including a surface energy under a thermal load. Ghadyani 
and Ochsner [19] presented an expression for the stiffness of 
SWCNTs as function of nanotube thickness. Eltaher and Agwa 
[9] presented a modified continuum energy-equivalent model 
to investigate the vibration of a pretension CNTs carrying a 
concentrated mass as a mass sensor.

Gholami et al. [20] analyzed the nonlinear resonant of 
imperfect HOSDT functionally graded carbon nanotube-
reinforced composite beams subjected to a harmonic 
transverse load. Kordkheili et al. [26] employed nonlocal 
continuum theory of Eringen and Von Karman nonlinear 

strains to study a linear and nonlinear dynamics of SWC-
NTs conveying fluid with different boundary conditions. 
Mohamed et al. [31] exploited modified differential–inte-
gral quadrature method to analyze nonlinear free and forced 
vibrations of buckled curved beams resting on nonlinear 
elastic foundations. Maneshi et al. [28] presented closed-
form expression for geometrically nonlinear large deforma-
tion of nanobeams subjected to end force. Emam et al. [18] 
investigated the post-buckling and free vibration response 
of geometrically imperfect multilayer nanobeams under pre-
stress compressive load. Eltaher et al. [12] and Mohamed 
et al. [32] presented a novel numerical procedure to predict 
nonlinear buckling and post-buckling stability of imperfect 
clamped–clamped (C–C) SWCNTs surrounded by non-
linear elastic foundation using energy-equivalent model. 
Eltaher et al. [13] illustrated the influence of periodic (sine 
and cosine) and nonperiodic imperfection modes on buck-
ling, post-buckling and dynamics of beam rested on non-
linear elastic foundations. Dehghan et al. [6] investigated 
the wave propagation of fluid-conveying magneto-electro-
elastic nanotube incorporating fluid effect. Eltaher et al. 
[14] characterized Young’s modulus and evaluated vibration 
and buckling behaviors of CNTs by equivalent-continuum 
mechanics approach. Karimiasl et al. [24] studied post-buck-
ling behaviors of multiscale composite sandwich doubly 
curved piezoelectric shell with a flexible core by employing 
Homotopy Perturbation Method in hygrothermal environ-
ment. Eltaher et al. [15, 16] illustrated the effect of imperfec-
tions and vacancies on vibration and modal participation fac-
tor of CNTs using energy-equivalent model. Ebrahimi and 
Hosseini [7] presented the nonlinear vibration behavior and 
dynamic instability of Euler–Bernoulli nanobeams (EBT) 
under thermo-magneto-mechanical loads. Ebrahimi et al. [8] 
evaluated the damping forced harmonic vibration character-
istics of magneto-electro-viscoelastic nanobeam embedded 
in viscoelastic foundation based on nonlocal strain gradient 
elasticity theory.

Based on both material and size dependency, many 
researchers studied buckling and vibration behaviors of 
CNTs. Baghdadi et al. [2] presented thermal effect on vibra-
tion of armchair and zigzag SWCNTs using nonlocal para-
bolic beam theory. Benguediab et al. [4] studied buckling 
properties of a zigzag double-walled CNT with both chiral-
ity and small-scale effects using Timoshenko beam. Semmah 
et al. (2015) presented the thermal buckling properties of a 
zigzag SWCNT based on the nonlocal Timoshenko beam 
and energy-equivalent model. Bedia et al. [3] studied ana-
lytically thermal buckling of armchair SWCNT embedded in 
an elastic medium. On the basis of the continuum mechan-
ics and the single-elastic beam model, Besseghier et al. 
[5] investigated the nonlinear vibration of zigzag SWCNT 
embedded in elastic medium. Heshmati et al. [21] studied 
the vibrational behavior of CNT-reinforced composite beams 

Fig. 1  Schematic diagram of the chiral vector and the choral angle of 
CNTs, [42]
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and presented the effects the interface, waviness, agglomera-
tion, orientation and length on the behavior of CNTs. Eltaher 
et al. [9] illustrated nonlinear static behavior of size-depend-
ent and material-dependent nonlocal CNTs using nonlocal 
differential form of Eringen and energy-equivalent method. 
Eltaher et al. [11] presented a modified continuum model 
included energy-equivalent model and modified couple 
stress theory to investigate the vibration behavior of CNTs.

