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Abstract
In this article, we present an immersed boundary method for the simulation of compressible flows of complex geometries 
encountered in aerodynamics. The immersed boundary methods allow the mesh not to conform to obstacles, whose influ-
ence is taken into account by modifying the governing equations locally (either by a source term within the equation or by 
imposing the flow variables or fluxes locally, similarly to a boundary condition). A main feature of the approach which we 
propose is that it relies on structured Cartesian grids in combination with a dedicated HPC Cartesian solver, taking advantage 
of their low memory and CPU time requirements but also the automation of the mesh generation and adaptation. Turbulent 
flow simulations are performed by solving the Reynolds-averaged Navier–Stokes equations or by a Large-Eddy simulation 
approach, in combination with a wall function at high Reynolds number, to mitigate the cell count resulting from the iso-
tropic nature of Cartesian cells. The objective of this paper is to demonstrate that this automatic workflow is fast and robust 
and enables to get quantitative aerodynamics results on geometrically complex configurations. Results obtained are in good 
agreement with classical body-fitted approaches but with a significant reduction of the time of the whole process, that is a 
day for RANS simulations, including the mesh generation.
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1 Introduction

The rise of computational fluid dynamics (CFD) in aero-
space sciences in the past decades is due to the growth of 
the computational power in combination with the increase of 
robustness and accuracy of CFD solvers. Today, Reynolds-
averaged Navier–Stokes simulations on body-fitted meshes 
are commonly performed by the aeronautical industry in the 
design phase. The geometrical complexity of the configura-
tions has increased too, taking into account for more details, 
such as track fairings on an aircraft or rotor head compo-
nents for an helicopter. Consequently, the mesh generation, 
which requires usually manual interaction and expertise, has 
become a major bottleneck of the CFD workflow.

This means that efficient tools are required to perform 
parametric studies and to evaluate quickly the impact 
of a modification of a shape or some details onto the 

performances of an aircraft. High-fidelity CFD tools are 
generally not necessary at this stage; lifting-line tools can 
be used to get trends quickly, but models are often limited 
to certain flow assumptions. Low-fidelity CFD (e.g., Euler 
solutions) could be appropriate but automatic mesh gen-
eration is the barrier to override. The immersed boundary 
methods (IBM) can be seen as a good compromise between 
the quality of the solution and how quickly it can be 
obtained. This concept refers initially to the work of Peskin 
[34, 35], which employed a novel approach many decades 
ago to simulate biological flows onto Cartesian grids which 
did not conform to the geometry. The obstacles lying in the 
flow are taken into account by introducing a forcing term 
into the momentum equations. Since then, many variants 
of this approach have been developed, as quoted by Mittal 
and Iaccarino [29]. A first approach consists in introducing 
a continuous source term and is well suited for flows with 
immersed elastic boundaries [34, 37]. In this context, the 
source term represents the exchange of momentum between 
the fluid and solid through a law based on the theory of 
elasticity. However, in the limit of rigid boundaries, this 
problem is stiff, leading to a lack of stability and accuracy. 
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Several discrete forcing methods have been developed for 
flow simulations around solid bodies, among which the 
ghost-cell direct forcing approach, as developed by Mit-
tal et al. [28], Fadlun et al. [19], and Tseng et al. [45]. 
The IBM can be used on the whole geometry [32, 45] or 
locally [30, 47] to capture the potential effects of geomet-
rical details. A similar approach consists in cutting cells 
that intersect the geometry which has proven efficient and 
robust for inviscid flow simulations and low Reynolds flows 
around complex geometries (see [6, 15]).

The use of Cartesian grids with local grid refinement 
in combination with embedded obstacles (either with 
immersed boundary or cut-cell methods) seems to be well 
suited for a high-level of automation and computational 
efficiency [6, 8, 32]. Although the use of adaptive Carte-
sian grids around arbitrary immersed obstacles is concep-
tually attractive, the resolution of high Reynolds number 
flows requires wall models [7, 10] to restrict the number 
of points within the boundary layer.

This paper proposes an efficient, fast, and robust 
immersed boundary method on adaptive structured Car-
tesian grids to perform CFD simulations of compressible 
flows. The method relies on a second-order accurate finite-
Volume HPC solver dedicated to Cartesian grids, enabling 
to deal with a wide range of flow regimes, from subsonic 
to supersonic flows, for steady RANS or LES simulations. 
Musker’s algebraic wall function [31] is applied within the 
IBM approach on Cartesian grids to solve high-Reynolds 
number flows. In addition, the immersed boundary approach 
has been extended to enable several types of immersed 
boundary conditions. For example, an outlet with imposed 
pressure or an injection can be modeled locally, or a wall 
slip immersed boundary condition (which can be used to 
represent a ground or a wind tunnel) and a wall-modeled 
condition (for the model in the wind tunnel for instance).

This paper is organized as follows: in Sect. 2, the Ghost 
Cell Direct Forcing IBM approach used here is described. 
The way which the different immersed boundary condi-
tions are reconstructed at each iteration is detailed. Section 3 
describes how this approach is meaningful when applied on 
Cartesian adaptive grids: an automatic workflow starting 
from input surfaces describing immersed boundaries has been 
developed, in combination with a HPC dedicated Cartesian 
solver, providing results within a short delay. Section 4 pre-
sents two IBM simulations: the first simulation is an RANS 
simulation of a tripod mounted in a wind tunnel, to illustrate 
the ability of the approach to deal with different immersed 
boundary conditions and with a geometrically complex con-
figurations, for which a reduced human effort was required. 
The second simulation is an unsteady simulation of the flow 
around a high-lift airfoil for which we focus on aerodynamics 
results, compared to experimental data and results obtained 
with body-fitted LES simulation aerodynamics.

2  Description of the immersed boundary 
method

2.1  Governing equations

The Navier–Stokes equations for a compressible flow can be 
expressed as follows:

where � denotes the fluid density, u the velocity vector, 
p the pressure, �E the total energy per unit mass, � the 
viscous stress tensor, and Q the heat flux vector. In our 
approach, the system (1) is solved for interior cells using a 
cell-centered finite-volume method based on a directional 
five-cell stencil. W will denote the conservative variables 
W = (�, �u, �v, �w, �E) in the following.

The RANS equations are solved with the Spalart–All-
maras turbulence model [43].

2.2  The immersed boundary method

The immersed boundary method described in this paper 
relies on a ghost-cell direct forcing formulation, deriving 
from the ideas of Fadlun et al. [19] and Tseng and Ferziger 
[45]. The flow state values W are imposed at some cell cent-
ers located close to the obstacles to mimic a boundary condi-
tion taking into account for ghost cells within a body-fitted 
approach.

