
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:2931–2956
https://doi.org/10.1007/s00366-020-00971-7

ORIGINAL ARTICLE

Enhanced a hybrid moth‑flame optimization algorithm using new
selection schemes

Mohammad Shehab1 · Hanadi Alshawabkah2 · Laith Abualigah3 · Nagham AL‑Madi2

Received: 13 October 2019 / Accepted: 31 January 2020 / Published online: 21 February 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
This paper presents two levels of enhancing the basic Moth flame optimization (MFO) algorithm. The first step is hybridizing
MFO and the local-based algorithm, hill climbing (HC), called MFOHC. The proposed algorithm takes the advantages of
HC to speed up the searching, as well as enhancing the learning technique for finding the generation of candidate solutions of
basic MFO. The second step is the addition of six popular selection schemes to improve the quality of the selected solution
by giving a chance to solve with high fitness value to be chosen and increase the diversity. In both steps of enhancing, thirty
benchmark functions and five IEEE CEC 2011 real-world problems are used to evaluate the performance of the proposed
versions. In addition, well-known and recent meta-heuristic algorithms are applied to compare with the proposed versions.
The experiment results illustrate that the proportional selection scheme with MFOHC, namely (PMFOHC) is outperforming
the other proposed versions and algorithms in the literature.

Keywords Moth flame optimization · Hill climbing · Selection schemes · Meta-heuristic algorithms · Real-world problems

1 Introduction

Metaheuristic algorithms are classified into local search-
based algorithms and population-based algorithms. Local
search-based algorithms consider one solution at a time and
try to enhance it using neighbourhood structures [44], such
as hill climbing [26], tabu searches [16], �-hill climbing [2],
and simulated annealing [25]. While the main advantage of
these methods is rapid search speeds, the main drawback is
their tendency to focus on exploitation rather than explo-
ration, which, as a result, increases the likelihood of their
getting stuck in local optima [43]. By contrast, population-
based algorithms, which consider a population of solutions
at a time, recombine the current solutions to generate one
or more new solutions at each iteration. These methods are
effective in identifying promising areas in the search space

but are ineffective in exploiting the search space region
being explored [45]. Evolutionary computation and swarm
intelligence methods are classifications of population-based
methods [1]. Both methods are based on the natural biologi-
cal evolution or social interaction behaviour of natural crea-
tures. Examples of swarm-based algorithms include particle
swarm optimization (PSO) [24], krill herd algorithm (KHA)
[13], the salp swarm algorithm (SSA) [31] and the moth-
flame optimization (MFO) [28].

Swarm intelligence-based methods are inspired by ani-
mal societies and social insect colonies [4]. They mimic
the behaviour of swarming social insects, schools of fish
or flocks of birds. The main advantages of these methods
are their flexibility and robustness [8]. MFO is a recent
metaheuristic population-based method developed by Mir-
jalili [28] that imitate the moths’ movement technique in the
night, called transverse orientation for navigation. Moths fly
in the night depending on the moonlight, where they main-
tain a fixed angle to find their path. The behavior of moths
has been formulated as a novel optimization technique. MFO
can be utilized to solve a wide range of problems because
its procedures are simple, flexible, and easily implemented
[21]. On account of these merits, MFO was successfully
applied to various optimization problems. For instance,
scheduling [12], inverse problem and parameter estimation

 * Mohammad Shehab
 moh.shehab12@gmail.com

1 Computer Science Department, Aqaba University
of Technology, Aqaba 77110, Jordan

2 Faculty of Science and Information Technology,
Al-Zaytoonah University of Jordan, Amman, Jordan

3 Faculty of Computer Sciences and Informatics, Amman Arab
University, Amman, Jordan

http://orcid.org/0000-0003-0211-3503
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-00971-7&domain=pdf

2932 Engineering with Computers (2021) 37:2931–2956

1 3

[3, 19], classification [58], economic [51], medical [53],
power energy [57], and image processing [10].

As mentioned above, the basic MFO proved its efficiency
to solve various problems. However, it suffers from a weak
exploitation search, low diversity, and it slows the conver-
gence rate. Therefore, Li et al. [27] applied multi-objective
moth-flame optimization algorithm (MOMFA) to improve
the efficiency of using water resources. The method assisted
and utilized the original moth-flame optimization algorithm,
opposition-based learning, and indicator-based selection
efficient mechanisms to maintain the diversity and accel-
erate the convergence. The algorithm tested on the Lushui
River Basin and many benchmarks [49]. The algorithm can
determine the optimal tradeoff of the elements and can dis-
tribute non dominated outcomes for utilization problem of
the multi-objective water resources. The result is verified
and compared with other algorithms, it indicated to the abil-
ity to obtain well pareto solutions for standard problems.
Also, Bhesdadiya et al. [6] introduced a hybrid optimiza-
tion algorithm based on integration between particle swarm
optimization (PSO) and MFO. The proposed algorithm is
used to solve unconstrained engineering design optimiza-
tion problems in power system context. MFO is applied to
overcome the limitation of PSO algorithm by increasing
the exploration search during solving high complex design
problem. In the conducted experiment, four benchmark-
ing functions are used to validate the proposed algorithm
in terms of exploration and exploitation. Furthermore, the
proposed algorithm is compared with the two traditional
swarm-based algorithm namely, particle swarm optimiza-
tion (PSO) and MFO to validate the performance. Overall
experiment results illustrate that the performance of the
proposed algorithm is better than the compared traditional
methods. Moreover, in the context of image segmentation
(automated food quality inspection), Sarma et al. [37] pro-
posed a hybrid algorithm combined between physics-based
algorithm [e.g., gravitational search algorithm (GSA)] and
swarm-based algorithm (i.e., MFO). The proposed algorithm
is applied to solve the problem of measuring the degree of
food rottenness that cloud helps to minimize monetary losses
due to food and storage. Both algorithm is combined because
they complete each other. For example, MFO is important
due to its effectiveness in exploratory nature. While, GSA is
applied due to its effectiveness in team of exploitation. The
experiment study is designed to test the hybrid optimization
algorithm over thirteen unimodal functions and multimodal
functions. Then, the experiment results are used to com-
pare the proposed hybrid algorithm with traditional MFO
and GSA algorithms. The comparison results show that the
proposed hybrid algorithm is very fast and produces safe
results. In [38], the authors proposed a nondominated MFO
algorithm (NSMFO) method to solve multi-objective prob-
lems. Metaheuristics search techniques are used based on

MFO instead of the different optimization techniques like
cuckoo search, genetic algorithms, particle swarm optimi-
zation, and differential evolutions. The method utilized the
crowding distance approach and sorting of the elitist non-
dominated for preserving the diversity and obtaining variant
nondomination levels, respectively, among the optimal set
of solutions. It measured the effectiveness by multiobjective
benchmark, engineering problems, distinctive feature, and
the Pareto front generation [50]. The results of the method
were compared with other algorithms and considered closer
and better sometimes. While Reddy et al. [35] modified the
MFO algorithm (MFOA) and examined characteristics of
the local and global search of the basic algorithm. The algo-
rithm is aimed to improve solving unit commitment (UC)
problem by using the binary coded modified MFO algorithm
(BMMFOA), the basic MFO is a natureinspired heuristic
search approach that mimics the traverse navigational prop-
erties of moths around artificial lights tricked for natural
moonlight, the algorithm used position update of a single-
based approach between corresponding flame and the moth
differently than many other swarm based approaches. The
modified MFO algorithm (MMFOA) is used to improve the
exploitation search of the moths and reduces the number of
flames.

This paper highlights the two main weaknesses recog-
nized in the performance trajectory of the basic version of
the MFO: loss of the solutions’ diversity, which leads to
a slow convergence manner. Because of these weaknesses,
MFO requires further refinements, to be modified or hybrid-
ized with other algorithms components or local search tech-
niques. As a result, an improved method, by hybridizing the
basic MFO and hill-climbing (HC) search strategy called
MFOCH. Moreover, using several promising selection
schemes for enhancing the quality of the selected solutions.
The following points are summarized the main contributions
of this work.

1. A new hybridization method using MFO and HC
(MFOCH) is developed to improve the exploitation
search.

2. Alternative selection methods in the MFOCH for global
optimization problems are investigated to maintain the
diversity of the solutions, as well as improving their
quality.

3. The performance of the proposed algorithms is tested
using thirty basic benchmarks and five IEEE CEC 2011
real world problems.

The organization of this review is as follows. Section 2
introduces MFO, HC, and the selection schemes. Then, The
proposed methods are described in Sect. 3. Section 4 shows
experimental results and discussions. Finally, Sect. 5 pre-
sents conclusions and future directions.

2933Engineering with Computers (2021) 37:2931–2956

1 3

2 Preliminaries

2.1 Moth‑flame optimization algorithm

2.1.1 Origin

In nature, over 160,000 different species of moths have been
documented, which are resemble butterflies in their life cycle
(i.e., moth consists of two-level life: larvae and adult, where
it converted to moth by cocoons) [48].

Interesting thing in the moths’ life is their special naviga-
tion methods at night. They have evolved to fly in the night
using the moonlight. Also, they employed a mechanism
called transverse orientation for navigation. This mecha-
nism allows the moth to fly by preserving a stable angle with
respect to the moon, a very effective mechanism for travel-
ling long distances in a straight path [14]. Figure 1 illus-
trates a conceptual model of transverse orientation. Since the
moon is far away from the moth, this mechanism guarantees
flying in a straight line. The same navigation method can
be done by humans. Suppose that the moon is in the south
side of the sky and a human wants to go the east. If he keeps
moon of his left side when walking, he would be able to
move toward the east on a straight line.

It can be observed in Fig. 2 the moths do not travel in a
forward path, they fly spirally around lights. This is due to
the transverse orientation method which is efficient just for
the light source is very far (moonlight). In the human-made
artificial light case, the moths attempt to preserve the same
angle with the light source. Consequently, moths move in
spirally paths around lights.

2.1.2 MFO algorithm

Moth-Flame optimization (MFO) algorithm was proposed by
Mirjalili [28]. It is under the population-based metaheuristic
algorithms. The flow data of the MFO starts by generating
moths randomly within the solution space. Then, calculating
the fitness values (i.e., position) of each moth and tagging
the best position by flame. After that, updating the moths’
positions depends on a spiral movement function to achieve
better positions tagged by a flame, as well as updating the
new best individual positions. Repeating the previous pro-
cesses (i.e., updating the moths’ positions and generating
new positions) until the termination criteria are met. Table 1
lists the characteristics of the MFO.

The MFO algorithm has three main steps. These steps as
shown below. Followed by the pseudocode of the MFO as
shown in Algorithm 1.

Fig. 1 Moth’s transverse orientation Fig. 2 Moth’s spiral flying path around a light source [46]

Table 1 Characteristic of the MFO algorithm

Algorithm’s description Moth-Flame’s elements

Decision variable Moth’s position in each dimension
Solutions Moth’s position
Initial solutions Random positions of moths
Current solutions Current positions of moths
New solutions New positions of moths
Best solution Flame’s position
Fitness function Distance between moth and flame
Process of generating new solu-

tion
Flying in a spiral path toward a

flame

2934 Engineering with Computers (2021) 37:2931–2956

1 3

1. Generating the initial population of Moths:
 As mentioned in [28], Mirjalili assumed that each

moth can fly in 1-D, 2-D, 3-D, or hyperdimensional
space. The set of moths can be expressed:

 where n refers to the moths’ number and d refers to the
dimensions’s number in the solution space. Also, the
fitness values for all moths are memorized in an array
as follows:

 The rest elements in the MFO algorithm are flames. The
following matrix showing the flames in the D-dimen-
sional space followed by their fitness function vector:

 It should be noted here that moths and flames are both
solutions. The difference between them is the way we
treat and update them in each iteration. The moths are
actual search agents that move around the search space,
whereas flames are the best position of moths that are
obtained so far. In other words, flames can be considered
as flags or pins that are dropped by moths when search-
ing the search space. Therefore, each moth searches
around a flag (flame) and updates it in case of finding a
better solution. With this mechanism, a moth never loses
its best solution.

2. Updating the Moths’ positions:
 MFO employs three different functions to convergent

the global-optimal of the optimization problems. These
functions are defined as follows:

 where I refers to the first random locations of the moths
(I ∶ � → {M,OM}), P refers to motion the moths in
the search space(P ∶ M → M), and T refers to finish

(1)M =

⎡⎢⎢⎢⎣

m1,1 m1,2 ⋯ ⋯ m1,d

m2,1 m2,2 ⋯ ⋯ m2,d

⋮ ⋮ ⋮ ⋮ ⋮

mn,1 mn,2 ⋯ ⋯ mn,d

⎤⎥⎥⎥⎦

(2)OM =

⎡⎢⎢⎢⎣

OM1

OM2

⋮

OMn

⎤⎥⎥⎥⎦

(3)F =

⎡⎢⎢⎢⎣

F1,1 F1,2 ⋯ ⋯ F1,d

F2,1 F2,2 ⋯ ⋯ F2,d

⋮ ⋮ ⋮ ⋮ ⋮

Fn,1 Fn,2 ⋯ ⋯ Fn,d

⎤⎥⎥⎥⎦

(4)OF =

⎡⎢⎢⎢⎣

OF1
OF2
⋮

OFn

⎤⎥⎥⎥⎦

(5)MFO = (I,P, T)

the search process (T ∶ M → true,false). The following
equation represents I function, which use for implement-
ing the random distribution.

 where lb and ub indicate the lower and upper bounds
of variables, respectively. As mentioned previously, the
moths fly in the search space using the transverse ori-
entation. There are three conditions should abide when
utilizing a logarithmic spiral subjected, as follows:

• Spiral’s initial point should start from the moth.
• Spiral’s final point should be the position of the

flame.
• Fluctuation of the range of spiral should not exceed

the search space.

 Therefore, the logarithmic spiral for the MFO algo-
rithm can be defined as follows:

 where Di refers to the space between the i-th moth and
the j-th flame (see the Eq. (8). b indicates a fix to define
the shape of the logarithmic spiral, and t indicates a ran-
dom number between [− 1, 1].