According to the best of the authors’ knowledge and 
literature review, it can be concluded that no researchers 
have attempted to investigate buckling and post-buckling of 
higher order shear deformation CNTs by considering mate-
rial size dependency. The present study intends to fill this 
gap in the literature by considering the energy-equivalent 
method along with HOSDT. This paper is organized as fol-
lows. Section 2 describes the mathematical formulation of 
the equivalent energy model for armchair and zigzag SWC-
NTs continuum. Main formulations and equilibrium govern-
ing equations of CNTs modeled by higher order shear defor-
mation theory are presented. In Sect. 3, differential–integral 
quadrature method is presented and developed to solve equi-
librium differential equations of material size-dependent car-
bon nanotube. Analytical solution and closed form for criti-
cal buckling load are presented through Sect. 4. Numerical 
results are presented and discussed in Sect. 5. Most findings 
and concluding remarks are summarized in Sect. 6.

2  Mathematical formulation

2.1  Chemical energies vs. mechanical energies

Comparing microscopic chemistry and the macroscopic 
mechanics energies, covalent bonds between carbon atoms 
can be represented by forces, which are functions of bond 
lengths and bond angles. Therefore, the force filed through 
bonding can be described by potential energies as [35] 

In which PEL , PE� , PET , and PE� are bond stretching, 
angle variation, torsion and inversion (out of plane) ener-
gies. In 2D loading, the most significant energies are bend-
ing angle energies and bond stretching and the other energies 
can be neglected. Therefore, Eq. (2) can be simplified as 
[14-16]

where Ki is the stretching constant, dRi is the elongation 
of the bond i , Cj is the angle variance constant, d�j is the 
variance of bond angle j . Young’s modulus and Poisson’s 

(2)PE = PEL + PE� + PET + PE�.

(3)PE = PEL + PE� =
1

2

∑
i

Ki

(
dRi

)2
+

1

2

∑
j

Cj

(
d�j

)2
,

ratio for CNTs, for armchair and zigzag orientations, can be 
represented by Mohamed et al. [32]

where t  is the thickness of a nanotube. Subscripts a and z 
represent armchair and zigzag, respectively. �1 and �2 are 
geometrical-dependent parameters, which can be evaluated 
by

2.2  Geometrical formulation of CNTs

The displacement fields of the higher order shear deforma-
tion CNTs are represented by Aydogdu [1]

where U0 , and W0 are denoting the displacement compo-
nents along the x - and z-directions, respectively. u and w 
represent middle surface displacement components along the 
x - and z-directions, respectively. � is an unknown function 
that represents the effect of transverse shear strain on the 

(4a)Ea =
4
√
3

3

KC

3Ct + 4Kl2
0
t
�
�2
a1
+ 2�2

a2

� ,

(4b)�a =
�a1l

2
0
K − C

�a1l
2
0
K + 3C

,

(4c)Ez =
4
√
3KC

9Ct + 4Kl2
0
t
�
�2
z1
+ 2�2

z2

� ,

(4d)�z =
�z1l

2
0
K +

√
3C

�z1l
2
0
K − 3

√
3C

,

(5a)�a1(n) =
4 − cos2(�∕2n)

16 + 2cos2(�∕2n)
,

(5b)�a2(n) =
−
√
12 − 3cos2(�∕2n)cos(�∕2n)

32 + 4cos2(�∕2n)
,

(5c)�z1(n) =
−3

√
4 − 3cos2(�∕2n)cos(�∕2n)

8
√
3 − 2

√
3cos2(�∕2n)

,

(5d)�z2(n) =
12 − 9cos2(�∕2n)

16
√
3 − 4

√
3cos

2

(�∕2n)

,

(6a)U0(x, z, t) = u(x, t) − z
�w(x, t)

�x
+ f (z)�(x, t),

(6b)W0(x, z, t) = w(x, t),
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beam middle surface, and f (z) represents the shape function 
determining the distribution of the transverse shear strain 
and stress through the thickness, which can be described by 
Reddy [36]

The nonzero strains of the CNTs associated with the dis-
placement field given in Eq. (6) can be computed by

in which

However, the stress constitutive equations may be written 
in the form

Hence, force and moment resultants may be written in 
the form

where Aj stiffness coefficients can be evaluated by

Based on the conservation of energy, which states that 
variation of energy will be equal to zeros

where �U is the virtual strain energy, �V  is the virtual work 
done by external forces, and

(7)f (z) = z

(
1 −

4z2

3h2

)
,

(8a)εxx =
�U0

�x
+

1

2

(
�W0

�x

)2

= �(0)
x

+ z�(1)
x

+ f (z)�(2)
x
,

(8b)γxz =
�U0

�z
+

�W0

�x
=

df

�z
� (0)
xz
,

(9)�(0)
x

=
�u

�x
+

1

2

(
�w

�x

)2

;�(1)
x

= −
�2w

�x2
;�(2)

x
=

��

�x
;� (0)

xz
= �.

