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Abstract
This paper presents two levels of enhancing the basic Moth flame optimization (MFO) algorithm. The first step is hybridizing 
MFO and the local-based algorithm, hill climbing (HC), called MFOHC. The proposed algorithm takes the advantages of 
HC to speed up the searching, as well as enhancing the learning technique for finding the generation of candidate solutions of 
basic MFO. The second step is the addition of six popular selection schemes to improve the quality of the selected solution 
by giving a chance to solve with high fitness value to be chosen and increase the diversity. In both steps of enhancing, thirty 
benchmark functions and five IEEE CEC 2011 real-world problems are used to evaluate the performance of the proposed 
versions. In addition, well-known and recent meta-heuristic algorithms are applied to compare with the proposed versions. 
The experiment results illustrate that the proportional selection scheme with MFOHC, namely (PMFOHC) is outperforming 
the other proposed versions and algorithms in the literature.

Keywords  Moth flame optimization · Hill climbing · Selection schemes · Meta-heuristic algorithms · Real-world problems

1  Introduction

Metaheuristic algorithms are classified into local search-
based algorithms and population-based algorithms. Local 
search-based algorithms consider one solution at a time and 
try to enhance it using neighbourhood structures [44], such 
as hill climbing [26], tabu searches [16], �-hill climbing [2], 
and simulated annealing [25]. While the main advantage of 
these methods is rapid search speeds, the main drawback is 
their tendency to focus on exploitation rather than explo-
ration, which, as a result, increases the likelihood of their 
getting stuck in local optima [43]. By contrast, population-
based algorithms, which consider a population of solutions 
at a time, recombine the current solutions to generate one 
or more new solutions at each iteration. These methods are 
effective in identifying promising areas in the search space 

but are ineffective in exploiting the search space region 
being explored [45]. Evolutionary computation and swarm 
intelligence methods are classifications of population-based 
methods [1]. Both methods are based on the natural biologi-
cal evolution or social interaction behaviour of natural crea-
tures. Examples of swarm-based algorithms include particle 
swarm optimization (PSO) [24], krill herd algorithm (KHA) 
[13], the salp swarm algorithm (SSA) [31] and the moth-
flame optimization (MFO) [28].

Swarm intelligence-based methods are inspired by ani-
mal societies and social insect colonies [4]. They mimic 
the behaviour of swarming social insects, schools of fish 
or flocks of birds. The main advantages of these methods 
are their flexibility and robustness [8]. MFO is a recent 
metaheuristic population-based method developed by Mir-
jalili [28] that imitate the moths’ movement technique in the 
night, called transverse orientation for navigation. Moths fly 
in the night depending on the moonlight, where they main-
tain a fixed angle to find their path. The behavior of moths 
has been formulated as a novel optimization technique. MFO 
can be utilized to solve a wide range of problems because 
its procedures are simple, flexible, and easily implemented 
[21]. On account of these merits, MFO was successfully 
applied to various optimization problems. For instance, 
scheduling [12], inverse problem and parameter estimation 
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[3, 19], classification [58], economic [51], medical [53], 
power energy [57], and image processing [10].

As mentioned above, the basic MFO proved its efficiency 
to solve various problems. However, it suffers from a weak 
exploitation search, low diversity, and it slows the conver-
gence rate. Therefore, Li et al. [27] applied multi-objective 
moth-flame optimization algorithm (MOMFA) to improve 
the efficiency of using water resources. The method assisted 
and utilized the original moth-flame optimization algorithm, 
opposition-based learning, and indicator-based selection 
efficient mechanisms to maintain the diversity and accel-
erate the convergence. The algorithm tested on the Lushui 
River Basin and many benchmarks [49]. The algorithm can 
determine the optimal tradeoff of the elements and can dis-
tribute non dominated outcomes for utilization problem of 
the multi-objective water resources. The result is verified 
and compared with other algorithms, it indicated to the abil-
ity to obtain well pareto solutions for standard problems. 
Also, Bhesdadiya et al. [6] introduced a hybrid optimiza-
tion algorithm based on integration between particle swarm 
optimization (PSO) and MFO. The proposed algorithm is 
used to solve unconstrained engineering design optimiza-
tion problems in power system context. MFO is applied to 
overcome the limitation of PSO algorithm by increasing 
the exploration search during solving high complex design 
problem. In the conducted experiment, four benchmark-
ing functions are used to validate the proposed algorithm 
in terms of exploration and exploitation. Furthermore, the 
proposed algorithm is compared with the two traditional 
swarm-based algorithm namely, particle swarm optimiza-
tion (PSO) and MFO to validate the performance. Overall 
experiment results illustrate that the performance of the 
proposed algorithm is better than the compared traditional 
methods. Moreover, in the context of image segmentation 
(automated food quality inspection), Sarma et al. [37] pro-
posed a hybrid algorithm combined between physics-based 
algorithm [e.g., gravitational search algorithm (GSA)] and 
swarm-based algorithm (i.e., MFO). The proposed algorithm 
is applied to solve the problem of measuring the degree of 
food rottenness that cloud helps to minimize monetary losses 
due to food and storage. Both algorithm is combined because 
they complete each other. For example, MFO is important 
due to its effectiveness in exploratory nature. While, GSA is 
applied due to its effectiveness in team of exploitation. The 
experiment study is designed to test the hybrid optimization 
algorithm over thirteen unimodal functions and multimodal 
functions. Then, the experiment results are used to com-
pare the proposed hybrid algorithm with traditional MFO 
and GSA algorithms. The comparison results show that the 
proposed hybrid algorithm is very fast and produces safe 
results. In [38], the authors proposed a nondominated MFO 
algorithm (NSMFO) method to solve multi-objective prob-
lems. Metaheuristics search techniques are used based on 

MFO instead of the different optimization techniques like 
cuckoo search, genetic algorithms, particle swarm optimi-
zation, and differential evolutions. The method utilized the 
crowding distance approach and sorting of the elitist non-
dominated for preserving the diversity and obtaining variant 
nondomination levels, respectively, among the optimal set 
of solutions. It measured the effectiveness by multiobjective 
benchmark, engineering problems, distinctive feature, and 
the Pareto front generation [50]. The results of the method 
were compared with other algorithms and considered closer 
and better sometimes. While Reddy et al. [35] modified the 
MFO algorithm (MFOA) and examined characteristics of 
the local and global search of the basic algorithm. The algo-
rithm is aimed to improve solving unit commitment (UC) 
problem by using the binary coded modified MFO algorithm 
(BMMFOA), the basic MFO is a natureinspired heuristic 
search approach that mimics the traverse navigational prop-
erties of moths around artificial lights tricked for natural 
moonlight, the algorithm used position update of a single-
based approach between corresponding flame and the moth 
differently than many other swarm based approaches. The 
modified MFO algorithm (MMFOA) is used to improve the 
exploitation search of the moths and reduces the number of 
flames.

This paper highlights the two main weaknesses recog-
nized in the performance trajectory of the basic version of 
the MFO: loss of the solutions’ diversity, which leads to 
a slow convergence manner. Because of these weaknesses, 
MFO requires further refinements, to be modified or hybrid-
ized with other algorithms components or local search tech-
niques. As a result, an improved method, by hybridizing the 
basic MFO and hill-climbing (HC) search strategy called 
MFOCH. Moreover, using several promising selection 
schemes for enhancing the quality of the selected solutions. 
The following points are summarized the main contributions 
of this work. 

1.	 A new hybridization method using MFO and HC 
(MFOCH) is developed to improve the exploitation 
search.

2.	 Alternative selection methods in the MFOCH for global 
optimization problems are investigated to maintain the 
diversity of the solutions, as well as improving their 
quality.

3.	 The performance of the proposed algorithms is tested 
using thirty basic benchmarks and five IEEE CEC 2011 
real world problems.

The organization of this review is as follows. Section 2 
introduces MFO, HC, and the selection schemes. Then, The 
proposed methods are described in Sect. 3. Section 4 shows 
experimental results and discussions. Finally, Sect. 5 pre-
sents conclusions and future directions.
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2 � Preliminaries

2.1 � Moth‑flame optimization algorithm

2.1.1 � Origin

In nature, over 160,000 different species of moths have been 
documented, which are resemble butterflies in their life cycle 
(i.e., moth consists of two-level life: larvae and adult, where 
it converted to moth by cocoons) [48].

Interesting thing in the moths’ life is their special naviga-
tion methods at night. They have evolved to fly in the night 
using the moonlight. Also, they employed a mechanism 
called transverse orientation for navigation. This mecha-
nism allows the moth to fly by preserving a stable angle with 
respect to the moon, a very effective mechanism for travel-
ling long distances in a straight path [14]. Figure 1 illus-
trates a conceptual model of transverse orientation. Since the 
moon is far away from the moth, this mechanism guarantees 
flying in a straight line. The same navigation method can 
be done by humans. Suppose that the moon is in the south 
side of the sky and a human wants to go the east. If he keeps 
moon of his left side when walking, he would be able to 
move toward the east on a straight line.

It can be observed in Fig. 2 the moths do not travel in a 
forward path, they fly spirally around lights. This is due to 
the transverse orientation method which is efficient just for 
the light source is very far (moonlight). In the human-made 
artificial light case, the moths attempt to preserve the same 
angle with the light source. Consequently, moths move in 
spirally paths around lights.

2.1.2 � MFO algorithm

Moth-Flame optimization (MFO) algorithm was proposed by 
Mirjalili [28]. It is under the population-based metaheuristic 
algorithms. The flow data of the MFO starts by generating 
moths randomly within the solution space. Then, calculating 
the fitness values ( i.e., position) of each moth and tagging 
the best position by flame. After that, updating the moths’ 
positions depends on a spiral movement function to achieve 
better positions tagged by a flame, as well as updating the 
new best individual positions. Repeating the previous pro-
cesses (i.e., updating the moths’ positions and generating 
new positions) until the termination criteria are met. Table 1 
lists the characteristics of the MFO.

The MFO algorithm has three main steps. These steps as 
shown below. Followed by the pseudocode of the MFO as 
shown in Algorithm 1. 