 In MFO, the balancing between exploitation and explo-
ration are guaranteed by the spiral motion of the moth
near the flame in the search space. Also, to avoid fall-
ing in the traps of the local optima, the optimal solu-
tions have been kept in each repetition, and the moths
fly around the flames (i.e., each moths flies surrounding
the nearest flame) using the OF and OM matrices.

3. Updating the number of flames:
 This section highlights enhancing the exploitation of

the MFO algorithm (i.e., Updating the moths’ positions
in n various locations in the search space may decrease
a chance of exploitation of the best promising solutions).
Therefore, decreasing the number of flames helps to
solve this issue based on the following equation:

where N is the maximum number of flames, l is the current
number of iteration, and T indicates the maximum number
of iterations.

(6)M(i, j) = (ub(i) − lb(j)) × rand() + lb(i)

(7)S(Mi,Fj) = Di ⋅ e
bt
⋅ cos(2�t) + Fj

(8)Di =
|||Fj −Mi

|||.

(9)flame no = round
(
N − l ×

N − l

T

)

2935Engineering with Computers (2021) 37:2931–2956

1 3

Algorithm 1 Moth-flame optimization algorithm
Initialize the parameters for Moth-flame
Initialize Moth position Mi randomly
for i = 1 to n do

Calculate the fitness function fi
end for
while itration � Max iterations do

Update the position of Mi

Calculate the number of flames using Eq.(9)
Evaluate the fitness function fi
if iteration ==1 then

F=sort(M) and OF=sort(OM)
else

F=sort(Mt−1,Mt) and OF=sort(Mt−1,Mt)
end if
for i = 1 to n do

for j = 1 to d do
Update the values of r and t
Calculate the value of D respect to its corresponding moth using Eq.(8)
Update M(i,j)respect to its corresponding moth using Eq.(7)

end for
end for

end while
Print the best solution

2.2 Hill climbing

The hill climbing (HC) technique, called local search, is
the most simplistic form of local development methods. It
begins with one random initial solution (x), iteratively pro-
ceeds by moving from the current solution to a better neigh-
boring solution till it reaches a local optimum (i.e., the local
optimal solution does not have a better neighboring solution,
no improvement in fitness function). It only takes downhill
progress where the fitness function of a neighboring solu-
tion should be better than the current solution Shehab [41].
Consequently, it can converge to the local optima fast and
suddenly. However, it can quickly get stuck in local optima,
which in most situations is not satisfactory. Algorithm 2 pre-
sents the pseudo-code of the HC technique. After creating
the first solution x and through the iterative improvement
process, a group of neighboring solutions is created utiliz-
ing the procedure Improve(N(x)). This procedure seeks to
discover the enhanced neighboring solution from the group
of neighbors utilizing any used acceptance rule such as first
improvement, best improvement, sidewalk, and random
walk. But, all of these rules are stopped in local optima.

Algorithm 2 Hill climbing technique
1: The initial solution x
2: xi=LBi+ (UBi-LBi) * U(0,1), ∀i=(1, 2,, N)
3: Calculate fitness function F (x)
4: while (End condition is not satisfied) do
5: x′=Improve((N(x))
6: if F (x′) ≤ F (x) then
7: x=x′

8: end if
9: end while
10: return x

2.3 Selection schemes

In this section, the selection schemes are described that used
in this paper.

2.3.1 Tournament selection scheme (TSS)

Tournament selection is among the most popular selection
methods in genetic algorithms. It was initially proposed by
Goldberg and Holland [17]. Algorithm 3 shows the principle
of tournament selection work, which starts from the random
selection of t individuals from P(t) population and then pro-
ceeds to the selection of the best individual from tournament
t. This procedure is repeated N times. The best choice is fre-
quently between two individuals, and this scheme is called
binary tournament, where the choice is between t individuals
called tournament size [7]. In other words, the efficiency of
tournament selection scheme is based on the value of t. For
instance, increasing the value of t will increase the diversity
which leads to an increase in the quality of the selected solu-
tion, and vice versa [47].

2936 Engineering with Computers (2021) 37:2931–2956

1 3

Algorithm 3 Tournament Selection Scheme

Input:The population P (T) the tournament size t ∈ i1, 2, ..., N
Output: The population after selection P (T)′

Description:
tournament (J1, ..., JN) :
for i ← 1 to N do

J ′
i ← best fit individual out of t randomly piked individuals from {J1, ..., JN} ;

endfor
return {J ′

1, ..., J
′
N}

There are several merits of the tournament selection
scheme. For instance, low susceptibility to a takeover by
dominant individuals [33], it has efficient time complexity
(i.e., O(n)) [40], and no requirement for fitness scaling or
sorting [32].

2.3.2 Proportional selection scheme (PSS)

The proportional selection scheme or so-called roulette
wheel has been proposed in [20]. In other words, each ele-
ment reserves a section in the roulette wheel, where the
section’s size proportional with the element’s fitness. The
mechanism of this method is choosing the probability based
on the comparison between the fitness values of any solu-
tion and the fitness value of the stored solution in MFO.
As shown in algorithm 4, r has been selected from U(0,1).
Then, si has accumulative determining the probabilities, the
following equation shows the probability of solution x.

(10)Pi =
f (xi)∑swarm size

j=1
f (xj)

.

Algorithm 4 Proportional Selection Scheme

Input:The population P (T), r ∈ U(0, 1)
Output: The population after selection P (T)′

Description:
proportional (J1, ..., JN) :
s0 ← 0
for i ← 1 to N do

si ← si−1 + Pi

endfor
for i ← 1 to N do

r ← random [0, sN]
J ′
i ← Jisuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}

The advantage of proportional selection, it offers a chance
for each element to be chosen. In contrast, in population
converges, it suffers from selection pressure [40]. The time
complexity of the proportional selection is O(n log n).

2.3.3 Linear ranking selection scheme (LRSS)

To overcome the limitation of the proportional selection
scheme, Goldberg and Holland [17] proposed Linear rank-
ing selection scheme. It arranges the solutions based on their
fitness ranks. Equation (11) shows the mechanism of cal-
culation the selection probability by linear mapping of the
solution ranks.

where i is the rank of solution location xj , �− is the expected
value of the worst location, �+ is the expected value of the
best location. Both of �− and �+ set the slope of the linear
function. More details are shown in Algorithm 5.

(11)

Pi =
1

N
×

(
�+ −

(
�+ − �−

)
×

i − 1

N − 1

)
, i ∈ 1,… ,N,

2937Engineering with Computers (2021) 37:2931–2956

1 3

Algorithm 5 Linear Ranking Selection Scheme

Input:The population P (T) and the reproduction rate of the worst individual η− ∈ [1, 0]
Output: The population after selection P (T)′

Description:
linear ranking(J1, ..., JN) :
J̄ ← sorted population J according fitness with worst individual at the first position
s0 ← 0
for i ← 1 to N do

si ← si−1 + pi (Equation 11)
endfor
for i ← 1 to N do

r ← random [0, sN]
J ′
i ← J̄isuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}

The expected results of the linear ranking selection
scheme with small �+ are close to the binary tournament
selection. However, the linear ranking selection scheme with
big �+ suffers from a stronger selection pressure (i.e., the
time complexity is is O(n log n)) [34].

2.3.4 Exponential ranking selection scheme (ERSS)

Unlike linear ranking completely, exponential ranking selec-
tion arranging the probabilities of the ranked elements by
exponentially weighted [42]. The major of the exponent c
which is situated between (0, 1), where it based on parameter
s. For instance, the best solution has a value of c1 = 1 , fol-
lowed by the second solution with c2 = s (s = 0.99), the third
solution has c3 = s2 , and so on until the worst solution has
cswarm size = sswarm size−1 [18]. Probabilities of the individuals
calculated by

The
∑N

j−1
cN−j normalizes the probabilities to ensure that ∑N

i=1
cN−jpi = 1 . As∑N

j−1
cN−j =

cN−1

C−1
 it will be as a following equation:

Algorithm 6 illustrates the exponential ranking selection
algorithm, the similarity of structure between linear ranking
selection and exponential ranking selection can be noticed.
While the difference lies in the calculation of the selection
probabilities. The time complexity of the exponential rank-
ing selection is O(n log n).

(12)pi =
cN−i∑N

j=1
cN−j

; i ∈ {1, 2,… ,N}

(13)pi =
c − 1

cN − 1
CN−i; i ∈ {1, 2,… ,N}

Algorithm 6 Exponential Ranking Selection Scheme

Input:The population P (T) and the ranking base c ∈ [1, 0]
Output: The population after selection P (T)′

Description:
exponential ranking(c, J1, ..., JN) :
J̄ ← sorted population J according fitness with worst individual at the first position
s0 ← 0
for i ← 1 to N do

si ← si−1 + pi (Eq.13)
endfor
for i ← 1 to N do

r ← random [0, sN]
J ′
i ← J̄isuchthatsi−1 � r < si

endfor
return {J ′

1, ..., J
′
N}

2938 Engineering with Computers (2021) 37:2931–2956

1 3

2.3.5 Greedy‑based selection scheme (GSS)

The greedy selection scheme is called global best which was
initially applied by Kennedy [23] in PSO. The technicality of
greedy selection focuses to choose the three best solutions:
x� , x� , and x� to avoid the local optima. Algorithm 7 shows
the pseudo-code of the greedy selection scheme.

As mentioned above, the greedy choose the best three
solutions and ignored the other solutions. Therefore, the
diversity of the search space might be lost which leads to
prematurely converge and quickly stagnate without efficient
results. The time complexity of the greedy selection scheme
is O(n log n).

Fig. 3 Flowchart of the
MFOHC algorithm

Generate ini�al moth randomly

Calculate the fitness value of neighbors of
the moth posi�on Update flame number; t and r

Calculate D for the corresponding moth

Local maximum found

Start

End

Calculate the fitness func�on and tag the best posi�on by flams

Itera�on reach
max? Yes No

Fitness value of best moth
posi�on be�er than the best

flam posi�on

Select the neighbor whose max fitness
value

The selected neighbor
be�er than the current

moth

The selected neighbor
be�er than the local

maximum

Yes

NoUpdate M(i,j)for the corresponding moth

NoYes

Moth out of the
search boundary?

Bring the moth back to the
search boundary

Report the best posi�on among the moths

Yes

Yes

No

No

Algorithm 7 Greedy-based Selection Scheme

Input:The population P (T)
Output: The population after selection P (T)′

Description:
for j ← 1 to |J | do
for t ← 1 to |T | do

wjt ← 0
endfor
endfor
for i ← 1 to |I| do

Obtain a new patrol using DP and let a∗ = a∗jt be the obtained optimal patrol
Assign patrol a∗ to team i

foreach (j, t) with a∗ = a∗jt = 1 do
wjt ← 1

endfor
endfor
return {J ′

1, ..., J
′
N}

2939Engineering with Computers (2021) 37:2931–2956

1 3

2.3.6 Truncation selection scheme (TrSS)

Truncation selection is considered as the simplest selection
scheme comparing with other selection schemes. The trun-
cation chooses elements by saving a certain percentage until
reaching the population size [39]. This selection is equal
to (�, �) -selection utilized in development strategies with
T =

�

�
 [5].

Table 2 The parameters values of the comparative algorithms

Algorithms Parameter

ABC Colony size = 50, limit = 1000
BA Fmin = 0 , Fmax = 2 , r = 0.5 , A = 0.25 , �, � = 0.9

DE CR = 0.9 , F = 0.6

GA Crossover type is 1; crossover probability = 1 ;
mutation probability = 0.01

HS HMCR = 0.9 , PAR = 0.5 , BW = 0.01

KH Nmax = 0.01 , Vf = 0.02 , Dmax = 0.005 , Ct = 0.4

GWO �0 = 2

Algorithm 8 Truncation Selection Scheme

Input:The population P (T), the truncation threshold T ∈ [0, 1]
Output: The population after selection P (T)′

Description:
Truncation (T, J1, ..., JN) :
j̄ ←sorted population J according fitness with worst individual at the first posit
for i ← 1 to N do

r ← random {[(1− T)N] , · · · , N}
j′i ← j̄r

endfor
return {J ′

1, ..., J
′
N}

From Truncation’s pseudo-code, it can be noticed that
the ease of implementation of this selection. However, it
neglects the solutions with a low fitness value which have
an ability to improve into better solutions. This may lead
to premature convergence. As a sorting of the population
is required, truncation selection has a time complexity of
O (n ln n).

3 The proposed methods

This section presents two new methods for improving basic
MFO.

3.1 Hybrid Moth‑flam optimization algorithm
and hill climbing

The first improvement is hybridized basic MFO and HC (i.e.,
MFOHC) to enhance the exploitation mechanism as well as
the convergence rate. As shown in Fig. 3, the flowchart of
MFOHC starts by generating initial moth randomly, then
calculating the moths’ fitness function and determining the
best flam’s position. The usage of the HC components start
in case the output of the first condition is “No”. In other
words, if the fitness value of the selected moth is worse than
the value of the best flam position, then it should search for

another moth with better fitness value using the exploita-
tion mechanism of the HC. After that, the selected solution
will be compared again with the best flame position. The
rest steps are similar to the basic MFO, such as updating
the flam, calculating the distance between the moth and the
updated flam, etc.

3.1.1 Computational complexity

Note that, the computational complexity for running the pro-
posed MFOHC algorithm is depended on the number of salp
solutions (X), the dimensions (d), and the maximum number
of repetitions (t). Hence, the computational complexity of
sorting procedure in each iteration is O(t × n2) in the worst
case. The computational complexity of the initialization pro-
cedure is O(n). Updating the positions of all search agents
is O(t × n × d). Therefore, the computational complexity
of the basic MFO is O(n log n) and O(n2) in the best and
worst case, where n denotes the number of moths. Moreo-
ver, the time complexity to determine if the hill-climbing
process has reach a local optimum is O(n3). Therefore, the
final complexity of the MFOHC is O(T × n3(n2 + n × v)),
where T is the maximum number of iterations and v is the
number of variables. Thus, the time complexity of each
MOFHC’s version can be fined by adding the time com-
plexity of each selection scheme as mentioned breviously.

2940 Engineering with Computers (2021) 37:2931–2956

1 3

For instance, the time complexity of PMFOHC is estimated
as O(T × n3(n2 + n × v)) + O(n log n).

