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Abstract
During the multi-objective optimization process, numerous efficient solutions may be generated to form the Pareto fron-
tier. Due to the complexity of formulating and solving mathematical problems, choosing the best point to be implemented 
becomes a non-trivial task. Thus, this paper introduces a weighting strategy named robust optimal point selection, based 
on ratio diversification/error, to choose the most preferred Pareto optimal point in multi-objective optimization problems 
using response surface methodology. Furthermore, this paper proposes to explore a theoretical gap—the prediction vari-
ance behavior related to the weighting. The ratios Shannon’s entropy/error and diversity/error and the unscaled prediction 
variance are experimentally modeled using mixture design and the optimal weights for the multi-objective optimization 
process are defined by the maximization of the proposed measures. The study could demonstrate that the weights used in 
the multi-objective optimization process influence the prediction variance. Furthermore, the use of diversification measures, 
such as entropy and diversity, associated with measures of error, such as mean absolute percent error, was determined to be 
useful in mapping regions of minimum variance within the Pareto optimal responses obtained in the optimization process.

Keywords Multi-objective programming · Multi-criteria analysis · Robust optimal point selection (ROPS) · Diversification 
measures · Error measures

1 Introduction

According to Cua et al. [1], quality management princi-
ples emphasize the importance of cross-functional product 
development and systematic management process, as well 
as the involvement of customers, suppliers, and employees 
to ensure the quality of products and processes.

Kano and Nakagawa [2] argued that, to improve product 
quality, a system having at least the following functions is 
necessary: (1) predicting product quality by operating condi-
tions; (2) detecting faults and malfunctions for preventing 
undesirable operation; and (3) determining the best operat-
ing conditions to improve product quality. The first func-
tion is performed through the development of a software 
program, which is a mathematical model that relates the 
operating conditions to product quality. The second func-
tion is performed via multivariate statistical process control. 
The third function is performed by formulating and solving 
optimization problems.
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In most industrial processes, the relationships between 
the answers and the decision variables are unknown. To 
obtain this information, it is necessary to design and execute 
experiments and to collect and analyze the data. In a planned 
experiment, purposive variations are made in controllable 
process variables, observing the resulting output data to 
make inferences about which variables are responsible for 
the observed changes.

According to Montgomery [3], when the objective is to 
optimize a given problem, the response surface methodology 
(RSM) should be chosen to define the experimental design. 
As one of the objectives of RSM is to optimize the answers, 
it is recommended, whenever possible, to represent them 
through second-order models, as the curvature presented by 
them defines the location of an optimal point.

Despite being considered an adequate approximation for 
the responses of interest, the values generated by the esti-
mated model will always present an error in relation to the 
real values. The magnitude of these errors is measured using 
the prediction variance of the model. Thus, the quality of the 
forecast of a response depends on the prediction variance. 
Small prediction variance values are desirable for reliable 
predictions [4].

From an analysis of the manufacturing processes, it is 
concluded that the optimization of various possibly con-
trolled parameters, such as quality, cost, and productivity, 
leads to multi-objective mathematical models. In industrial 
processes where the joint optimization of multiple character-
istics is desired, the problem can be defined by the following 
mathematical formulation:

where f1(x), f2(x),…, fk(x) are objective functions to be opti-
mized; hi(x) represents the l equality constraints; and gj(x) 
represents the m inequality constraints.

In multi-objective problems, it is very unlikely that all 
the functions are minimized simultaneously by one optimal 
solution x*. Indeed, these goals are a function of the same 
decision variable set and are conflicting [5]. The Pareto opti-
mal solution concept, also called the compromise solution, 
has become considerably relevant to these problems. A fea-
sible solution x* is Pareto optimal if no other feasible solu-
tion z exists such that fi(z) ≤ fi(x

∗), i = 1, 2,… ,m , with 
fj(z) < fi(x

∗) in at least one objective j.
The purpose of multi-objective optimization processes 

(MOPs) is to offer support and ways to find the best com-
promise solution, in which the decision maker and his/
her preference information play an important role, as it 
is typically responsible for the final solution of the prob-
lem. As it is difficult to know the importance degree to be 

(1)

Min
{
f1(x), f2(x),… , fk(x)

}
s.t. ∶ hi(x) = 0, i = 1, 2,… , l

gj(x) ≤ 0, j = 1, 2,… ,m,

assigned to each objective [6], the weights for each func-
tion are eventually defined, subjectively influenced by the 
analyst’s preferences.

However, Zeleny [7], when proposing his weighting 
method based on entropy for linear multi-objective optimi-
zation, discussed some points against this practice, among 
which the following are cited: 1. human capacity to reach 
an overall assessment by weighting and combining differ-
ent attributes is not very good, and such a weight alloca-
tion process is unstable, suboptimal, and often arbitrary; 
2. the total number of all possible and identifiable criteria 
and attributes can be very large, as it is not plausible to 
expect that any human being can assign weights to hun-
dreds of attributes with any reliability; 3. Weight changes 
reflect the fact that they are dependent on a particular 
problem, i.e., any particular weighting structure must be 
learned to be more the result of the analysis rather than 
its input. Indeed, to elicit direct preference information 
from the analyst can be counterproductive in real-world 
decision-making because of the requirement of a high cog-
nitive effort [8].

The question of weighing has been discussed since the 
publication of Zeleny’s works in the 1970s. Since then, 
many works on the subject have been published but with-
out an apparent consensus. In general, the literature on the 
subject is divided into four categories: equally distributed 
weighting; random weighting; subjective weighting meth-
ods; and objective weighting methods. Subjective weight-
ing is supported by methods based on personal or collec-
tive judgments, usually produced by direct assignment [9], 
ANP [10], AHP [11, 12] and/or fuzzy method [13, 14]. 
Objective weighting methods set priorities according to 
quantitative values. The main representative of this cate-
gory is the methods based on entropic parameters [15–17].

In the researched literature, the ways in which the 
weighting in the MOPs affects the forecast variance, for 
RSM experimental design, have never been studied; hence, 
it provides a scope for exploring the theoretical contribu-
tions pertaining to this topic. Thus, the main objective of 
this study is to develop a method to identify the optimal 
weights in MOPs, based on the weighting diversification 
obtained through the maximization of entropy and diver-
sity functions, and to study how the weighting affects fore-
cast variance in multi-objective optimization using RSM. 
This paper proposes that the use of entropic metrics in 
choosing optimal weights in MOPs can reduce forecast 
variance. Hence, the present proposal is called robust opti-
mal point selection (ROPS). The use of metrics proposed 
in ROPS is presented as a useful tool in the multiple-cri-
teria decision-making process, because it leads to robust 
responses without the necessity of including the variance 
term in the mathematical formulation of the problem, mak-
ing it simpler.
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2  Theoretical fundamentals

2.1  Weighting methods applied to multi‑objective 
optimization

As previously mentioned in Sect.  1, during the MOP, 
numerous efficient solutions may be generated to form 
the Pareto frontier. Due to complexity in formulating and 
solving mathematical problems, choosing the best point to 
be implemented becomes a non-trivial task.

By assigning different weights to the representative 
objective functions of the characteristics of the processes 
that we want to optimize, we consider the relative impor-
tance of each parameter within the analyzed process. This 
indicates that weights should be assigned to functions to 
indicate their relative importance to identify the impor-
tant aspects during the optimization process, thus electing 
priorities [18].

According to Taboada et al. [19], Gaudreault et al. [20], 
and Pilavachi et al. [21], the priority given to the criteria 
is essential to achieve results and should be applied with 
caution, as the final result can vary significantly depending 
on the importance assigned to each of its objectives. This 
may lead to a problem because of the uncertainty of deci-
sion makers about the exact weight of objective functions 
and utility functions [19].

The Pareto set includes all the rational choices, among 
which the decision maker must identify the solution by 
comparing their various objectives [19]. Several tech-
niques have been presented to search the solution space 
for a set of Pareto optimal solutions. However, the major 
drawback of such methods is that the decision maker can 
choose from several solutions. Thus, according to Taboada 
et al. [19], it is necessary to bridge the gap between single 
solutions and optimal Pareto sets.

The lack of consensus to stipulate an acceptable weight-
ing method makes the process even more difficult. This is 
due to the large number of methods that can be applied and 
the considerable differences among them [18].

The question of weighing has been discussed since the 
publication of Zeleny’s works [7, 22]. Melachrinoudis [23] 
determined an optimum location for an undesirable facility 
in a workroom environment. The author defined the prob-
lem as the selection of a location within the convex region 
that maximizes the minimum weighted Euclidean distance 
with respect to all existing facilities, where the degree of 
undesirability between an existing facility and the new 
undesirable entity is reflected through a weighting factor.