Fig. 1   Moth’s transverse orientation Fig. 2   Moth’s spiral flying path around a light source [46]

Table 1   Characteristic of the MFO algorithm

Algorithm’s description Moth-Flame’s elements

Decision variable Moth’s position in each dimension
Solutions Moth’s position
Initial solutions Random positions of moths
Current solutions Current positions of moths
New solutions New positions of moths
Best solution Flame’s position
Fitness function Distance between moth and flame
Process of generating new solu-

tion
Flying in a spiral path toward a 

flame
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1.	 Generating the initial population of Moths:
	   As mentioned in [28], Mirjalili assumed that each 

moth can fly in 1-D, 2-D, 3-D, or hyperdimensional 
space. The set of moths can be expressed: 

 where n refers to the moths’ number and d refers to the 
dimensions’s number in the solution space. Also, the 
fitness values for all moths are memorized in an array 
as follows: 

 The rest elements in the MFO algorithm are flames. The 
following matrix showing the flames in the D-dimen-
sional space followed by their fitness function vector: 

 It should be noted here that moths and flames are both 
solutions. The difference between them is the way we 
treat and update them in each iteration. The moths are 
actual search agents that move around the search space, 
whereas flames are the best position of moths that are 
obtained so far. In other words, flames can be considered 
as flags or pins that are dropped by moths when search-
ing the search space. Therefore, each moth searches 
around a flag (flame) and updates it in case of finding a 
better solution. With this mechanism, a moth never loses 
its best solution.

2.	 Updating the Moths’ positions:
	   MFO employs three different functions to convergent 

the global-optimal of the optimization problems. These 
functions are defined as follows: 

 where I refers to the first random locations of the moths 
( I ∶ � → {M,OM} ), P refers to motion the moths in 
the search space(P ∶ M → M ), and T refers to finish 

(1)M =

⎡⎢⎢⎢⎣

m1,1 m1,2 ⋯ ⋯ m1,d

m2,1 m2,2 ⋯ ⋯ m2,d

⋮ ⋮ ⋮ ⋮ ⋮

mn,1 mn,2 ⋯ ⋯ mn,d

⎤⎥⎥⎥⎦

(2)OM =

⎡⎢⎢⎢⎣

OM1

OM2

⋮

OMn

⎤⎥⎥⎥⎦

(3)F =

⎡⎢⎢⎢⎣

F1,1 F1,2 ⋯ ⋯ F1,d

F2,1 F2,2 ⋯ ⋯ F2,d

⋮ ⋮ ⋮ ⋮ ⋮

Fn,1 Fn,2 ⋯ ⋯ Fn,d

⎤⎥⎥⎥⎦

(4)OF =

⎡⎢⎢⎢⎣

OF1
OF2
⋮

OFn

⎤⎥⎥⎥⎦

(5)MFO = (I,P, T)

the search process ( T ∶ M → true,false ). The following 
equation represents I function, which use for implement-
ing the random distribution. 

 where lb and ub indicate the lower and upper bounds 
of variables, respectively. As mentioned previously, the 
moths fly in the search space using the transverse ori-
entation. There are three conditions should abide when 
utilizing a logarithmic spiral subjected, as follows:

•	 Spiral’s initial point should start from the moth.
•	 Spiral’s final point should be the position of the 

flame.
•	 Fluctuation of the range of spiral should not exceed 

the search space.

	    Therefore, the logarithmic spiral for the MFO algo-
rithm can be defined as follows: 

 where Di refers to the space between the i-th moth and 
the j-th flame (see the Eq. (8). b indicates a fix to define 
the shape of the logarithmic spiral, and t indicates a ran-
dom number between [− 1, 1]. 

 In MFO, the balancing between exploitation and explo-
ration are guaranteed by the spiral motion of the moth 
near the flame in the search space. Also, to avoid fall-
ing in the traps of the local optima, the optimal solu-
tions have been kept in each repetition, and the moths 
fly around the flames (i.e., each moths flies surrounding 
the nearest flame) using the OF and OM matrices.

3.	 Updating the number of flames:
	   This section highlights enhancing the exploitation of 

the MFO algorithm (i.e., Updating the moths’ positions 
in n various locations in the search space may decrease 
a chance of exploitation of the best promising solutions). 
Therefore, decreasing the number of flames helps to 
solve this issue based on the following equation: 

where N is the maximum number of flames, l is the current 
number of iteration, and T indicates the maximum number 
of iterations. 

(6)M(i, j) = (ub(i) − lb(j)) × rand() + lb(i)

(7)S(Mi,Fj) = Di ⋅ e
bt
⋅ cos(2�t) + Fj

(8)Di =
|||Fj −Mi

|||.

(9)flame no = round
(
N − l ×

N − l

T

)
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Algorithm 1 Moth-flame optimization algorithm
Initialize the parameters for Moth-flame
Initialize Moth position Mi randomly
for i = 1 to n do

Calculate the fitness function fi
end for
while itration � Max iterations do

Update the position of Mi

Calculate the number of flames using Eq.(9)
Evaluate the fitness function fi
if iteration ==1 then

F=sort(M) and OF=sort(OM)
else

F=sort(Mt−1,Mt) and OF=sort(Mt−1,Mt)
end if
for i = 1 to n do

for j = 1 to d do
Update the values of r and t
Calculate the value of D respect to its corresponding moth using Eq.(8)
Update M(i,j)respect to its corresponding moth using Eq.(7)

end for
end for

end while
Print the best solution

2.2 � Hill climbing

The hill climbing (HC) technique, called local search, is 
the most simplistic form of local development methods. It 
begins with one random initial solution (x), iteratively pro-
ceeds by moving from the current solution to a better neigh-
boring solution till it reaches a local optimum (i.e., the local 
optimal solution does not have a better neighboring solution, 
no improvement in fitness function). It only takes downhill 
progress where the fitness function of a neighboring solu-
tion should be better than the current solution Shehab [41]. 
Consequently, it can converge to the local optima fast and 
suddenly. However, it can quickly get stuck in local optima, 
which in most situations is not satisfactory. Algorithm 2 pre-
sents the pseudo-code of the HC technique. After creating 
the first solution x and through the iterative improvement 
process, a group of neighboring solutions is created utiliz-
ing the procedure Improve(N(x)). This procedure seeks to 
discover the enhanced neighboring solution from the group 
of neighbors utilizing any used acceptance rule such as first 
improvement, best improvement, sidewalk, and random 
walk. But, all of these rules are stopped in local optima.

Algorithm 2 Hill climbing technique
1: The initial solution x
2: xi=LBi+ (UBi-LBi) * U(0,1), ∀i=(1, 2, ...., N)
3: Calculate fitness function F (x)
4: while (End condition is not satisfied) do
5: x′=Improve((N(x))
6: if F (x′) ≤ F (x) then
7: x=x′

8: end if
9: end while
10: return x

2.3 � Selection schemes

In this section, the selection schemes are described that used 
in this paper.

2.3.1 � Tournament selection scheme (TSS)

Tournament selection is among the most popular selection 
methods in genetic algorithms. It was initially proposed by 
Goldberg and Holland [17]. Algorithm 3 shows the principle 
of tournament selection work, which starts from the random 
selection of t individuals from P(t) population and then pro-
ceeds to the selection of the best individual from tournament 
t. This procedure is repeated N times. The best choice is fre-
quently between two individuals, and this scheme is called 
binary tournament, where the choice is between t individuals 
called tournament size [7]. In other words, the efficiency of 
tournament selection scheme is based on the value of t. For 
instance, increasing the value of t will increase the diversity 
which leads to an increase in the quality of the selected solu-
tion, and vice versa [47].
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Algorithm 3 Tournament Selection Scheme

Input:The population P (T ) the tournament size t ∈ i1, 2, ..., N
Output: The population after selection P (T )′

Description:
tournament (J1, ..., JN ) :
for i ← 1 to N do

J ′
i ← best fit individual out of t randomly piked individuals from {J1, ..., JN} ;

endfor
return {J ′

1, ..., J
′
N}

There are several merits of the tournament selection 
scheme. For instance, low susceptibility to a takeover by 
dominant individuals [33], it has efficient time complexity 
(i.e., O(n)) [40], and no requirement for fitness scaling or 
sorting [32].

2.3.2 � Proportional selection scheme (PSS)

The proportional selection scheme or so-called roulette 
wheel has been proposed in [20]. In other words, each ele-
ment reserves a section in the roulette wheel, where the 
section’s size proportional with the element’s fitness. The 
mechanism of this method is choosing the probability based 
on the comparison between the fitness values of any solu-
tion and the fitness value of the stored solution in MFO. 
As shown in algorithm 4, r has been selected from U(0,1). 
Then, si has accumulative determining the probabilities, the 
following equation shows the probability of solution x.

 

(10)Pi =
f (xi)∑swarm size

j=1
f (xj)

.

Algorithm 4 Proportional Selection Scheme

Input:The population P (T ), r ∈ U(0, 1)
Output: The population after selection P (T )′

Description:
proportional (J1, ..., JN ) :
s0 ← 0
for i ← 1 to N do

si ← si−1 + Pi

endfor
for i ← 1 to N do

r ← random [0, sN ]
J ′
i ← Jisuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}

The advantage of proportional selection, it offers a chance 
for each element to be chosen. In contrast, in population 
converges, it suffers from selection pressure [40]. The time 
complexity of the proportional selection is O(n log n).

2.3.3 � Linear ranking selection scheme (LRSS)

To overcome the limitation of the proportional selection 
scheme, Goldberg and Holland [17] proposed Linear rank-
ing selection scheme. It arranges the solutions based on their 
fitness ranks. Equation (11) shows the mechanism of cal-
culation the selection probability by linear mapping of the 
solution ranks.

where i is the rank of solution location xj , �− is the expected 
value of the worst location, �+ is the expected value of the 
best location. Both of �− and �+ set the slope of the linear 
function. More details are shown in Algorithm 5.