3.2 Improved MFOHC using various selection
schemes

The second improvement is using new selection schemes
to enhance the quality of the selected solution, as well as

diversity. Six selection schemes have been chosen based on
their features. For instance, TSS has the time complexity
O(N) and diversity is inversely proportional to the t size.
While PSS provides a probability for each solution to be
selected based on their proportions. LRSS and ERSS focus
on improving the convergence rate. GSS gives priority to
the global search with avoiding the local optima. Finally,
in TrSS, the worst six solutions (i.e., worst fitness values)

Table 3 Description of unimodal benchmark functions

No. Function Equation Range fmin

f1 Beale f1(x) = (1.5 − x1 + x1x2)
2 + (2.25 − x1 + x1x

2
2
)2 + (2.625 − x1 + x1x

3
2
)2 [−4.5,4.5] 0

f2 Watson
f2(x) =

∑29

i=0

�∑4

j=0
((j − 1)�

j

i
xj+1) −

�∑5

j=0
�
j

i
xj+1

�2
− 1

�2

+ x2
1

[−5 ,5] 0.002288

f3 Dixon and price f3(x) = (x1 − 1)2 +
∑d

i=2
i(2x2

i
− xi−1)

2 [−10,10] 0

f4 Quartic with noise f4(x) =
∑30

i=1
ix4 + random[0, 1) [−1.28,1.28] 0

f5 Schwefel 1.2
f5(x) =

∑n

i=1

�∑i

j=1
xj

�2 [−100,100] 0

f6 Schwefel 2.22 f6(x) =
∑n

i=1
��xi�� +

∏n

i=1
��xi�� [−100,100] 0

f7 Schwefel 2.21 f7(x) =
∑n

i=1
��xi�� [−100,100] 0

f8 Sphere f8(x) =
∑d

i=1
x2
i

[−5.12,5.12] 0

f9 Step f9(x) =
∑n

i=1

�
x2
i

�
[−100,100] 0

f10 Zakharov
f10(x) =

∑d

i=1
x2
i
+

�∑d

i=1
0.5ixi

�2

+

�∑d

i=1
0.5ixi

�4 [−5,10] 0

Table 4 Description of multimodal benchmark functions

∗∗ In f15 , � = 20 , b = 0.2 , and c = 2�

In f17 , wi = 1 +
xi−1

4

No. Function Equation Range fmin

f11 Easom f11(x) = −cos(x1)cos(x2)exp(−(x1 − �)2 − (x2−�)
2) [−100,100] 0

f12 Shubert f12(x) =
�∑5

i=1
i cos((i + 1)x1 + i)

��∑5

i=1
i cos((i + 1)x2 + i)

�
[−10,10] −186.7309

f13 Wolfe f13(x) =
3

4
(x2

1
+ x2

2
− x1 ⋅ x2)

0.75 + x3
[0,2] 0

f14 Colville f
14
(x) = 100(x2

1
− x

2
)2 + (x

1
− 1)2 + (x

3
− 1)2 + 90(x2

3
− x

4
) + 10.1((x

2
− 1)2)

+19.8(x
2
− 1)(x

4
− 1)

[−10,10] 0

f15 Ackley
f15(x) = −� exp

�
−b

�
1

d

∑d

i=1
x2
i

�
− exp

�
1

d

∑d

i=1
cos(cxi)

�
+ � + exp(1))∗∗

[−32.768,32.768] 0

f16 Griewank
f16(x) =

∑d

i=1

x2
i

4000
−
∏d

i=1
cos

�
xi√
i

�
+ 1

[−600,600] 0

f17 Levy f17(x) = sin2(�w1) +
∑d−1

i=1
(wi − 1)2[1 + 10sin2(�wi + 1)] + (wd − 1)2[1 + sin2(2�wd)]

∗∗ [−10,10] 0

f18 Perm
f18(x) =

∑d

i=1

�∑d

j=1
(j + �)

�
xi
j
−

1

ji

��2 [−d ,d] 0

f19 Rastrigin f19(x) = 10d +
∑d

i=1

�
x2
i
− 10cos(2�xi)

� [−5.12,5.12] 0

f20 Rosenbrock f20(x) =
∑d−1

i=1

�
100(xi+1 − x2

i
)2 + (xi − 1)2

� [−5,10] 0

f21 Egg Holder
f21(x) = −(x2 + 47)sin

(√|||x2 +
x1

2
+ 47

|||
)
− x1sin

(√||x1 − (x2 + 47)||
)

[−5.12,5.12] −959.6407

f22 Michalewicz
f22(x) = −

∑d

i=1
sin(xi)sin

2m
�

ix2
i

�

�
,m = 10

[0,�] −1.8013

2941Engineering with Computers (2021) 37:2931–2956

1 3

will never be neglected, thus it will speed up the search
processes.

In Fig. 3, the red rectangles show the locations of using
each one of the selection schemes. In other words, the
enhancing of the MFOHC using the selection schemes is
presented after generating the population, where the selec-
tion schemes aid to select the best solution to compare it
with the best flame. While the second location of using the
selection scheme in the local search part, where it replace
the basic selection in HC (i.e., random selection).

4 Simulations

4.1 Experiments settings

• Normalization measure is the process of regularizing
data with respect to the difference in values between sam-
ples. In the experiments, the effects of different values
of the dimensions and the search agents are compared
with one another. This procedure is difficult due to the
wide gap between solutions. Therefore, normalization
improves data integrity [52]. In this work, normalization
is calculated based on the following equation:

 where is x = (x1,… , xn) , n denotes the total number of
data, zi denotes the normalized data for element ith, �
is the mean and S is the standard deviation. Finally, the
minimum element of the data will be 1 in the normaliza-
tion results.

(14)zi =
xi − �

S
,

• The best measure is utilized to calculate the best-obtained
value by the algorithm to be evaluated for several pre-
defined numbers of runs, which can be measured as fol-
lows:

 where, Nr denoted to the number of various runs and F∗
i

denoted to the best-obtained value.
• The average measure (avg) is utilized to calculate the

mean of the best-obtained values by the algorithm to be
evaluated for several predefined numbers of runs, which
can be measured as follows:

• The standard deviation (std) is a measure utilized to test
if the algorithm to be evaluated can obtain the same best
value in several various runs and examine the repeatabil-
ity test of the algorithm results, which can be measured
as follows:

Also, convergence trajectories are shown to display the
behavior of the comparative algorithms to give the optimal
value. Note, the parameters settings of the comparative algo-
rithms are shown in Table 2.

There are two levels of evaluation performed in this work.
The first step is evaluating the performance of the HMFO

(15)Best = min
1≤i≤Nr

F∗
i

(16)�F =
1

Nr

Nr∑
i=1

F∗
i

(17)STDF =

√√√√ 1

Nr − 1

Nr∑
i=1

(Fi − �F)
2

Table 5 Description of fixed-dimension multimodal benchmark functions

∗∗� = [4, 2, 1, 1∕2, 1∕4, 1∕8, 1∕10, 1∕12, 1∕14, 1∕16]

b = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]

No. Function Equation Range fmin

f23 Branin
f23(x) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cosx1 + 10

[x1 ∈ [−5, 10], x2 ∈ [0,
15]]

0.397887

f24 Goldstein Price f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)]

×[30 + (2x1 − 3x2) × (18 − 32x1 + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2
)]

[−2 ,2] 3

f25 Hartman 1 f25(x) = −
∑4

i=1
ci exp

�
−
∑4

j=1
�ij(xj − pij)

2
�

[−1 ,3] −3.86

f26 Hartman 2 f26(x) = −
∑4

i=1
ci exp

�
−
∑6

j=1
�ij(xj − pij)

2
�

[0,1] −3.32

f27 Kowalik
f27(x) =

∑10

i=0

�
�i −

x1(b
2
i
+bix2)

b2
i
+bix3+x4

�2
∗∗

[−5 ,5] 0.0003074861

f28 Shekel 1 f28(x) = −
∑5

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [0,10] −10.1532

f29 Shekel 2 f29(x) = −
∑7

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [0,10] −10.4028

f30 Shekel 3 f30(x) = −
∑10

i=1

�
(x − �i)(x − �i)

T + ci
�−1 [0,10] −10.5363

2942 Engineering with Computers (2021) 37:2931–2956

1 3

using a set of benchmark functions (see Sect. 4.1.1). The
second step is applying the HMFO versions Using a set of
IEEE CEC 2011 real world problems (see Sect. 4.1.2). All
the experiments run using Matlab R2015a and Windows 7
Professional, Intel(R) Core(TM) i5-4590 CPU @ 3.30 GHz
with a memory of 6.00 GB.

4.1.1 Benchmark functions

The proposed MFOHC method is verified based on using 30
classical benchmark test functions listed in tables 3, 4, and
5. This well-knowing benchmarks include 30 test functions,
which are classified in to unimodal (it means optimization
functions with only one local optimum) and multimodal (it
means optimization functions that frequently contain mul-
tiple global and local optima) problems. Moreover, these
functions are chosen with various dimensions and diverse
difficulty levels including 10 scalable unimodal functions,
12 scalable multimodal functions, and 8 fixed-dimension
multimodal functions. These features make the investigation
process more fitting for testing the exploration and exploita-
tion functions in the proposed method.

4.1.2 IEEE CEC 2011 real world problems

This subsection describes seven real-world problems that
used in CEC 2011, more details can be found in [9]. These
problems are utilized to evaluate the performance of HMFO
versions.

1. CEC-P1: Static economic load dispatch (ELD) Problem
 This problem (i.e., static ELD) is focused on minimiz-

ing the fuel cost of producing units in a specific period,
which is usually set by one hour. Thus, determining
the optimal production dispatch during the operating
units, as well as keeping the system load demand. The
objective function is based on the non-smooth cost and
smooth cost functions, more details are shown below:

where

where Fi(Pi) refers to the cost function and ai , bi , and ci
indicate to its cost coefficient. N(G) refers to the number
of online producing units and Pi the real power output in
a time t. The following equation shows the cost function
for the unit with valve point loading influence.

(18)Minimizing ∶ F =

NG∑
i=1

Fi(Pi),

(19)Fi(Pi) = aiP
2
i
+ biPi + ci, i = 1, 2, 3,… ,NG,

where fi and ei indicate to the cost coefficients identical
to the valve point loading influence.

2. CEC-P2: Optimal control of a non-linear stirred tank
reactor

 In the chemical area, the chemical reaction proceeds
in the continuous stirred tank reactor (CSTR) which can
be included under the multimodal optimization prob-
lem. Thus, it can be used to evaluate the performance of
the metaheuristic algorithms, exactly like the standard
benchmark functions. The following equations illustrate
the mathematical model of this problem.

where u refers to the flow rate of the cooling fluid, x1 and
x2 indicate to state temperature and deviation, respec-
tively. The objective function is determined by an appro-
priate value of u to enhance the performance index, the
following equation shows the calculation process.

3. CEC-P3: Large scale transmission pricing problem
 In modern power systems, the estimation price of the

transmission considers a controversial problem [9]. The
estimation price is based on various take-holders. Thus,
it depends on different factors. The equivalent bilateral
exchange (EBE) is one of the common factors (lin-
earized model) used to estimate the price of the trans-
mission. EBA creates a matrix of the load-generation
interaction, the following equation illustrates the total
of equivalent bilateral exchange.

where i and j refer to generator and load, respectively.
P
sys

D
 refers to the total load. While Eq. (25) represents

the portion of power flow pf inline k, which used (i.e.,
pfk) to examine the all equivalent dual power exchanges.

(20)Fi(Pi) = aiP
2
i
+ biPi + ci +

|||eisin
(
fi
(
Pmin
i

− Pi

))|||,

(21)

ẋ1 = −(2 + u)(x1 + 0.25) + (x2 + 0.5) exp

(
25x1

x1 + 2

)
,

(22)ẋ2 = 0.5 − x2 − (x2 + 0.5) exp

(
25x1

x1 + 2

)
,

(23)J = ∫
tf=0.72

0

(x2
1
+ x2

2
+ 0.1u2)dt.

(24)GDij =
PGiPDj

P
sys

D

,

(25)pfk =
∑
i

∑
j

|||�
k
ij

|||GDij.

2943Engineering with Computers (2021) 37:2931–2956

1 3

4. CEC-P4: Hydrothermal scheduling problem
 Hydrothermal scheduling is divided into long term

(i.e., from week(s) to months) and short term (i.e., 24
h and less) problems. This problem aims to schedule
the power generations of the thermal and hydro units
in a fixed period of time and minimum fuel cost. How-
ever, the hydrothermal system is very complicated and
includes nonlinear connections of the resolution vari-
ables, water carry retards, and time connection among
the consecutive schedules. So, detecting the minimum
fuel cost is so difficult by utilizing the basic optimization
algorithms.

 The main objective to achieve the maximum results of
the hydro units, at the same time each unit consumed the
lowest load. The description of the objective function is
expressed below.

where M refers to the number of intervals. In Eq. (27),
the fi indicates to the cost function connected with the
identical thermal unit’s power producer PTi :

5. CEC-P5: Spread spectrum radar polly phase code design
 waveform is considered as one of the most important

factors in designing radar-system which is based on pulse
compression. Various studies have been proposed for
polyphase pulse compression code synthesis, especially
those depending on the characteristic of the aperiodic

(26)F =

M∑
i=1

fi(PTi),

(27)
fi(PTi) = aiP

2
Ti
+ biPTi + ci +

|||eisin
(
fi
(
Pmin
Ti

− PTi

))|||.