Saaty [24] presented a multi-criteria decision-making 
approach, named the analytic hierarchy process (AHP), 
in which selected factors are arranged in a hierarchic 
structure descending from an overall goal to criteria, 

subcriteria, and alternatives in successive levels. Despite 
its popularity, this method has been criticized by decision 
analysts. Some authors have pointed out that Saaty’s pro-
cedure does not optimize any performance criterion [25]. 
However, according to Promentilla et al. [26], the analytic 
network process (ANP), which is a generalized form of 
AHP, is an attractive tool for understanding the complex 
decision problem better, as this approach overcomes the 
limitation of the linear hierarchical structure of the AHP.

Figueira et al. [8] presented a method for ranking a finite 
set of actions evaluated on a finite set of criteria. The gen-
eralized regression with intensities of preference (GRIP) 
is based on indirect preference information and the ordinal 
regression paradigm. It can be compared to the AHP, as 
the decision maker is requested to express the intensity of 
preference in qualitative-ordinal terms in both approaches. 
However, in contrast to AHP, in GRIP, the marginal value 
functions are just a numerical representation of the original 
qualitative-ordinal information. The pairwise comparison 
principle has also been used in more recent models as a set 
of dominance decision rules induced from rough approxima-
tions of comprehensive preference relations [6].

Taboada et al. [19] proposed a different approach. In their 
work, the authors presented two alternatives to reduce the 
Pareto optimal set, to be used in the decision-making stage. 
The first is by an order of objective functions without, how-
ever, assigning them to numerical values and the second is 
the use of cluster analysis between the Pareto optimal points. 
According to the authors, the act of reducing the Pareto opti-
mal set makes the decision-making process easier.

Over time, other methods for deriving priority weights 
have been proposed, such as, methods using simulated 
annealing [27, 28], geometric mean procedure [29, 30], 
methods based on constrained optimization models [31], 
trial and error methods [32], methods using fuzzy logic [27, 
29, 30, 33, 34], and methods using grey decision [35–37].

Recently, Monghasemi et al. [38], dealing with the multi-
objective optimization of time–cost-quality trade-off prob-
lems in construction projects, have used Shannon’s entropy 
[39] to define the weights involved in the optimization 
process. According to the authors, Shannon’s entropy can 
provide a more reliable assessment of the relative weights 
for the objectives in the absence of the decision maker’s 
preferences.

Rocha et al. [40] and Rocha et al. [41] used Shannon’s 
[39] entropy index associated with an error measure to deter-
mine the most preferred Pareto optimal point in a vertical 
turning MOP.

Wang et al. [42], when reviewing the methods of multi-
criteria decision-making, classified the weighting methods 
into two main groups: subjective and objective weighting 
methods. Subjective weighting is supported by methods 
based on personal or collective judgments, usually produced 
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by expert panels, the Delphi method, paired comparison, 
both in its original form incorporated into either the AHP or 
ANP, etc. [18]. In contrast, objective weighting methods set 
priorities according to quantitative values obtained mainly 
by applying statistical models or procedures that implicitly 
calculate the criteria weights. The main representative of 
this category is the entropy method presented by Zeleny [7, 
22]. Ibáñes-Forés et al. [18] presented two other categories: 
equally distributed weighting and random weighting. The 
latter involves analyzing the results under all possible com-
binations of weights that can be assigned to each criterion 
in the study, typically using any simulation technique. The 
theoretical review performed using these categories is sum-
marized in Table 1.

Based on Table 1, one can perceive the extent of the sub-
ject. Even after more than 40 years of research, it remains 
relevant. Diverse applications can be found: energy sector, 
sustainability, chemical industry, machining processes, 
teachers’ evaluation, etc. Notably, despite these efforts, 
there is no intention to exhaust the theme, mainly due to the 
different applicability of the weighting. Many works were 
included, because they explicitly used some of the aforemen-
tioned methods, despite not presenting a discussion on the 
weighting. Nevertheless, several other works could also be 
included in this literature review.

Among the papers presented, only Shahraki and Nooros-
sana [93] proposed to evaluate any variability parameter 
when selecting the best Pareto optimal solution. The authors 
used two criteria to make this selection: the sensitivity to 
reliability levels and the process capability index.

This work aims to study how the weighting functions in 
multi-objective optimization affect the forecast variance.

2.2  Entropy

In 1865, when the German physicist Rudolf Clausius 
attempted to give a new name to irreversible heat loss, the 
word “entropy” was introduced. Since then, entropy has 
played an important role in thermodynamics. This concept 
also helps measure the amount of order and disorder [99]. 
The word entropy had belonged to the domain of physics 
until 1948 when Claude Shannon, while developing his 
theory of communication [39], used the term to represent a 
measure of information [100].

Entropy can be defined as a measure of probabilistic 
uncertainty. Its use is indicated in  situations where the 
probability distributions are unknown, in search of diver-
sification. Among the several other desirable properties of 
Shannon’s entropy index, the following are highlighted: 
Shannon’s measure is nonnegative, and its measure is 
concave. The first is desirable, because the entropy index 
ensures non-null solutions. The latter is desirable, because 
it is much easier to maximize a concave function than a 

non-concave one [100]. Higher entropy values indicate more 
randomness; less information is expressed.

Shannon’s entropy index is one of several diversity indi-
ces used to measure diversity in categorical data. It is simply 
the information entropy of the distribution, treating species 
as symbols and their relative population sizes as the prob-
ability [101]. The information can simply be defined as the 
values of the objectives. The underlying assumption is that 
an event that has a lower probability of occurrence is more 
likely to provide more information by its occurrence [92].

The maximum entropy principle determines the less 
informative probability distribution for a random variable 
x given any prior information about x. If the mean and vari-
ance information of x are available, the continuous prob-
ability distribution that maximizes the differential Shannon 
entropy is the normal distribution. According to Zhou et al. 
[99], when dealing with continuous probability distributions, 
the density function is evaluated for all values of the argu-
ment. Thus, given a continuous probability distribution with 
a density function f(x), its entropy can be defined as

where ∫ +∞

−∞
f (x)dx = 1 e f (x) ≥ 0.

As the weights used in the weighting of functions in 
multi-objective optimization are proportions, f(x) follows 
a discrete probability distribution. Thus, Eq. (2) becomes

where wi are the weights assigned to the objectives to be 
optimized.

The index shown in Eq. (3) is also known as the Shan-
non–Weiner entropy index [102].

2.3  Diversity

According to Stirling [102], our actions are permeated with 
a lack of certainty arising from various sources such as 
incomplete knowledge, contradictory information, data vari-
ability, conceptual imprecision, different reference points, 
and the inherent indeterminacy of several natural and social 
processes.

The theory of probability attempts to address this issue. 
A probability can be assigned to each possible set of future 
events. It can be considered to reflect the established frequency 
of occurrence of similar past events under comparable condi-
tions and is thus, in some sense, objective. This “frequentist” 
interpretation of probability is vulnerable to doubts about the 
comparability of past and future circumstances and results. In a 
more subjective way, from a Bayesian perspective, probability 

(2)S(x) = −

+∞

∫
−∞

f (x) ln f (x)dx,

(3)S(w) = −

m∑
i=1

wi lnwi,
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Table 1  Review of weighting methods in the literature

Authors Equally distrib-
uted weighting

Priorities establishment

Subjective Objective Random 
weight-
ingDirect 

assign-
ment

Expert panels ANP AHP Fuzzy method Entropy Capabil-
ity index

Zeleny [7] x
Zeleny [22] x
Wuwongse et al. [43] x
Melachrinoudis [23] x
Saaty [24] x
Bonano et al. [44] x
Dijkmans [45] x
Halog et al. [47] x
Prabhu and Vizayakumar [48] x x
Vignes [49] x
Zhang and Yang [50] x
Derden et al. [51] x
Beccali et al. [52] x
Afgan and Carvalho [53] x
Geldermann and Rentz [46] x x
Cziner et al. [54] x
Sadiq et al. [55] x x
Chowdhury and Husain [56] x x
Critto et al. [57] x
Doukas et al. [58] x
Huang et al. [35] x
Khelifi et al. [59] x
Pilavachi et al. [60] x x
Shehabuddeen et al. [61] x
Begić and Afgan [62] x
Fijal [63] x
Grandinetti et al. [64] x
Krajnc et al. [65] x
Mavrotas et al. [66] x
Taboada et al. [19] x
Tran and Tran [27] x x
Zeng et al. [67] x
Bollinger and Pictet [68] x
Georgopoulou et al. [69] x
Promentilla et al. [26] x
Schollenberger et al. [70] x
Bréchet and Tulkens [71] x
Cavallaro [72] x
Daim and Intarode [73] x
Gaudreault et al. [20] x
Gómez-López et al. [74] x
Karagiannidis and Perkoulidis [75] x
Karavanas et al. [76] x
Luo [37] x x
Paiva et al. [77] x
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Table 1  (continued)