These IB or target points are determined at the fringe 
of solid points, lying inside obstacles. A hole-cutting algo-
rithm, previously used for overset grids [4, 27], is performed 
to mark interior cells as solid points and exterior cells as 
fluid points. As displayed in Fig. 1, the Cartesian domain is 
separated into a solid region below the black curve defining 
the obstacle and a fluid region above that black curve. As 
our method relies on a second-order accurate finite-volume 
solver with a five-point stencil, then the IB target cells are 
defined by two layers of fringe points surrounding blanked 
out points. These target cells can lie either inside the obsta-
cle or outside the obstacle. The solution W is reconstructed 
at these IB target points using information in the fluid close 
enough to the wall, at image points. Figure 2 displays the 
case where target IB point A (green dot) is inside the obsta-
cle S. For a sake of simplicity, the image point B (in red 
dot) can be represented as the symmetrical point of target 
IB point A with respect to the solid boundary. For that pur-
pose, the distance to the obstacles and also the gradient of 
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the distance to get the normals �⃗n are required. As depicted 
in Fig. 2, the image points do not usually match fluid points, 
and thus, the solution W at point B is obtained by a second-
order interpolation using donor points D1 , D2 , D3 , D4 . Point 
N is the resulting point on the obstacle for which the physical 
boundary condition shall be recovered implicitly. This point 
N is obtained by a projection following the normals �⃗n.

2.3  Types of immersed boundary conditions

The reconstruction at IB target points depends on the type 
of the immersed boundary condition (IBC) defined locally 
by the input surface.

2.3.1  Wall slip and no‑slip IBCs

As displayed in Fig. 2, the image point is not necessary the 
mirror point of the IB target point with respect to the wall. 
Thus, a linear reconstruction is applied to recover the bound-
ary conditions at the wall �⃗u = 0 for a no-slip boundary con-
dition and ���⃗un = 0 for a slip boundary condition.

In the case of a no-slip boundary condition where ‖ �⃗u‖ = 0 
at the wall, a one-dimensional linear interpolation is applied 
given �⃗u(B) as follows:

where ΔA,N and ΔB,N are the signed distance of IB target point 
A and IB image point B to the wall point N, respectively.

In the case of a slip boundary condition, the velocity vec-
tor �⃗u can be decomposed in a normal and a tangential vector 
as:

The normal velocity vector is obtained by a linear recon-
struction, similar to the one applied on �⃗u for the no-slip 
boundary condition. The tangential velocity vector is then 
obtained by �⃗ut(A) = �⃗u(B) − ‖ �⃗un(B)‖ �⃗n , where ‖ �⃗un(B)‖ is the 
magnitude of the normal velocity at IB image point B and �⃗n 
is the normal vector to the wall defined at point A.

Pressure and density gradients are assumed equal to zero 
in the normal direction to the wall in the close vicinity to 
the wall; hence: p(A) = p(B) and �(A) = �(B) . The pseudo-
viscosity �̃� of Spalart–Allmaras one-equation turbulence 
model is recovered by the same linear interpolation, such 
that �̃� is implicitly zero at the wall.

�⃗u(A) =
ΔA,N

ΔB,N

�⃗u(B),

�⃗u = �⃗ut + �⃗un.

Fig. 1  Five-point stencil involving IB target points for a viscous simulation: a with interior and b exterior IB target points

Fig. 2  2D sketch describing the present direct forcing IBM approach. 
Solution W at IB target point A is built up using the corresponding 
interpolated value of W at its image point B 
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2.3.2  Wall function for high‑Reynolds flow simulations

Our approach relies on an IBM approach on adaptive Car-
tesian grids, leading to prohibitive cell counts to resolve the 
viscous stress in the boundary layer until the wall. Moreover, 
this method is devoted to aeronautical configurations where 
high Reynolds numbers are often considered. This issue is 
a key-point addressed by many researchers in the field of 
IBMs, using a wall function to represent the wall shear stress 
in the case of viscous flow simulations at high Reynolds 
numbers [7, 10, 12]. In our approach, Musker’s algebraic 
wall function [31] is used to reconstruct the velocity at IB 
target points, enabling to place first Cartesian cells near the 
walls at y+ ≈ 100. Details on the wall function are provided 
in Appendix A. Figure 3 displays the IB target point A and 
its image point B, for which the variables WB are interpolated 
from the computed cells. Instead of a linear reconstruction to 
recover u = 0 at the wall, a wall function is applied between 
the image point B and the wall. Similarly to the slip bound-
ary condition, the velocity vector is decomposed into a tan-
gential and a normal vector. The tangential velocity vector 
at point A is obtained as follows:

where UP = ‖ �⃗ut(P)‖ denotes the magnitude of the tangential 
velocity at any point P.

The velocity vector at point B is obtained by interpolation 
from its neighbouring points. Knowing the modulus of the 
tangential velocity at image point B, the friction velocity u� 

�⃗ut(A) =
UA

UB

�⃗ut(B),

is obtained by a Newton–Raphson’s method on Musker’s 
algebraic wall function. Then, y+ at point A is computed by 

y+ =
ΔA,Nu�

�
 . The algebraic function (3) in Appendix A pro-

vides the modulus of the tangential velocity vector at point 
A. The normal velocity at image point B is obtained by a 
simple projection:

where �⃗n denotes the unit normal vector at the wall passing 
through points A and B.

The tangential velocity at IB image point B can be 
expressed by:

We could have imposed the flow to be locally parallel to 
the wall, that means �⃗un = 0 , but this tends in practice to 
delay the separation on massively separated flows. Thus, a 
1D linear interpolation is performed to compute the normal 
velocity:

The resulting three components of the velocity vector �⃗u at 
point A are then obtained by summing the corresponding 
normal and tangential vector components.

In the case of an RANS modeling using Spalart–Allmaras 
model [43], the pseudo-viscosity �̃� must also be estimated at 
IB target point A. Under the assumption of an equilibrium 
boundary layer, �̃� can be defined as:

where fv1 is the damping function of Spalart–Allmaras 
model, which is a nonlinear function of �̃� , and thus, �̃� is 
also obtained by finding explicitly the root of the resulting 
quartic equation (it appeared that the Newton’s method did 
not always converge), as detailed in Appendix B.

2.3.3  Inflow and outflow boundary conditions

To perform numerous applications encountered in aeronaut-
ics, we have introduced other types of immersed boundary 
conditions, such as an inflow or an outflow boundary condi-
tion; the outflow boundary condition consists in imposing a 
static pressure field at the corresponding immersed bound-
ary; other values are extrapolated from the values at image 
point B.

For the inflow boundary condition, the direction of the 
mean flow �⃗d , the stagnation enthalpy and pressure are 
defined. The velocity modulus and pressure are obtained by 

�⃗un(B) = ( �⃗u(B) ⋅ �⃗n) �⃗n,

�⃗ut(B) = ( �⃗u(B) ⋅ t⃗)⃗t.

�⃗un(A) =
ΔA,N

ΔB,N

�⃗un(B).