(11)

Pi =
1

N
×

(
�+ −

(
�+ − �−

)
×

i − 1

N − 1

)
, i ∈ 1,… ,N,
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Algorithm 5 Linear Ranking Selection Scheme

Input:The population P (T ) and the reproduction rate of the worst individual η− ∈ [1, 0]
Output: The population after selection P (T )′

Description:
linear ranking(J1, ..., JN ) :
J̄ ← sorted population J according fitness with worst individual at the first position
s0 ← 0
for i ← 1 to N do

si ← si−1 + pi (Equation 11)
endfor
for i ← 1 to N do

r ← random [0, sN ]
J ′
i ← J̄isuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}

The expected results of the linear ranking selection 
scheme with small �+ are close to the binary tournament 
selection. However, the linear ranking selection scheme with 
big �+ suffers from a stronger selection pressure (i.e., the 
time complexity is is O(n log n )) [34].

2.3.4 � Exponential ranking selection scheme (ERSS)

Unlike linear ranking completely, exponential ranking selec-
tion arranging the probabilities of the ranked elements by 
exponentially weighted [42]. The major of the exponent c 
which is situated between (0, 1), where it based on parameter 
s. For instance, the best solution has a value of c1 = 1 , fol-
lowed by the second solution with c2 = s ( s = 0.99 ), the third 
solution has c3 = s2 , and so on until the worst solution has 
cswarm size = sswarm size−1 [18]. Probabilities of the individuals 
calculated by

The 
∑N

j−1
cN−j normalizes the probabilities to ensure that ∑N

i=1
cN−jpi = 1 . As∑N

j−1
cN−j =

cN−1

C−1
 it will be as a following equation:

Algorithm 6 illustrates the exponential ranking selection 
algorithm, the similarity of structure between linear ranking 
selection and exponential ranking selection can be noticed. 
While the difference lies in the calculation of the selection 
probabilities. The time complexity of the exponential rank-
ing selection is O(n log n).

(12)pi =
cN−i∑N

j=1
cN−j

; i ∈ {1, 2,… ,N}

(13)pi =
c − 1

cN − 1
CN−i; i ∈ {1, 2,… ,N}

Algorithm 6 Exponential Ranking Selection Scheme

Input:The population P (T ) and the ranking base c ∈ [1, 0]
Output: The population after selection P (T )′

Description:
exponential ranking(c, J1, ..., JN ) :
J̄ ← sorted population J according fitness with worst individual at the first position
s0 ← 0
for i ← 1 to N do

si ← si−1 + pi (Eq.13)
endfor
for i ← 1 to N do

r ← random [0, sN ]
J ′
i ← J̄isuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}
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2.3.5 � Greedy‑based selection scheme (GSS)

The greedy selection scheme is called global best which was 
initially applied by Kennedy [23] in PSO. The technicality of 
greedy selection focuses to choose the three best solutions: 
x� , x� , and x� to avoid the local optima. Algorithm 7 shows 
the pseudo-code of the greedy selection scheme.

As mentioned above, the greedy choose the best three 
solutions and ignored the other solutions. Therefore, the 
diversity of the search space might be lost which leads to 
prematurely converge and quickly stagnate without efficient 
results. The time complexity of the greedy selection scheme 
is O(n log n).

Fig. 3   Flowchart of the 
MFOHC algorithm

Generate ini�al moth randomly 

Calculate the fitness value of neighbors of 
the moth posi�on Update flame number; t and r

Calculate D for the corresponding moth

Local maximum found

Start

End

Calculate the fitness func�on and tag the best posi�on by flams

Itera�on reach 
max? Yes No

Fitness value of best moth 
posi�on be�er than the best 

flam posi�on

Select the neighbor whose max fitness 
value

The selected neighbor 
be�er than the current 

moth

The selected neighbor 
be�er than the local 

maximum

Yes

NoUpdate M(i,j)for the corresponding moth

NoYes

Moth out of the 
search boundary?

Bring the moth back to the 
search boundary

Report the best posi�on among the moths

Yes

Yes

No

No

Algorithm 7 Greedy-based Selection Scheme

Input:The population P (T )
Output: The population after selection P (T )′

Description:
for j ← 1 to |J | do
for t ← 1 to |T | do

wjt ← 0
endfor
endfor
for i ← 1 to |I| do

Obtain a new patrol using DP and let a∗ = a∗jt be the obtained optimal patrol
Assign patrol a∗ to team i

foreach (j, t) with a∗ = a∗jt = 1 do
wjt ← 1

endfor
endfor
return {J ′

1, ..., J
′
N}
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2.3.6 � Truncation selection scheme (TrSS)

Truncation selection is considered as the simplest selection 
scheme comparing with other selection schemes. The trun-
cation chooses elements by saving a certain percentage until 
reaching the population size [39]. This selection is equal 
to (�, �) -selection utilized in development strategies with 
T =

�

�
 [5].

Table 2   The parameters values of the comparative algorithms

Algorithms Parameter

ABC Colony size = 50, limit = 1000
BA Fmin = 0 , Fmax = 2 , r = 0.5 , A = 0.25 , �, � = 0.9

DE CR = 0.9 , F = 0.6

GA Crossover type is 1; crossover probability = 1 ; 
mutation probability = 0.01

HS HMCR = 0.9 , PAR = 0.5 , BW = 0.01

KH Nmax = 0.01 , Vf = 0.02 , Dmax = 0.005 , Ct = 0.4

GWO �0 = 2

Algorithm 8 Truncation Selection Scheme

Input:The population P (T ), the truncation threshold T ∈ [0, 1]
Output: The population after selection P (T )′

Description:
Truncation (T, J1, ..., JN ) :
j̄ ←sorted population J according fitness with worst individual at the first posit
for i ← 1 to N do

r ← random {[(1− T )N ] , · · · , N}
j′i ← j̄r

endfor
return {J ′

1, ..., J
′
N}

From Truncation’s pseudo-code, it can be noticed that 
the ease of implementation of this selection. However, it 
neglects the solutions with a low fitness value which have 
an ability to improve into better solutions. This may lead 
to premature convergence. As a sorting of the population 
is required, truncation selection has a time complexity of 
O ( n ln n).

3 � The proposed methods

This section presents two new methods for improving basic 
MFO.

3.1 � Hybrid Moth‑flam optimization algorithm 
and hill climbing

The first improvement is hybridized basic MFO and HC (i.e., 
MFOHC) to enhance the exploitation mechanism as well as 
the convergence rate. As shown in Fig. 3, the flowchart of 
MFOHC starts by generating initial moth randomly, then 
calculating the moths’ fitness function and determining the 
best flam’s position. The usage of the HC components start 
in case the output of the first condition is “No”. In other 
words, if the fitness value of the selected moth is worse than 
the value of the best flam position, then it should search for 

another moth with better fitness value using the exploita-
tion mechanism of the HC. After that, the selected solution 
will be compared again with the best flame position. The 
rest steps are similar to the basic MFO, such as updating 
the flam, calculating the distance between the moth and the 
updated flam, etc.

3.1.1 � Computational complexity

Note that, the computational complexity for running the pro-
posed MFOHC algorithm is depended on the number of salp 
solutions (X), the dimensions (d), and the maximum number 
of repetitions (t). Hence, the computational complexity of 
sorting procedure in each iteration is O(t × n2 ) in the worst 
case. The computational complexity of the initialization pro-
cedure is O(n). Updating the positions of all search agents 
is O(t × n × d ). Therefore, the computational complexity 
of the basic MFO is O(n log n ) and O(n2 ) in the best and 
worst case, where n denotes the number of moths. Moreo-
ver, the time complexity to determine if the hill-climbing 
process has reach a local optimum is O(n3 ). Therefore, the 
final complexity of the MFOHC is O(T × n3(n2 + n × v) ), 
where T is the maximum number of iterations and v is the 
number of variables. Thus, the time complexity of each 
MOFHC’s version can be fined by adding the time com-
plexity of each selection scheme as mentioned breviously. 
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For instance, the time complexity of PMFOHC is estimated 
as O(T × n3(n2 + n × v)) + O(n log n).

3.2 � Improved MFOHC using various selection 
schemes

The second improvement is using new selection schemes 
to enhance the quality of the selected solution, as well as 

diversity. Six selection schemes have been chosen based on 
their features. For instance, TSS has the time complexity 
O(N) and diversity is inversely proportional to the t size. 
While PSS provides a probability for each solution to be 
selected based on their proportions. LRSS and ERSS focus 
on improving the convergence rate. GSS gives priority to 
the global search with avoiding the local optima. Finally, 
in TrSS, the worst six solutions (i.e., worst fitness values) 

Table 3   Description of unimodal benchmark functions

No. Function Equation Range fmin

f1 Beale f1(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2
)2 + (2.625 − x1 + x1x

3
2
)2 [ −4.5,4.5 ] 0

f2 Watson
f2(x) =

∑29

i=0

�∑4

j=0
((j − 1)�

j

i
xj+1) −

�∑5

j=0
�
j

i
xj+1

�2
− 1

�2

+ x2
1

[ −5 ,5 ] 0.002288

f3 Dixon and price f3(x) = (x1 − 1)2 +
∑d

i=2
i(2x2

i
− xi−1)

2 [ −10,10 ] 0

f4 Quartic with noise f4(x) =
∑30

i=1
ix4 + random[0, 1) [ −1.28,1.28 ] 0

f5 Schwefel 1.2
f5(x) =

∑n

i=1

�∑i

j=1
xj

�2 [ −100,100 ] 0

f6 Schwefel 2.22 f6(x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi�� [ −100,100 ] 0

f7 Schwefel 2.21 f7(x) =
∑n

i=1
��xi�� [ −100,100 ] 0

f8 Sphere f8(x) =
∑d

i=1
x2
i

[ −5.12,5.12 ] 0

f9 Step f9(x) =
∑n

i=1

�
x2
i

�
[ −100,100 ] 0

f10 Zakharov
f10(x) =

∑d

i=1
x2
i
+

�∑d

i=1
0.5ixi

�2

+

�∑d

i=1
0.5ixi

�4 [ −5,10 ] 0

Table 4   Description of multimodal benchmark functions

∗∗ In f15 , � = 20 , b = 0.2 , and c = 2�

In f17 , wi = 1 +
xi−1

4

No. Function Equation Range fmin

f11 Easom f11(x) = −cos(x1)cos(x2)exp(−(x1 − �)2 − (x2−�)
2) [ −100,100 ] 0

f12 Shubert f12(x) =
�∑5

i=1
i cos((i + 1)x1 + i)