Authors Equally distrib-
uted weighting

Priorities establishment

Subjective Objective Random 
weight-
ingDirect 

assign-
ment

Expert panels ANP AHP Fuzzy method Entropy Capabil-
ity index

Yang et al. [78] x
Kazagić et al. [79] x
Lin and Shen [80] x x
Bottero et al. [81] x x
García and Caballero [82] x
Inoue and Katayama [83] x
San Cristóbal [84] x
Savier and Das [32] x
Cristóbal et al. [85] x
De Lange et al. [86] x
Giner-Santonja et al. [87] x x
Liu and Wen [88] x
Liu et al. [89] x x
Luo and Wang [35] x x
Severino et al. [90] x
Yu et al. [91] x
Zhu and Hipel [36] x x
Gomes et al. [31] x
Khorasani et al. [92] x x
Rubio et al. [34] x
Narang et al. [28] x
Shahraki and Noorossana [93] x
Szeląg et al. [6] x
Hein et al. [94] x
Monghasemi et al. [38] x
Rocha et al. [40] x
Rocha et al. [41] x
Wan and Dong [29] x
Wang [30] x
Shahhosseini et al. [95] x
Howard and Kamper [96] x
Prakash and Barua [97] x x
Rocha et al. [98] x
Rocha et al. [15] x
Aquila et al. [17] x
Kamaruzzaman et al. [11] x
Zhu et al. [12] x
Gaudêncio et al. [13] x
Tian et al. [9] x
Lakshmi and Baskar [14] x
Davoudabadi et al. [16] x
Matin et al. [10] x



2741Engineering with Computers (2021) 37:2735–2761 

1 3

can be considered simply to reflect the probabilities of different 
eventualities, given the best available information and the prior 
expert opinion. However, due to the deficiency of information, 
these procedures tend to be vulnerable to error, unconscious 
bias, or manipulation [102].

Recognizing these difficulties, a distinction is made between 
risk (where the probability density function can significantly 
be set for a range of possible outcomes) and uncertainty 
(where there is no basis for assigning probabilities). In situa-
tions where there is no basis for assigning probabilities to out-
comes or knowledge about several possible outcomes, another 
state of the absence of certainty has been distinguished, i.e., 
ignorance. In several fields, ignorance, rather than risk or 
uncertainty, dominates the real decision-making process [102].

Of all the strategies developed to deal with the absence of 
certainty, the best one is diversification. The concepts of diver-
sity employed in several fields of science have the combination 
of only three properties—variety, balance, and disparity—each 
of which is a necessary but insufficient diversity feature [103].

Stirling [103] stated that variety is the number of categories 
into which the elements of the system are divided. The larger 
the variety, the greater is the diversity. Balance is a function 
of the pattern of division of elements across categories. The 
greater the balance, the greater is the diversity. Disparity indi-
cates how different the elements are from one another. The 
greater the disparity between the elements, the greater is the 
diversity.

According to Stirling [103], Shannon’s entropy index, as 
presented in Eq. (3), only includes the variety and balance 
dimensions. Thus, the author proposed a formulation that con-
sidered variety, balance, and disparity as follows:

where dij is the disparity between two elements; w indicates 
the weights representing the proportion of the elements i 
and j; α and β are terms quantifying the importance degree 
between disparity and balance, and, in the reference case, 
α = β = 1.

The disparity (dij) is a measure of the difference between 
the objects. For this, two measures are most widely used: cor-
relation measures and distance measurements.

The method usually known to measure the correlation 
between two variables is the Pearson linear coefficient, which 
can be calculated as

(4)Δ =
∑
ij(i≠j)

d�
ij
(wiwj)

� ,

(5)𝜌 =
𝜎XY

𝜎X𝜎y
=

n∑
i=1

n∑
i=1

(Yi − Ȳ)(Xi − X̄)

�
n∑
i=1

(Xi − X̄)2
n∑
i=1

(Yi − Ȳ)2
�1∕ 2 ,

where �XY corresponds to the covariance between X and Y; 
�X corresponds to the standard deviation of X; and �Y cor-
responds to the standard deviation of Y.

High positive correlations indicate similarity, and high 
negative correlations indicate disparity. Thus, it is defined 
that dij = 1 − �ij.

The most commonly recognized distance measure is 
the Euclidean distance. It is the measure of the length of a 
straight line drawn between two objects when represented 
graphically. Thus, the greater the distance between two 
objects, the greater is their disparity. A distance measure 
in the context of multi-objective optimization can be calcu-
lated as the Euclidean distance between the anchor points, 
that is, the points that optimize each response individually, 
calculated as follows [15]:

where x1, x2 … xn are the decision variables of the problem; 
fi(x) and fj(x) are the objective functions.

3  Robust optimal point selection

As discussed earlier, several of the weighting strategies 
employed during the optimization process and decision-
making consist of, at least in one of their stages, imprecise 
and subjective elements. Large portions of these strategies 
still use error-prone elements, which can make significant 
contributions. However, considering that, among all the 
consulted sources, only Shahraki and Noorossana [93] pro-
posed to evaluate any variability parameter when selecting 
the best Pareto optimal solution, another theoretical gap that 
the current study intends to explore is the forecast variance 
behavior in relation to the weighting strategies.

ROPS is an alternative approach for identifying optimal 
weights for MOPs. To this end, Rocha et al. [40] and Rocha 
et al. [41] proposed a weighting method that combines Shan-
non’s entropy and an error measure. The entropy-based 
weighting presented in the aforementioned studies was use-
ful in identifying the optimal weights used in multi-objective 
optimization. Nevertheless, the authors did not discuss the 
forecast variance.

Therefore, addressing this gap in the work of Rocha 
et al. [40] and Rocha et al. [41] and in the literature in 
general, this paper presents different weighting strate-
gies showing how these strategies affect the forecast vari-
ance. The diversity index [103], entropy index [39] and 
entropy-based weighting [40, 41] are used as parameters 
for selecting the most preferred Pareto optimal point and 

(6)

dij
i≠j

=

√[
x∗
1fi (x)

− x∗
1fj (x)

]2
+

[
x∗
2fi (x)

− x∗
2fj (x)

]2
+⋯ +

[
x∗
nfi (x)

− x∗
nfj (x)

]2
,
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their results are compared. In all these possibilities, the 
forecast variance behavior was evaluated.

The optimization algorithms are included during the 
step of identifying optimal solutions, after they have been 
modeled using RSM (for the mathematical formulation of 
RSM, see [15, 41, 98]). The generalized reduced gradi-
ent (GRG) algorithm is used by the  Excel® Solver func-
tion. The normal boundary intersection (NBI) approach is 
used to identify the Pareto optimal solutions and construct 
the Pareto frontier (for the mathematical formulation of 
NBI, see [104]). This approach was chosen, because it has 
become possible to define a Pareto frontier with evenly 
distributed solutions, regardless of the function convexity, 
overcoming the drawbacks of the weighted sum method.

To demonstrate the proposition of the present study 
mathematically, consider the following MOP:

where fi (x) represents the objective functions to be opti-
mized, and wi represents the weights assigned to each objec-
tive function.

To calculate the variance for the function under analy-
sis, the following process is considered:

where �fifj is the correlation between the functions fi and fj.
Considering that we can calculate the variance of fi(x) 

a t  a  g iven point  �
T
0
=
[
1 x01 x02 . ..x0k

]
 ,  such as 

Var[fi(�0)] = �̂�2
fi
�

T
0
(�T

�)−1�0 , we can modify Eq. (8) to

Now, let �fifj equal zero. In this case, Eq. (9) becomes

(7)

Min
x

n∑
i=1

wifi(x)

s.t. ∶
∑n

i=1
wi = 1

wi ≥ 0, i = 1,… , n,

(8)

Var

[
n∑
i=1

wifi(x)

]
=

n∑
i=1

[
�wifi(x)

�fi(x)

]2
�2
fi
+ 2

n∑
i

n∑
j

[
�wifi(x)

�fi(x)

][
�wjfj(x)

�fj(x)

]
�fifj

=

n∑
i=1

w2
i
�2
fi(x)

+ 2

n∑
i

n∑
j

wiwj�fifj

=

n∑
i=1

w2
i
Var

[
fi(x)

]
+ 2

n∑
i

n∑
≠ j

wiwj�fifj

√
Var

[
fi(x)

]
× Var

[
fj(x)

]
,

(9)

Var

[
n∑
i=1

wifi(�0)

]
=

n∑
i=1

w2
i

[
�̂�2
fi
�

T
0
(�T

�)−1�0

]

+ 2

n∑
i

n∑
≠ j

wiwj𝜌fifj

√[
�̂�2
fi
�

T
0
(�T�)−1�0

]
×
[
�̂�2
fj
�

T
0
(�T�)−1�0

]
.