Table 6 The best normalized results for MFO with population sizes

Function Population sizes

5 10 15 20 50 100 250 500

F1 1.49E+01 9.91E+02 1.00 5.94E+02 1.00 5.41E+01 1.93E+02 1.17E+02
F2 2.56E+00 1.00 1.00 2.60E+01 5.16E+01 5.23E+01 7.13E+00 1.00
F3 1.17E+00 1.04E+00 1.00 1.04E+00 1.04E+00 1.04E+00 1.00 1.04E+00
F4 1.93E+00 2.19E+01 3.70E+00 1.00 4.90E+01 2.41E+01 8.37E+00 1.12E+01
F5 2.36E+01 6.65E+01 1.00 2.16E+01 3.22E+01 1.74E+01 6.89E+00 2.39E+01
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 1.90E+00 1.00 1.04E+00 1.24E+00 1.14E+00 1.23E+00 1.04E+00 1.09E+00
F8 2.68E+01 3.80E+00 1.00 5.96E+00 1.62E+01 1.01E+01 1.20E+01 1.09E+00
F9 5.68E+00 1.24E+00 1.00 1.10E+00 2.55E+00 1.04E+00 2.57E+00 2.27E+00
F10 1.86E+00 1.00 2.87E+01 6.39E+00 2.58E+01 1.33E+01 1.05E+01 1.86E+00
F11 1.00 2.53E+00 1.05E+00 5.00E+00 5.34E+00 2.28E+00 7.58E+00 2.85E+00
F12 1.00 1.00 1.00 1.00 1.29E+00 1.00 1.32E+00 8.20E+00
F13 1.66E+01 9.32E+01 1.00 1.08E+02 1.09E+02 2.83E+01 2.49E+01 1.83E+00
F14 1.49E+00 1.28E+00 1.10E+01 1.00 1.12E+01 2.23E+01 3.87E+01 1.02E+01
F15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F16 1.15E+00 1.00 1.16E+00 1.20E+00 1.17E+00 1.58E+00 1.53E+00 1.23E+00
F17 1.00 1.00 1.02E+00 1.11E+00 1.18E+00 2.23E+00 1.60E+00 1.42E+00
F18 1.93E+00 1.81E+00 1.00 1.87E+00 1.66E+00 2.69E+00 2.32E+00 2.54E+00
F19 1.00 1.00 1.52E+01 1.02E+02 7.62E+01 7.62E+00 2.62E+01 2.26E+01
F20 1.00 1.04E+00 1.01E+00 1.06E+00 1.02E+00 1.01E+00 1.02E+00 1.02E+00
F21 1.00 1.29E+00 1.00 1.24E+00 1.21E+00 1.14E+00 1.29E+00 1.28E+00
F22 3.43E+00 2.79E+00 1.00 2.01E+00 1.24E+01 1.42E+02 1.15E+01 1.16E+01
F23 1.27+00 1.32E+00 1.32E+00 1.00 1.35E+00 1.43E+00 1.22E+00 1.21E+00
F24 1.19E+00 1.00 1.00 1.10E+00 1.02E+00 1.11E+00 7.58E+00 1.25E+00
F25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F26 1.00 1.00 1.00 1.02E+00 1.00 1.02E+00 1.03E+00 1.04E+00
F27 1.38E+00 2.71E+00 1.00 1.07E+00 1.55E+01 1.21E+00 1.33E+00 1.01E+00
F28 1.00 1.00 1.49E+00 1.16E+00 1.02E+00 1.60E+00 2.23E+00 1.44E+01
F29 1.00 1.00 1.01E+00 1.00 1.01E+00 1.01E+00 1.29E+00 1.06E+00
F30 1.03E+00 1.03E+00 1.00 2.04E+00 6.81E+00 1.60E+00 1.43E+00 1.01E+00
Total best 12 14 17 8 5 4 4 4

2944 Engineering with Computers (2021) 37:2931–2956

1 3

autocorrelation function. Thus, CEC-P5 can be treated
like a continuous optimization problem. The mathemati-
cal model is described in the following equations.

where X =
{
(x1,… , xn) ∈ Rn ∣ 0 ≤ xj ≤ 2�, j = 1,… , n

}

and m = 2n − 1

(28)global min
x∈X

f (x) = max
{
�1(x),… ,�2m(x)

}
,

(29)�2i−1(x) =

n∑
j=i

cos

(
j∑

k=|2i−j−1|+1
xk

)
, i = 1,… , n

(30)

�2i(x) = 0.5 +

n∑
j=i+1

cos

(
j∑

k=|2i−j|+1
xk

)
, i = 1,… , n − 1

4.2 Results and discussions

4.2.1 Influence of control parameter

The experiments start with evaluating the parameter settings
of the MFO to set them in subsequent experiments. It can
be noticed that the parameters tuning include experiments
of the population size (n) with a set of common values to

(31)�m+i(x) = −�i(x), i = 1,… ,m

Table 7 The best normalized results for MFO with different dimensional spaces

Function Dimensional spaces

5 10 15 20 25 30 35 40

F1 1.00 3.35E+00 5.18E+00 1.16E+01 2.82E+01 1.73E+01 3.01E+01 1.88E+01
F2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F3 1.00 6.91E+00 1.64E+01 8.59E+00 4.22E+01 8.58E+00 3.38E+01 1.42E+01
F4 1.00 1.17E+00 1.06E+00 1.23E+01 1.15E+00 1.02E+00 1.11E+00 1.08E+00
F5 3.31E+01 5.11E+00 1.00 7.01E+00 5.17E+00 1.06E+00 4.23E+00 1.22E+01
F6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F7 7.63E+00 1.00 5.63E+00 1.40E+00 1.94E+00 6.99E+00 1.13E+01 2.55E+00
F8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F9 1.06E+01 1.06E+01 1.00 1.06E+01 1.06E+01 1.06E+01 1.06E+01 1.06E+01
F10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F11 1.00 1.10E+01 6.24E+00 3.67E+01 3.46E+00 2.18E+00 2.18E+00 5.15E+00
F12 2.02E+00 1.00 4.86E+00 7.52E+00 1.12E+00 6.82E+00 2.54E+00 1.13E+01
F13 1.00 1.46E+01 2.93E+01 1.08E+01 1.21E+01 3.97E+01 1.27+01 4.47E+00
F14 1.21E+00 1.00 1.28E+00 1.29E+00 1.25E+00 1.40E+00 1.05E+00 1.19E+00
F15 9.21E+00 1.00 1.32E+00 4.54E+00 5.25E+00 1.57E+00 8.78E+00 4.42E+00
F16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F17 1.00 4.28E+00 3.77E+00 4.69E+00 4.93E+00 1.48E+00 9.72E+00 2.40E+00
F18 1.08E+00 1.00 1.41E+00 1.32E+00 1.09E+00 1.15E+00 3.52E+03 3.01E+00
F19 2.74E+00 1.00 3.90E+01 1.97E+00 1.96E+00 2.49E+01 5.31E+01 1.01E+01
F20 1.00 6.83E+00 5.80E+01 3.08E+01 4.92E+01 2.59E+00 4.71E+00 1.65E+00
F21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
F22 4.00E+00 1.00 6.99E+00 9.67E+00 2.09E+00 4.91E+00 2.51E+00 1.74E+00
F23 3.06E+00 1.00 4.92E+01 4.42E+01 4.97E+00 4.74E+00 1.37E+01 1.64E+01
F24 1.00 4.22E+01 5.24E+01 8.63E+01 9.09E+00 7.58E+00 1.31E+01 3.94E+01
F25 1.00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00 1.32E+00
F26 1.04E+00 1.00 1.74E+00 1.43E+00 1.34E+00 1.23E+00 1.12E+00 1.17E+00
F27 1.24E+00 1.00 1.70E+00 1.74E+00 1.55E+00 1.34E+00 1.51E+00 1.73E+00
F28 1.00 1.24E+00 1.16E+00 1.19E+00 1.13E+00 1.16E+00 1.08E+00 1.11E+00
F29 1.30E+00 1.23E+00 1.00 1.10E+00 1.24E+00 1.10E+00 1.02E+00 1.33E+00
F30 1.00 1.03E+00 1.01E+00 1.01E+00 1.01E+00 1.02E+00 1.01E+00 1.02E+00
Total best 17 16 9 6 6 6 6 6

2945Engineering with Computers (2021) 37:2931–2956

1 3

Table 8 Best, average (Avg), and standard deviation (Std) for comparing the proposed MFOHC with basic MFO and other algorithms

Function Metric Comparative algorithms

ABC BA SSA DE GA HS KH GWO MFO MFOHC

F1 Best 3.28E−05 1.48E−01 1.15E−01 7.77E−01 2.43E−05 4.27E+00 5.31E−02 3.13E−02 3.00E−03 1.37E−07
Avg 2.99E−01 8.46E+00 2.82E+00 9.36E+00 1.21E−03 2.02E+01 5.29E+00 2.38E+00 4.33E−02 2.00E−03
Std 1.07E−16 5.15E−01 5.68E+00 2.75E+02 1.08E−05 8.36E−01 2.37E+00 2.14E−02 4.36E−01 4.67E−03

F2 Best 4.89E−06 2.56E−01 2.20E−02 7.17E−03 4.09E−06 2.15E−01 1.22E−01 3.53E−01 3.69E−03 4.56E−07
Avg 2.85E−01 7.31E+00 1.49E+00 4.94E−01 1.55E−03 1.02E+00 1.03E+00 6.17E+00 4.39E−01 1.86E−03
Std 9.85E−17 7.35E−01 2.99E−01 1.90E+04 2.41E−04 5.70E+00 1.74E+01 1.47E−01 4.03E+00 7.09E−04

F3 Best 9.98E−01 2.31E+00 3.75E+00 1.03E+00 1.41E+00 9.98E−01 9.98E−01 2.99E+00 2.47E−01 4.67E−05
Avg 8.49E+00 9.14E+01 2.46E+01 6.87E+01 1.58E+01 1.62E+01 4.06E+00 1.20E+00 2.55E+00 6.31E−02
Std 0.00E+00 2.19E+00 3.30E+00 1.81E−01 5.54E−01 7.15E−07 3.63E−16 3.42E+00 9.32E−01 2.01E−02

F4 Best 3.42E−04 1.08E−03 4.25E−03 1.30E−03 7.24E−04 4.35E−04 5.33E−03 1.71E−03 6.33E−04 1.89E−07
Avg 1.42E−01 1.97E+00 4.68E−01 1.27E+00 3.52E−01 5.56E−01 8.40E+00 2.07E−01 3.57E−01 1.33E−03
Std 1.67E−04 4.81E−04 7.33E−03 4.44E−04 5.82E−05 9.62E−05 8.08E−03 5.08E−03 7.59E−02 2.86E−02

F5 Best 4.25E−04 2.68E−03 3.88E−03 1.18E−04 1.74E−02 5.77E−03 3.74E−02 2.65E−01 1.39E−03 4.88E−06
Avg 5.70E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 1.48E+00 1.48E+00 2.25E+00 2.17E−01 1.25E−03
Std 5.66E−04 1.46E+07 1.11E+03 7.07E+04 3.47E+02 3.08E+03 3.88E+02 8.72E−01 3.12E−01 6.78E−02

F6 Best 1.05E−07 3.30E−02 1.37E−01 8.56E−02 2.69E−03 1.72E−02 1.45E−02 4.38E−03 3.12E−06 4.12E−09
Avg 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 1.88E−14 1.62E+00 5.63E−01 2.14E−03 9.01E−04
Std 3.76E−15 1.81E+03 2.20E+00 4.29E+02 8.98E−04 5.30E+01 1.83E+00 3.09E−01 7.64E−02 4.36E−03

F7 Best 6.81E−05 1.74E+00 1.01E−01 2.49E−01 4.56E−03 1.36E−01 1.42E−02 6.54E−04 4.01E−05 7.03E−09
Avg 7.24E−02 4.35E+01 5.33E+00 1.71E+00 8.92E−01 5.82E+00 9.62E+00 8.08E−01 6.31E−02 1.01E−04
Std 8.69E−05 3.51E+00 8.11E+00 1.57E−01 1.74E−03 6.65E−02 6.85E−03 4.22E−04 7.09E−02 4.18E−03

F8 Best 0.00E+00 1.55E−06 2.58E−07 1.49E−12 0.00E+00 1.16E−12 8.69E−09 2.87E−11 0.00E+00 0.00E+00
Avg 1.22E−85 3.53E−01 5.44E−03 6.98E−04 1.05E−52 1.74E−03 2.24E−04 1.92E−02 2.08E−088 0.00E+00
Std 0.00E+00 3.83E−01 2.23E−01 3.20E−01 9.23E−14 2.09E−01 2.89E−01 1.57E+00 0.00E+00 0.00E+00

F9 Best 8.88E−14 1.37E−01 4.75E+00 7.83E+00 1.32E−16 9.49E+00 3.50E+00 1.39E−14 3.14E−14 1.05E−16
Avg 1.87E−04 3.07E+00 6.13E+01 1.02E+01 1.96E−06 3.57E+01 5.03E+01 1.58E−04 6.37E−06 1.88E−09
Std 0.00E+00 8.38E+00 2.56E+00 1.37E+00 2.00E−03 1.35E+00 1.11E+00 2.69E+00 6.42E−04 2.78E−09

F10 Best 0.00E+00 1.20E−21 5.53E−12 6.07E−17 0.00E+00 2.50E−11 5.39E−09 1.62E−13 0.00E+00 0.00E+00
Avg 1.48E−120 5.59E−02 4.48E−03 1.01E−01 1.67E−82 5.54E−02 4.65E−02 9.99E−03 3.02E−89 0.00E+00
Std 0.00E+00 3.12E−01 6.28E−02 2.80E+00 0.00E+00 5.16E−01 1.27E−01 4.32E−03 0.00E+00 0.00E+00

F11 Best 1.28E−02 9.36E−06 9.50E−01 1.73E−02 2.91E−02 6.06E−02 1.42E−01 2.00E−01 0.00E+00 0.00E+00
Avg 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.03E+00 1.85E+00 3.90E+00 2.14E+00 1.02E−45 0.00E+00
Std 3.40E−02 1.35E−06 9.61E+01 5.59E+01 1.12E+03 3.15E+02 1.49E+00 4.07E+03 0.00E+00 0.00E+00

F12 Best 5.32E−06 2.60E−12 6.96E+00 2.20E−01 1.19E−01 1.24E+01 1.67E+01 3.20E+01 7.09E−17 3.64E−21
Avg 4.72E+00 9.65E+00 3.20E+00 8.48E+00 1.05E+00 2.70E+00 1.55E+00 2.04E+00 6.31E−07 6.31E−08
Std 8.50E−06 2.83E−12 1.71E+00 7.90E+00 6.88E+00 5.77E+00 1.22E+00 2.15E+01 1.02E−07 0.00E+00