�̃� =
1

fv1
𝜅 u𝜏y,

Fig. 3  Wall function for IBM: IB target point is A and corresponding 
image point is B. In red dots, are IB target points around the obstacle; 
in blue dots, their image points
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a resolution of non linear equations by a Newton’s method. 
The density and temperature are then derived from all these 
quantities.

2.3.4  Use of several types of immersed boundary 
conditions for a given configuration

Several types of immersed boundary conditions can be 
defined in a single computation, typically to perform a sim-
ulation around a model set in a wind tunnel. In that case, a 
wall function is applied at the boundary of the model, a slip 
boundary condition at wind tunnel walls, and an inflow and 
an outflow boundary conditions at inlet and outlet, respec-
tively. The nature of the immersed boundary condition to 
be applied is determined by the nature of the input surface 
on which the IB target point A is projected. If the projection 
point N lies on a surface tagged as an injection immersed 
boundary, then the injection immersed boundary condition 
is flagged for IB point A.

2.4  Immersed boundary wall post‑processing

Unlike body-fitted approaches, it is not possible to extract 
the flow fields directly at wall boundaries. A reconstruction 
must be performed to obtain some quantities such as skin 
friction or loads and to visualize them on the obstacles. For 
that purpose, the moving least squares (or MLS) method 
is performed. It has been initially built up for the genera-
tion of surfaces [23] and has been derived to provide spatial 
approximations for meshless methods [13]. In our approach, 
the flow quantities (pressure, density, and friction velocity) 
are extracted at IB wall points at a given iteration of the flow 

solver. These variables are interpolated using a third-order 
accurate MLS interpolation onto the vertices of a triangular 
mesh describing the obstacles on which the skin quantities 
are required. For each vertex VT of the tessellation, a point 
cloud made by at least ten IB wall points surrounding the 
vertex VT is used to project the solution on that vertex using 
the MLS algorithm. Consequently, to introduce interpola-
tion errors due to strong disparities between the distribution 
of IB wall points and the tessellation (e.g., an MLS stencil 
ten times larger than the characteristics length of the target 
triangle), the tessellation should be consistent with the Car-
tesian mesh discretization in the vicinity of the obstacles. 
In a recent paper, Capizzano [11] proposed a method to 
reconstruct the surface to alleviate that constraint and being 
able to improve the estimation of wall quantities. A simple 
example of the MLS reconstruction has been achieved for 
the case of an IBM simulation around a 2D profile. In that 
case, we can compare the solution at IB wall points directly 
(represented by red dots in Fig. 4) and the solution obtained 
after the MLS reconstruction onto the obstacle described by 
the discretized curve representing the profile.

3  IBM on adaptive Cartesian grids

3.1  Motivation

Most immersed boundary methods available in the literature 
rely on adaptive Cartesian grids: Cartesian embedded meth-
ods remove the bottleneck of the mesh generation, since the 
adaptive Cartesian mesh generation can be easily automated 
even for arbitrary complex geometries. To preserve the 

Fig. 4  Comparison of the skin 
pressure coefficient at IB wall 
points (red dots) and recon-
structed by MLS method on 
the original discretized profile 
(green dots)
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simplicity of a pure Cartesian approach, the Cartesian mesh 
is defined down to the wall, relying on the IBM approach 
to take into account for obstacles. Cartesian cells cannot 
be refined down to the wall in general (except those cases 
where the wall is aligned with an axis), so a wall function 
is mandatory to compute high Reynolds number flows with 
a reasonable cell count. The strength of the IBM approach 
on adaptive Cartesian grids used in combination with a Car-
tesian CFD solver provides an automated and efficient tool 
for the simulation of flows around complex geometries, pro-
vided that the IBM pre-processing is robust and fast.

3.2  Automatic IBM preprocessing for complex 
geometries

3.2.1  Description of the workflow

The IBM preprocessing can be separated into the following 
steps:

• The automatic Cartesian mesh generation from a discre-
tized CAD.

• The computation of information required for the IBC 
reconstruction at each time step of the flow simulation.

First, a Cartesian mesh is generated automatically. This 
mesh is made of a set of structured uniform grids. The dif-
ferent refinement levels are managed thanks to an octree 
structure [33], enabling to prescribe the mesh resolution near 
each boundary and within the fluid, to avoid coarsening in 
the wake for instance. Ghost cells are explicitly built, such 
that an overlapping exists between neighbouring grids, with 
a minimum overlap. An example of a Cartesian mesh gener-
ated around a 2D profile is displayed in Fig. 5. To generate 
that case, the input data are a 1D discretization of the profile 
and the cell size required in its vicinity (equal to 0.1% of 

the chord length here). The Cartesian mesh skeleton is a 
quadtree mesh, as displayed in Fig. 5a. Each element of the 
quadtree is then filled with a Cartesian grid of a constant 
number of cells per direction (specified by the user), result-
ing in an adaptive Cartesian mesh displayed in Fig. 5b. As 
shown on this figure, some grids that are entirely inside the 
solid are removed, to reduce memory requirements. The 
IBM preprocessing is then achieved, based on several geo-
metrical algorithms initially developed for overset grids [4]. 
Some of the steps are illustrated by the IBM preprocessing 
of the previous NACA0012 configuration.

• Interior cells are marked using a blanking technique, 
either using the X-ray technique introduced by Meakin 
[27] or by a line-of-sight algorithm [4]. Figure 6 displays 
the same Cartesian mesh, as displayed in Fig. 5b, but 
where blanked points are not represented in the figure.

• the signed distance field is then computed;
• IB target points are marked at the fringe of blanked points 

(green dots in Fig. 7a);

Fig. 5  Example of a mesh around an NACA0012 profile: a quadtree skeleton mesh in blue, profile in green; b resulting Cartesian mesh, made by 
195,000 cells on 104 grids

Fig. 6  IBM preprocessing of an NACA0012 profile: blanking of cells 
inside the obstacle
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• normal vectors at IB target points are computed as the 
local gradient of the signed distance;

• IB target points are then projected onto the immersed 
boundaries following the normal vectors, resulting in 
boundary points (red dots in Fig. 7b);

• the location of image points is determined inside the fluid 
region (blue dots in Fig. 7d);

• the interpolation data for image points are computed 
(donor cell indices and weights);

3.2.2  Location of image points

The penultimate step, which consists in determining the 
location of image points, needs a special care to ensure the 
robustness of the method. First, the fluid variables are recon-
structed at iteration n at IB target points using information 
at that iteration n at image points, and then, donor cell for 
the interpolation of the flow variables at image point must 
contain cells where the solution is already known at iteration 
n. This means that the donor cell must not contain either IB 

target points or blanked points. The image points must be 
outside of a front bounded by the first computed cells at the 
fringe of IB target points. Moreover, the image points must 
be close to IB target points, especially for wall-modeled IBM 
reconstruction, where the image points should be lying in 
the inner layer of the boundary layer to be consistent with 
Musker’s wall function. For simple convex geometries, such 
as a cylinder or a 2D profile, the image points can be chosen 
at a given distance from the wall boundaries. However, for 
complex configurations, that distance cannot be prescribed 
easily by an user (due to concavities mostly). As a conse-
quence, in our approach, the image points are obtained by a 
projection following normals of the IB target points on the 
front of first valid donor cells, which defines a watertight 
surface mesh around the obstacles.