As the variance of the estimated responses depends on 
the square of the weight assigned to each response, one 
way of minimizing its value is by diversification, i.e., by 
the uniform distribution of weights among the functions 
involved in the MOP.

Figure 1 shows the step-by-step proposal.
The NBI approach is used to solve the MOP, using the 

following equation [104]:

(10)Var

[
n∑
i=1

wifi(�0)

]
=

n∑
i=1

w2
i

[
�̂�2
fi
�

T
0
(�T

�)−1�0

]
.

Fig. 1  Step-by-step proposal
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where w is the convex weighting; D is the distance between 
the Utopia line and the Pareto frontier; F̄(�) is the vector 
containing the individual values of the normalized objec-
tives in each run; e is a column vector of ones; α is the value 
of the axial point of experimental planning; � and �̄� are the 
payoff and normalized payoff matrices, respectively, and can 
be written as

In mixture design of experiments, the factors are the ingre-
dients or components of a mixture, and consequently, their 
levels are not independent. With two components, the experi-
mental region for the mixture experiments considers all values 
along one line. In the case of three components, this region 
is the area bounded by one triangle, where the vertices cor-
respond to the neat blends, the sides to the binary mixtures, 
and the triangular region to the complete mixtures (for the 
mathematical formulation of Mixture Design of Experiments, 
see [41]).

With regard to the metrics used as weighting criteria (pre-
sented in step 6 of the flowchart), to compare how different 
weighting metrics affect the prediction variance, the ratios 
Shannon’s entropy/error and diversity/error are calculated. The 
use of the error allows the reduction of the distance of the opti-
mum Pareto solution determined from its ideal value, which 
justifies its use in the denominator. The original ratio entropy/
error (ξ) metric is obtained using the equation [40, 41]:

The global percentage error (GPE) in Eq. (13) is calculated 
as [105]

where y∗
i
 is the value of the Pareto optimal responses;Ti is the 

defined target; m is the number of objectives.

(11)

Max
(x,D)

D
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(13)

Max � =
Entropy

GPE

s.t. ∶

n∑
i=1

wi = 1

0 ≤ wi ≤ 1.

(14)GPE =

m∑
i=1

|||||
y∗
i

Ti
− 1

|||||
,

By dividing the GPE by the number of objectives, m, we 
derive the mean absolute percentage error (MAPE), as pre-
sented by Montgomery et al. [106]:

In the present study, the GPE will be replaced by the 
MAPE, yielding the equation:

Two strategies are used to define the parameter dij when 
calculating the diversity. First, we generate the diversity 
correlation (DC) using dij = 1 − �ij . Second, we create 
the diversity optimum (DO) using the Euclidean distance 
between the anchor points, i.e., points that optimize each 
answer individually, as presented in Eq. (6). The strategy 
presented in Eq. (16) will be used for both the diversity 
metrics.

In this work, the unscaled prediction variance (UPV) 
will be used as a measure of the variance of the model. 
According to Zahran et  al. [107], several measures of 
prediction performance exist for comparing experimen-
tal designs, the most commonly considered one being 
the scaled prediction variance (SPV). SPV is defined as 
NVar

[
ŷ(�0)

]
∕𝜎2 = N�T

0
(�T

�)−1�0 , where N is the total 
sample size. However, if direct comparisons between the 
expected variance of estimation are desired, the UPV could 
be modeled directly by the variance of the estimated mean 
response divided by �2 : Var

[
ŷ(�0)

]
∕𝜎2 = �

T
0
(�T

�)−1�0 . It 
is equivalent to the hat matrix [108].

4  Illustrative examples

Some cases were used to demonstrate the applicability of 
the proposed method. The first two cases consider simu-
lated experimental matrices for a hypothetical process. The 
first case considers two convex objective functions and two 
decision variables. The second case considers three objec-
tive functions with different convexities and two decision 
variables. The third case refers to a machining process for 
hardened steel using a tool with wiper geometry, considering 
three objective functions and three decision variables. These 
experimental matrices were composed using the central 
composite design (CCD), because, according to Montgom-
ery [3], for the modeling of the response surface functions, 
the experimental design most often used for data collection 

(15)MAPE =
1

m

m∑
i=1

|||||
y∗
i
− Ti

Ti

|||||
.

(16)

Max � =
Entropy

MAPE

s.t. ∶

n∑
i=1

wi = 1

0 ≤ wi ≤ 1.
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is the CCD. In all the cases, five center points (cp) were 
used, because Myers et al. [108] argued that the use of five 
center points provides reasonable stability of the prediction 
variance throughout the experimental region.

4.1  Case 1

For the analysis of the first case, consider that a certain 
process has some characteristics that depend on two vari-
ables. Thus, to analyze two of its characteristics that are to 
be minimized, a sequential set of experiments was estab-
lished using a CCD, constructed according to the response 
surface design  22, with 4 axial points and 5 central points, 
generating 13 experiments. Table 2 presents the CCD for 
this process (Step 1).

The experimental matrix described in Table 2 presents 
some desirable properties for second-order response sur-
face models, which are axial points defined as � =

4
√
2k 

with the cp number equal to 5. According to Myers et al. 
[108], this ensures the rotationality and good dispersion 
of the prediction variance throughout the experimental 
region.

The analysis of the experimental data generates the math-
ematical modeling presented in Table 3, and Fig. 2 presents 
the response surface for the generated models (Step 2):

Once the equations were defined, a simplex lattice 
arrangement of degree 10 (Step 4) was implemented, gen-
erating the combination of weights to be used in multi-objec-
tive optimization using the NBI (Step 3).

The data in Table 4 correspond to the optimum Pareto 
points of the optimization of the responses y1 and y2. This 
set of points forms the Pareto frontier for the problem under 
analysis (Step 5). Figure 3 graphically shows the Pareto 
frontier obtained.

It can be observed in Fig. 3 that the multi-objective opti-
mization method employed, i.e., the NBI, could construct 
a Pareto border with uniformly distributed points, which 
becomes an advantage in the decision-making process by 
allowing the decision maker to evaluate trade-off behav-
ior easier and determine how prioritizing one response 
affects the other. This would not be possible if there were an 
agglomeration of solutions at some point, generating a dis-
continuous boundary. The mixture arrangement, by provid-
ing a uniform combination of weights, favors the construc-
tion of the frontier and the obtaining of canonical mixing 
polynomials by modeling the responses.

Figure 4 is presented to visualize the solution space 
referring to the optimal Pareto points. As the variance 
of the forecast is measured in the solution space, i.e., 
UPV = �

T
0
(�T

�)−1�0 , visualizing how the points are dis-
tributed in this space is essential; therefore, this can indicate 
how the variance behaves in the analyzed problem.

An important aspect is that the weights assigned to the 
responses during the optimization influence the points in the 
solution space, which indicates that the weighting influences 
the prediction variance.

Based on the data presented in Table 4 (Step 6), a Pearson 
correlation analysis was performed between the weighting 
metrics and the variance measure, UPV. Thus, Table 5 pre-
sents the results of the correlation analysis, together with 
their respective p values, with values lower than 5% indicat-
ing statistically significant correlations. 

The ratios of the diversification metrics, i.e., entropy, DC, 
and DO, with MAPE were analyzed, presenting correlation 
values with the UPVs of − 0.687, − 0.672, and − 0.672, 
respectively. The negative and statistically significant corre-
lations presented by these metrics indicate that they are good 
parameters for defining the optimal weights for the MOP 
presented, leading to a reduction in the variance and, con-
sequently, a robust response from the point of view of vari-
ability, maintaining the diversification between the answers.