F13 Best 3.69E+01 1.82E−17 1.56E+00 3.26E+00 6.44E+01 7.33E−01 5.20E−01 1.52E−01 0.00E+00 0.00E+00
Avg 3.27E+00 3.30E−02 2.89E+01 3.24E+01 3.25E+00 6.04E+00 4.90E+00 3.32E+00 5.74E−12 0.00E+00
Std 4.63E+03 6.04E−17 9.16E+02 1.01E+02 3.02E+02 5.49E+03 1.17E+01 1.05E+04 0.00E+00 0.00E+00

F14 Best 3.17E−02 6.05E−01 1.71E+00 1.91E−01 5.66E−02 1.63E−01 9.11E+00 3.29E−16 3.20E−16 4.15E−19
Avg 3.80E+00 3.86E+00 3.85E+01 3.86E+00 3.86E+00 2.09E+00 1.65E+01 2.17E−03 6.47E−09 5.12E−10
Std 4.29E+00 1.15E+01 2.26E−01 7.20E+00 1.37E−02 2.20E+00 3.62E+00 4.14E−01 4.97E−04 4.01E−10

F15 Best 1.03E−02 3.25E−02 5.66E−02 6.33E−03 8.21E−02 6.01E−02 4.43E−03 6.87E−02 2.58E−03 3.97E−08
Avg 2.71E+00 2.39E+00 6.83E−01 2.69E+00 2.80E+00 4.90E+00 1.86E+01 5.96E−01 3.33E−01 1.08E−03
Std 6.78E−02 6.78E−02 3.94E−01 9.32E−02 1.44E−01 1.94E−01 1.85E−01 3.90E−01 4.04E−01 1.82E−03

F16 Best 3.98E−01 6.03E−01 2.21E−02 7.21E−01 8.01E−01 1.15E+00 7.91E−01 3.62E−02 3.25E−04 6.85E−09
Avg 1.75E+00 5.56E+00 9.88E−01 1.09E+00 4.59E+00 5.92E+01 3.71E+00 4.19E−01 1.02E−01 1.35E−05
Std 7.30E+00 2.04E+00 2.72E−01 5.42E−01 3.35E+00 3.01E+00 1.88E−01 1.62E−01 3.42E−01 4.01E−05

2946 Engineering with Computers (2021) 37:2931–2956

1 3

determine the optimal value. After that, repeat the experi-
ments with the selected value of the population size (n) and
different common values for the dimension (D) to find its

optimal value. Thus, the best values of the n and D will be
uses in the rest of the experiments.

Table 8 (continued)

Function Metric Comparative algorithms

ABC BA SSA DE GA HS KH GWO MFO MFOHC

F17 Best 3.00E+00 4.85E−01 1.12E−02 5.23E+00 1.09E+00 6.36E+00 7.89E−01 1.12E−02 4.66E−02 1.92E−07

Avg 2.37E+01 6.91E+00 1.34E+00 6.96E+01 4.55E+01 2.09E+02 9.54E+00 8.35E−01 1.01E+00 6.83E−04

Std 2.18E+00 2.19E−01 2.69E−02 9.93E+00 1.36E+00 5.13E+00 1.48E+01 4.33E+01 4.29E−01 2.91E−03
F18 Best 3.86E−01 7.55E+00 2.46E−03 5.79E+00 8.24E−02 6.42E−01 7.68E−06 2.99E−01 4.32E−06 4.78E−09

Avg 3.40E+00 2.86E+01 2.06E−01 4.82E+01 4.44E+00 4.35E+00 2.73E−01 3.60E+00 5.68E−02 2.03E−05
Std 2.65E−01 2.71E+00 1.02E−02 4.00E+00 3.67E−01 1.42E−01 2.09E−02 1.65E−01 1.97E−01 7.11E−04

F19 Best 3.27E+00 3.23E+00 2.90E+00 3.27E+00 3.30E+00 3.32E+00 3.27E+00 3.30E+00 1.03E+00 6.52E−05
Avg 3.30E+02 7.39E+01 1.51E+01 1.44E+01 9.51E+01 2.50E+02 1.01E+01 1.24E+01 3.22E+00 7.89E−02
Std 6.03E−02 5.63E−02 1.20E−01 7.60E−02 4.84E−02 3.39E−05 6.04E−02 4.90E−02 4.66E−01 7.96E−04

F20 Best 4.59E−01 2.60E−09 1.01E−02 7.66E−02 8.79E−06 1.86E−12 1.84E−01 3.45E−11 4.22E−12 3.26E−16
Avg 1.02E+01 6.81E−02 5.14E+00 7.78E+00 8.66E−01 1.02E−01 4.72E+00 9.65E−02 7.09E−06 6.35E−09
Std 6.96E+00 3.50E+00 2.76E+00 2.56E+00 3.04E+00 1.05E−02 2.70E+00 1.55E+00 1.89E−02 2.71E−07

F21 Best 4.42E+00 1.05E−08 1.10E−02 2.34E−01 7.50E+00 4.52E−12 1.27E−02 3.10E−11 2.05E−12 7.82E−15
Avg 1.04E+01 7.45E−01 6.19E+00 8.34E+00 1.01E+01 1.04E−03 6.34E+00 1.02E−01 3.75E−06 3.01E−09
Std 1.19E+00 3.30E+00 3.16E+00 2.79E+00 1.40E+00 1.66E−04 3.69E+00 9.70E−01 7.66E−03 5.21E−08

F22 Best 1.05E−01 8.48E+00 5.24E+00 8.30E+00 1.05E−01 1.05E−01 6.94E+00 1.00E−01 1.05E−01 7.93E−07
Avg 1.60E+00 1.13E+02 2.68E+01 3.62E+02 2.87E+01 4.43E+01 1.34E+02 6.38E+00 4.67E+00 2.22E−04
Std 1.75E+00 3.26E+00 2.99E+00 2.81E+00 7.38E+00 8.24E−01 3.94E+00 1.98E+00 5.82E+00 4.63E−04

F23 Best 9.29E+00 9.69E+00 1.58E+00 3.73E+00 1.04E+01 4.86E+00 1.04E+01 1.04E+01 4.32E+00 1.02E−06
Avg 9.57E+02 2.37E+01 2.40E+01 3.12E+01 3.29E+02 3.30E+01 3.46E+01 3.76E+02 3.11E+01 7.88E−04
Std 2.58E+00 1.84E+00 3.02E+00 8.49E−01 1.07E+00 1.21E+00 7.00E+01 6.46E+00 3.85E+00 5.74E−04

F24 Best 9.22E+00 8.99E+00 9.73E+00 3.65E+00 1.05E−01 5.28E+00 1.05E−01 1.05E−01 4.36E−02 2.78E−06
Avg 1.37E+01 5.79E+01 3.19E+02 7.99E+01 8.80E+00 1.96E+01 4.42E+01 2.28E+01 7.35E+00 4.00E−04
Std 2.74E+00 2.93E+00 2.14E+00 7.74E+01 3.17E−01 1.25E+00 9.32E+00 6.92E+01 8.02E−01 6.37E−03

F25 Best 3.86E+00 3.85E−02 5.54E+00 2.91E−01 6.61E−01 4.44E+00 8.63E−01 7.99E−01 1.99E−02 2.46E−07
Avg 4.63E+03 8.26E+01 8.13E+03 7.95E+00 6.16E+00 4.04E+03 6.29E+01 2.57E+01 6.97E−01 7.32E−04
Std 1.36E+00 2.17E+00 6.63E+00 2.73E+00 2.71E+00 8.17E+00 2.26E+00 3.82E+00 2.08E−01 3.75E−04

F26 Best 3.24E+00 3.25E+00 3.26E+00 1.73E+00 3.32E+00 2.83E+00 3.32E+00 3.29E+00 4.89E+00 3.55E−03
Avg 3.69E+03 1.11E+02 1.47E+04 2.41E+01 7.32E+02 2.48E+02 3.67E+02 1.22E+01 7.06E+01 1.02E−01
Std 5.74E−02 8.74E−02 6.05E−02 4.12E−01 7.73E−04 2.25E−01 1.23E−03 1.31E−02 2.34E+00 6.78E−01

F27 Best 8.50E−01 7.02E−01 2.77E−16 7.69E−02 1.18E−05 1.30E−08 4.42E−01 5.79E−07 3.57E−13 1.59E−16
Avg 8.48E+00 9.22E+00 7.63E−03 3.92E+00 1.02E−01 4.83E−02 1.02E+01 1.01E−02 2.64E−07 1.35E−09
Std 2.90E+00 2.15E+00 2.81E+00 7.89E−01 1.18E−02 1.35E+00 4.91E−03 6.97E−03 7.65E−06 4.86E−08

F28 Best 1.03E+00 1.03E+00 1.03E+00 1.72E−01 1.03E+00 1.03E+00 1.03E+00 1.03E+00 7.36E−01 1.02E−04
Avg 5.32E+01 6.01E+01 6.60E+01 3.33E+00 2.64E+02 4.40E+01 7.93E+01 1.11E+01 2.22E+00 7.13E−02
Std 7.01E+00 8.16E+00 8.62E+00 1.62E+00 6.78E+00 1.16E+00 5.98E+00 1.03E+00 1.01E+00 5.92E−02

F29 Best 3.40E−02 2.22E−09 5.10E−02 2.03E−09 2.00E−12 1.70E−01 5.16E−11 4.55E−03 0.00E+00 0.00E+00
Avg 3.98E+00 3.98E−01 3.98E−01 1.37E−02 3.98E−03 3.98E+00 3.98E−03 3.98E−01 0.00E+00 0.00E+00
Std 2.21E−02 4.58E−07 2.46E−02 9.41E−04 4.93E−02 5.42E−01 2.48E−03 5.33E−01 0.00E+00 0.00E+00

F30 Best 6.98E−02 1.05E−01 5.05E−02 5.78E−01 2.38E−12 2.14E−01 6.39E−11 9.64E−02 5.78E−12 8.64E−17
Avg 1.28E−01 9.21E+00 5.80E+00 2.31E+00 2.32E−03 3.82E+00 1.22E−02 4.29E−01 7.02E−07 2.07E−09
Std 3.41E−01 9.04E−02 3.49E−02 8.29E−02 4.63E−12 3.89E+00 8.99E−11 8.47E−01 4.33E−06 1.64E−09

2947Engineering with Computers (2021) 37:2931–2956

1 3

Ta
bl

e
9

 B
es

t,
av

er
ag

e
(A

vg
),

an
d

st
an

da
rd

 d
ev

ia
tio

n
(S

td
) f

or
 c

om
pa

rin
g

th
e

M
FO

H
C

 v
er

si
on

s w
ith

 o
th

er
 a

lg
or

ith
m

s

Fu
nc

tio
n

M
et

ric
C

om
pa

ra
tiv

e
al

go
rit

hm
s

LG
C

M
FO

C
LS

G
M

FO
M

FO
D

E
O

M
FO

G
M

FO
H

C
TM

FO
H

C
Tr

M
FO

H
C

PM
FO

H
C

LR
M

FO
H

C
ER

M
FO

H
C

F
1

B
es

t
⋯

⋯
⋯

⋯
4.

77
E−

10
1.

11
E−

09
4.

58
E−

10
1.

26
E−

10
3.

98
E−

10
2.

02
E−

09
A

vg
⋯

⋯
⋯

⋯
3.

36
E−

07
3.

10
E−

07
4.

32
E−

07
1.

03
E−

07
5.

24
E−

07
3.

12
E−

07
St

d
⋯

⋯
⋯

⋯
4.

20
E−

07
3.

05
E−

07
1.

46
E−

06
4.

57
E−

07
1.

75
E−

07
3.

21
E−

07
F
2

B
es

t
⋯

⋯
⋯

⋯
4.

31
E−

06
1.

79
E−

07
5.

14
E−

07
7.

29
E−

08
1.

05
E−

07
5.

66
E−

07
A

vg
⋯

⋯
⋯

⋯
1.

95
E−

05
4.

43
E−

05
7.

63
E−

05
6.

40
E−

05
5.

37
E−

05
3.

60
E−

05
St

d
⋯

⋯
⋯

⋯
2.

97
E−

05
5.

00
E−

05
1.

51
E−

04
1.

05
E−

04
1.

03
E−

04
1.

03
E−

04
F
3

B
es

t
⋯

⋯
⋯

⋯
4.

02
E−

06
1.

09
E−

06
4.

50
E−

06
4.

61
E−

07
3.

06
E−

07
5.

99
E−

07
A

vg
⋯

⋯
⋯

⋯
2.

83
E−

04
3.

22
E−

04
3.

05
E−

04
4.

20
E−

04
3.

30
E−

04
2.

89
E−

04
St

d
⋯

⋯
⋯

⋯
4.

04
E−

04
4.

04
E−

04
4.

24
E−

04
5.

02
E−

04
5.

21
E−

04
3.

83
E−

04
F
4

B
es

t
⋯

⋯
1.

63
E−

01
⋯

1.
00

E−
07

9.
63

E−
06

1.
00

E−
09

1.
70

E−
08

2.
48

E−
06

2.
20

E−
06

A
vg

1.
88

E−
04

6.
81

E
-0

5
⋯

2.
72

E−
04

7.
80

E−
03

8.
00

E−
03

1.
11

E−
06

3.
67

E−
05

8.
30

E−
03

7.
52

E−
03

St
d

1.
53

E−
04

8.
69

E
-0

5
3.

80
E−

04
2.

86
E−

02
2.

10
E−

03
4.

38
E−

02
5.

87
E−

06
1.

76
E−

05
1.

56
E−

03
2.

18
E−

03
F
5

B
es

t
⋯

⋯
⋯

⋯
6.

24
E−

08
5.

72
E−

07
1.

10
E−

06
2.

60
E−

08
4.

34
E−

08
6.

17
E−

07
A

vg
⋯

⋯
⋯

⋯
7.

39
E−

06
5.

22
E−

04
3.

02
E−

04
4.

55
E−

03
7.

60
E−

05
1.

09
E−

04
St

d
⋯

⋯
⋯

⋯
7.

52
E−

02
5.

78
E−

02
1.