��∑5

i=1
i cos((i + 1)x2 + i)

�
[ −10,10 ] −186.7309

f13 Wolfe f13(x) =
3

4
(x2

1
+ x2

2
− x1 ⋅ x2)

0.75 + x3
[ 0,2 ] 0

f14 Colville f
14
(x) = 100(x2

1
− x

2
)2 + (x

1
− 1)2 + (x

3
− 1)2 + 90(x2

3
− x

4
) + 10.1((x

2
− 1)2)

+19.8(x
2
− 1)(x

4
− 1)

[ −10,10 ] 0

f15 Ackley
f15(x) = −� exp

�
−b

�
1

d

∑d

i=1
x2
i

�
− exp

�
1

d

∑d

i=1
cos(cxi)

�
+ � + exp(1))∗∗

[ −32.768,32.768 ] 0

f16 Griewank
f16(x) =

∑d

i=1

x2
i

4000
−
∏d

i=1
cos

�
xi√
i

�
+ 1

[ −600,600 ] 0

f17 Levy f17(x) = sin2(�w1) +
∑d−1

i=1
(wi − 1)2[1 + 10sin2(�wi + 1)] + (wd − 1)2[1 + sin2(2�wd)]

∗∗ [ −10,10] 0

f18 Perm
f18(x) =

∑d

i=1

�∑d

j=1
(j + �)

�
xi
j
−

1

ji

��2 [ −d ,d ] 0

f19 Rastrigin f19(x) = 10d +
∑d

i=1

�
x2
i
− 10cos(2�xi)

� [ −5.12,5.12 ] 0

f20 Rosenbrock f20(x) =
∑d−1

i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

� [ −5,10 ] 0

f21 Egg Holder
f21(x) = −(x2 + 47)sin

(√|||x2 +
x1

2
+ 47

|||
)
− x1sin

(√||x1 − (x2 + 47)||
)

[ −5.12,5.12 ] −959.6407

f22 Michalewicz
f22(x) = −

∑d

i=1
sin(xi)sin

2m
�

ix2
i

�

�
,m = 10

[ 0,� ] −1.8013
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will never be neglected, thus it will speed up the search 
processes.

In Fig. 3, the red rectangles show the locations of using 
each one of the selection schemes. In other words, the 
enhancing of the MFOHC using the selection schemes is 
presented after generating the population, where the selec-
tion schemes aid to select the best solution to compare it 
with the best flame. While the second location of using the 
selection scheme in the local search part, where it replace 
the basic selection in HC (i.e., random selection).

4 � Simulations

4.1 � Experiments settings

•	 Normalization measure is the process of regularizing 
data with respect to the difference in values between sam-
ples. In the experiments, the effects of different values 
of the dimensions and the search agents are compared 
with one another. This procedure is difficult due to the 
wide gap between solutions. Therefore, normalization 
improves data integrity [52]. In this work, normalization 
is calculated based on the following equation: 

 where is x = (x1,… , xn) , n denotes the total number of 
data, zi denotes the normalized data for element ith, � 
is the mean and S is the standard deviation. Finally, the 
minimum element of the data will be 1 in the normaliza-
tion results.

(14)zi =
xi − �

S
,

•	 The best measure is utilized to calculate the best-obtained 
value by the algorithm to be evaluated for several pre-
defined numbers of runs, which can be measured as fol-
lows: 

 where, Nr denoted to the number of various runs and F∗
i
 

denoted to the best-obtained value.
•	 The average measure (avg) is utilized to calculate the 

mean of the best-obtained values by the algorithm to be 
evaluated for several predefined numbers of runs, which 
can be measured as follows: 

•	 The standard deviation (std) is a measure utilized to test 
if the algorithm to be evaluated can obtain the same best 
value in several various runs and examine the repeatabil-
ity test of the algorithm results, which can be measured 
as follows: 

Also, convergence trajectories are shown to display the 
behavior of the comparative algorithms to give the optimal 
value. Note, the parameters settings of the comparative algo-
rithms are shown in Table 2.

There are two levels of evaluation performed in this work. 
The first step is evaluating the performance of the HMFO 

(15)Best = min
1≤i≤Nr

F∗
i

(16)�F =
1

Nr

Nr∑
i=1

F∗
i

(17)STDF =

√√√√ 1

Nr − 1

Nr∑
i=1

(Fi − �F)
2

Table 5   Description of fixed-dimension multimodal benchmark functions

∗∗� = [4, 2, 1, 1∕2, 1∕4, 1∕8, 1∕10, 1∕12, 1∕14, 1∕16]

b = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]

No. Function Equation Range fmin

f23 Branin
f23(x) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cosx1 + 10

[ x1 ∈ [−5, 10], x2 ∈ [0, 
15] ]

0.397887

f24 Goldstein Price f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)]

×[30 + (2x1 − 3x2) × (18 − 32x1 + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2
)]

[ −2 ,2 ] 3

f25 Hartman 1 f25(x) = −
∑4

i=1
ci exp

�
−
∑4

j=1
�ij(xj − pij)

2
�

[ −1 ,3 ] −3.86

f26 Hartman 2 f26(x) = −
∑4

i=1
ci exp

�
−
∑6

j=1
�ij(xj − pij)

2
�

[ 0,1 ] −3.32

f27 Kowalik
f27(x) =

∑10

i=0

�
�i −

x1(b
2
i
+bix2)

b2
i
+bix3+x4

�2
∗∗

[ −5 ,5 ] 0.0003074861

f28 Shekel 1 f28(x) = −
∑5

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [ 0,10 ] −10.1532

f29 Shekel 2 f29(x) = −
∑7

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [ 0,10 ] −10.4028

f30 Shekel 3 f30(x) = −
∑10

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [ 0,10 ] −10.5363



2942	 Engineering with Computers (2021) 37:2931–2956

1 3

using a set of benchmark functions (see Sect. 4.1.1). The 
second step is applying the HMFO versions Using a set of 
IEEE CEC 2011 real world problems (see Sect. 4.1.2). All 
the experiments run using Matlab R2015a and Windows 7 
Professional, Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz 
with a memory of 6.00 GB.

4.1.1 � Benchmark functions

The proposed MFOHC method is verified based on using 30 
classical benchmark test functions listed in tables 3, 4, and 
5. This well-knowing benchmarks include 30 test functions, 
which are classified in to unimodal (it means optimization 
functions with only one local optimum) and multimodal (it 
means optimization functions that frequently contain mul-
tiple global and local optima) problems. Moreover, these 
functions are chosen with various dimensions and diverse 
difficulty levels including 10 scalable unimodal functions, 
12 scalable multimodal functions, and 8 fixed-dimension 
multimodal functions. These features make the investigation 
process more fitting for testing the exploration and exploita-
tion functions in the proposed method.

4.1.2 � IEEE CEC 2011 real world problems

This subsection describes seven real-world problems that 
used in CEC 2011, more details can be found in [9]. These 
problems are utilized to evaluate the performance of HMFO 
versions. 

1.	 CEC-P1: Static economic load dispatch (ELD) Problem
	   This problem (i.e., static ELD) is focused on minimiz-

ing the fuel cost of producing units in a specific period, 
which is usually set by one hour. Thus, determining 
the optimal production dispatch during the operating 
units, as well as keeping the system load demand. The 
objective function is based on the non-smooth cost and 
smooth cost functions, more details are shown below: 

where 

where Fi(Pi) refers to the cost function and ai , bi , and ci 
indicate to its cost coefficient. N(G) refers to the number 
of online producing units and Pi the real power output in 
a time t. The following equation shows the cost function 
for the unit with valve point loading influence. 

(18)Minimizing ∶ F =

NG∑
i=1

Fi(Pi),

(19)Fi(Pi) = aiP
2
i
+ biPi + ci, i = 1, 2, 3,… ,NG,

where fi and ei indicate to the cost coefficients identical 
to the valve point loading influence.

2.	 CEC-P2: Optimal control of a non-linear stirred tank 
reactor

	   In the chemical area, the chemical reaction proceeds 
in the continuous stirred tank reactor (CSTR) which can 
be included under the multimodal optimization prob-
lem. Thus, it can be used to evaluate the performance of 
the metaheuristic algorithms, exactly like the standard 
benchmark functions. The following equations illustrate 
the mathematical model of this problem. 

where u refers to the flow rate of the cooling fluid, x1 and 
x2 indicate to state temperature and deviation, respec-
tively. The objective function is determined by an appro-
priate value of u to enhance the performance index, the 
following equation shows the calculation process. 

3.	 CEC-P3: Large scale transmission pricing problem
	   In modern power systems, the estimation price of the 

transmission considers a controversial problem [9]. The 
estimation price is based on various take-holders. Thus, 
it depends on different factors. The equivalent bilateral 
exchange (EBE) is one of the common factors (lin-
earized model) used to estimate the price of the trans-
mission. EBA creates a matrix of the load-generation 
interaction, the following equation illustrates the total 
of equivalent bilateral exchange. 

where i and j refer to generator and load, respectively. 
P
sys

D
 refers to the total load. While Eq. (25) represents 

the portion of power flow pf inline k, which used (i.e., 
pfk ) to examine the all equivalent dual power exchanges. 

(20)Fi(Pi) = aiP
2
i
+ biPi + ci +

|||eisin
(
fi
(
Pmin
i

− Pi

))|||,

(21)

ẋ1 = −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp

(
25x1

x1 + 2

)
,

(22)ẋ2 = 0.5 − x2 − (x2 + 0.5) exp

(
25x1

x1 + 2

)
,

(23)J = ∫
tf=0.72

0

(x2
1
+ x2

2
+ 0.1u2)dt.