Table 2  CCD simulated for two responses—Case 1

N x1 x2 y1 y2

1 − 1 − 1 90 130
2 + 1 − 1 132 100
3 − 1 + 1 140 470
4 + 1 + 1 140 210
5 − 1.4142 0 121 240
6 + 1.4142 0 119 140
7 0 − 1.4142 123 70
8 0 + 1.4142 150 490
9 0 0 101 80
10 0 0 112 150
11 0 0 108 100
12 0 0 99 120
13 0 0 107 130

Table 3  Mathematical models for objective functions—Case 1

Bold values represent significant terms in the models (p value< 5%)

Terms y1 y2

Constant 105.400 116.000
x1 4.896 − 53.928
x2 12.023 130.496
x
2

1
6.612 35.125

x
2

2
14.862 80.125

x1 × x2 − 10.500 − 57.500
p value 0.003 0.000
R2 (%) 89.04 96.36
Adjusted R2 (%) 81.20 93.75
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Fig. 2  Response surfaces—Case 1

Table 4  Arrangement 
of mixtures and metric 
calculations—Case 1

Weights y1 y2
Entropy

MAPE

DC

MAPE

DO

MAPE
UPV

w1 w2

1.00 0.00 98.58 106.41 0.00 0.00 0.00 0.40
0.90 0.10 98.70 96.55 1.18 0.10 0.36 0.35
0.80 0.20 99.04 88.38 2.37 0.22 0.84 0.31
0.70 0.30 99.57 81.65 3.83 0.39 1.45 0.28
0.60 0.40 100.26 76.16 5.64 0.59 2.22 0.26
0.50 0.50 101.09 71.77 7.86 0.84 3.13 0.24
0.40 0.60 102.04 68.32 10.30 1.08 4.05 0.23
0.30 0.70 103.10 65.72 12.24 1.24 4.65 0.22
0.20 0.80 104.26 63.88 12.18 1.15 4.30 0.22
0.10 0.90 105.52 62.76 8.46 0.69 2.59 0.21
0.00 1.00 106.86 62.36 0.00 0.00 0.00 0.21
0.75 0.25 99.28 84.85 3.06 0.30 1.13 0.29
0.25 0.75 103.67 64.71 12.58 1.24 4.63 0.22

11010090807060
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Fig. 3  Pareto frontier—Case 1 Fig. 4  Solution space—Case 1
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The modeling of the weighting metrics using mixture 
arrangement is generated (Step 7) from the data presented 
in Table 4. Thus, its canonical mixing polynomials are:

All the canonical mixing polynomials had a good fit, as 
all have an adjusted  R2 close to 100%. Notably, it was pos-
sible to model the UPV as a function of the weights. There-
fore, the weights interfere in the space of the solution, as 
shown in Fig. 4.

Finally, it is possible to maximize the functions related to 
Entropy/MAPE, DC/MAPE, and DO/MAPE metrics. This 
action aims to maximize diversification and reduce error. 
This process executed for each metric generates a vector of 
optimal weights (Step 8) to be used in the original optimiza-
tion problem, implemented using the NBI, generating differ-
ent optimal responses, allowing their comparison. Table 6 
summarizes the results obtained.

All the metrics used performed well, especially consider-
ing that the maximum value of UPV for the analyzed prob-
lem was 0.403. The goal of diversification was achieved by 
preventing the achievement of zero weights.

(17)
Entropy∕MAPE = −0.064w1 − 0.0408w2 + 32.154w1w2 − 50.437w1w2(w1 − w2)

+ 37.192w1w2(w1 − w2)
2,

(18)DC∕MAPE = 0.008w1 − 0.032w2 + 3.501w1w2 − 4.957w1w2(w1 − w2) + 2.202w1w2(w1 − w2)
2,

(19)DO∕MAPE = 0.030w1 − 0.118w2 + 13.103w1w2 − 18.554w1w2(w1 − w2) + 8.243w1w2(w1 − w2)
2,

(20)UPV = 0.4025w1 + 0.2072w2 − 0.2497w1w2 − 0.1270w1w2(w1 − w2) − 0.0491w1w2(w1 − w2)
2.

4.2  Case 2

For the analysis of the fourth case, consider three char-
acteristics, y1, y2, and y3, of a process that depend on two 

Table 5  Pearson correlation between metrics and variance—Case 1

UPV Entropy

MAPE

DC

MAPE

DO

MAPE

Correlation − 0.687 − 0.672 − 0.672
p value 0.010 0.012 0.012

Table 6  Summary of results—Case 1

Entropy

MAPE

DC

MAPE

DO

MAPE

Weights w1 0.252 0.277 0.277
w2 0.748 0.723 0.723

Variables x1 − 0.155 − 0.185 − 0.185
x2 − 0.826 − 0.828 − 0.828

Responses y1 103.670 103.354 103.354
y2 64.712 65.243 65.243

UPV 0.219 0.221 0.221

Table 7  Simulated CCD for three responses—Case 2

N x1 x2 y1 y2 y3

1 − 1 − 1 81 90 130
2 + 1 − 1 90 132 100
3 − 1 + 1 136 140 470
4 + 1 + 1 100 140 210
5 − 1.4142 0 90 121 240
6 + 1.4142 0 83 119 140
7 0 − 1.4142 98 123 70
8 0 + 1.4142 138 150 490
9 0 0 155 101 80
10 0 0 165 112 150
11 0 0 170 108 100
12 0 0 160 99 120
13 0 0 153 107 130

Table 8  Mathematical models for objective functions—Case 2

Values in bold represent significant terms in the models (p 
value < 5%)

Terms y1 y2 y3

Constant 160.600 105.400 116.000
x1 − 4.612 4.896 − 53.928
x2 15.196 12.023 130.496
x
2

1
− 37.175 6.612 35.125

x
2

2
− 21.425 14.862 80.125

x1 × x2 − 11.250 − 10.500 − 57.500
p value 0.000 0.003 0.000
R2 (%) 98.30 89.04 96.36
Adjusted R2 (%) 97.09 81.20 93.75
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variables. To maximize y1 and minimize y2 and y3, a sequen-
tial set of experiments was established using a CCD, con-
structed according to the response surface design  22, with 4 
axial points and 5 central points, generating 13 experiments. 
Table 7 presents the CCD for this process.

The analysis of the experimental data generates the math-
ematical modeling presented in Table 8, and Fig. 5 presents 
the response surface for the generated models.

Once the equations were defined, a simplex lattice 
arrangement of degree 10 was implemented, generating 
the combination of weights to be used in multi-objective 
optimization using the NBI.

The data in Table 9 correspond to the optimum Pareto 
points of the optimization of the responses y1, y2, and y3. 
This set of points forms the Pareto frontier for the prob-
lem under analysis. Figure 6 graphically shows the Pareto 
frontier obtained.

Figure 7 is presented to visualize the solution space 
referring to the optimal Pareto points.

As shown in the previous case, it is observed that the 
points move in the solution space, as the weights are 
changed in the optimization process, which will directly 
influence the UPV values (Figs. 8, 9, 10, 11).    

Based on the data presented in Table 9, a Pearson cor-
relation analysis was performed between the weighting 
metrics and the variance measure, UPV. Thus, Table 10 
presents the results of the correlation analysis, together 
with their respective p values.

It can be observed that all the diversification/error metrics 
presented a negative and statistically significant correlation 
with the UPV, which indicates that the maximization of 
these metrics reduces the measurement of the UPV.

From the data presented in Table 9, the canonical mixing 
polynomials with their respective response and contour plot 
surfaces are shown as follows:

(21)

Entropy∕MAPE = −0.513w1 + 0.086w2 − 0.095w3 + 9.814w1w2 + 7.834w1w3

+ 19.588w2w3 − 16.483w1w3(w1 − w3) − 22.203w2w3(w2 − w3)

− 86.415w1w1w2w3+93.372w1w2w2w3 + 221.784w1w2w3w3

+ 36.169w1w3(w1 − w3)
2 + 14.674w2w3(w2 − w3)

2,

(22)

DC∕MAPE = −0.013w1 + 0.051w2 + 0.006w3 + 3.835w1w2 + 2.782w1w3

+ 1.945w2w3 − 1.132w1w2(w1 − w2) − 5.330w1w3(w1 − w3)

− 2.321w2w3(w2 − w3) − 7.635w1w1w2w3 + 14.440w1w2w2w3

+ 48.342w1w2w3w3 − 2.662w1w2(w1 − w2)
2 + 6.798w1w3(w1 − w3)

2,

(23)

DO∕MAPE = −0.12w1 + 0.16w2 − 0.03w3 + 4.51w1w2 + 3.53w1w3

+ 7.78w2w3 − 6.23w1w3(w1 − w3) − 8.00w2w3(w2 − w3)

− 31.32w1w1w2w3 + 29.07w1w2w2w3 + 62.66w1w2w3w3

− 3.06w1w2(w1 − w2)
2 + 10.08w1w3(w1 − w3)

2,
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Fig. 5  Response surfaces—Case 2
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Table 9  Mixture arrangement 
and metric calculations—Case 2