3.2.3  Performances

The IBM preprocessing can be used in a parallel environ-
ment and takes advantage of the Cartesian topology of grids. 

Fig. 7  Closeup view near the leading edge of an NACA0012 profile: 
a IB target points are represented by red dots and the profile by the 
grey curve; b green dots correspond to the IB wall points, resulting 
from the projection of IB target points following normals onto the 

profile; c front of first computed cells in blue; dblue dots are the IB 
image points obtained by projection of target points following nor-
mals onto the front
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First, donor cell search relies on this topology: the image 
point of coordinates (x, y, z) can be immediately located 
within a Cartesian cell, knowing the coordinates (x0, y0, z0) 
of the starting point of the Cartesian grid, the spacing 
(hx, hy, hz) , and the number of points (ni, nj, nk) in the three 
directions. Let us denote the IB receptor grid a Cartesian 
grid containing IB target cells. The grid containing the IB 
image points is denoted IB donor grid. In some cases, the 
IB donor grid is not necessarily the same as the IB receptor 
grid (since some IB image points might not fall on their IB 
receptor grid) and they may not be on the same processor 
too. Thus, the data to be sent to the receptor processor (con-
taining coordinates of IBM image points) from the processor 
containing the candidate IB donor grid are only the coordi-
nates of the first Cartesian mesh point (x0, y0, z0) , the spac-
ing (hx, hy, hz) , and the three mesh dimensions (ni, nj, nk) 
describing the candidate donor grids.

In addition, tests to determine whether a grid is a candi-
date IB donor grid for an IB receptor grid are simple and 
fast, since the tests are intersections of bounding boxes, 
which are also simplified for Cartesian grids.

Let us denote NP the number of MPI processes and NT 
the number of OpenMP threads. The octree skeleton mesh 
is initially built on all the NP processors starting from the 
triangular meshes describing the immersed boundaries and 
the cell spacing required in their vicinity. The mesh is then 
split into NP parts. Only the ith sub-part of the octree is kept 
on processor of rank i. Since the octree mesh is the skeleton 
of block-structured Cartesian grids, less memory is required 
to generate that mesh: to generate a 1 billion point Carte-
sian mesh with 20 cells per direction in each elementary 
Cartesian grid, the octree mesh does not exceed 125,000 
elements. This has the advantage to balance the octree with 
a minimum effort.

The subset of the octree mesh on a given processor rank 
i is used to generate local Cartesian grids: in our approach, 
introduced in [33], the HEXA mesh elements are subdi-
vided into vmin cells, each element resulting in an elementary 
structured Cartesian grid. Elementary grids are then merged 
using Rigby’s algorithm [39], adapted for Cartesian grids. 
The cell count on all the processors is roughly the same, 
ensuring a good balancing between the different processors.

Since surface meshes describing the obstacles are loaded 
on all the processors, then the blanking and distance field 
computation can be achieved independently; the identifica-
tion of target points are also local to the processors. The 
front of first computed cells is built on Cartesian grids 
defined locally, and hence, a gathering of the front is per-
formed on all the processors, such that the IB image points 
can be projected on the front safely.

Interpolation data for the IB image points are computed 
locally on the receptor processor, as described above.

An evaluation of the performances of the IBM preproc-
essing has been performed. The chosen geometry is a sim-
plified landing gear [25], where the diameter of the wheels 
is dimensioned to D = 1. The triangular mesh defining the 
landing gear surface is made by 141,696 triangles. Perfor-
mances are evaluated on Intel Xeon Broadwell partition of 
the Sator cluster of ONERA (E5-2680v4, 2.4 GHz, 35 MB 
cache), with 28 cores of 4 GB per node.

A strong scaling evaluation for the IBM preprocessing 
is achieved on a mesh made of 717 million points, where 
the number of cores varies from 28 to 896 and the problem 
requires at least 117 GB for the 28-core test. Figure 8a rep-
resents the elapsed time versus the number of cores for that 
case. The orange curve describes the elapsed time for the 
whole IBM preprocessing (including the generation of the 
717 million point mesh).

Fig. 8  Performance study of the IBM preprocessing for a landing gear configuration
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As the number of cores is doubled, the elapsed time is 
reduced by 12% from 28 to 56 cores, 23% from 56 to 112, 
44% from 112 to 224 cores, 27% from 224 to 448 cores, and, 
finally, 8% from 448 to 896 cores. The 112-core case (which 
is the most likely value to perform then the CFD computa-
tion) requires 16 min to generate the mesh and to perform 
the IBM preprocessing.

On this plot are also represented the required elapsed 
times to compute the distance for the slowest and fastest pro-
cessors (blue and green lines, respectively), showing strong 
discrepancies between them. The same observation can be 
done for the weak-scaling study (Fig. 8b). However, this 
plot highlights the fact that the elapsed time for the full pre-
processing is roughly 20 min whatever the size of the whole 
problem provided 5 million points are defined per core.

It can be noticed that for this test case, the wall-distance 
computation represents a significant part of the elapsed time 
of the whole IBM preprocessing (from 90% for the smallest 
problem to 43% for the biggest problem). The current algo-
rithm consists of an orthogonal projection onto the tessella-
tion defining the immersed boundaries. The search for the 
candidate triangle is preconditioned by a k–d tree [5] and a 
boxtree [3], but these preconditioning trees are defined on 
each processor for the whole tessellation. Consequently, the 
distance field computation relies strongly on the cell count 
on the surface meshes despite the number of Cartesian grid 
points is constant on a processor as the number of processors 
increases. In addition, the slowest processors for the distance 
computation are those containing Cartesian grids that are the 
furthest from the immersed boundary, due to the fact that 
the number of candidate triangles for the projection is much 
higher for further points. As the processors that are the slow-
est regarding the distance are not involved in computing the 
location of IB points and interpolation data for image points, 
the orange curve is not the sum of the red and green curves.

Future work will consist in partitioning the surfaces onto 
the processors and, thus, the corresponding preconditioning 
trees. Another idea is to solve an Eikonal equation, using, for 
instance, the Fast Iterative Method [22] or the Fast Marching 
Method [42].

IBM preprocessing is achieved by an assembly of Cas-
siopee functions available in several modules (see reference 
[4] for a general description of Cassiopee or the website [1]).