(24)GDij =
PGiPDj

P
sys

D

,

(25)pfk =
∑
i

∑
j

|||�
k
ij

|||GDij.
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4.	 CEC-P4: Hydrothermal scheduling problem
	   Hydrothermal scheduling is divided into long term 

(i.e., from week(s) to months) and short term (i.e., 24 
h and less) problems. This problem aims to schedule 
the power generations of the thermal and hydro units 
in a fixed period of time and minimum fuel cost. How-
ever, the hydrothermal system is very complicated and 
includes nonlinear connections of the resolution vari-
ables, water carry retards, and time connection among 
the consecutive schedules. So, detecting the minimum 
fuel cost is so difficult by utilizing the basic optimization 
algorithms.

	   The main objective to achieve the maximum results of 
the hydro units, at the same time each unit consumed the 
lowest load. The description of the objective function is 
expressed below. 

where M refers to the number of intervals. In Eq. (27), 
the fi indicates to the cost function connected with the 
identical thermal unit’s power producer PTi : 

5.	 CEC-P5: Spread spectrum radar polly phase code design
	   waveform is considered as one of the most important 

factors in designing radar-system which is based on pulse 
compression. Various studies have been proposed for 
polyphase pulse compression code synthesis, especially 
those depending on the characteristic of the aperiodic 

(26)F =

M∑
i=1

fi(PTi),

(27)
fi(PTi) = aiP

2
Ti
+ biPTi + ci +

|||eisin
(
fi
(
Pmin
Ti

− PTi

))|||.

Table 6   The best normalized results for MFO with population sizes

Function Population sizes

5 10 15 20 50 100 250 500

F1 1.49E+01 9.91E+02 1.00 5.94E+02 1.00 5.41E+01 1.93E+02 1.17E+02
F2 2.56E+00 1.00 1.00 2.60E+01 5.16E+01 5.23E+01 7.13E+00 1.00
F3 1.17E+00 1.04E+00 1.00 1.04E+00 1.04E+00 1.04E+00 1.00 1.04E+00
F4 1.93E+00 2.19E+01 3.70E+00 1.00 4.90E+01 2.41E+01 8.37E+00 1.12E+01
F5 2.36E+01 6.65E+01 1.00 2.16E+01 3.22E+01 1.74E+01 6.89E+00 2.39E+01
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 1.90E+00 1.00 1.04E+00 1.24E+00 1.14E+00 1.23E+00 1.04E+00 1.09E+00
F8 2.68E+01 3.80E+00 1.00 5.96E+00 1.62E+01 1.01E+01 1.20E+01 1.09E+00
F9 5.68E+00 1.24E+00 1.00 1.10E+00 2.55E+00 1.04E+00 2.57E+00 2.27E+00
F10 1.86E+00 1.00 2.87E+01 6.39E+00 2.58E+01 1.33E+01 1.05E+01 1.86E+00
F11 1.00 2.53E+00 1.05E+00 5.00E+00 5.34E+00 2.28E+00 7.58E+00 2.85E+00
F12 1.00 1.00 1.00 1.00 1.29E+00 1.00 1.32E+00 8.20E+00
F13 1.66E+01 9.32E+01 1.00 1.08E+02 1.09E+02 2.83E+01 2.49E+01 1.83E+00
F14 1.49E+00 1.28E+00 1.10E+01 1.00 1.12E+01 2.23E+01 3.87E+01 1.02E+01
F15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F16 1.15E+00 1.00 1.16E+00 1.20E+00 1.17E+00 1.58E+00 1.53E+00 1.23E+00
F17 1.00 1.00 1.02E+00 1.11E+00 1.18E+00 2.23E+00 1.60E+00 1.42E+00
F18 1.93E+00 1.81E+00 1.00 1.87E+00 1.66E+00 2.69E+00 2.32E+00 2.54E+00
F19 1.00 1.00 1.52E+01 1.02E+02 7.62E+01 7.62E+00 2.62E+01 2.26E+01
F20 1.00 1.04E+00 1.01E+00 1.06E+00 1.02E+00 1.01E+00 1.02E+00 1.02E+00
F21 1.00 1.29E+00 1.00 1.24E+00 1.21E+00 1.14E+00 1.29E+00 1.28E+00
F22 3.43E+00 2.79E+00 1.00 2.01E+00 1.24E+01 1.42E+02 1.15E+01 1.16E+01
F23 1.27+00 1.32E+00 1.32E+00 1.00 1.35E+00 1.43E+00 1.22E+00 1.21E+00
F24 1.19E+00 1.00 1.00 1.10E+00 1.02E+00 1.11E+00 7.58E+00 1.25E+00
F25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F26 1.00 1.00 1.00 1.02E+00 1.00 1.02E+00 1.03E+00 1.04E+00
F27 1.38E+00 2.71E+00 1.00 1.07E+00 1.55E+01 1.21E+00 1.33E+00 1.01E+00
F28 1.00 1.00 1.49E+00 1.16E+00 1.02E+00 1.60E+00 2.23E+00 1.44E+01
F29 1.00 1.00 1.01E+00 1.00 1.01E+00 1.01E+00 1.29E+00 1.06E+00
F30 1.03E+00 1.03E+00 1.00 2.04E+00 6.81E+00 1.60E+00 1.43E+00 1.01E+00
Total best 12 14 17 8 5 4 4 4
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autocorrelation function. Thus, CEC-P5 can be treated 
like a continuous optimization problem. The mathemati-
cal model is described in the following equations. 

where X =
{
(x1,… , xn) ∈ Rn ∣ 0 ≤ xj ≤ 2�, j = 1,… , n

}
 

and m = 2n − 1

(28)global min
x∈X

f (x) = max
{
�1(x),… ,�2m(x)

}
,

(29)�2i−1(x) =

n∑
j=i

cos

(
j∑

k=|2i−j−1|+1
xk

)
, i = 1,… , n

(30)

�2i(x) = 0.5 +

n∑
j=i+1

cos

(
j∑

k=|2i−j|+1
xk

)
, i = 1,… , n − 1

4.2 � Results and discussions

4.2.1 � Influence of control parameter

The experiments start with evaluating the parameter settings 
of the MFO to set them in subsequent experiments. It can 
be noticed that the parameters tuning include experiments 
of the population size (n) with a set of common values to 

(31)�m+i(x) = −�i(x), i = 1,… ,m

Table 7   The best normalized results for MFO with different dimensional spaces

Function Dimensional spaces

5 10 15 20 25 30 35 40

F1 1.00 3.35E+00 5.18E+00 1.16E+01 2.82E+01 1.73E+01 3.01E+01 1.88E+01
F2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F3 1.00 6.91E+00 1.64E+01 8.59E+00 4.22E+01 8.58E+00 3.38E+01 1.42E+01
F4 1.00 1.17E+00 1.06E+00 1.23E+01 1.15E+00 1.02E+00 1.11E+00 1.08E+00
F5 3.31E+01 5.11E+00 1.00 7.01E+00 5.17E+00 1.06E+00 4.23E+00 1.22E+01
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 7.63E+00 1.00 5.63E+00 1.40E+00 1.94E+00 6.99E+00 1.13E+01 2.55E+00
F8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F9 1.06E+01 1.06E+01 1.00 1.06E+01 1.06E+01 1.06E+01 1.06E+01 1.06E+01
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F11 1.00 1.10E+01 6.24E+00 3.67E+01 3.46E+00 2.18E+00 2.18E+00 5.15E+00
F12 2.02E+00 1.00 4.86E+00 7.52E+00 1.12E+00 6.82E+00 2.54E+00 1.13E+01
F13 1.00 1.46E+01 2.93E+01 1.08E+01 1.21E+01 3.97E+01 1.27+01 4.47E+00
F14 1.21E+00 1.00 1.28E+00 1.29E+00 1.25E+00 1.40E+00 1.05E+00 1.19E+00
F15 9.21E+00 1.00 1.32E+00 4.54E+00 5.25E+00 1.57E+00 8.78E+00 4.42E+00
F16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F17 1.00 4.28E+00 3.77E+00 4.69E+00 4.93E+00 1.48E+00 9.72E+00 2.40E+00
F18 1.08E+00 1.00 1.41E+00 1.32E+00 1.09E+00 1.15E+00 3.52E+03 3.01E+00
F19 2.74E+00 1.00 3.90E+01 1.97E+00 1.96E+00 2.49E+01 5.31E+01 1.01E+01
F20 1.00 6.83E+00 5.80E+01 3.08E+01 4.92E+01 2.59E+00 4.71E+00 1.65E+00
F21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F22 4.00E+00 1.00 6.99E+00 9.67E+00 2.09E+00 4.91E+00 2.51E+00 1.74E+00
F23 3.06E+00 1.00 4.92E+01 4.42E+01 4.97E+00 4.74E+00 1.37E+01 1.64E+01
F24 1.00 4.22E+01 5.24E+01 8.63E+01 9.09E+00 7.58E+00 1.31E+01 3.94E+01
F25 1.00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00
F26 1.04E+00 1.00 1.74E+00 1.43E+00 1.34E+00 1.23E+00 1.12E+00 1.17E+00
F27 1.24E+00 1.00 1.70E+00 1.74E+00 1.55E+00 1.34E+00 1.51E+00 1.73E+00
F28 1.00 1.24E+00 1.16E+00 1.19E+00 1.13E+00 1.16E+00 1.08E+00 1.11E+00
F29 1.30E+00 1.23E+00 1.00 1.10E+00 1.24E+00 1.10E+00 1.02E+00 1.33E+00
F30 1.00 1.03E+00 1.01E+00 1.01E+00 1.01E+00 1.02E+00 1.01E+00 1.02E+00
Total best 17 16 9 6 6 6 6 6
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Table 8   Best, average (Avg), and standard deviation (Std) for comparing the proposed MFOHC with basic MFO and other algorithms

Function Metric Comparative algorithms

ABC BA SSA DE GA HS KH GWO MFO MFOHC

F1 Best 3.28E−05 1.48E−01 1.15E−01 7.77E−01 2.43E−05 4.27E+00 5.31E−02 3.13E−02 3.00E−03 1.37E−07
Avg 2.99E−01 8.46E+00 2.82E+00 9.36E+00 1.21E−03 2.02E+01 5.29E+00 2.38E+00 4.33E−02 2.00E−03
Std 1.07E−16 5.15E−01 5.68E+00 2.75E+02 1.08E−05 8.36E−01 2.37E+00 2.14E−02 4.36E−01 4.67E−03