Weights y1 y2 y3
Entropy

MAPE

DC

MAPE

DO

MAPE
UPV

w1 w2 w3

1.00 0.00 0.00 164 112 188 0.00 0.00 0.00 0.19
0.90 0.10 0.00 163 109 169 0.54 0.18 0.21 0.19
0.90 0.00 0.10 163 111 171 0.52 0.14 0.17 0.19
0.80 0.20 0.00 162 107 152 0.98 0.38 0.44 0.20
0.80 0.10 0.10 163 108 152 1.25 0.34 0.43 0.20
0.80 0.00 0.20 163 110 155 0.93 0.28 0.35 0.19
0.70 0.30 0.00 159 105 137 1.42 0.59 0.69 0.19
0.70 0.20 0.10 161 106 135 1.93 0.58 0.73 0.20
0.70 0.10 0.20 162 107 136 1.89 0.53 0.67 0.20
0.70 0.00 0.30 161 109 140 1.34 0.44 0.54 0.20
0.60 0.40 0.00 155 103 125 1.83 0.79 0.92 0.19
0.60 0.30 0.10 158 104 120 2.65 0.84 1.05 0.20
0.60 0.20 0.20 160 105 119 2.88 0.82 1.08 0.20
0.60 0.10 0.30 161 106 120 2.62 0.74 0.96 0.20
0.60 0.00 0.40 159 109 126 1.77 0.60 0.74 0.20
0.50 0.50 0.00 149 101 116 2.12 0.93 1.08 0.19
0.50 0.40 0.10 153 102 110 3.31 1.06 1.35 0.19
0.50 0.30 0.20 157 103 106 3.96 1.13 1.52 0.20
0.50 0.20 0.30 159 104 104 4.07 1.11 1.52 0.20
0.50 0.10 0.40 159 106 106 3.52 0.98 1.31 0.20
0.50 0.00 0.50 157 108 112 2.25 0.77 0.96 0.20
0.40 0.60 0.00 141 100 110 2.21 0.96 1.11 0.19
0.40 0.50 0.10 147 101 102 3.73 1.17 1.52 0.19
0.40 0.40 0.20 151 101 96 4.88 1.36 1.89 0.19
0.40 0.30 0.30 154 102 93 5.63 1.48 2.12 0.19
0.40 0.20 0.40 156 103 91 5.65 1.46 2.09 0.20
0.40 0.10 0.50 157 105 93 4.73 1.27 1.74 0.20
0.40 0.00 0.60 155 107 98 2.84 0.96 1.19 0.19
0.30 0.70 0.00 132 99 106 2.04 0.85 0.99 0.21
0.30 0.60 0.10 138 100 97 3.71 1.09 1.47 0.20
0.30 0.50 0.20 143 100 90 5.24 1.37 2.00 0.19
0.30 0.40 0.30 147 101 85 6.69 1.64 2.50 0.19
0.30 0.30 0.40 151 102 82 7.72 1.83 2.84 0.19
0.30 0.20 0.50 153 103 80 7.76 1.85 2.80 0.19
0.30 0.10 0.60 154 105 81 6.39 1.60 2.28 0.19
0.30 0.00 0.70 153 107 85 3.57 1.17 1.45 0.19
0.20 0.80 0.00 122 99 104 1.61 0.63 0.73 0.25
0.20 0.70 0.10 129 99 95 3.23 0.85 1.20 0.22
0.20 0.60 0.20 134 100 87 4.81 1.11 1.77 0.21
0.20 0.50 0.30 139 100 81 6.54 1.41 2.40 0.20
0.20 0.40 0.40 143 101 77 8.30 1.73 3.02 0.19
0.20 0.30 0.50 146 102 73 9.70 2.00 3.47 0.19
0.20 0.20 0.60 148 103 71 9.97 2.08 3.47 0.19
0.20 0.10 0.70 149 104 71 8.31 1.85 2.80 0.19
0.20 0.00 0.80 149 106 74 4.35 1.32 1.64 0.19
0.10 0.90 0.00 111 99 105 0.98 0.33 0.38 0.31
0.10 0.80 0.10 118 99 95 2.38 0.48 0.79 0.27
0.10 0.70 0.20 123 99 87 3.72 0.67 1.28 0.24
0.10 0.60 0.30 128 100 80 5.21 0.90 1.85 0.22
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Notably, all the canonical mixing polynomials had a good 
fit, as all have an adjusted  R2 close to 100%. Once again, we 
could model the variance as a function of the weights.

(24)

UPV = 0.193w1 + 0.403w2 + 0.207w3 − 0.431w1w2 − 0.012w1w3

− 0.253w2w3+0.379w1w2(w1 − w2)+0.058w1w3(w1 − w3)

− 0.124w2w3(w2 − w3) + 0.997w1w1w2w3 − 0.580w1w2w2w3

− 0.405w1w2w3w3 − 0.132w1w2(w1 − w2)
2 − 0.123w1w3(w1 − w3)

2

− 0.051w2w3(w2 − w3)
2.

As in the first case, the functions of the metrics were 
maximized, generating the result presented in Table 11.

If the amplitude of variation of the UPV for this prob-
lem (0.190–0.403) is considered, it can be affirmed that 

Table 9  (continued) Weights y1 y2 y3
Entropy

MAPE

DC

MAPE

DO

MAPE
UPV

w1 w2 w3

0.10 0.50 0.40 133 100 75 6.84 1.14 2.45 0.21
0.10 0.40 0.50 136 101 71 8.48 1.39 3.02 0.20
0.10 0.30 0.60 139 102 68 9.76 1.59 3.39 0.20
0.10 0.20 0.70 141 103 66 10.05 1.66 3.32 0.19
0.10 0.10 0.80 143 105 65 8.47 1.48 2.61 0.19
0.10 0.00 0.90 144 106 65 3.99 1.05 1.30 0.19
0.00 1.00 0.00 100 99 106 0.00 0.00 0.00 0.40
0.00 0.90 0.10 106 99 97 1.08 0.09 0.33 0.35
0.00 0.80 0.20 112 99 88 2.03 0.19 0.72 0.31
0.00 0.70 0.30 117 100 82 3.02 0.31 1.15 0.28
0.00 0.60 0.40 121 100 76 4.04 0.43 1.59 0.26
0.00 0.50 0.50 125 101 72 5.01 0.53 2.00 0.24
0.00 0.40 0.60 128 102 68 5.77 0.61 2.27 0.23
0.00 0.30 0.70 131 103 66 6.06 0.61 2.30 0.22
0.00 0.20 0.80 133 104 64 5.54 0.52 1.96 0.22
0.00 0.10 0.90 135 106 63 3.84 0.31 1.17 0.21
0.00 0.00 1.00 136 107 62 0.00 0.00 0.00 0.21
0.33 0.33 0.33 151 102 86 6.76 1.68 2.52 0.19
0.67 0.17 0.17 162 106 129 2.25 0.64 0.82 0.20
0.17 0.67 0.17 129 99 89 3.98 0.89 1.43 0.22
0.17 0.17 0.67 147 104 69 10.11 2.01 3.41 0.19
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2750 Engineering with Computers (2021) 37:2735–2761

1 3

all the analyzed metrics performed well, as they led to the 
choice of optimal Pareto points located in the region of 
minimum variance. Furthermore, the weights between the 
responses are well distributed and without zero weights 
due to diversification.

4.3  Case 3—Real case analysis

For this real case analysis, the method proposed in this work 
was used to optimize the machining process for hardened 
steel AISI H13 using a polycrystalline cubic boron nitride 
(PCBN) tool with wiper geometry, based on Campos [109]. 
For this study, we considered the material removal rate 
(MRR), surface roughness parameter (Ra), and cutting force 
(Fc), using cutting speed (Vc), feed rate (f), and the depth 
of cut (d) as the decision variables. The workpieces were 
machined using the range of parameters defined in Table 12. 
The decision variables were analyzed in a coded way.
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A sequential set of experimental runs was established 
using a CCD built according to a response surface design 
 23, with 6 axial points and 5 center points, generating 19 
experiments (Table 13).