(10a)σxx = Eεxx = E
[
�(0)
x

+ z�(1)
x

+ f (z)�(2)
x

]
,

(10b)τxz = Gγxz =
E

2(1 + �)

�f

�z
� (0)
xz
.

(11a)

⎧⎪⎨⎪⎩

N

M

P

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

A1 A2 A3

A2 A4 A5

A3 A5 A6

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

�(0)
x

�(1)
x

�(2)
x

⎫⎪⎬⎪⎭
,

(11b)Q = A7�
(0)
xz
,

(12)

(
A1,A2,A3,A4,A5,A6,A7

)
= ∫

A

E(z)

[
1, z, f , z2, zf , f 2,

(
df

dz

)2
]
dA.

(13)�Π = �U + �V = 0,

where Ω and Γ denote domain and boundary of the beams. 
After performing variation operations, one can obtain

where the shear layer, linear and nonlinear Winkler stiffness 
are 

−

ks,
−

kL and 
−

kNL , respectively. The equilibrium equations 
can be represented in terms of displacements as

To eliminate the axial displacement u in governing 
Eq. (16), Integrating Eq. (16a) with respect to the spatial 
coordinate x two times yields

The boundary conditions for CNTs with immovable ends 
can be expressed as

(14a)

�U =
1

2
�

[
∫ Ω

(
σxxεxx + τxzγxz

)
dΩ

]
+

1

2

−

N �∫
L

0

(
�w

�x

)2

dx

=

L

∫
0

[
N��(0)

x
+M��(1)

x
+ P��(2)

x
+ Q�� (0)

xz

]
dx

+
−

N ∫
L

0

(
�w

�x

)(
��w

�x

)
dx,

(14b)�V = −�

[
∫ Γ

(
σxxu + τxzw

)
dΓ

]
,

(15a)�u ∶
�N

�x
= 0,

(15b)

�w ∶
�2M

�x2
+

�

�x

(
N
�w

�x

)
−
( −

N −
−

ks

)
�2w

�x2
−

−

kLw −
−

kNLw
3 = 0,

(15c)�� ∶
�P

�x
− Q = 0,

(16a)A1

d

dx

[
du

dx
+

1

2

(
dw

dx

)2
]
− A2

d3w

dx3
+ A3

(
d2�

dx2

)
= 0,

(16b)

A1

d

dx

{[
du

dx
+

1

2

(
dw

dx

)2
]
dw

dx

}
+ A3

d

dx

[
dw

dx

d�

dx

]

+ A2

d3u

dx3
+ A5

(
d3�

dx3

)
− A4

d4w

dx4
−
( −

N −
−

ks

)

�2w

�x2
−

−

kLw −
−

kNLw
3 = 0,

(16c)

A3

d

dx

[
du

dx
+

1

2

(
dw

dx

)2
]
− A5

d3w

dx3
+ A6

d2�

dx2
− A7� = 0.

(17)u = −
1

2

L

∫
0

(
dw

dx

)2

dx +
A2

A1

dw

dx
−

A3

A1

� +
C1

A1

x + C2.

(18)u(0) = u(L) = 0.
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After substituting and some manipulations, the following 
equations can be deduced:

Substituting Eq. (19) back into Eq. (16) yields

Computing the coefficients Aj and substituting into Eq. (20).

 where the mass moment of inertia I = �

4

(
(R + t)4 − R4

)
 and 

the cross-sectional area A = �
(
(R + t)2 − R2

)
 . Introducing 

the following nondimensional parameters

Equation (21) can be written in a dimensionless form as

(19a)

du

dx
+

1

2

(
dw

dx

)2

=
1

2L

L

∫
0

(
dw

dx

)2

dx +
A2

A1

d2w

dx2
−

A3

A1

d�

dx
,

(19b)
d

dx

[
du

dx
+

1

2

(
dw

dx

)2
]
=

A2

A1

d3w

dx3
−

A3

A1

d2�

dx2
,

(19c)
d3u

dx3
= −

d

dx

(
dw

dx

d2w

dx2

)
−

A3

A1

d3�

dx3
+

A2

A1

d4w

dx4
.