89
E−

06
5.

15
E−

02
3.

98
E−

02
6.

15
E−

02
F
6

B
es

t
⋯

⋯
⋯

⋯
7.

02
E−

13
4.

82
E−

10
2.

55
E−

09
7.

16
E−

11
3.

54
E−

10
1.

54
E−

11
A

vg
⋯

⋯
⋯

⋯
4.

37
E−

08
8.

29
E−

09
7.

24
E−

08
5.

32
E−

08
1.

81
E−

09
4.

26
E−

11
St

d
⋯

⋯
⋯

⋯
2.

07
E−

06
4.

33
E−

06
3.

99
E−

08
2.

53
E−

06
1.

08
E−

06
1.

75
E−

05
F
7

B
es

t
⋯

⋯
0.

00
E+

00
⋯

2.
11

E−
10

5.
72

E−
11

2.
91

E−
10

2.
77

E−
11

2.
81

E−
11

2.
77

E−
10

A
vg

1.
90

E−
19

3
3.

17
E−

28
2

⋯
3.

26
E−

11
3.

09
E−

07
3.

03
E−

06
3.

01
E−

06
3.

02
E−

06
3.

02
E−

08
3.

02
E−

05
St

d
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
4.

18
E−

03
2.

50
E−

02
3.

65
E−

02
3.

84
E−

02
4.

43
E−

03
3.

52
E−

02
3.

87
E−

04
F
8

B
es

t
⋯

⋯
0.

00
E+

00
⋯

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

A
vg

0.
00

E+
00

0.
00

E+
00

⋯
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
St

d
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
F
9

B
es

t
⋯

⋯
1.

64
E−

22
⋯

8.
85

E−
17

7.
42

E−
17

7.
08

E−
17

5.
41

E−
17

5.
78

E−
17

5.
22

E−
17

A
vg

5.
40

E−
06

1.
05

E−
15

⋯
1.

41
E−

02
7.

14
E−

12
5.

25
E−

11
7.

14
E−

12
3.

11
E−

10
2.

47
E−

11
6.

06
E−

14
St

d
2.

89
E−

06
3.

76
E−

15
3.

32
E−

22
2.

78
E−

09
4.

70
E−

12
2.

91
E−

12
1.

08
E−

12
4.

35
E−

10
4.

29
E−

11
2.

14
E−

14
F
1
0

B
es

t
⋯

⋯
0.

00
E+

00
⋯

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

A
vg

1.
32

E−
20

0
2.

43
E−

29
5

⋯
1.

80
E−

08
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
St

d
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
4.

36
E−

03
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
F
1
1

B
es

t
⋯

⋯
0.

00
E+

00
⋯

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

A
vg

0.
00

E+
00

0.
00

E+
00

⋯
3.

10
E−

09
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
St

d
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
6.

78
E−

02
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00

2948 Engineering with Computers (2021) 37:2931–2956

1 3

Ta
bl

e
9

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
C

om
pa

ra
tiv

e
al

go
rit

hm
s

LG
C

M
FO

C
LS

G
M

FO
M

FO
D

E
O

M
FO

G
M

FO
H

C
TM

FO
H

C
Tr

M
FO

H
C

PM
FO

H
C

LR
M

FO
H

C
ER

M
FO

H
C

F
1
2

B
es

t
⋯

⋯
⋯

⋯
8.

38
E−

22
4.

43
E−

22
6.

42
E−

26
9.

68
E−

27
3.

17
E−

25
4.

16
E−

22
A

vg
⋯

⋯
⋯

⋯
2.

04
E−

09
1.

64
E−

08
2.

14
E−

09
2.

17
E−

11
1.

52
E−

10
1.

62
E−

09
St

d
⋯

⋯
⋯

⋯
1.

11
E−

07
1.

04
E−

07
1.

45
E−

08
1.

30
E−

11
8.

98
E−

09
8.

63
E−

09
F
1
3

B
es

t
⋯

⋯
⋯

⋯
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00

A
vg

⋯
⋯

⋯
⋯

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

St
d

⋯
⋯

⋯
⋯

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

F
1
4

B
es

t
⋯

⋯
⋯

⋯
8.

24
E−

26
8.

56
E−

24
9.

89
E−

25
0.

00
E+

00
6.

60
E−

27
8.

35
E−

25
A

vg
⋯

⋯
⋯

⋯
7.

59
E−

18
5.

61
E−

20
6.

61
E−

20
0.

00
E+

00
5.

21
E−

22
9.

98
E−

20
St

d
⋯

⋯
⋯

⋯
1.

24
E−

19
3.

86
E−

17
3.

57
E−

18
0.

00
E+

00
4.

68
E−

15
5.

79
E−

17
F
1
5

B
es

t
⋯

⋯
8.

88
E−

12
⋯

1.
16

E−
10

3.
22

E−
09

4.
30

E−
10

1.
81

E−
12

2.
88

E−
12

5.
31

E−
12

A
vg

6.
45

E−
16

3.
22

E
-1

6
⋯

8.
88

E−
10

3.
22

E−
04

1.
08

E−
03

3.
30

E−
04

3.
00

E−
04

3.
81

E−
04

3.
31

E−
04

St
d

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

1.
82

E−
03

3.
83

E−
04

4.
04

E−
04

4.
58

E−
04

5.
12

E−
04

5.
02

E−
04

4.
99

E−
04

F
1
6

B
es

t
⋯

⋯
8.

88
E−

16
⋯

2.
15

E−
13

1.
21

E−
13

7.
47

E−
12

1.
07

E−
16

6.
95

E−
16

1.
82

E−
12

A
vg

6.
82

E−
06

4.
89

E
-1

7
⋯

4.
21

E−
11

3.
82

E−
10

1.
17

E−
10

4.
10

E−
08

5.
84

E−
09

9.
91

E−
09

6.
58

E−
11

St
d

1.
99

E−
01

9.
85

E
-1

7
0.

00
E+

00
4.

01
E−

05
7.

83
E−

06
2.

02
E−

06
5.

81
E−

06
1.

38
E−

07
1.

79
E−

07
1.

19
E−

06
F
1
7

B
es

t
⋯

⋯
2.

32
E−

03
⋯

9.
03

E−
09

4.
32

E−
08

1.
53

E−
09

2.
84

E−
09

1.
13

E−
10

5.
43

E−
09

A
vg

2.
88

E−
07

2.
37

E−
07

⋯
⋯

1.
17

E−
06

1.
07

E−
06

9.
86

E−
06

7.
54

E−
06

2.
91

E−
06

1.
03

E−
04

St
d

4.
85

E−
07

1.
07

E−
06

4.
32

E−
03

⋯
9.

90
E−

04
9.

84
E−

04
1.

11
E−

06
7.

41
E−

06
3.

57
E−

06
5.

87
E−

05
F
1
8

B
es

t
⋯

⋯
⋯

⋯
2.

92
E−

15
2.

27
E−

14
2.

42
E−

12
2.

33
E−

16
4.

48
E−

16
2.

41
E−

15
A

vg
⋯

⋯
⋯

⋯
8.

06
E−

08
7.

28
E−

09
5.

83
E−

09
6.

73
E−

09
5.

23
E−

11
5.

91
E−

09
St

d
⋯

⋯
⋯

⋯
4.

55
E−

06
2.

65
E−

06
7.

63
E−

06
1.

70
E−

08
2.

77
E−

06
7.

67
E−

07
F
1
9

B
es

t
⋯

⋯
1.

77
E−

05
⋯

1.
98

E−
10

2.
01

E−
10

2.
00

E−
11

2.
02

E−
10

2.
06

E−
12

1.
93

E−
12

A
vg

1.
50

E−
04

1.
03

E+
00

⋯
4.

29
E−

07
3.

20
E−

06
6.

33
E−

06
4.

50
E−

06
2.

54
E−

09
7.

02
E−

07
4.

22
E−

07
St

d
1.

50
E−

04
6.

78
E

-1
6

8.
47

E−
05

7.
96

E−
04

6.
28

E−
04

4.
54

E−
04

4.
79

E−
04

4.
94

E−
04

4.
25

E−
03

5.
60

E−
04

F
2
0

B
es

t
⋯

⋯
2.

87
E−

01
⋯

4.
07

E−
20

1.
38

E−
20

1.
02

E−
18

7.
96

E−
22

7.
97

E−
20

7.
96

E−
19

A
vg

2.
50

E−
01

4.
25

E−
04

⋯
2.

70
E−

01
9.

59
E−

12
1.

14
E−

10
1.

10
E−

11
1.

80
E−

14
1.

80
E−

10
1.

80
E−

09
St

d
2.

33
E−

01
5.

66
E

-0
4

3.
27

E−
02

2.
71

E−
07

1.
70

E−
09

3.
08

E−
08

2.
68

E−
08

6.
94

E−
07

5.
38

E−
09

6.
99

E−
08

F
2
1

B
es

t
⋯

⋯
⋯

⋯
3.

18
E−

24
3.

07
E−

24
4.

23
E−

19
1.

82
E−

25
2.

77
E−

27
5.

98
E−

26
A

vg
⋯

⋯
⋯

⋯
4.

49
E−

10
2.

62
E−

10
1.

35
E−

12
1.

77
E−

11
4.

96
E−

13
3.

01
E−

10
St

d
⋯

⋯
⋯

⋯
2.

42
E−

10
2.

47
E−

10
5.

65
E−

10
2.

49
E−

11
2.

33
E−

10
3.

52
E−

11
F
2
2

B
es

t
⋯

⋯
⋯

⋯
3.

26
E−

08
2.

25
E−

08
3.

21
E−

09
4.

49
E−

10
4.

68
E−

09
2.

84
E−

08
A

vg
⋯

⋯
⋯

⋯
1.

23
E−

05
1.

21
E−

05
8.

18
E−

05
1.

11
E−

05
7.

93
E−

07
1.

34
E−

06
St

d
⋯

⋯
⋯

⋯
1.

27
E−

04
9.

09
E−

04
7.

46
E−

04
1.

15
E−

05
6.

70
E−

05
5.

37
E−

05

2949Engineering with Computers (2021) 37:2931–2956

1 3

Ta
bl

e
9

 (c
on

tin
ue

d)

Fu
nc

tio
n

M
et

ric
C

om
pa

ra
tiv

e
al

go
rit

hm
s

LG
C

M
FO

C
LS

G
M

FO
M

FO
D

E
O

M
FO

G
M

FO
H

C
TM

FO
H

C
Tr

M
FO

H
C

PM
FO

H
C

LR
M

FO
H

C
ER

M
FO

H
C

F
2
3

B
es

t
⋯

⋯
3.

98
E−

01
⋯

7.
14

E−
08

3.
60

E−
08

4.
27

E−
10

7.
27

E−
10

8.
56

E−
09

4.
05

E−
08

A
vg

3.
98

E−
01

3.
98

E−
01

⋯
⋯

6.
54

E−
07

8.
06

E−
07

7.
10

E−
06

9.
45

E−
06

7.
81

E−
07

6.
71

E−
08

St
d

0.
00

E+
00

0.
00

E+
00

0.
00

E+
00

⋯
9.

08
E−

05
9.

76
E−

05
9.

88
E−

05
1.

18
E−

05
1.

21
E−

05
8.

77
E−

05
F
2
4

B
es

t
⋯

⋯
2.

32
E−

03
⋯

8.
74

E−
08

1.
66

E−
09

1.
45

E−
08

1.
06

E−
09

3.
62

E−
08

8.
53

E−
07

A
vg

1.
88

E−
07

3.
98

E−
01

⋯
3.

00
E−

03
4.

15
E−

08
8.

65
E−

08
7.

96
E−

07
5.

04
E−

08
2.

16
E−

08
3.

50
E−

07

St
d

1.
03

E−
15

2.
18

E−
15

5.
98

E−
20

6.
37

E−
03

2.
64

E−
05

3.
80

E−
05

8.
50

E−
05

5.
36

E−
05

6.
37

E−
05

1.
48

E−
04

F
2
5

B
es

t
⋯

⋯
2.

56
E−

08
⋯

6.
73

E−
09

5.
82

E−
09

2.
16

E−
11

8.
32

E−
11

1.
53

E−
12

4.
62

E−
09

A
vg

3.
86

E−
04

3.
86

E−
04

⋯
⋯

4.
46

E−
07

4.
47

E−
07

4.
45

E−
07

4.
46

E−
07

4.
47

E−
07

4.
44

E−
07

St
d

2.
67

E−
15

2.
65

E−
15

3.
73

E−
22

⋯
6.

19
E−

05
2.

99
E−

05
5.

26
E−

05
6.

21
E−

06
3.

57
E−

05
2.

12
E−

05
F
2
6

B
es

t
⋯

⋯
2.

32
E−

03
⋯

1.
32

E−
04

1.
28

E−
04

1.
32

E−
04

1.
31

E−
04

1.
31

E−
04

1.
32

E−
04

A
vg

4.
57

E−
04

9.
64

E−
02

⋯
1.

02
E−

01
1.

75
E−

02
1.

39
E−

02
2.

00
E−

03
1.

20
E−

02
2.

37
E−

02
1.

76
E−

02
St

d
2.

84
E−

04
8.

47
E−

03
4.

32
E−

03
6.

78
E−

01
3.

13
E−

02
3.

40
E−

02
2.

26
E−

02
1.

18
E−

01
1.

35
E−

01
3.

05
E−

02
F
2
7

B
es

t
⋯

⋯
5.

21
E−

03
⋯

2.
83

E−
19

1.
55

E−
19

9.
18

E−
19

1.
36

E−
21

2.
39

E−
20

8.
47

E−
20

A
vg

5.
00

E−
04

3.
42

E−
04

⋯
⋯

2.
95

E−
11

1.
67

E−
10

1.
04

E−
10

1.
48

E−
12

2.
51

E−
11

9.
67

E−
11

St
d

2.
65

E−
04

1.
67

E−
04

3.
42

E−
04

⋯
5.

12
E−

09
3.

01
E−

09
1.

47
E−

09
3.

50
E−

10
4.

53
E−

09
1.

98
E−

09
F
2
8

B
es

t
⋯

⋯
⋯

⋯
2.

96
E−

07
2.