F2 Best 4.89E−06 2.56E−01 2.20E−02 7.17E−03 4.09E−06 2.15E−01 1.22E−01 3.53E−01 3.69E−03 4.56E−07
Avg 2.85E−01 7.31E+00 1.49E+00 4.94E−01 1.55E−03 1.02E+00 1.03E+00 6.17E+00 4.39E−01 1.86E−03
Std 9.85E−17 7.35E−01 2.99E−01 1.90E+04 2.41E−04 5.70E+00 1.74E+01 1.47E−01 4.03E+00 7.09E−04

F3 Best 9.98E−01 2.31E+00 3.75E+00 1.03E+00 1.41E+00 9.98E−01 9.98E−01 2.99E+00 2.47E−01 4.67E−05
Avg 8.49E+00 9.14E+01 2.46E+01 6.87E+01 1.58E+01 1.62E+01 4.06E+00 1.20E+00 2.55E+00 6.31E−02
Std 0.00E+00 2.19E+00 3.30E+00 1.81E−01 5.54E−01 7.15E−07 3.63E−16 3.42E+00 9.32E−01 2.01E−02

F4 Best 3.42E−04 1.08E−03 4.25E−03 1.30E−03 7.24E−04 4.35E−04 5.33E−03 1.71E−03 6.33E−04 1.89E−07
Avg 1.42E−01 1.97E+00 4.68E−01 1.27E+00 3.52E−01 5.56E−01 8.40E+00 2.07E−01 3.57E−01 1.33E−03
Std 1.67E−04 4.81E−04 7.33E−03 4.44E−04 5.82E−05 9.62E−05 8.08E−03 5.08E−03 7.59E−02 2.86E−02

F5 Best 4.25E−04 2.68E−03 3.88E−03 1.18E−04 1.74E−02 5.77E−03 3.74E−02 2.65E−01 1.39E−03 4.88E−06
Avg 5.70E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 1.48E+00 1.48E+00 2.25E+00 2.17E−01 1.25E−03
Std 5.66E−04 1.46E+07 1.11E+03 7.07E+04 3.47E+02 3.08E+03 3.88E+02 8.72E−01 3.12E−01 6.78E−02

F6 Best 1.05E−07 3.30E−02 1.37E−01 8.56E−02 2.69E−03 1.72E−02 1.45E−02 4.38E−03 3.12E−06 4.12E−09
Avg 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 1.88E−14 1.62E+00 5.63E−01 2.14E−03 9.01E−04
Std 3.76E−15 1.81E+03 2.20E+00 4.29E+02 8.98E−04 5.30E+01 1.83E+00 3.09E−01 7.64E−02 4.36E−03

F7 Best 6.81E−05 1.74E+00 1.01E−01 2.49E−01 4.56E−03 1.36E−01 1.42E−02 6.54E−04 4.01E−05 7.03E−09
Avg 7.24E−02 4.35E+01 5.33E+00 1.71E+00 8.92E−01 5.82E+00 9.62E+00 8.08E−01 6.31E−02 1.01E−04
Std 8.69E−05 3.51E+00 8.11E+00 1.57E−01 1.74E−03 6.65E−02 6.85E−03 4.22E−04 7.09E−02 4.18E−03

F8 Best 0.00E+00 1.55E−06 2.58E−07 1.49E−12 0.00E+00 1.16E−12 8.69E−09 2.87E−11 0.00E+00 0.00E+00
Avg 1.22E−85 3.53E−01 5.44E−03 6.98E−04 1.05E−52 1.74E−03 2.24E−04 1.92E−02 2.08E−088 0.00E+00
Std 0.00E+00 3.83E−01 2.23E−01 3.20E−01 9.23E−14 2.09E−01 2.89E−01 1.57E+00 0.00E+00 0.00E+00

F9 Best 8.88E−14 1.37E−01 4.75E+00 7.83E+00 1.32E−16 9.49E+00 3.50E+00 1.39E−14 3.14E−14 1.05E−16
Avg 1.87E−04 3.07E+00 6.13E+01 1.02E+01 1.96E−06 3.57E+01 5.03E+01 1.58E−04 6.37E−06 1.88E−09
Std 0.00E+00 8.38E+00 2.56E+00 1.37E+00 2.00E−03 1.35E+00 1.11E+00 2.69E+00 6.42E−04 2.78E−09

F10 Best 0.00E+00 1.20E−21 5.53E−12 6.07E−17 0.00E+00 2.50E−11 5.39E−09 1.62E−13 0.00E+00 0.00E+00
Avg 1.48E−120 5.59E−02 4.48E−03 1.01E−01 1.67E−82 5.54E−02 4.65E−02 9.99E−03 3.02E−89 0.00E+00
Std 0.00E+00 3.12E−01 6.28E−02 2.80E+00 0.00E+00 5.16E−01 1.27E−01 4.32E−03 0.00E+00 0.00E+00

F11 Best 1.28E−02 9.36E−06 9.50E−01 1.73E−02 2.91E−02 6.06E−02 1.42E−01 2.00E−01 0.00E+00 0.00E+00
Avg 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.85E+00 3.90E+00 2.14E+00 1.02E−45 0.00E+00
Std 3.40E−02 1.35E−06 9.61E+01 5.59E+01 1.12E+03 3.15E+02 1.49E+00 4.07E+03 0.00E+00 0.00E+00

F12 Best 5.32E−06 2.60E−12 6.96E+00 2.20E−01 1.19E−01 1.24E+01 1.67E+01 3.20E+01 7.09E−17 3.64E−21
Avg 4.72E+00 9.65E+00 3.20E+00 8.48E+00 1.05E+00 2.70E+00 1.55E+00 2.04E+00 6.31E−07 6.31E−08
Std 8.50E−06 2.83E−12 1.71E+00 7.90E+00 6.88E+00 5.77E+00 1.22E+00 2.15E+01 1.02E−07 0.00E+00

F13 Best 3.69E+01 1.82E−17 1.56E+00 3.26E+00 6.44E+01 7.33E−01 5.20E−01 1.52E−01 0.00E+00 0.00E+00
Avg 3.27E+00 3.30E−02 2.89E+01 3.24E+01 3.25E+00 6.04E+00 4.90E+00 3.32E+00 5.74E−12 0.00E+00
Std 4.63E+03 6.04E−17 9.16E+02 1.01E+02 3.02E+02 5.49E+03 1.17E+01 1.05E+04 0.00E+00 0.00E+00

F14 Best 3.17E−02 6.05E−01 1.71E+00 1.91E−01 5.66E−02 1.63E−01 9.11E+00 3.29E−16 3.20E−16 4.15E−19
Avg 3.80E+00 3.86E+00 3.85E+01 3.86E+00 3.86E+00 2.09E+00 1.65E+01 2.17E−03 6.47E−09 5.12E−10
Std 4.29E+00 1.15E+01 2.26E−01 7.20E+00 1.37E−02 2.20E+00 3.62E+00 4.14E−01 4.97E−04 4.01E−10

F15 Best 1.03E−02 3.25E−02 5.66E−02 6.33E−03 8.21E−02 6.01E−02 4.43E−03 6.87E−02 2.58E−03 3.97E−08
Avg 2.71E+00 2.39E+00 6.83E−01 2.69E+00 2.80E+00 4.90E+00 1.86E+01 5.96E−01 3.33E−01 1.08E−03
Std 6.78E−02 6.78E−02 3.94E−01 9.32E−02 1.44E−01 1.94E−01 1.85E−01 3.90E−01 4.04E−01 1.82E−03

F16 Best 3.98E−01 6.03E−01 2.21E−02 7.21E−01 8.01E−01 1.15E+00 7.91E−01 3.62E−02 3.25E−04 6.85E−09
Avg 1.75E+00 5.56E+00 9.88E−01 1.09E+00 4.59E+00 5.92E+01 3.71E+00 4.19E−01 1.02E−01 1.35E−05
Std 7.30E+00 2.04E+00 2.72E−01 5.42E−01 3.35E+00 3.01E+00 1.88E−01 1.62E−01 3.42E−01 4.01E−05
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determine the optimal value. After that, repeat the experi-
ments with the selected value of the population size (n) and 
different common values for the dimension (D) to find its 

optimal value. Thus, the best values of the n and D will be 
uses in the rest of the experiments. 

Table 8   (continued)

Function Metric Comparative algorithms

ABC BA SSA DE GA HS KH GWO MFO MFOHC

F17 Best 3.00E+00 4.85E−01 1.12E−02 5.23E+00 1.09E+00 6.36E+00 7.89E−01 1.12E−02 4.66E−02 1.92E−07

Avg 2.37E+01 6.91E+00 1.34E+00 6.96E+01 4.55E+01 2.09E+02 9.54E+00 8.35E−01 1.01E+00 6.83E−04

Std 2.18E+00 2.19E−01 2.69E−02 9.93E+00 1.36E+00 5.13E+00 1.48E+01 4.33E+01 4.29E−01 2.91E−03
F18 Best 3.86E−01 7.55E+00 2.46E−03 5.79E+00 8.24E−02 6.42E−01 7.68E−06 2.99E−01 4.32E−06 4.78E−09

Avg 3.40E+00 2.86E+01 2.06E−01 4.82E+01 4.44E+00 4.35E+00 2.73E−01 3.60E+00 5.68E−02 2.03E−05
Std 2.65E−01 2.71E+00 1.02E−02 4.00E+00 3.67E−01 1.42E−01 2.09E−02 1.65E−01 1.97E−01 7.11E−04

F19 Best 3.27E+00 3.23E+00 2.90E+00 3.27E+00 3.30E+00 3.32E+00 3.27E+00 3.30E+00 1.03E+00 6.52E−05
Avg 3.30E+02 7.39E+01 1.51E+01 1.44E+01 9.51E+01 2.50E+02 1.01E+01 1.24E+01 3.22E+00 7.89E−02
Std 6.03E−02 5.63E−02 1.20E−01 7.60E−02 4.84E−02 3.39E−05 6.04E−02 4.90E−02 4.66E−01 7.96E−04