(20a)

�
A2

2

A1

− A4

�
d4w

dx4
+

⎡
⎢⎢⎣
A1

2L

L

∫
0

�
dw

dx

�2

dx−
−

P +
−

ks

⎤
⎥⎥⎦

d2w

dx2
−

−

kLw −
−

kNLw
3 +

�
A5 −

A2A3

A1

�
d3�

dx3
= 0,

(20b)

(
A6 −

A2
3

A1

)
d2�

dx2
+

(
A2A3

A1

− A5

)
d3w

dx3
− A7� = 0.

(21a)

EI
d4w

dx4
+

⎡
⎢⎢⎣
−

P −
−

ks −
EA

2L

L

∫
0

�
dw

dx

�2

dx

⎤⎥⎥⎦
d2w

dx2
+

−

kLw +
−

kNLw
3 −

4

5
EI

d3�

dx3
= 0,

(21b)68

105
EI

d2�

dx2
−

4

5
EI

d3w

dx3
−

8

15
EA� = 0,

(22)W =
w

L
,X =

x

L
,Φ = �.

(23a)

d4W

dX4
+

⎡⎢⎢⎣
P − ks −

1

2
�0

1

∫
0

�
dW

dX

�2

dx

⎤⎥⎥⎦
d2W

dX2
+kLW + kNLW

3 − �1
d3Φ

dX3
= 0,

(23b)�2
d2Φ

dX2
− �1

d3W

dX3
− �3Φ = 0.

The coefficients of Eq. (23) are defined as

The dimensionless boundary conditions can be written as

Since the definite integral in Eq. (23.a) can be treated as a 
constant term, Eq. (23) can be rewritten as

In which

The present model can be reduced to EBT by neglecting 
Eq. (26b) and substituting Φ = 0 into Eq. (26a).

3  Differential–integral–quadrature method 
(DIQM)

Owing to the presence of higher order nonlinearities, obtain-
ing an analytical solution for the governing equations is too 
complicated. Therefore, numerical method is a suitable 
method to solve the buckling problem, Eq. (26). The DIQM 
presented in [31] is an efficient method to solve the nonlinear 
integro-differential equation.

In this method, the domain is discretized using the Che-
byshev–Gauss–Lobatto as follows:

where N is the number of the grid points. On the basis of 
DQM, the rth-order derivatives of f (X) can be approximated 
as

(24)

P =

−

P L2

EI
, ks =

−

ksL
2

EI
, kL =

−

kLL
4

EI
, kNL =

−

kNLL
6

EI
, �0 =

L2

S0
,

�1 =
4

5
, �2 =

68

105
, �3 =

8

15

L2

S0
and S0 =

I

A
=

1

4

(
(R + t)2 + R2

)
.

(25a)S − S ∶ W =
d2W

dX2
=

dΦ

dX
= 0atX = 0,1,

(25b)C − C ∶ W =
dW

dX
= Φ = 0atX = 0, 1.

(26a)d4W

dX4
+ Γ2 d

2W

dX2
+kLW + kNLW

3 − �1
d3Φ

dX3
= 0,

(26b)�2
d2Φ

dX2
− �1

d3W

dX3
− �3Φ = 0.

(26c)Γ2 = P − ks −
1

2
�0

1

∫
0

(
dW

dX

)2

dx.

(27)Xi =
1

2

(
1 − cos

(
(i − 1)�

N − 1

))
, i = 1,2,…N,
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where M(n)

ij
 is weighting coefficients of rth-order derivates. 

Quan and Chang (1989) introduced the weighting coeffi-
cients for the first-order derivative as

in which L(1)(x) is defined as

Introducing a column vector f =
[
f (Xi)

]
=
[
f1, f2,… fN

]T , 
in which f (Xi) denotes the nodal value of f (X) at X = Xi . 
Also, its first derivative vector will be F =

[
F1,F2,…FN

]T . 
A differential matrix of the first-order derivative based on 
Eq. (28) can be written in the form

Meanwhile, D(1) =
[
M

(1)

ij

]
, i, j = 1,2,…N  . The higher 

order derivative matrices can be obtained as

Thereafter, an accurate row vector integral operator for 
definite integral is introduced. If we have a continuous 
function f (x) in a domain 0 ≤ X ≤ 1 and

 then

where B is the pseudo-inverse of matrix D(1) . From Eq. (34), 
one can deduce that

Introducing a column vector W and � as

(28)
drf (X)

dXr

||||X=Xi

=

N∑
j=1

M
(r)

ij
f
(
Xj

)
, i = 1,2,⋯N,

(29)M
(1)

ij
=

⎧
⎪⎨⎪⎩

L
(1)(Xi)

(Xi−Xj)L(1)(Xj)
i ≠ ji, j = 1,2,…N

−
∑N

j=1,i≠j M
(1)

ij
i = j, i = 1,2,…N

,

(30)L
(1)(x) =

N∏
j=1,j≠i

(Xi − Xj),

(31)F = D(1)f .