74
E−

06
2.

93
E−

05
2.

99
E−

07
3.

01
E−

05
2.

92
E−

07
A

vg
2.

02
E−

05
1.

43
E−

05
⋯

7.
13

E−
02

3.
88

E−
03

2.
57

E−
04

6.
73

E−
04

1.
84

E−
04

1.
06

E−
03

7.
80

E−
03

St
d

3.
39

E−
08

6.
96

E−
15

⋯
5.

92
E−

02
1.

36
E−

02
3.

45
E−

03
9.

92
E−

03
2.

20
E−

02
3.

59
E−

02
9.

98
E−

03
F
2
9

B
es

t
⋯

⋯
⋯

⋯
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
A

vg
0.

00
E+

00
0.

00
E+

00
⋯

⋯
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
St

d
0.

00
E+

00
0.

00
E+

00
⋯

⋯
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
0.

00
E+

00
F
3
0

B
es

t
⋯

⋯
⋯

⋯
5.

36
E−

21
3.

80
E−

21
8.

50
E−

21
2.

64
E−

21
6.

37
E−

21
1.

48
E−

20
A

vg
1.

05
E−

07
1.

05
E−

09
⋯

⋯
2.

14
E−

10
2.

54
E−

10
2.

46
E−

10
4.

02
E−

10
4.

02
E−

11
4.

02
E−

10
St

d
7.

75
E−

06
1.

75
E−

04
⋯

⋯
3.

78
E−

09
6.

85
E−

09
5.

98
E−

08
5.

67
E−

09
4.

08
E−

08
5.

67
E−

09

2950 Engineering with Computers (2021) 37:2931–2956

1 3

1. Population size: n
 To demonstrate the influence of the population sizes,

the experiments are produced using several values
for population sizes (i.e., P = 5 , 10, 15, 20, 50, 100,
250, and 500) for the utilized 30 benchmark functions.
Table 6 shows the results for different population sizes.

 As shown in Table 6, we can see that the best-normal-
ized results for MFO with population sizes. The MFO
obtained the best results (17 times) when the popula-
tion size is equal to 15. Furthermore, for the 10 scalable
unimodal functions, the MFO got the most of the best
results when P = 20 , it got 7 out of 10 best cases. For
12 scalable multimodal functions, the MFO got the most
of the best results when P = 20 , it got 6 out of 12 best
cases. For the 8 fixed-dimension multimodal functions,
the MFO got the most of the best results when P = 20 , it
got 5 out of 8 best cases. It is clearly observed that when
the population size is equal to 15, it is the most suitable
size for all benchmark test functions.

2. Dimension: D
 In this part, to analyze the influence of the problem

dimensional spaces, experiments are produced for sev-
eral potential dimensional spaces (i.e., D = 5 , 10, 15, 20,
25, 30, 35, 40, 45, and 50) as reported in the literature
using the utilized 30 benchmark functions. The results
for 30 functions are illustrated in Table 7 using the best
normalized values.

 As shown in Table 7, the MFO obtained the overall
best results when D = 5 , it got the best results on 17
cases. Furthermore, for the 10 scalable unimodal func-
tions, the MFO got the most of the best results when
D = 5 , it got 7 out of 10 best cases in both dimensions.
For 12 scalable multimodal functions, the MFO got the
most of the best results when D = 12 , it got 6 out of 12
best cases. For the 8 fixed-dimension multimodal func-
tions, the MFO got the most of the best results when
D = 5 , it got 4 out of 8 best cases. From these results,
we concluded that increasing the overall performance
of MFO is observed by increasing the problem dimen-
sional space. Usually, the MFO is unable to solve the
problem before getting the maximum number of itera-
tions. However, as seen, MFO gives better results for
high-dimensional problems.

4.2.2 Comparisons MFOHC with other methods using
the benchmark functions

For a clear comparison, as shown in Table 8, the proposed
MFOHC is compared with the basic MFO [28] and other
similar nine optimization algorithms, namely, Ant Bee Col-
ony (ABC) Algorithm [22], Bat-inspired Algorithm (BA)
Yang [56], Salp Swarm Optimization (SSA) [31] , Dragon-
fly Algorithm (DE) Mirjalili [29], Genetic Algorithm (GA)
[17], Harmony Search (HS) Algorithm Geem et al. [15],
Krill Herd (KH) Algorithm [13], and Grey Wolf Optimizer
(GWO) Algorithm Mirjalili et al. [30]. Table 8shows the
best, average (Avg), the standard division (Std) of fitness
values obtained by all comparative algorithms over 30 runs,
respectively.

As shown in Table 8, the basic MFO has some weak-
ness (weak local search) in achieving excellent results in
unimodal functions (i.e., F1, F2, F4, F5, F6, and F9). Con-
sequently, the hybrid MFO with HC is proposed to improve
the exploitation searchability of MFO. Thus, functions
F1–F10 are scalable unimodal benchmarks since they have
just one global optimum. These functions support assessing
the exploitation ability of the examined optimization algo-
rithms. It can be seen from Table 8 that MFOHC is a very
competitive algorithm compared to other similar algorithms.
Mainly, it was the most effective algorithm for functions F1
and F10 in most test problems. The proposed MFOHC hence
provide perfect exploitation. MFOHC got better results in
solving unimodal functions compared to the proposed
MFOHC where, it almost obtained all best results in uni-
modal functions as well as other test functions (i.e., multi-
modal F11–F22 and fixed-dimension multimodal F23–F30).
Although the results indicate that MFOHC also has excellent
exploration searchability, it is possible to further improve the
exploration search to make a balance between exploitation
and exploration search. Moreover, performance, diversity,
and the convergence rate of MFOHC can be enhanced.

4.2.3 A comparison of MFOHC versions using Benchmark
functions

In this part, as shown in the previous section that the
MFOHC can further improve its exploration search abilities,
new experiments series conducted to investigate the skills
of the selection schemes in enhancing the global search
abilities. Various selection scheme mechanisms (tournament
selection scheme (TMFOHC), proportional selection scheme
(PMFOHC), linear ranking selection scheme (LRMFOHC),
exponential ranking selection scheme (ERMFOHC), greedy-
based selection scheme (GMFOHC), and truncation selec-
tion scheme (TrMFOHC)) have been tested on the MFOHC
to improve its exploration search abilities, as well as, various
versions of MFO from the literature have been used (i.e.,

Table 10 Average rankings based on Friedman’s test for CEC2011
problem

No. Algorithm Rank No. Algorithm Rank

1 PMFOHC 6.02 6 TMFOHC 7.33
2 LRMFOHC 6.91 7 GMFOHC 7.39
3 CLSGMFO 6.99 8 LGCMFO 7.46
4 ERMFOHC 7.08 9 MFODE 7.50
5 TrMFOHC 7.11 10 OMFO 8.31

2951Engineering with Computers (2021) 37:2931–2956

1 3

LGCMFO [55], CLSGMFO [54], MFODE [11], and OMFO
[36]) to evaluate the performance of the MOFHC versions.

Contrary to unimodal functions, multimodal functions
cover many local optima, where number grows exponen-
tially with the number of decision variables (problem size).

Fig. 4 Convergence graphs of
the benchmark functions

0 200 400 600 800 1000

-910

Itera�on

noituloStseB

-610

-310

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(a) F1

0 200 400 600 800 1000

-610

Itera�on

noituloStseB

-410

-210

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(b) F3

0 200 400 600 800 1000

-610

Itera�on

noituloStseB

-410

-210

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(c) F5

0 200 400 600 800 1000

-910

Itera�on

noituloStseB

-610

-310

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(d) F7

0 200 400 600 800 1000

-1510

Itera�on

noituloStseB

-1010

-510

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(e) F9

0 200 400 600 800 1000

-1810

Itera�on

noituloStseB

-910

010

+910
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(f) F12

0 200 400 600 800 1000

-1210

Itera�on

noituloStseB

-810

-410

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(g) F15

0 200 400 600 800 1000

-1210

Itera�on

noituloStseB

-810

-410

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(h) F16

2952 Engineering with Computers (2021) 37:2931–2956

1 3

Accordingly, this kind of benchmark functions becomes
very beneficial if the objective is to evaluate the exploration
search ability of an optimization algorithm.

Optimization of benchmark functions is a very challeng-
ing job because just a precise balance between exploration
and exploitation supports local optima to be evaded. Opti-
mization results listed in Table 9 show that the proposed

Fig. 5 Convergence graphs of
the benchmark functions

0 200 400 600 800 1000

-810

Itera�on

noituloStseB

-610

-410

-210
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(a) F17

0 200 400 600 800 1000

-1210

Itera�on

noituloStseB

-810

-410

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(b) F19

0 200 400 600 800 1000

-1810

Itera�on

noituloStseB

-1210

-610

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(c) F20

0 200 400 600 800 1000

-2410

Itera�on

noituloStseB

-1810

-1210

-610
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(d) F21

0 200 400 600 800 1000

-710

Itera�on

noituloStseB

-410

-110

+210
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(e) F23

0 200 400 600 800 1000

-810

Itera�on

noituloStseB

-410

010

+410
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(f) F25

0 200 400 600 800 1000

-1510

Itera�on

noituloStseB

-1010

-510

010
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(g) F27

0 200 400 600 800 1000

-1410

Itera�on

noituloStseB

-710

010

+710
MFOHC
GMFOHC
TMFOHC

TrMFOHC

PMFOHC
LRMFOHC
ERMFOHC

(h) F30

2953Engineering with Computers (2021) 37:2931–2956

1 3

hybrid MFO with HC using proportional selection scheme
(PMFOHC) is almost the best optimizer in all test problems
and overcomes other similar comparative algorithms1. It is
definitely demonstrated that the proposed PMFOHC support
exploration and exploitation phases to be balanced. Moreo-
ver, the results indicate that PMFOHC also has excellent
exploration search ability. However, the proposed PMFOHC
always will be the most useful algorithm in the majority of
function problems.

The performance of the proposed versions of the MFOHC
algorithm is further evaluated using Friedman’s statistical
tests. Table 10 provides the average ranking of the pro-
posed MFOHC versions against the comparative methods
using Friedman’s test. It can be noticed that the proposed
PMFOHC version is ranked first, followed by LRMFOHC,
ERMFOHC, TrMFOHC, TMFOHC, and GMFOHC ver-
sions, which ranked second, fourth, fifth, sixth, and seventh,
respectively. The overall P value computed by Friedman’s
test is 9.43E−11, which is below the significant level (i.e.,
� = 0.05). This value indicates that there are significant dif-
ferences between the performance of the comparative meth-
ods used.

Figures 4 and 5 shows the convergence graphs of the uni-
modal benchmark functions (F1 , F3 , F5 , F7 , and F9), multi-
modal benchmark functions (F12 , F15 , F16 , F17 , F19 , F20 , and
F21), and fixed-dimension multimodal benchmark functions
(F23 , F25 , F27 , and F30). The convergence graphs are plot-
ted between the best solutions of each algorithm and the

number of iterations based on the results acquired through
30 independent runs.

It is observed from the convergence graphs of the uni-
modal functions that the PMFOHC outperformed the other
versions in F1 , F5 , and F7 . While it achieved close results
from the LRMFOHC and ERMFOHC in F3 and F9 with
superiority to LRMFOHC and ERMFOHC. Thus, it can be
summarized that the PMFOHC is the most efficient version
in dealing with unimodal benchmark functions. However,
PMFOHC still has a weak at the beginning (i.e., from start
until 200–400 iterations). Thus, it suffers from slow conver-
gence when dealing with the local search functions.

Similar to the mentioned above (i.e., unimodal functions)
the convergence performance of the PMFOHC achieved best
results in 4 out of 7 multimodal benchmark functions [i.e.,
(F12 , F15 , F16 , and F20)]. In F17 and F21 the PMFOHC is the
fastest method for finding the best solutions in the first part,
while in the last part (i.e, after iteration 600) the LRMFOHC
was the best. In F19 ERMFOHC achieved the best results
compared with the other versions. Consequently, although
PMFOHC outperformed the other algorithms, it needs more
enhancements to achieve the best solutions in all global
search functions.

In the fixed-dimension multimodal benchmark functions,
PMFOHC got the best results in 3 of 4 of the functions (F23 ,
F27 , and F30), while in F25 the superiority was obvious to the
LRMFOHC, followed by TrMFOHC and PMFOHC.

Based on the above, it can be noticed that PMFOHC
proved its performance in most functions of the three cat-
egories of the benchmarks. The experiment results are con-
vincing because of the structure of PMFOHC combines the
feature of MFO in the exploration search, supported by the
feature of HC in the exploitation search, and distinguished

Table 11 Best, average (Avg),
and standard deviation (Std)
for comparing the MFOHC
versions using five CEC 2011
real-world problems

Function Metric Selection schemes

MFOHC GMFOHC TMFOHC TrMFOHC PMFOHC LRMFOHC ERMFOHC

CEC–P1 Best 7.8+E07 5.7+E06 3.9+E07 6.6+E07 2.1+E06 1.8+E07 3.4+E07
Avg 8.3+E08 5.2+E07 2.8+E08 1.2+E08 1.0+E07 3.8+E07 3.4+E08
Std 3.2+E07 2.0+E07 2.4+E07 2.4+E07 2.6+E05 2.3+E07 2.5+E07

CEC–P2 Best 24.02 23.93 20.93 14.39 13.79 23.93 17.53
Avg 24.83 23.93 22.22 20.47 18.22 23.93 19.02
Std 0.81 7.2E−15 0.64 1.78 3.15 7.2E−15 0.66

CEC–P3 Best 1.9+E06 8.9+E05 1.1+E06 1.4+E06 9.6+E05 1.0+E06 1.6+E06
Avg 2.0+E06 1.2+E06 1.3+E06 1.7+E06 1.1+E06 1.3+E06 1.5+E06
Std 1.7+E05 1.0+E05 9.3+E04 1.3+E05 8.7+E04 1.3+E05 1.4+E05

CEC–P4 Best 8.2+E07 4.6+E06 4.0+E07 7.9+E07 5.0+E06 1.4+E07 2.0+E07
Avg 1.5+E08 1.7+E07 6.2+E07 1.1+E08 1.2+E07 3.7+E07 6.3+E07
Std 2.2+E07 8.5+E06 1.1+E07 1.3+E07 6.4+E06 9.3+E06 7.2+E06

CEC–P5 Best 1.92 1.73 1.52 1.95 1.45 1.62 1.98
Avg 2.84 2.13 2.44 2.42 2.06 2.17 2.56
Std 0.24 0.20 0.22 0.21 0.22 0.30 0.21

1 The set of benchmark functions in our work is not matched totally
with the other sets in the literature. Thus, we selected a group of
benchmark function which matched with our work

2954 Engineering with Computers (2021) 37:2931–2956

1 3

from the rest of the proposed methods by using the pro-
portional selection schemes to increase the quality of the
selected solutions.