The analysis of the experimental data generates the math-
ematical modeling presented in Table 14, and Fig. 12 pre-
sents the response surface for the generated models.
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Table 10  Pearson correlation between metrics and variance—Case 2

UPV Entropy

MAPE

DC

MAPE

DO

MAPE

Correlation − 0.316 − 0.501 − 0.339
p value 0.008 0.000 0.004

Table 11  Summary of results—Case 2

Entropy

MAPE

DC

MAPE

DO

MAPE

Weights w1 0.153 0.216 0.155
w2 0.241 0.226 0.270
w3 0.606 0.557 0.575

Variables x1 − 0.071 − 0.035 − 0.107
x2 − 0.580 − 0.478 − 0.586

Responses y1 144.245 148.362 143.716
y2 102.677 102.709 102.346
y3 68.906 72.892 69.640

UPV 0.191 0.190 0.191



2752 Engineering with Computers (2021) 37:2735–2761

1 3

Once the equations were defined, a simplex lattice 
arrangement of degree 10 was implemented, generating the 
combination of weights to be used in multi-objective opti-
mization using the NBI.

The data in Table 15 correspond to the optimum Pareto 
points of the optimization of the responses MRR, Ra, and 
Fc. This set of points forms the Pareto frontier for the prob-
lem under analysis. Figure 13 graphically shows the Pareto 
frontier obtained.

Figure 14 is presented to visualize the solution space 
referring to the optimal Pareto points.

As shown in the previous case, it is observed that the 
points move in the solution space, as the weights are changed 
in the optimization process, which will directly influence the 
UPV values (Figs. 15, 16, 17, 18).

Based on the data presented in Table 15, a Pearson corre-
lation analysis was performed between the weighting metrics 
and the variance measure, UPV. Thus, Table 16 presents 
the results of the correlation analysis, together with their 
respective p values.

Notably, all the diversification/error metrics presented a 
negative and statistically significant correlation with the UPV, 
which indicates that the maximization of these metrics reduces 
the measurement of the UPV.

Table 12  Parameters used in the 
experiments

Factors Symbol Levels

− 1.682 − 1 0 1 1.682

Cutting speed (m/min) Vc 57.38 100 162.5 225 267.62
Feed rate (mm/rev) f 0.06 0.10 0.16 0.22 0.26
Depth of cut (mm) d 0.09 0.15 0.24 0.33 0.39

Table 13  CCD for MRR, Ra, 
and Fc. Source: Campos [109]

N Vc (m/min) f (mm/rev) d (mm) MRR  (cm3/min) Ra (µm) Fc (N)

1 − 1 − 1 − 1 1.50 0.13 342.442
2 + 1 − 1 − 1 3.38 0.09 238.623
3 − 1 + 1 − 1 3.38 0.52 434.359
4 + 1 + 1 − 1 7.59 0.26 243.650
5 − 1 − 1 + 1 3.30 0.14 446.410
6 + 1 − 1 + 1 7.43 0.12 246.740
7 − 1 + 1 + 1 7.43 0.48 454.539
8 + 1 + 1 + 1 16.71 0.45 248.450
9 − 1.682 0 0 2.24 0.29 497.710
10 + 1.682 0 0 10.44 0.15 226.560
11 0 − 1.682 0 2.24 0.12 325.650
12 0 + 1.682 0 10.44 0.54 362.560
13 0 0 − 1.628 2.34 0.15 332.670
14 0 0 + 1.682 10.33 0.15 365.980
15 0 0 0 6.34 0.15 338.750
16 0 0 0 6.34 0.16 336.930
17 0 0 0 6.34 0.14 337.770
18 0 0 0 6.34 0.17 335.690
19 0 0 0 6.34 0.16 339.130

Table 14  Mathematical models of objective functions

Values in bold represent significant terms in the model (p value < 5%)

Terms MRR  (cm3/min) Ra (µm) Fc (N)

Constant 6.340 0.155 338.460
Vc 2.438 − 0.042 − 84.667
f 2.438 0.142 12.363
D 2.378 0.014 14.139
Vc2 0.000 0.030 4.217
f2 0.000 0.069 − 2.158
d2 − 0.001 0.005 − 0.312
Vc × f 0.935 − 0.029 − 11.661
Vc × d 0.915 0.031 − 13.904
f × d 0.915 0.014 − 10.889
p value 0.000 0.000 0.000
Adjusted R2 (%) 99.24 92.71 95.33
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From the data presented in Table 15, the canonical mixing 
polynomials with their respective response and contour plot 
surfaces are shown as follows:

Notably, all the canonical mixing polynomials had a good 
fit, as all have an adjusted  R2 close to 100%. Once again, we 
could model the variance as a function of the weights.

As in the other presented cases, the functions of the met-
rics were maximized, generating the result presented in 
Table 17.

If the amplitude of variation of the UPV for this prob-
lem (0.279–0.607) is considered, it can be affirmed that 

(25)

Entropy∕MAPE = −0.044w1 − 0.008w2 + 0.002w3 + 7.430w1w2 + 8.170w1w3

+ 8.663w2w3 − 2.030w1w3(w1 − w3) − 1.245w2w3(w2 − w3)

+ 16.809w1w1w2w3 + 10.736w1w2w2w3 + 21.903w1w2w3w3

+ 2.772w1w2(w1 − w2)
2 + 4.666w1w3(w1 − w3)

2 + 5.090w2w3(w2 − w3)
2,

(26)

DC∕MAPE = −0.0028w1 + 0.0058w2 + 0.0013w3 + 4.3612w1w2 + 1.5282w1w3

+ 2.4715w2w3 − 0.0533w1w2(w1 − w2) − 0.3433w1w3(w1 − w3)

− 0.3297w2w3(w2 − w3) + 1.2760w1w1w2w3 + 1.5377w1w2w3w3

− 0.4891w1w2(w1 − w2)
2 + 0.0696w1w3(w1 − w3)

2 + 0.1254w2w3(w2 − w3)
2,

(27)

DO∕MAPE = −0.006w1 + 0.010w2 + 0.004w3 + 9.099w1w2 + 5.776w1w3

+ 6.050w2w3 − 0.123w1w2(w1 − w2) − 1.311w1w3(w1 − w3)

− 0.780w2w3(w2 − w3) + 3.326w1w1w2w3 − 1.385w1w2w2w3

+ 3.190w1w2w3w3 − 1.037w1w2(w1 − w2)
2 + 0.200w1w3(w1 − w3)

2

+ 0.324w2w3(w2 − w3)
2,

(28)

UPV = 0.583w1 + 0.443w2 + 0.349w3 − 0.307w1w3 + 0.343w2w3

+ 1.143w1w2(w1 − w2) + 0.822w1w3(w1 − w3) + 0.803w2w3(w2 − w3)

− 10.662w1w2w2w3 − 1.260w1w2(w1 − w2)
2 + 0.810w1w3(w1 − w3)

2

+ 0.644w2w3(w2 − w3)
2.

all the analyzed metrics performed well, as they led to the 
choice of optimal Pareto points located in the region of 
minimum variance. Furthermore, the weights between the 

responses are well distributed and without zero weights due 
to diversification.

4.4  Comparative analysis between the cases

The results of the cases are compared. Table 18 presents the 
results of UPV for each metric in each case analyzed.
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Table 15  Mixture arrangement 
and metric calculations—Case 3