(32)D(r) = D(1)D(r−1), r > 1,

(33)
df

dX
= F(X),

(34)

Xj

∫
Xi

F(X)dx = f
(
Xj

)
− f

(
Xi

)
≅

N∑
k=1

(
[B]jk − [B]ik

)
Fk,

(35)

1

∫
0

F(x)dx ≅

N∑
k=1

(
[B]Nk − [B]1k

)
Fk = RF.

(36)W =
[
W1,W2,…WN

]T
,� =

[
Φ1,Φ2,…ΦN

]T
,

where Wi = W
(
Xi

)
 and Φi = Φ

(
Xi

)
 . Upon using the DIQM, 

the nondimensional governing Eq. (26) can be discretized 
as follows:

in which I is N × N identity matrix and ◦ denotes the Had-
amard matrix product. The discretized form of boundary 
conditions is

For S–S and C–C CNTs, respectively. Equation (37) 
forms a system of nonlinear algebraic equations which 
can be written in the form

Therefore, Eq. (39) can be solved by Newton’s method. 
The Jacobian matrix of this system can be written as

where Z is a column vector defined as ZT = [0, 0,… 0]N×1 
and O is defined as OT = [1,1,… 1]N×1 . It is worth mention-
ing that, in Eqs. (39, 40), rows corresponding to boundaries 
are replaced by the corresponding boundary condition equa-
tions. Here, the solution of the linearized form of Eq. (39) 
is considered as the initial values to the Newton’s method.

4  Analytical solutions

For the purpose of comparison, analytical solutions for post-
buckling configuration and critical buckling load of S–S 
CNT are derived. The constants of elastic foundations are 
set to zeros (i.e., kL = ks = kNL = 0 ). As consequence, Eq. 
(23) are reduced to

(37a)
(
D(4) + Γ2D(2) + kLI

)
W + kNLW

◦3 − �1D
(3)
� = 0,

(37b)
(
�2D

(2) − �3I
)
� − �1D

(3)W = 0,

(37c)Γ2 − P + ks +
1

2
�0R

[(
D(1)W

)
◦2
]
= 0,

(38a)

W1 = WN =

N∑
j=1

[
D(2)W

]
1j
=

N∑
j=1

[
D(2)W

]
Nj

=

N∑
j=1

[
D(1)Φ

]
1j
=

N∑
j=1

[
D(1)Φ

]
Nj
= 0,

(38b)

W1 = WN =

N∑
j=1

[
D(1)W

]
1j
=

N∑
j=1

[
D(1)W

]
Nj
= Φ1 = ΦN = 0.

(39)𝕋
(
X,Γ2

)
= 0, 𝕋 ∶ ℝ

2N+1
→ ℝ

2N+1,X =
[
WT ,UT

]T
.

(40)

� =

⎡⎢⎢⎣

D(4) + Γ2D(2) + kLI + 3kNLdiag
�
W◦2

�
�1D

(3) D(2)W

−�1D
(3)

�
�2D

(2) − �3I
�

Z

�0R
���

D(1)W
�
OT

�
◦D(1)

�
ZT 1

⎤⎥⎥⎦
,
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According to Emam [17], the displacement field can be 
assumed as

where a and b are unknowns to be determined. Substituting 
Eqs. (42.a, b) into Eqs. (41.a, b), the nondimensional maxi-
mum amplitude of post-buckling response of the first mode 
can be computed as

Also, the nondimensional first critical buckling load can 
be obtained as

5  Numerical results

In this section, numerical results for the critical buck-
ling load and the static response of zigzag and arm-
chair SWCNTs with S–S and C–C boundary conditions 
are considered. The parameters used in the analysis for 
zigzag and armchair orientations of SWCNTs are the 
effective thickness is t = 0.258nm , the forces constants 
K∕2 = 46900kcal∕mol∕nm2, and C∕2 = 63kcal∕mol∕rad2.