4.2.4 A comparison of MFOHC versions using real world
problems

The real-world problems are presented in Sect. 4.1.2 where
it can be considered as discrete or continuous problems.
Thus, can be used to evaluate the performance of different
metaheuristic algorithms. All results in Table 11 are gained
by 50 separate runs on the five real-world problems.

PMFOHC determines the best solutions on three out of
five real problems (except CEC–P3 and CEC–P4) followed
by GMFOHC which achieved best solution in both CEC–P3
and CEC–P4. Regarding the mean solution, PMFOHC out-
performs the other methods in all real problems. Finally, the
std results show that the PMFOHC obtained the best results
in CEC–P1, CEC–P3, and CEC–P4. GMFOHC obtained
the best results in CEC–P2 and CEC–P5. The summary of
the results in Table 11 refer that PMFOHC shows the best
performance comparing with the other six methods.

5 Conclusion and future works

This paper presented new alternative methods using moth-
flame optimization (MFO). The proposed methods include
two main steps: in the first step, the basic MFO is hybridized
with hill climbing (HC) local search to improve its exploita-
tion search, called MFOHC. In the second step, six popu-
lar selection schemes are investigated, and the proportional
selection scheme is selected as the best to improve the explo-
ration search of the MFOHC by maintaining the diversity of
the solutions, called PMFOHC.

Experiments are conducted using thirty benchmark func-
tions and five IEEE CEC 2011 real-world problems. The
results of the proposed algorithms are compared to several
similar algorithms published in the literature. The effective-
ness of each algorithm is evaluated by three measures, the
best, average, standard deviation of the fitness values. The
results illustrated that the PMFOHC version is almost the
best optimizer in all test problems and it as a summary, the
results for solving the real-world problems showed that the
proposed PMFOHC has a promising ability to be very use-
ful in solving the structural design problems with unfamiliar
search spaces also overcoming other similar comparative
algorithms. The proposed PMFOHC support exploration
and exploitation phases to be balanced through, keeping the
diversity of the solutions. However, it suffers from a weak-
ness of slow convergence.

In future work, we will enhance the limitation of the pro-
posed methods by using new search techniques such as sto-
chastic hill-climbing and opposition-based learning. Also,
we will utilize different optimization problems, as well as
multi-objective problems to achieve better results.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

 1. Abdelmadjid C, Mohamed SA, Boussad B (2013) Cfd analysis of
the volute geometry effect on the turbulent air flow through the
turbocharger compressor. Energy Proced 36:746–755

 2. Abualigah LM, Khader AT, Hanandeh ES (2018) A hybrid strat-
egy for krill herd algorithm with harmony search algorithm to
improve the data clustering1. Intell Decis Technol 12(1):3–14

 3. Allam D, Yousri D, Eteiba M (2016) Parameters extraction of
the three diode model for the multi-crystalline solar cell/module
using moth-flame optimization algorithm. Energy Convers Manag
123:535–548

 4. Amini S, Homayouni S, Safari A, Darvishsefat AA (2018) Object-
based classification of hyperspectral data using random forest
algorithm. Geo-spat Inf Sci 21(2):127–138

 5. Bäck T (1995) Generalized convergence models for tournament-
and (� , lambda)-selection

 6. Bhesdadiya R, Trivedi IN, Jangir P, Kumar A, Jangir N, Totlani
R (2017) A novel hybrid approach particle swarm optimizer with
moth-flame optimizer algorithm. Advances in computer and com-
putational sciences. Springer, Berlin, pp 569–577

 7. Blickle T, Thiele L (1995) A mathematical analysis of tournament
selection. ICGA Citeseer 95:9–15

 8. Blum C, Li X (2008) Swarm intelligence in optimization. Swarm
intelligence. Springer, Berlin, pp 43–85

 9. Das S, Suganthan PN (2010) Problem definitions and evaluation
criteria for CEC 2011 competition on testing evolutionary algo-
rithms on real world optimization problems. Jadavpur University,
Nanyang Technological University, Kolkata, pp 341–359

 10. El Aziz MA, Ewees AA, Hassanien AE (2017) Whale optimiza-
tion algorithm and moth-flame optimization for multilevel thresh-
olding image segmentation. Expert Syst Appl 83:242–256

 11. Elaziz MA, Ewees AA, Ibrahim RA, Lu S (2020) Opposition-
based moth-flame optimization improved by differential evolution
for feature selection. Math Comput Simul 168:48–75

 12. Elsakaan AA, El-Sehiemy RA, Kaddah SS, Elsaid MI (2018) An
enhanced moth-flame optimizer for solving non-smooth economic
dispatch problems with emissions. Energy 157:1063–1078

 13. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831–4845

 14. Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological
impacts of nighttime light pollution: a mechanistic appraisal. Biol
Rev 88(4):912–927

 15. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2):60–68

2955Engineering with Computers (2021) 37:2931–2956

1 3

 16. Glover F (1977) Heuristics for integer programming using sur-
rogate constraints. Decis Sci 8(1):156–166

 17. Goldberg DE, Holland JH (1988) Genetic algorithms and machine
learning. Mach Learn 3(2):95–99

 18. Hancock PJ (1994) An empirical comparison of selection meth-
ods in evolutionary algorithms. AISB workshop on evolutionary
computing. Springer, Berlin, pp 80–94

 19. Hazir E, Erdinler ES, Koc KH (2018) Optimization of cnc cutting
parameters using design of experiment (DOE) and desirability
function. J Forest Res 29(5):1423–1434

 20. Holland JH et al (1992) Adaptation in natural and artificial sys-
tems: an introductory analysis with applications to biology, con-
trol, and artificial intelligence. MIT press, London

 21. Jangir N, Pandya MH, Trivedi IN, Bhesdadiya R, Jangir P, Kumar
A (2016) Moth-flame optimization algorithm for solving real chal-
lenging constrained engineering optimization problems. In: 2016
IEEE students’ conference on electrical, electronics and computer
science (SCEECS), IEEE, pp 1–5

 22. Karaboga D, Basturk B (2007) Artificial bee colony (ABC) opti-
mization algorithm for solving constrained optimization problems.
International fuzzy systems association world congress. Springer,
Berlin, pp 789–798

 23. Kennedy J (2010) Particle swarm optimization. Encyclop Mach
Learn 12:760–766

 24. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural net-
works, IEEE, vol 4, pp 1942–1948

 25. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220(4598):671–680

 26. Koziel S, Yang XS (2011) Computational optimization, methods
and algorithms, vol 356. Springer, Berlin

 27. Li WK, Wang WL, Li L (2018) Optimization of water resources
utilization by multi-objective moth-flame algorithm. Water Resour
Manag 32:3303–3316

 28. Mirjalili S (2015) Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

 29. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic
optimization technique for solving single-objective, discrete, and
multi-objective problems. Neural Comput Appl 27(4):1053–1073

 30. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

 31. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv Eng Softw 114:163–191

 32. Mitchell M (1998) An introduction to genetic algorithms. MIT
press, London

 33. Oladele R, Sadiku J (2013) Genetic algorithm performance with
different selection methods in solving multi-objective network
design problem. Int J Comput Appl 70:12

 34. Razali NM, Geraghty J et al (2011) Genetic algorithm perfor-
mance with different selection strategies in solving tsp. Proc
World Congress Eng Int Assoc Eng Hong Kong 2:1–6

 35. Reddy S, Panwar LK, Panigrahi BK, Kumar R (2018) Solution to
unit commitment in power system operation planning using binary
coded modified moth flame optimization algorithm (bmmfoa):
a flame selection based computational technique. J Comput Sci
25:298–317

 36. Sapre S, Mini S (2019) Opposition-based moth flame optimiza-
tion with cauchy mutation and evolutionary boundary constraint
handling for global optimization. Soft Comput 23(15):6023–6041

 37. Sarma A, Bhutani A, Goel L (2017) Hybridization of moth flame
optimization and gravitational search algorithm and its application
to detection of food quality. In: 2017 intelligent systems confer-
ence (IntelliSys), IEEE, pp 52–60

 38. Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame
optimization (ns-mfo) for multi-objective problems. Eng Appl
Artif Intell 63:20–32

 39. Schlierkamp-Voosen D, Mühlenbein H (1993) Predictive models
for the breeder genetic algorithm. Evol Comput 1(1):25–49

 40. Sharma A (2014) Bioinformatic analysis revealing association of
exosomal MRNAS and proteins in epigenetic inheritance. J Theor
Biol 357:143–149

 41. Shehab M (2020) Hybridization cuckoo search algorithm for
extracting the ODF maxima. Artificial intelligence in diffusion
MRI. Springer, Berlin, pp 111–146

 42. Shehab M, Khader AT, Al-Betar M (2016) New selection schemes
for particle swarm optimization. IEEJ Trans Electro Inf Syst
136(12):1706–1711

 43. Shehab M, Khader AT, Al-Betar MA (2017) A survey on appli-
cations and variants of the cuckoo search algorithm. Appl Soft
Comput 61:1041–1059

 44. Shehab M, Khader AT, Al-Betar MA, Abualigah LM (2017)
Hybridizing cuckoo search algorithm with hill climbing for
numerical optimization problems. In: Information technology
(ICIT), 2017 8th international conference on, IEEE, pp 36–43

 45. Shehab M, Khader AT, Laouchedi M (2017) Modified cuckoo
search algorithm for solving global optimization problems. Inter-
national conference of reliable information and communication
technology. Springer, Berlin, pp 561–570

 46. Shehab M, Abualigah L, Al Hamad H, Alabool H, Alshinwan
M, Khasawneh AM (2019) Moth-flame optimization algorithm:
variants and applications. Neural Comput Appl 20:1–26

 47. Shehab M, Khader AT, Alia MA (2019) Enhancing cuckoo search
algorithm by using reinforcement learning for constrained engi-
neering optimization problems. In: 2019 IEEE Jordan interna-
tional joint conference on electrical engineering and information
technology (JEEIT), IEEE, pp 812–816

 48. Smith T, Villet M (2001) Parasitoids associated with the dia-
mondback moth, Plutella xylostella (l.), in the eastern Cape, south
Africa. In: The management of diamondback moth and other cru-
cifer pests. Proceedings of the fourth international workshop, pp
249–253

 49. Sodeifian G, Ardestani NS, Sajadian SA (2019) Extraction of seed
oil from Diospyros lotus optimized using response surface meth-
odology. J Forest Res 30(2):709–719

 50. Tang Z, Gong M (2019) Adaptive multifactorial particle swarm
optimisation. CAAI Trans Intell Technol 4(1):37–46

 51. Trivedi I, Kumar A, Ranpariya AH, Jangir P (2016) Economic
load dispatch problem with ramp rate limits and prohibited operat-
ing zones solve using levy flight moth-flame optimizer. In: 2016
international conference on energy efficient technologies for sus-
tainability (ICEETS), IEEE, pp 442–447

 52. Volkovs M, Chiang F, Szlichta J, Miller RJ (2014) Continuous
data cleaning. In: 2014 IEEE 30th international conference on
data engineering, IEEE, pp 244–255

 53. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong
C (2017) Toward an optimal kernel extreme learning machine
using a chaotic moth-flame optimization strategy with applica-
tions in medical diagnoses. Neurocomputing 267:69–84

 54. Xu Y, Chen H, Heidari AA, Luo J, Zhang Q, Zhao X, Li C (2019)
An efficient chaotic mutative moth-flame-inspired optimizer for
global optimization tasks. Expert Syst Appl 129:135–155

 55. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced
moth-flame optimizer with mutation strategy for global optimiza-
tion. Inf Sci 492:181–203

 56. Yang XS (2010) A new metaheuristic bat-inspired algorithm.
Nature inspired cooperative strategies for optimization (NICSO
2010). Springer, Berlin, pp 65–74

 57. Yousri D, AbdelAty AM, Said LA, AboBakr A, Radwan
AG (2017) Biological inspired optimization algorithms for

2956 Engineering with Computers (2021) 37:2931–2956

1 3

cole-impedance parameters identification. AEU Int J Electron
Commun 78:79–89

 58. Zawbaa HM, Emary E, Parv B, Sharawi M (2016) Feature selec-
tion approach based on moth-flame optimization algorithm. In:
2016 IEEE congress on evolutionary computation (CEC), IEEE,
pp 4612–4617

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Enhanced a hybrid moth-flame optimization algorithm using new selection schemes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Moth-flame optimization algorithm
	2.1.1 Origin
	2.1.2 MFO algorithm

	2.2 Hill climbing
	2.3 Selection schemes
	2.3.1 Tournament selection scheme (TSS)
	2.3.2 Proportional selection scheme (PSS)
	2.3.3 Linear ranking selection scheme (LRSS)
	2.3.4 Exponential ranking selection scheme (ERSS)
	2.3.5 Greedy-based selection scheme (GSS)
	2.3.6 Truncation selection scheme (TrSS)

	3 The proposed methods
	3.1 Hybrid Moth-flam optimization algorithm and hill climbing
	3.1.1 Computational complexity

	3.2 Improved MFOHC using various selection schemes

	4 Simulations
	4.1 Experiments settings
	4.1.1 Benchmark functions
	4.1.2 IEEE CEC 2011 real world problems

	4.2 Results and discussions
	4.2.1 Influence of control parameter
	4.2.2 Comparisons MFOHC with other methods using the benchmark functions
	4.2.3 A comparison of MFOHC versions using Benchmark functions
	4.2.4 A comparison of MFOHC versions using real world problems

	5 Conclusion and future works
	References