F20 Best 4.59E−01 2.60E−09 1.01E−02 7.66E−02 8.79E−06 1.86E−12 1.84E−01 3.45E−11 4.22E−12 3.26E−16
Avg 1.02E+01 6.81E−02 5.14E+00 7.78E+00 8.66E−01 1.02E−01 4.72E+00 9.65E−02 7.09E−06 6.35E−09
Std 6.96E+00 3.50E+00 2.76E+00 2.56E+00 3.04E+00 1.05E−02 2.70E+00 1.55E+00 1.89E−02 2.71E−07

F21 Best 4.42E+00 1.05E−08 1.10E−02 2.34E−01 7.50E+00 4.52E−12 1.27E−02 3.10E−11 2.05E−12 7.82E−15
Avg 1.04E+01 7.45E−01 6.19E+00 8.34E+00 1.01E+01 1.04E−03 6.34E+00 1.02E−01 3.75E−06 3.01E−09
Std 1.19E+00 3.30E+00 3.16E+00 2.79E+00 1.40E+00 1.66E−04 3.69E+00 9.70E−01 7.66E−03 5.21E−08

F22 Best 1.05E−01 8.48E+00 5.24E+00 8.30E+00 1.05E−01 1.05E−01 6.94E+00 1.00E−01 1.05E−01 7.93E−07
Avg 1.60E+00 1.13E+02 2.68E+01 3.62E+02 2.87E+01 4.43E+01 1.34E+02 6.38E+00 4.67E+00 2.22E−04
Std 1.75E+00 3.26E+00 2.99E+00 2.81E+00 7.38E+00 8.24E−01 3.94E+00 1.98E+00 5.82E+00 4.63E−04

F23 Best 9.29E+00 9.69E+00 1.58E+00 3.73E+00 1.04E+01 4.86E+00 1.04E+01 1.04E+01 4.32E+00 1.02E−06
Avg 9.57E+02 2.37E+01 2.40E+01 3.12E+01 3.29E+02 3.30E+01 3.46E+01 3.76E+02 3.11E+01 7.88E−04
Std 2.58E+00 1.84E+00 3.02E+00 8.49E−01 1.07E+00 1.21E+00 7.00E+01 6.46E+00 3.85E+00 5.74E−04

F24 Best 9.22E+00 8.99E+00 9.73E+00 3.65E+00 1.05E−01 5.28E+00 1.05E−01 1.05E−01 4.36E−02 2.78E−06
Avg 1.37E+01 5.79E+01 3.19E+02 7.99E+01 8.80E+00 1.96E+01 4.42E+01 2.28E+01 7.35E+00 4.00E−04
Std 2.74E+00 2.93E+00 2.14E+00 7.74E+01 3.17E−01 1.25E+00 9.32E+00 6.92E+01 8.02E−01 6.37E−03

F25 Best 3.86E+00 3.85E−02 5.54E+00 2.91E−01 6.61E−01 4.44E+00 8.63E−01 7.99E−01 1.99E−02 2.46E−07
Avg 4.63E+03 8.26E+01 8.13E+03 7.95E+00 6.16E+00 4.04E+03 6.29E+01 2.57E+01 6.97E−01 7.32E−04
Std 1.36E+00 2.17E+00 6.63E+00 2.73E+00 2.71E+00 8.17E+00 2.26E+00 3.82E+00 2.08E−01 3.75E−04

F26 Best 3.24E+00 3.25E+00 3.26E+00 1.73E+00 3.32E+00 2.83E+00 3.32E+00 3.29E+00 4.89E+00 3.55E−03
Avg 3.69E+03 1.11E+02 1.47E+04 2.41E+01 7.32E+02 2.48E+02 3.67E+02 1.22E+01 7.06E+01 1.02E−01
Std 5.74E−02 8.74E−02 6.05E−02 4.12E−01 7.73E−04 2.25E−01 1.23E−03 1.31E−02 2.34E+00 6.78E−01

F27 Best 8.50E−01 7.02E−01 2.77E−16 7.69E−02 1.18E−05 1.30E−08 4.42E−01 5.79E−07 3.57E−13 1.59E−16
Avg 8.48E+00 9.22E+00 7.63E−03 3.92E+00 1.02E−01 4.83E−02 1.02E+01 1.01E−02 2.64E−07 1.35E−09
Std 2.90E+00 2.15E+00 2.81E+00 7.89E−01 1.18E−02 1.35E+00 4.91E−03 6.97E−03 7.65E−06 4.86E−08

F28 Best 1.03E+00 1.03E+00 1.03E+00 1.72E−01 1.03E+00 1.03E+00 1.03E+00 1.03E+00 7.36E−01 1.02E−04
Avg 5.32E+01 6.01E+01 6.60E+01 3.33E+00 2.64E+02 4.40E+01 7.93E+01 1.11E+01 2.22E+00 7.13E−02
Std 7.01E+00 8.16E+00 8.62E+00 1.62E+00 6.78E+00 1.16E+00 5.98E+00 1.03E+00 1.01E+00 5.92E−02

F29 Best 3.40E−02 2.22E−09 5.10E−02 2.03E−09 2.00E−12 1.70E−01 5.16E−11 4.55E−03 0.00E+00 0.00E+00
Avg 3.98E+00 3.98E−01 3.98E−01 1.37E−02 3.98E−03 3.98E+00 3.98E−03 3.98E−01 0.00E+00 0.00E+00
Std 2.21E−02 4.58E−07 2.46E−02 9.41E−04 4.93E−02 5.42E−01 2.48E−03 5.33E−01 0.00E+00 0.00E+00

F30 Best 6.98E−02 1.05E−01 5.05E−02 5.78E−01 2.38E−12 2.14E−01 6.39E−11 9.64E−02 5.78E−12 8.64E−17
Avg 1.28E−01 9.21E+00 5.80E+00 2.31E+00 2.32E−03 3.82E+00 1.22E−02 4.29E−01 7.02E−07 2.07E−09
Std 3.41E−01 9.04E−02 3.49E−02 8.29E−02 4.63E−12 3.89E+00 8.99E−11 8.47E−01 4.33E−06 1.64E−09
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1.	 Population size: n
	   To demonstrate the influence of the population sizes, 

the experiments are produced using several values 
for population sizes (i.e., P = 5 , 10, 15, 20, 50, 100, 
250, and 500) for the utilized 30 benchmark functions. 
Table 6 shows the results for different population sizes.

	   As shown in Table 6, we can see that the best-normal-
ized results for MFO with population sizes. The MFO 
obtained the best results (17 times) when the popula-
tion size is equal to 15. Furthermore, for the 10 scalable 
unimodal functions, the MFO got the most of the best 
results when P = 20 , it got 7 out of 10 best cases. For 
12 scalable multimodal functions, the MFO got the most 
of the best results when P = 20 , it got 6 out of 12 best 
cases. For the 8 fixed-dimension multimodal functions, 
the MFO got the most of the best results when P = 20 , it 
got 5 out of 8 best cases. It is clearly observed that when 
the population size is equal to 15, it is the most suitable 
size for all benchmark test functions.

2.	 Dimension: D
	   In this part, to analyze the influence of the problem 

dimensional spaces, experiments are produced for sev-
eral potential dimensional spaces (i.e., D = 5 , 10, 15, 20, 
25, 30, 35, 40, 45, and 50) as reported in the literature 
using the utilized 30 benchmark functions. The results 
for 30 functions are illustrated in Table 7 using the best 
normalized values.

	   As shown in Table 7, the MFO obtained the overall 
best results when D = 5 , it got the best results on 17 
cases. Furthermore, for the 10 scalable unimodal func-
tions, the MFO got the most of the best results when 
D = 5 , it got 7 out of 10 best cases in both dimensions. 
For 12 scalable multimodal functions, the MFO got the 
most of the best results when D = 12 , it got 6 out of 12 
best cases. For the 8 fixed-dimension multimodal func-
tions, the MFO got the most of the best results when 
D = 5 , it got 4 out of 8 best cases. From these results, 
we concluded that increasing the overall performance 
of MFO is observed by increasing the problem dimen-
sional space. Usually, the MFO is unable to solve the 
problem before getting the maximum number of itera-
tions. However, as seen, MFO gives better results for 
high-dimensional problems.

4.2.2 � Comparisons MFOHC with other methods using 
the benchmark functions

For a clear comparison, as shown in Table 8, the proposed 
MFOHC is compared with the basic MFO [28] and other 
similar nine optimization algorithms, namely, Ant Bee Col-
ony (ABC) Algorithm [22], Bat-inspired Algorithm (BA) 
Yang [56], Salp Swarm Optimization (SSA) [31] , Dragon-
fly Algorithm (DE) Mirjalili [29], Genetic Algorithm (GA) 
[17], Harmony Search (HS) Algorithm Geem et al. [15], 
Krill Herd (KH) Algorithm [13], and Grey Wolf Optimizer 
(GWO) Algorithm Mirjalili et al. [30]. Table 8shows the 
best, average (Avg), the standard division (Std) of fitness 
values obtained by all comparative algorithms over 30 runs, 
respectively.

As shown in Table 8, the basic MFO has some weak-
ness (weak local search) in achieving excellent results in 
unimodal functions (i.e., F1, F2, F4, F5, F6, and F9). Con-
sequently, the hybrid MFO with HC is proposed to improve 
the exploitation searchability of MFO. Thus, functions 
F1–F10 are scalable unimodal benchmarks since they have 
just one global optimum. These functions support assessing 
the exploitation ability of the examined optimization algo-
rithms. It can be seen from Table 8 that MFOHC is a very 
competitive algorithm compared to other similar algorithms. 
Mainly, it was the most effective algorithm for functions F1 
and F10 in most test problems. The proposed MFOHC hence 
provide perfect exploitation. MFOHC got better results in 
solving unimodal functions compared to the proposed 
MFOHC where, it almost obtained all best results in uni-
modal functions as well as other test functions (i.e., multi-
modal F11–F22 and fixed-dimension multimodal F23–F30). 
Although the results indicate that MFOHC also has excellent 
exploration searchability, it is possible to further improve the 
exploration search to make a balance between exploitation 
and exploration search. Moreover, performance, diversity, 
and the convergence rate of MFOHC can be enhanced.