Weights MRR Ra Fc Entropy

MAPE

DC

MAPE

DO

MAPE
UPV

w1 w2 w3

1.00 0.00 0.00 15.99 0.379 249 0.00 0.00 0.00 0.61
0.90 0.10 0.00 15.67 0.320 244 0.22 0.04 0.17 0.61
0.90 0.00 0.10 15.93 0.353 243 0.20 0.08 0.07 0.61
0.80 0.20 0.00 14.95 0.272 241 0.41 0.08 0.36 0.61
0.80 0.10 0.10 15.43 0.299 239 0.47 0.12 0.25 0.61
0.80 0.00 0.20 15.79 0.330 237 0.33 0.15 0.13 0.61
0.70 0.30 0.00 13.95 0.232 240 0.59 0.13 0.57 0.61
0.70 0.20 0.10 14.58 0.255 237 0.71 0.17 0.45 0.61
0.70 0.10 0.20 15.13 0.280 234 0.64 0.20 0.32 0.61
0.70 0.00 0.30 15.56 0.308 232 0.44 0.21 0.19 0.61
0.60 0.40 0.00 12.70 0.199 240 0.77 0.17 0.76 0.61
0.60 0.30 0.10 13.47 0.218 236 0.94 0.23 0.66 0.61
0.60 0.20 0.20 14.16 0.239 233 0.91 0.26 0.53 0.61
0.60 0.10 0.30 14.77 0.263 230 0.77 0.27 0.39 0.61
0.60 0.00 0.40 15.27 0.289 227 0.52 0.26 0.23 0.61
0.50 0.50 0.00 11.26 0.171 242 0.92 0.20 0.92 0.47
0.50 0.40 0.10 12.12 0.188 237 1.15 0.27 0.85 0.59
0.50 0.30 0.20 12.94 0.205 233 1.16 0.31 0.74 0.61
0.50 0.20 0.30 13.69 0.225 229 1.06 0.32 0.59 0.61
0.50 0.10 0.40 14.36 0.247 226 0.88 0.32 0.43 0.61
0.50 0.00 0.50 14.91 0.272 223 0.58 0.30 0.26 0.61
0.40 0.60 0.00 9.76 0.145 243 1.04 0.23 1.03 0.33
0.40 0.50 0.10 10.65 0.161 239 1.33 0.30 0.99 0.40
0.40 0.40 0.20 11.51 0.177 234 1.37 0.34 0.91 0.50
0.40 0.30 0.30 12.37 0.194 230 1.30 0.36 0.78 0.61
0.40 0.20 0.40 13.17 0.212 226 1.16 0.36 0.63 0.61
0.40 0.10 0.50 13.89 0.232 222 0.94 0.34 0.45 0.61
0.40 0.00 0.60 14.50 0.256 219 0.61 0.31 0.27 0.61
0.30 0.70 0.00 8.22 0.120 245 1.12 0.24 1.07 0.28
0.30 0.60 0.10 9.13 0.135 240 1.49 0.32 1.09 0.32
0.30 0.50 0.20 10.02 0.151 236 1.56 0.37 1.04 0.37
0.30 0.40 0.30 10.90 0.167 231 1.51 0.39 0.94 0.44
0.30 0.30 0.40 11.76 0.183 227 1.39 0.39 0.80 0.55
0.30 0.20 0.50 12.60 0.200 222 1.21 0.37 0.64 0.61
0.30 0.10 0.60 13.37 0.219 219 0.96 0.33 0.45 0.61
0.30 0.00 0.70 14.03 0.241 215 0.59 0.29 0.25 0.61
0.20 0.80 0.00 6.61 0.097 247 1.10 0.22 0.97 0.28
0.20 0.70 0.10 7.57 0.111 242 1.59 0.32 1.09 0.29
0.20 0.60 0.20 8.49 0.126 238 1.70 0.37 1.10 0.32
0.20 0.50 0.30 9.39 0.141 233 1.68 0.40 1.04 0.36
0.20 0.40 0.40 10.27 0.157 228 1.56 0.39 0.93 0.42
0.20 0.30 0.50 11.14 0.173 224 1.40 0.37 0.79 0.50
0.20 0.20 0.60 12.00 0.189 219 1.18 0.34 0.61 0.60
0.20 0.10 0.70 12.81 0.207 215 0.92 0.29 0.42 0.61
0.20 0.00 0.80 13.52 0.228 212 0.52 0.23 0.20 0.61
0.10 0.90 0.00 4.92 0.076 250 0.85 0.14 0.65 0.35
0.10 0.80 0.10 5.93 0.088 245 1.52 0.27 0.93 0.33
0.10 0.70 0.20 6.90 0.102 240 1.73 0.35 1.05 0.33
0.10 0.60 0.30 7.84 0.116 235 1.74 0.38 1.07 0.34
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In general, the strategy of using diversification and 
error as parameters for the selection of the most preferred 
Pareto optimal point was efficient, as it led to the choice 
of a point with low prediction variance without zeroing 
any of the weights associated with the objective functions. 
The use of the proposed weighting for Case 1 leads to a 
45.66% reduction in the prediction variance if we consider 

the maximum value of UPV for the problem in question. 
For Case 2, the reduction in the UPV is 52.85%. In Case 3, 
which presented a problem of optimization of the turning 
process of hardened steel using a tool with wiper geometry, 
the reduction is 49.75%. For real industrial problems, the 
information regarding the most reliable prediction is very 

Table 15  (continued) Weights MRR Ra Fc Entropy

MAPE

DC

MAPE

DO

MAPE
UPV

w1 w2 w3

0.10 0.50 0.40 8.75 0.131 230 1.65 0.38 1.01 0.37
0.10 0.40 0.50 9.64 0.147 225 1.50 0.36 0.89 0.42
0.10 0.30 0.60 10.52 0.163 221 1.30 0.32 0.73 0.48
0.10 0.20 0.70 11.38 0.179 216 1.06 0.27 0.55 0.56
0.10 0.10 0.80 12.22 0.196 212 0.78 0.21 0.34 0.61
0.10 0.00 0.90 12.95 0.216 208 0.36 0.14 0.12 0.61
0.00 1.00 0.00 3.02 0.061 254 0.00 0.00 0.00 0.61
0.00 0.90 0.10 4.20 0.069 247 0.92 0.16 0.49 0.48
0.00 0.80 0.20 5.25 0.080 242 1.30 0.27 0.80 0.42
0.00 0.70 0.30 6.23 0.093 237 1.43 0.32 0.95 0.40
0.00 0.60 0.40 7.18 0.107 232 1.42 0.33 0.98 0.39
0.00 0.50 0.50 8.10 0.122 227 1.31 0.31 0.91 0.41
0.00 0.40 0.60 9.00 0.137 223 1.15 0.27 0.79 0.44
0.00 0.30 0.70 9.88 0.153 218 0.95 0.21 0.63 0.49
0.00 0.20 0.80 10.75 0.169 214 0.71 0.15 0.44 0.56
0.00 0.10 0.90 11.60 0.186 209 0.42 0.08 0.22 0.61
0.00 0.00 1.00 12.26 0.208 206 0.00 0.00 0.00 0.61
0.33 0.33 0.33 11.68 0.181 229 1.41 0.38 0.85 0.53
0.67 0.17 0.17 14.65 0.257 235 0.76 0.21 0.44 0.61
0.17 0.67 0.17 7.66 0.113 240 1.71 0.35 1.10 0.31
0.17 0.17 0.67 12.08 0.192 217 1.07 0.30 0.53 0.61
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important, because the analyst does not initially know where 
the optimum is situated in the experimental space.

Notably, in all the cases analyzed, it was possible to 
model the variance in terms of weights. This is because the 

weights interfere in the solution space. Nevertheless, the 
points of the solution space chosen to optimize the single 
optimization problem, i.e., the individual objectives, do not 
necessarily match the minimum variance points of the exper-
imental space. This makes the act of choosing Pareto opti-
mal robust solutions non-trivial. In this context, the ROPS 
proposal becomes relevant by inducing the choice of Pareto 
optimal points having less prediction variance.

Finally, the behavior of the variance and the choice 
of the optimal Pareto point with less variability were not 
affected either by the convexity of the functions and by the 
number of functions to be optimized or by the amount of 
variables involved in each process. This allows the use of 
ROPS to solve problems of different dimensions.
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5  Conclusions

As previously mentioned in Sect. 2.1, weighting meth-
ods for selecting an optimal point in the Pareto frontier, 
as an aid to decision-making, are studied even after sev-
eral years of research. The present study aimed to discuss 
the variability of the Pareto optimal responses, which is 
not extensively discussed in the literature, despite the 
extensive discussion about the behavior of the variance 
in experimental designs. Therefore, this paper introduced 
the ROPS, developed to choose the most preferred Pareto 
optimal point in MOPs using RSM.

The study could demonstrate that the weights used in 
the MOP influence the prediction variance of the obtained 
response. Furthermore, the use of diversification measures, 
such as entropy and diversity, associated with measures of 
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Table 16  Pearson correlation between metrics and variance—Case 3

UPV Entropy

MAPE

DC

MAPE

DO

MAPE

Correlation − 0.710 − 0.388 − 0817
p value 0.000 0.001 0.000

Table 17  Summary of results—Case 3

Entropy

MAPE

DC

MAPE

DO

MAPE

Weights w1 0.153 0.207 0.230
w2 0.600 0.455 0.631
w3 0.247 0.338 0.140

Variables x1 1.300 1.363 1.250
x2 − 0.352 − 0.280 − 0.361
x3 − 0.014 0.358 0.098

Responses MRR 8.181 9.829 8.401
Ra 0.121 0.149 0.124
Fc 236.236 231.043 239.798

UPV 0.326 0.382 0.305
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error, such as MAPE, was useful in mapping regions of 
minimum variance within the Pareto optimal responses 
obtained in the optimization process. Thus, the results 
show that the proposed method is efficient and applica-
ble to choose the vector of weights that produces Pareto 
optimal results with less variability and greater reliability.

Finally, the use of metrics proposed in ROPS is pre-
sented as a useful tool in the multiple-criteria decision-
making process, because it leads to robust responses 
without the necessity of including the variance term in 
the mathematical formulation of the problem, making it 
simpler. As a proposal for future studies, we recommend 
the use of ROPS for different designs of experiments mod-
els, to evaluate their behavior under different experimental 
conditions.
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