3.3  IBM simulations using a dedicated Cartesian 
CFD solver

3.3.1  FastS HPC solver

The ONERA HPC FastS solver [2] is used to solve the 
compressible Navier–Stokes equations using a finite-vol-
ume method. It contains a structured multiblock solver 
that can solve RANS, LES, DNS, and steady and unsteady 

simulations. It is especially efficient to deal with unsteady 
simulations (see [16]), since it enables to update 10 mil-
lion cells per second per core on a single Intel Broadwell 
core. This means that 300 million cells can be updated per 
second on a 28-core node. FastS contains a solver dedicated 
to Cartesian grids, on which we rely on to perform IBM 
simulations. Despite the relatively high cell count obtained 
by the block-structured Cartesian mesh generation in com-
parison with a classical body fitted unstructured approach, a 
dedicated Cartesian solver requires much less memory and 
CPU time than a structured curvilinear solver and also an 
unstructured solver. Here, the Cartesian solver is 2.5 more 
efficient in terms of CPU time and memory than the struc-
tured curvilinear solver using the same numerical methods.

FastS solver relies on an hybrid MPI/OpenMP frame-
work, where the memory is distributed (by distributing CFD 
grids) on the processors at high level, i.e., between nodes, 
whereas multithreading is managed via OpenMP within a 
given node. For our purpose, where Cartesian grids are uni-
form and containing a few cells in comparison with grids 
resolving boundary layers accurately, the N Cartesian grids 
are distributed between the NT cores using OpenMP.

3.3.2  Numerical methods

For RANS computations, two spatial schemes are con-
sidered, depending on the flow regime: the Roe-MUSCL 
scheme [40] or an AUSM scheme [26], which is based on 
a modification of the AUSM+(P) scheme (see Edwards 
and Liou [18]), which is second-order accurate. Jacobian 
approximations are those proposed by Jameson and Yoon 
[21] and Coakley [14], whereas the linear system is solved 
by the LU-SGS method [21]. For LES computations, an 
hybrid centered/upwind scheme [26] is retained to manage 
a good compromise between robustness and accurate simula-
tion of the turbulent small eddies [24], whereas the temporal 
integration is achieved by a three-step Runge–Kutta explicit 
scheme, or by a second-order implicit Gear scheme with 
local Newton sub-iterations [17].

The steady and unsteady RANS equations are solved 
using Spalart–Allmaras one-equation turbulence model [43]. 
For large Eddy simulations (LES), the filtered equations are 
obtained using the formalism developed by Vreman [46]. 
No subgrid-scale model is used, so it is an implicit LES 
simulation (ILES).

3.3.3  Update of IBM points during the CFD simulation

The IBM target points must be updated at each sub-step of 
the time integration. FastS solver updates first fluid cells on 
each Cartesian grid at time sub-step n, and then, IB target 
cells are updated, and finally, transfers between neighbour-
ing grids are performed to update the ghost cells. For RANS 
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and LES IBM simulations, Musker’s wall model is applied 
at IB target cells only.

MPI transfers between nodes are achieved in a single step: 
a global transfer to update all the target points and the ghost 
cells. This is possible, because the IBM pre-processing pre-
vents from IB image points to be interpolated by ghost cells 
(which are explicitly defined in the Cartesian mesh).

In practice, only fluid points are computed by FastS CFD 
solver, transfers between abutting grids and IBM updates are 
performed by a library of Connector module of Cassiopee 
package [4]. Both FastS and Cassiopee modules handle the 
same CGNS/Python tree in memory [36, 41]; in other words, 
arrays defining the CFD simulation (metrics, flow fields) are 
shared in memory without copy. This is made possible by 
the fact that ghost cells are explicitly built during the mesh 
generation, justifying the use of an overset Cartesian mesh, 
with minimum overlapping.

4  Numerical results

A wide range of validations and applications can be found 
in [38], showing the range of possibilities, from Euler to 
LES simulations, from subsonic to hypersonic flows on two-
dimensional academic configurations and onto geometrically 
complex configurations. Here, we focus on two applications: 
the first one is a tripod mount into ONERA S1MA wind-
tunnel, to assess the capability of our IBM approach to per-
form RANS simulations on a complex configuration within 
a day. The other test case that has been chosen is an unsteady 
simulation of a less complex geometry, but where the flow 
features are complex, to enhance the HPC capabilities of the 
whole workflow and especially of the flow solver. Despite 
several imperfections of the present IBM approach on Car-
tesian grids to capture accurately the physics, especially the 
acoustics, these first results are promising.

4.1  RANS simulation of the S1MA wind tunnel 
with a tripod

The test case considered here is a simulation of the ONERA 
S1MA wind tunnel with a geometrically complex mounted 
system. This configuration has already been studied numeri-
cally and compared with experimental data using a struc-
tured body-fitted approach by Hantrais-Gervois et al. [20], 
to assess the capability of RANS simulations to model the 
flow physics of an empty wind tunnel with a closed test 
section. Here, our objective is to demonstrate the capability 
of the IBM approach on Cartesian adaptive grids to obtain 
accurate results at low computational cost. In addition, this 
test case is geometrically complex and makes use of different 
immersed boundary conditions (injection, outlet pressure 
condition, and wall-modeled immersed boundary).

The generated mesh is coarse and is made of 35 mil-
lion Cartesian cells, as displayed in Fig. 9. A steady RANS 
simulation using Spalart–Allmaras turbulence model is per-
formed. Musker’s wall function is applied at IB target points 
to reconstruct the velocity and wall stress. An injection and 
imposed pressure immersed boundary conditions are applied 
at inlet and outlet borders. For that purpose, the triangulated 
surface defining the wind tunnel is closed; Cartesian grids 
that lie outside of this closed surface are blanked out.

The target Mach number is 0.8; the outlet pressure is 
modified to reach a Mach number of 0.79. A comparison 
between the solution obtained with the IBM on Cartesian 
grids and the structured body-fitted simulation with elsA 
software [9] is achieved described in detail in [20]. Mach 
number contours compare well on two axial sections (at 
y=0 and z=0, Fig. 10), the slight differences being due 
to the fact that the actual Mach number is slightly differ-
ent. Figure 11 displays the pressure evolution along the 
axis of the wind tunnel and on the tripod, showing a good 
agreement between the IBM simulation and the reference 

Fig. 9  S1MA wind tunnel with a tripod
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Fig. 10  Comparison of Mach number contours (Cartesian IBM solution versus structured body-fitted solution

Fig. 11  Comparison of the pressure along the axial direction on the wind tunnel; dashed lines denote the lower side of the tripod or of the wind 
tunnel. Courtesy of Aurélia Cartieri, ONERA/DS for elsA results
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body-fitted simulation. However, some discrepancies can 
be observed at the junction between the upper side of the 
tripod and the top of the wind tunnel (Fig. 11b): they are 
probably due to the fact that the IBM Cartesian mesh is 
too coarse in that region. Consequently, as the boundary 
forms a 45◦ angle with the Cartesian axis, the fact that the 
mesh is not well resolved in that region leads to a stair-
step reconstruction at tripod wall boundaries. Figure 12 
displays a comparison of the isentropic Mach number on 
the wind tunnel walls between experimental results and 
IBM results. The oscillations observed in experiments, 
which are due to the waviness of the walls, as explained 

by Hantrais-Gervois et al. [20], are well captured by the 
IBM simulation.