5.1  Validation

To assure the accuracy of the present numerical method, 
the nondimensional critical buckling load and the post-
buckling configuration of S–S zigzag and armchair SWC-
NTs without any elastic foundations are compared with 
analytical ones presented in Sect. 4. Table 1 compares the 
critical buckling loads of S–S zigzag and armchair SWC-
NTs obtained via DIQM with those obtained analytically, 
Eq. (44). As noticed, the DIQM and analytical results are 
in excellent agreement.

(41a)
d4W

dX4
+

⎡⎢⎢⎣
P −

1

2
�0

1

∫
0

�
dW

dX

�2

dx

⎤⎥⎥⎦
d2W

dX2
− �1

d3Φ

dX3
= 0,

(41b)�2
d2Φ

dX2
− �1

d3W

dX3
− �3Φ = 0.

(42a)W(X) = a sin
(
�
X

L

)
,

(42b)Φ(X) = b cos
(
�
X

L

)
,

(43)a = ±
2

�
√
�0

�
P − �2 +

�2�2
1

�3 + �2�2
.

(44)Pc = �2

(
1 −

�2�2
1

�3 + �2�2

)
.

In Fig. 2, the post-buckling equilibrium paths of S–S 
zigzag and armchair SWCNTs based on the present 
method and analytical one, Eq. (43), are compared. Again, 
an excellent agreement is achieved.

5.2  Parametric studies

5.2.1  Effect of beam theories

The dimensionless first three buckling load of zigzag and 
armchair CNTs with various boundary conditions using 
different beam theories are reported in Tables 2 and 3, 
respectively. Here, the effect of surrounding medium is 
ignored. It is observed that, the critical buckling load 
predicted by HOSDT is smaller than those predicted by 
EBT. The difference between HOSDT and EBT is more 
pronounced for higher buckling modes and short CNTs. 
Increasing the CNT length, the results obtained by HOSDT 
converges to EBT.

Plotting in Fig. 3 are post-buckling equilibrium paths 
of (14, 0) zigzag CNT with S–S and C–C boundary condi-
tions based on the HOSDT and EBT. Herein, the nondi-
mensional post-buckling amplitude is defined as 

−

W=
WL√
S0

 . 

It noted that the shear deformation has a great influence 
on the post-buckling response of CNT.

As noted from Tables 2, 3 and Fig. 3, the shear defor-
mation effect can be neglected when the aspect ratio ( L∕D ) 
reaches 50 . Furthermore, it is observed that the shear 
deformation effect for C–C boundary conditions is more 
than S–S ones.

5.2.2  Effect of aspect ratio ( L∕D)

To study the effect of aspect ratio, the buckling load of 
zigzag and armchair CNTs with S–S and C–C bound-
ary conditions are reported in Table 4. Herein, the elastic 
foundation constants are set to zeros. The (14, 0) zigzag 

Table 1  Nondimensional first critical buckling load 
(
Pc =

−

PL
2

EI

)
 of 

S–S zigzag and armchair CNT, (kL = ks = kNL = 0)

L∕D

5 10 20 50 100

(14, 0 ) zigzag CNT ( R = 5.4802Å)
 Present 9.0253 9.6439 9.8122 9.8604 9.8673
 Analytical 9.0253 9.6439 9.8122 9.8604 9.8673

(14, 14 ) armchair CNT ( R = 9.4920Å)
 Present 9.1604 9.6821 9.8221 9.8620 9.8677
 Analytical 9.1603 9.6821 9.8220 9.8620 9.8677
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and (8, 8) armchair CNTs are considered so that they have 
approximately the same diameters that makes it possible 
to investigate the effect of chirality. As seen form Table 4, 
that armchair CNT relatively have a little higher values of 
critical buckling load compared to zigzag CNT especially 
for lower aspect ratios. In addition, one can note that, the 
buckling load of CNTs decreases rapidly as the aspect ratio 
increases. This can be interpreted since increasing aspect 
ratio decreases the CNT rigidity. The same conclusion can 
be drawn from Fig. 4 which contains plots of the critical 
buckling load versus aspect ratio of (8, 8) armchair S–S and 
C–C CNTs without any elastic foundations.

Figure 5 depicts the post-buckling equilibrium path of 
(8, 8) armchair S–S and C–C CNTs with different values of 

aspect ratio. It can be seen that increasing aspect ratio causes 
the CNTs to behave softer and consequently the maximum 
deflection to increase.