4.2.3 � A comparison of MFOHC versions using Benchmark 
functions

In this part, as shown in the previous section that the 
MFOHC can further improve its exploration search abilities, 
new experiments series conducted to investigate the skills 
of the selection schemes in enhancing the global search 
abilities. Various selection scheme mechanisms (tournament 
selection scheme (TMFOHC), proportional selection scheme 
(PMFOHC), linear ranking selection scheme (LRMFOHC), 
exponential ranking selection scheme (ERMFOHC), greedy-
based selection scheme (GMFOHC), and truncation selec-
tion scheme (TrMFOHC)) have been tested on the MFOHC 
to improve its exploration search abilities, as well as, various 
versions of MFO from the literature have been used (i.e., 

Table 10   Average rankings based on Friedman’s test for CEC2011 
problem

No. Algorithm Rank No. Algorithm Rank

1 PMFOHC 6.02 6 TMFOHC 7.33
2 LRMFOHC 6.91 7 GMFOHC 7.39
3 CLSGMFO 6.99 8 LGCMFO 7.46
4 ERMFOHC 7.08 9 MFODE 7.50
5 TrMFOHC 7.11 10 OMFO 8.31
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LGCMFO [55], CLSGMFO [54], MFODE [11], and OMFO 
[36]) to evaluate the performance of the MOFHC versions.

Contrary to unimodal functions, multimodal functions 
cover many local optima, where number grows exponen-
tially with the number of decision variables (problem size). 

Fig. 4   Convergence graphs of 
the benchmark functions
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Accordingly, this kind of benchmark functions becomes 
very beneficial if the objective is to evaluate the exploration 
search ability of an optimization algorithm.

Optimization of benchmark functions is a very challeng-
ing job because just a precise balance between exploration 
and exploitation supports local optima to be evaded. Opti-
mization results listed in Table 9 show that the proposed 

Fig. 5   Convergence graphs of 
the benchmark functions
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hybrid MFO with HC using proportional selection scheme 
(PMFOHC) is almost the best optimizer in all test problems 
and overcomes other similar comparative algorithms1. It is 
definitely demonstrated that the proposed PMFOHC support 
exploration and exploitation phases to be balanced. Moreo-
ver, the results indicate that PMFOHC also has excellent 
exploration search ability. However, the proposed PMFOHC 
always will be the most useful algorithm in the majority of 
function problems.

The performance of the proposed versions of the MFOHC 
algorithm is further evaluated using Friedman’s statistical 
tests. Table 10 provides the average ranking of the pro-
posed MFOHC versions against the comparative methods 
using Friedman’s test. It can be noticed that the proposed 
PMFOHC version is ranked first, followed by LRMFOHC, 
ERMFOHC, TrMFOHC, TMFOHC, and GMFOHC ver-
sions, which ranked second, fourth, fifth, sixth, and seventh, 
respectively. The overall P value computed by Friedman’s 
test is 9.43E−11, which is below the significant level (i.e., 
� = 0.05 ). This value indicates that there are significant dif-
ferences between the performance of the comparative meth-
ods used.

Figures 4 and 5 shows the convergence graphs of the uni-
modal benchmark functions ( F1 , F3 , F5 , F7 , and F9 ), multi-
modal benchmark functions ( F12 , F15 , F16 , F17 , F19 , F20 , and 
F21 ), and fixed-dimension multimodal benchmark functions 
( F23 , F25 , F27 , and F30 ). The convergence graphs are plot-
ted between the best solutions of each algorithm and the 

number of iterations based on the results acquired through 
30 independent runs.

It is observed from the convergence graphs of the uni-
modal functions that the PMFOHC outperformed the other 
versions in F1 , F5 , and F7 . While it achieved close results 
from the LRMFOHC and ERMFOHC in F3 and F9 with 
superiority to LRMFOHC and ERMFOHC. Thus, it can be 
summarized that the PMFOHC is the most efficient version 
in dealing with unimodal benchmark functions. However, 
PMFOHC still has a weak at the beginning (i.e., from start 
until 200–400 iterations). Thus, it suffers from slow conver-
gence when dealing with the local search functions.

Similar to the mentioned above (i.e., unimodal functions) 
the convergence performance of the PMFOHC achieved best 
results in 4 out of 7 multimodal benchmark functions [i.e., 
( F12 , F15 , F16 , and F20)]. In F17 and F21 the PMFOHC is the 
fastest method for finding the best solutions in the first part, 
while in the last part (i.e, after iteration 600) the LRMFOHC 
was the best. In F19 ERMFOHC achieved the best results 
compared with the other versions. Consequently, although 
PMFOHC outperformed the other algorithms, it needs more 
enhancements to achieve the best solutions in all global 
search functions.

In the fixed-dimension multimodal benchmark functions, 
PMFOHC got the best results in 3 of 4 of the functions ( F23 , 
F27 , and F30 ), while in F25 the superiority was obvious to the 
LRMFOHC, followed by TrMFOHC and PMFOHC.

Based on the above, it can be noticed that PMFOHC 
proved its performance in most functions of the three cat-
egories of the benchmarks. The experiment results are con-
vincing because of the structure of PMFOHC combines the 
feature of MFO in the exploration search, supported by the 
feature of HC in the exploitation search, and distinguished 

Table 11   Best, average (Avg), 
and standard deviation (Std) 
for comparing the MFOHC 
versions using five CEC 2011 
real-world problems

Function Metric Selection schemes

MFOHC GMFOHC TMFOHC TrMFOHC PMFOHC LRMFOHC ERMFOHC

CEC–P1 Best 7.8+E07 5.7+E06 3.9+E07 6.6+E07 2.1+E06 1.8+E07 3.4+E07
Avg 8.3+E08 5.2+E07 2.8+E08 1.2+E08 1.0+E07 3.8+E07 3.4+E08
Std 3.2+E07 2.0+E07 2.4+E07 2.4+E07 2.6+E05 2.3+E07 2.5+E07

CEC–P2 Best 24.02 23.93 20.93 14.39 13.79 23.93 17.53
Avg 24.83 23.93 22.22 20.47 18.22 23.93 19.02
Std 0.81 7.2E−15 0.64 1.78 3.15 7.2E−15 0.66

CEC–P3 Best 1.9+E06 8.9+E05 1.1+E06 1.4+E06 9.6+E05 1.0+E06 1.6+E06
Avg 2.0+E06 1.2+E06 1.3+E06 1.7+E06 1.1+E06 1.3+E06 1.5+E06
Std 1.7+E05 1.0+E05 9.3+E04 1.3+E05 8.7+E04 1.3+E05 1.4+E05

CEC–P4 Best 8.2+E07 4.6+E06 4.0+E07 7.9+E07 5.0+E06 1.4+E07 2.0+E07
Avg 1.5+E08 1.7+E07 6.2+E07 1.1+E08 1.2+E07 3.7+E07 6.3+E07
Std 2.2+E07 8.5+E06 1.1+E07 1.3+E07 6.4+E06 9.3+E06 7.2+E06

CEC–P5 Best 1.92 1.73 1.52 1.95 1.45 1.62 1.98
Avg 2.84 2.13 2.44 2.42 2.06 2.17 2.56
Std 0.24 0.20 0.22 0.21 0.22 0.30 0.21

1  The set of benchmark functions in our work is not matched totally 
with the other sets in the literature. Thus, we selected a group of 
benchmark function which matched with our work
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from the rest of the proposed methods by using the pro-
portional selection schemes to increase the quality of the 
selected solutions.

4.2.4 � A comparison of MFOHC versions using real world 
problems

The real-world problems are presented in Sect. 4.1.2 where 
it can be considered as discrete or continuous problems. 
Thus, can be used to evaluate the performance of different 
metaheuristic algorithms. All results in Table 11 are gained 
by 50 separate runs on the five real-world problems.

PMFOHC determines the best solutions on three out of 
five real problems (except CEC–P3 and CEC–P4) followed 
by GMFOHC which achieved best solution in both CEC–P3 
and CEC–P4. Regarding the mean solution, PMFOHC out-
performs the other methods in all real problems. Finally, the 
std results show that the PMFOHC obtained the best results 
in CEC–P1, CEC–P3, and CEC–P4. GMFOHC obtained 
the best results in CEC–P2 and CEC–P5. The summary of 
the results in Table 11 refer that PMFOHC shows the best 
performance comparing with the other six methods.

5 � Conclusion and future works

This paper presented new alternative methods using moth-
flame optimization (MFO). The proposed methods include 
two main steps: in the first step, the basic MFO is hybridized 
with hill climbing (HC) local search to improve its exploita-
tion search, called MFOHC. In the second step, six popu-
lar selection schemes are investigated, and the proportional 
selection scheme is selected as the best to improve the explo-
ration search of the MFOHC by maintaining the diversity of 
the solutions, called PMFOHC.

Experiments are conducted using thirty benchmark func-
tions and five IEEE CEC 2011 real-world problems. The 
results of the proposed algorithms are compared to several 
similar algorithms published in the literature. The effective-
ness of each algorithm is evaluated by three measures, the 
best, average, standard deviation of the fitness values. The 
results illustrated that the PMFOHC version is almost the 
best optimizer in all test problems and it as a summary, the 
results for solving the real-world problems showed that the 
proposed PMFOHC has a promising ability to be very use-
ful in solving the structural design problems with unfamiliar 
search spaces also overcoming other similar comparative 
algorithms. The proposed PMFOHC support exploration 
and exploitation phases to be balanced through, keeping the 
diversity of the solutions. However, it suffers from a weak-
ness of slow convergence.

In future work, we will enhance the limitation of the pro-
posed methods by using new search techniques such as sto-
chastic hill-climbing and opposition-based learning. Also, 
we will utilize different optimization problems, as well as 
multi-objective problems to achieve better results.
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