4.2  Unsteady‑flow simulation around a high‑lift 
airfoil

The test case is an extruded three-element high-lift airfoil 
with deployed slat and flap. This kind of configuration is of 
major interest for acoustics, since high-lift devices deployed 
on aircraft to increase lift at low speed are responsible for a 
significant part for the airframe noise during the approach 
phase. An experimental campaign has been conducted in 

Fig. 12  Symbols denote the experimental results and solid lines the IBM results. Wind tunnel walls in colored lines and tunnel centerline in 
black. Courtesy of Aurélia Cartieri, ONERA/DS
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the framework of the joint ONERA/DLR LEISA2 project; 
experimental data are also provided within the AIAA BANC 
workshops to validate the numerical methods applied for 
aerodynamics and acoustics analyses. A reference study is 
the LES simulation of Terracol and Manoha [44] on a 2.6 
billion body-fitted mesh. Six million hours of CPU were 
required on 4096 processors to perform this simulation. This 
simulation has also been performed by LBM solvers using 
an IBM approach on Cartesian grids.

The aim of the simulation presented here is to focus only 
on the aerodynamics phenomena and not on the acoustics, 
since the way which the information is transferred from a 
grid of a level l to a grid of a different level (twice as coarse) 
leads to small perturbations that are a major issue for a far-
field acoustics analysis.

4.2.1  Description of the test‑case

The reduced geometry configuration is used here (F16). The 
retracted wing chord length is 300 mm. The slat and flap are 
deployed, respectively, of 27.834◦ and 35, 011◦ . The flow 
conditions are M∞ = 0.178 , � = 6.15◦ and a Reynolds num-
ber of Re = 1.23 million, based on the chord. The wing span 
is chosen the same as the reference CFD study, that is 0.25 c.

An IBM simulation with FastS solver is performed on a 
set of Cartesian grids using Musker’s wall function applied 
at IB target points. The mesh is composed by 660 million 
points, with an adapted spatial resolution in the vicinity of 
the flap and the slat and in their cavity and wake regions, 
with a smallest cell size equal to 1.5 10−4 c . The external 
border of the computational domain is located at 50 c. The 
mesh is represented on different views displayed in Fig. 13.

The LES simulation has been initialized by an RANS 
simulation to get rid of transient phenomena. The spatial 
scheme is the modified AUSM scheme [26], to manage a 
good compromise between robustness and accurate simula-
tion of the turbulent small eddies [24], whereas the temporal 
integration is an explicit three-step Runge–Kutta scheme, 
with a global time step Δt = 0.16 μ s. The simulation has 
been performed on 224 Intel Broadwell cores of ONERA 
SATOR cluster, for a CPU cost of 0.4 μ s per point per itera-
tion per core. The flow quantities have been averaged on a 
period of 80 ms.

4.2.2  Results

Figure  14 displays the density gradient resulting from 
the LES simulation using the wall-modeled IBM. The 

Fig. 13  Views of the IBM Cartesian mesh around the three-element airfoil
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comparison with the reference simulation of Terracol and 
Manoha shows that the IBM approach enables to capture the 
main features of this flow: recirculation bubble in slat and 
flap cavities, turbulent boundary layers, wakes. This is also 
assessed by the comparison of the averaged velocity between 
the reference LES and the IBM simulation and experimental 
data, as displayed in Fig. 15. The location of recirculation 
bubble in cavities is well captured. Besides, the simulated 
flows in the vicinity of the suction side of the flap differ from 
the experiments, where a strong separation occurs unlike the 
LES simulations. Other wind tunnel tests did not revealed 
that separation and Terracol [44] demonstrated that this dif-
ference was due to the influence of the wind tunnel walls.

Two rakes of probes are defined in the fluid, as displayed 
in Fig. 16. At these locations, the velocity and velocity fluc-
tuation profiles are compared against the experiment and 
the reference LES body-fitted simulation, as displayed in 
Fig. 17, showing a good agreement between both simula-
tions and also with the experimental results.

5  Conclusions

In this article, we have presented an immersed bound-
ary method (IBM) for compressible flow simulations to 
evaluate the aerodynamics of complex geometries. Our 

approach consists of modifying the flow variables at some 
IB target points in the vicinity of the obstacles. To take 
a full advantage of this approach, where the mesh does 
not need to conform to the obstacles, we use adaptive 
structured Cartesian grids, in combination with a dedi-
cated HPC Cartesian solver, taking advantage of their low 
memory and CPU time requirements and the automation 
of the mesh generation and adaptation. This enables us 
to generate a 1.5 billion node mesh and perform the IBM 
preprocessing within 18 min on 12 × 28 cores, requiring a 
maximum of 360 GB of memory.

The workflow that is built up has demonstrated to be fast, 
robust, and automated, starting from a discretization of the 
obstacles only. Consequently, CFD simulations around com-
plex geometries can be performed within a day.

Several types of immersed boundaries have been devel-
oped, such that inviscid or viscous wall boundaries can be 
reconstructed, but also injection and outlet boundaries can 
be defined as immersed boundaries, provided that the cor-
responding triangulated surface is defined as input. Turbu-
lent flow simulations are performed with Reynolds-average 
Navier–Stokes equations using Spalart–Allmaras model or 
with large-eddy simulation approach, in combination with 
an algebraic wall function to solve high Reynolds number 
flows, to mitigate the cell count resulting from the isotropic 
nature of Cartesian cells.

Fig. 14  Instant views of the flow represented by the density gradient: comparison between the wall-resolved LES (a) and the IBM simulations 
(b–d)
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The first application shown (the tripod mounted in 
ONERA-S1MA wind tunnel) demonstrates the robustness 
and automation of the approach developed here to perform 
an RANS simulation of a complex configuration, involv-
ing several types of immersed boundaries. Results compare 
well with a structured body-fitted approach achieved with 
elsA solver [9]; this demonstrates that the method is a good 

candidate to calibrate quickly wind tunnel configurations, 
with no meshing effort.

The second application is an unsteady simulation of the 
flow around a high-lift airfoil. Only aerodynamics results 
are evaluated here and compared with experiments and a 
reference LES simulation on a structured body-fitted mesh 
by Terracol [44]. Acoustics analysis is not performed here, 

Fig. 15  Views of the averaged flow: isocontours of the velocity amplitude and streamlines; comparison between experiments (left-hand side), the 
reference wall-resolved LES simulation (center), and the IBM LES simulation (right-hand side)
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since no specific treatment is achieved yet when crossing 
an interface from a fine grid to a coarser grid (twice as 
coarse here), leading to reflections of unsupported struc-
tures back into the finer grid. This is one subject on which 
we will focus on in the next years.