5.2.3  Effect of elastic foundation constants

In Table 5, the influence of elastic foundation constants 
on the critical buckling loads of S–S and C–C CNTs with 
aspect ratio L∕D = 10 are studied. Different types of CNTs 
are considered. Table 5 reveals that the critical buckling 
load increases by increasing shear and linear elastic foun-
dation parameters. However, the nonlinear elastic founda-
tion parameter has no effect on the critical buckling load. 
It can easily be seen from Eq.  (37.a) and the Jacobian 
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Fig. 2  Comparison of the post-buckling equilibrium paths of S–S zigzag and armchair CNT based on the DIQM and the analytical one, 
(kL = ks = kNL = 0)

Table 2  Nondimensional first 
three critical buckling loads 
(Pc =

−

PL
2

EI
) of ( 14, 0 ) zigzag 

SWCNT ( R = 5.4802Å)

B.Cs Buckling mode Beam theory L∕D

5 10 20 50 100

S–S Mode 1 HOSDT 9.0253 9.6439 9.8122 9.8604 9.8673
EBT 9.8696 9.8696 9.8696 9.8696 9.8696

Mode 2 HOSDT 28.7540 36.1011 38.5755 39.3311 39.4415
EBT 39.4784 39.4784 39.4784 39.4784 39.4784

Mode 3 HOSDT 48.4186 73.3979 84.3837 88.0841 88.6397
EBT 88.8264 88.8264 88.8264 88.8264 88.8264

C–C Mode 1 HOSDT 28.754 36.101 38.5755 39.3311 39.4415
EBT 39.4784 39.4784 39.4784 39.4784 39.4784

Mode 2 HOSDT 44.1579 66.7652 76.7331 80.0923 80.5953
EBT 80.7626 80.7626 80.7626 80.7626 80.7626

Mode 3 HOSDT 53.8354 81.6987 144.4041 155.5827 157.3244
EBT 157.9137 157.9137 157.9137 157.9137 157.9137
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matrix Eq.  (40), that the nonlinear elastic foundation 
parameter kNL is multiplied by the static response W. In 
fact, the static response of CNTs in prebuckling state is 
zero, as shown in Fig. 3. And hence, the nonlinear elastic 
foundation parameter has no effect on the buckling load of 
CNTs. Also, it can be noted that the influence of the shear 
and linear elastic foundation parameters on critical buck-
ling load become more considerable as the chiral number 
of CNTs increases. Furthermore, it can be observed that 
the chiral number has a significant effect on the critical 

Table 3  Nondimensional first 
three critical buckling loads (
Pc =

−

PL
2

EI

)
 of ( 14,14 ) armchair 

CNT ( R = 9.4920Å)

B.Cs Buckling mode Beam theory L∕D

5 10 20 50 100

S–S Mode 1 HOSDT 9.1604 9.6821 9.8221 9.8620 9.8677
EBT 9.8696 9.8696 9.8696 9.8696 9.8696

Mode 2 HOSDT 30.1624 36.6414 38.7283 39.3565 39.4479
EBT 39.4784 39.4784 39.4784 39.4784 39.4784

Mode 3 HOSDT 52.5053 75.6604 85.1178 88.2113 88.6719
EBT 88.8264 88.8264 88.8264 88.8264 88.8264

C–C Mode 1 HOSDT 30.1624 36.6414 38.7283 39.3565 39.4479
EBT 39.4784 39.4784 39.4784 39.4784 39.4784

Mode 2 HOSDT 47.8497 68.817 77.3996 80.2076 80.6243
EBT 80.7626 80.7626 80.7626 80.7626 80.7626

Mode 3 HOSDT 56.5765 88.1514 146.5653 155.9798 157.4257
EBT 157.9137 157.9137 157.9137 157.9137 157.9137
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Fig. 3  Post-buckling equilibrium paths of S–S and C–C (14, 0) zigzag CNT obtained by HOSDT and EBT, (kL = ks = kNL = 0)

Table 4  First critical buckling load (nN) of S–S and C–C zigzag and 
armchair CNTs, (kL = ks = kNL = 0)

B.Cs L∕D

5 10 20 50

(14, 0 ) zigzag CNT ( R = 5.4802Å)
 S–S 81.81860 21.85663 5.55951 0.89389
 C–C 260.66858 81.81838 21.85657 3.56555

(8, 8 ) armchair CNT ( R = 5.4240Å)
 S–S 82.07582 21.93157 5.57904 0.89705
 C–C 261.26835 82.07536 21.93151 3.57809
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buckling load of CNTs. These observations are valid for 
both zigzag and armchair CNTs.