Future work will also concern the improvement of the 
wall modeling using wall functions, since the wall function 
that we consider here can be applied on attached flows.

Another topic is to extend the method to bodies in rela-
tive motion, aiming at simulating flows around configura-
tions with rotors.

Acknowledgements We thank Aurélia Cartieri from the Wind Tunnel 
Division at ONERA for providing us the mounted tripod configuration 
and her elsA results for comparisons. We are grateful to Nicolas Alferez 
for his involvement in improving the performances of FastS solver and 
also Marc Terracol for our fruitful exchanges concerning wall models 
and the LEISA2 configuration.

Wall functions

Figure 18 shows a typical mean velocity profile in wall 
units u+ within the inner layer of a turbulent boundary 
layer. This velocity profile can be split into three portions 
within this inner layer:

• The viscous sub-layer, for y+ ≤ 5 , where dissipation 
and viscous diffusion dominate. This yields the linear 
behavior: u+=y+.

• the log-layer, for y+>30, where there is an equilibrium 
between turbulence production and dissipation. This 
region constitutes the junction between the inner and 
upper layers.

• The buffer layer, for 5 < y+ ≤ 30 , joining the two previ-
ously defined layers.

The most common function to describe the evolution of 
the velocity within an equilibrium turbulent boundary layer 
(zero-pressure gradient) is the log law of the wall defined as:

where u+ =
u

u�
 and y+ =

�w y u�

�w

 , with � = 0.41 is the Vón 

Kármán constant and � = 5.2 ; u� denotes the friction veloc-
ity; �w and �w denote the values of density and viscosity at 
the wall, assumed equal to their values at corresponding 
image points B.

However, the limitation of the log law is that it is not able 
to model the inner and buffer layers of the boundary layer, 
which is critical in our approach, since the dimensionless wall 
distance y+ cannot be controlled at image points. Several alge-
braic wall functions have been developed to bridge the viscous 
sub-layer and the log layer: we can cite the law derived by 
Spalding, by finding a power-series for y+ = f (u+) or the one 
proposed by Musker [31], which is very similar (as shown in 
Fig. 18) but easier to use, since it explicitly provides an expres-
sion for the velocity for the point to be addressed. Similarly to 
the log law, it is based on considerations of the boundary-layer 
equations. By blending the log layer and the viscous sub-layer 
asymptotic trends of the turbulent viscosity through an inter-
polation function, integration of the momentum balance yields 
the following formula:

It must be noted that expressions (2) and (3) involve the 
skin friction velocity u� , which is unknown. The first step of 
the process is, therefore, to estimate its value using a New-
ton–Raphson iterative algorithm.

(2)u+ =
1

�
log(y+) + �,

(3)

u
+ = 5.424 arctan

[
2y+ − 8.15

16.7

]

+ log

[ (
y
+ + 10.6

)9.6
(
y+2 − 8.15 y+ + 86

)2
]
− 3.52.

Fig. 16  Probe locations
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Determination of the pseudo‑viscosity 
of Spalart–Allmaras at IB target point

In the Spalart–Allmaras model, the turbulent viscosity can 
be expressed as follows:

where:

(4)𝜇t = 𝜌�̃�fv1,

Cv1 is a constant and 𝜒 =
𝜌�̃�

𝜇
. Hence:

The mixing length assumption can be expressed by:

(5)fv1 =
�3

�3 + C3
v1

;

(6)𝜈t = �̃�fv1.

Fig. 17  Comparison of velocity profiles and velocity fluctuations at probes 04-2 and 18-3. IBM simulation is compared against the reference 
LES simulation, PIV, and LDV data
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with the Van Driest damping term D, such that A+ being a 
constant, chosen equal to 19:

The pseudo-viscosity �̃� must be reconstructed at IB target 
point A. The friction velocity u� is known and has been com-
puted by the algebraic wall function, and y and D are known 
and � is the Von Kármán constant, equal to 0.4. We have to 
solve �̃� solution of:

that is:

To avoid ill-conditioned problems, the variable that is actu-
ally solved is �̃�

𝜈
 . This leads to solve:

with:

It is possible to solve this equation explicitly. The follow-
ing variable change y = x −

a

4
 is performed to remove the 

monomial of degree 3, leading to an equation of the form 
y4 + py2 + qy + r = 0 , which is solved by Ferrari’s method. 
Note that if Eq. (11) was obtained from variable x = �̃� , q 
would be very close to zero. Or if it is zero, the equation to 
be solved would be of the form y4 + py2 + r = 0 , with dif-
ferent solution from the quartic equation above.

(7)�t = �u�yD,

(8)D = [1 − exp(−
y+

A+
)]2.

(9)�̃�fv1 = 𝜅u𝜏yD;

(10)�̃�4 − 𝜅u𝜏yD�̃�
3 − 𝜅u𝜏yD

𝜇3

𝜌3
C3
v1
= 0.

(11)x4 − ax3 − b = 0,

(12)x =
�̃�

𝜈
;a =

𝜅u𝜏yD

𝜈
;b =

𝜅u𝜏yD

𝜈
C3
v1
= aC3

v1
.

Ferrari’s method consists in finding a factorization of 
two polynomials of degree 2. The main difficulty lies in the 
fact that four solutions of this equation are possible, and 
thus, the wrong candidates (especially the complex ones) 
shall be removed smartly. The monomial of degree 4 is first 
replaced by the polynomial (y2 + �2)2 − 2� y2 − �2 . This 
leads to the resolution of a cubic on � , and then, the solution 
�0 is replaced in the quartic on y. This results in a factoriza-
tion of two polynomials of degree 2. The roots are explicitly 
obtained, and then, x is derived.