Figure 6 illustrates post-buckling equilibrium paths of 
S–S and C–C (7, 7) armchair CNTs with various values of 
elastic foundation constants and aspect ratio L∕D = 10 . It 
can be easily deduced that the responses have a descending 

trend with respect to the shear foundation constant. The 
shear stiffness of elastic foundation is more significant 
than that of the linear and nonlinear elastic foundation 
constants.
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Fig. 4  Critical buckling load versus aspect ratio of (8, 8) armchair S–S and C–C CNTs, (kL = ks = kNL = 0)
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Fig. 5  Post-buckling equilibrium paths of S–S and C–C (8, 8) armchair CNTs with different values of aspect ratio, (kL = ks = kNL = 0)
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6  Conclusions

In the framework of higher order beam theory, buck-
ling and post-buckling behaviors of zigzag and armchair 
CNTs resting on nonlinear elastic medium were numeri-
cally investigated. S–S and C–C boundary conditions are 
considered. The nonlinear integro-differential equations 
were solved by DIQM method in combination with New-
ton method. Also, they are solved analytically for the case 
of S–S boundary conditions. Results obtained via DIQM 
method were compared with those obtained by analytical 
solutions and an excellent agreement was obtained. The 
most findings of the current analysis are

• The critical buckling load predicted by HOSDT is 
smaller than those predicted by EBT.

• The difference between HOSDT and EBT is more pro-
nounced for higher buckling modes and short CNTs.

• The armchair CNT relatively have a little higher val-
ues of critical buckling load compared to zigzag CNT 
especially for lower aspect ratios.

• The buckling load of CNTs decreases rapidly as the 
aspect ratio increases. This can be interpreted since 
increasing aspect ratio decreases the CNT rigidity.

• The critical buckling load increases by increasing shear 
and linear elastic foundation parameters. However, the 
nonlinear elastic foundation parameter has no effect on 
the critical buckling load.

Table 5  First critical buckling 
load (nN) of different types 
of CNT with S–S and C–C 
boundary conditions ( L∕D = 10)

B. Cs CNT type kL kNL = 0 kNL = 10

ks = 0 5 10 ks = 0 5 10

S–S (7, 0)
zigzag
R = 2.7401Å

0 18.58863 28.33804 38.08746 18.58863 28.33804 38.08746
25 23.52768 33.27710 43.02652 23.52768 33.27710 43.02652
50 28.46693 38.21635 47.96576 28.46693 38.21635 47.96576

(14, 0)
zigzag
R = 5.4802Å

0 21.85663 33.18847 44.52031 21.85663 33.18847 44.52031
25 27.59734 38.92918 50.26102 27.59734 38.92918 50.26102
50 33.33827 44.67011 56.00195 33.33827 44.67011 56.00195

(7, 7) armchair
R = 4.7460Å

0 20.91027 31.76868 42.62710 20.91027 31.76868 42.62710
25 26.41136 37.26977 48.12819 26.41136 37.26977 48.12819
50 31.91223 42.77065 53.62906 31.91223 42.77065 53.62906

(14, 14) armchair
R = 9.4920Å

0 29.28060 44.40160 59.52259 29.28060 44.40160 59.52259
25 36.94090 52.06189 67.18289 36.94090 52.06189 67.18289
50 44.60150 59.72249 74.84349 44.60150 59.72249 74.84349

C–C (7, 0)
zigzag
R = 2.7401Å

0 67.46655 77.21596 86.96538 67.46655 77.21596 86.96538
25 71.15261 80.90202 90.65144 71.15261 80.90202 90.65144
50 74.80064 84.55006 94.29948 74.80064 84.55006 94.29948

(14, 0)
zigzag
R = 5.4802Å

0 81.81838 93.15022 104.48206 81.81838 93.15022 104.48206
25 86.10680 97.43864 108.77048 86.10680 97.43864 108.77048
50 90.35986 101.69170 113.02354 90.35986 101.69170 113.02354

(7, 7) armchair
R = 4.7460Å

0 77.93779 88.79621 99.65463 77.93779 88.79621 99.65463
25 82.04662 92.90503 103.76345 82.04662 92.90503 103.76345
50 86.12026 96.97868 107.83709 86.12026 96.97868 107.83709

(14, 14) armchair
R = 9.4920Å

0 110.81090 125.93190 141.05289 110.81090 125.93190 141.05289
25 116.53510 131.65610 146.77710 116.53510 131.65610 146.77710
50 122.21576 137.33676 152.45775 122.21576 137.33676 152.45775
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Fig. 6  Post-buckling equilibrium paths of S–S and C–C (7, 7) armchair CNTs with aspect ratio L∕D = 10
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