References

 1. http://elsa.onera .fr/Cassi opee/Userg uide.html. Accessed 5 Feb 
2020

 2. https ://w3.onera .fr/FAST. Accessed 5 Feb 2020
 3. Barequet G, Chazelle B, Guibas LJ (1996) BOXTREE: a hierar-

chical representation for surfaces in 3D. Comput Graph Forum 15
 4. Benoit C, Péron S, Landier S (2015) Cassiopee: a CFD pre- and 

post-processing tool. Aerosp Sci Technol 45:272–283
 5. Bentley JL (1975) Multidimensional binary search trees used for 

associative searching. Commun ACM 18(9):509–517
 6. Berger MJ, Aftosmis MJ (2012) Progress towards a Cartesian 

cut-cell method for viscous compressible flow. AIAA paper 
2012-1301

 7. Berger MJ, Aftosmis MJ (2017) An ODE-based wall model for 
turbulent flow simulations. AIAA J 2:1–15

 8. Brehm C, Barad MF, Kiris CC (2016) Open rotor computational 
aeroacoustic analysis with an immersed boundary method. In: 
54th AIAA aerospace sciences meeting, p 0815

 9. Cambier L, Heib S, Plot S (2013) The ONERA elsA CFD soft-
ware: input from research and feedback from industry. Mech Ind 
14(03):159–174

 10. Capizzano F (2011) Turbulent wall model for immersed boundary 
methods. AIAA J 49(11):2367–2381

 11. Capizzano F (2018) Automatic generation of locally refined Car-
tesian meshes: data management and algorithms. Int J Numer 
Methods Eng 113(5):789–813

 12. Chen ZL, Hickel S, Devesa A, Berland J, Adams NA (2014) Wall 
modeling for implicit large-eddy simulation and immersed-inter-
face methods. Theoret Comput Fluid Dyn 28(1):1–21

 13. Cheng Z-Q, Wang Y-Z, Li Bao, Xu Kai, Dang Gang, Jin S-Y 
(2008) A survey of methods for moving least squares surfaces. In: 
Proceedings of the fifth Eurographics/IEEE VGTC conference on 
point-based graphics, p 9–23

 14. Coakley TJ (1985) Implicit upwind methods for the compressible 
Navier–Stokes equations. AIAA J 23(3):374–380

 15. Coirier WJ, Powell KG (1996) Solution-adaptive Cartesian cell 
approach for viscous and inviscid flows. AIAA J 34(5):938–945

 16. Dandois J, Mary I, Brion V (2018) Large-eddy simulation of lami-
nar transonic buffet. J Fluid Mech 850:156–178

 17. Daude F, Mary I, Comte P (2014) Self-adaptive Newton-based 
iteration strategy for the les of turbulent multi-scale flows. Comput 
Fluids 100:278–290

 18. Edwards JR, Liou M-S (1998) Low-diffusion flux-splitting meth-
ods for flows at all speeds. AIAA J 36(9):1610–1617

 19. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000) 
Combined immersed-boundary finite-difference methods for 
three-dimensional complex flow simulations. J Comput Phys 
161(1):35–60

Fig. 18  Asymptotic behaviors of an equilibrium boundary layer

http://elsa.onera.fr/Cassiopee/Userguide.html
https://w3.onera.fr/FAST


2437Engineering with Computers (2021) 37:2419–2437 

1 3

 20. Hantrais-Gervois J-L, Cartieri A, Mouton S, Piat J-F (2010) 
Empty wind tunnel flow field computations. Int J Eng Syst Model 
Simul 2(1–2):46–57

 21. Jameson A, Yoon S (1987) Lower-upper implicit schemes with 
multiple grids for the euler equations. AIAA J 25(7):929–935

 22. Jeong W-K, Whitaker RT (2008) A fast iterative method for Eiko-
nal equations. SIAM J Sci Comput 30(5):2512–2534

 23. Lancaster P, Salkauskas K (1981) Surfaces generated by moving 
least squares methods. Math Comput 37(155):141–158

 24. Laurent C, Mary I, Gleize V, Lerat A, Arnal D (2012) DNS data-
base of a transitional separation bubble on a flat plate and applica-
tion to RANS modeling validation. Comput Fluids 61:21–30

 25. Manoha E, Bulté J, Caruelle B (2008) LAGOON: an experimental 
database for the validation of CFD/CAA methods for landing gear 
noise prediction. In: 14th AIAA/CEAS aeroacoustics conference, 
AIAA paper 2008-2816

 26. Mary I, Sagaut P (2002) Large Eddy simulation of flow around an 
airfoil near stall. AIAA J 40(6):1139–1145

 27. Meakin RL (2001) Object X-rays for cutting holes in composite 
overset structured grids. AIAA paper 2001-2537

 28. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loeb-
becke A (2008) A versatile sharp interface immersed boundary 
method for incompressible flows with complex boundaries. J 
Comput Phys 227(10):4825–4852

 29. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu 
Rev Fluid Mech 37:239–261

 30. Mochel L, Weiss P-E, Deck S (2014) Zonal immersed boundary 
conditions: application to a high-Reynolds-number afterbody flow. 
AIAA J 52(12):2782–2794

 31. Musker AJ (1979) Explicit expression for the smooth wall velocity 
distribution in a turbulent boundary layer. AIAA J 17(6):655–657

 32. Nakahashi K (2011) Immersed boundary method for compress-
ible Euler equations in the Building-Cube Method. AIAA paper 
2011-3386

 33. Péron S, Benoit C (2013) Automatic off-body overset adaptive 
Cartesian mesh method based on an octree approach. J Comput 
Phys 232(1):153–173

 34. Peskin CS (1972) Flow patterns around heart valves: a numerical 
method. J Comput Phys 10(2):252–271

 35. Peskin CS (2002) The immersed boundary method. Acta Numer 
11:479–517

 36. Poinot M (2010) Five good reasons to use the hierarchical data 
format. Comput Sci Eng 12(5):84–90

 37. Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional 
model for the immersed boundary method. SIAM J Numer Anal 
29(2):332–364

 38. Renaud T, Benoit C, Péron S, Mary I, Alferez N (2019) Valida-
tion of an immersed boundary method for compressible flows. In: 
AIAA Scitech 2019 Forum, AIAA paper 2019–2179

 39. Rigby D L, Steinthorsson E, Coirier WJ (1997) Automatic block 
merging methodology using the method of weakest descent. 
AIAA paper 97-0197

 40. Roe PL (1981) Approximate Riemann solvers, parameter vectors, 
and difference schemes. J Comput Phys 43(2):357–372

 41. Rumsey CL, Wedan B, Hauser T, Poinot M (2012) Recent updates 
to the CFD general notation system (CGNS). In: 50th AIAA aero-
space sciences meeting, vol 10, p 6–2012

 42. Sethian JA (1999) Fast marching methods. SIAM Rev 
41(2):199–235

 43. Spalart PR, Allmaras SR (1992) A one-equation turbulence model 
for aerodynamic flows. AIAA J 94:20

 44. Terracol M, Manoha E (2014) Wall-resolved large eddy simula-
tion of a highlift airfoil: detailed flow analysis and noise genera-
tion study. In: 20th AIAA/CEAS aeroacoustics conference, AIAA 
paper 2014-3050

 45. Tseng Y-H, Ferziger JH (2003) A ghost-cell immersed bound-
ary method for flow in complex geometry. J Comput Phys 
192(2):593–623

 46. Vreman AW (1995) Direct and large-eddy simulation of the com-
pressible turbulent mixing layer. Universiteit Twente

 47. Zhu WJ, Behrens T, Shen WZ, Sørensen JN (2012) Hybrid 
immersed boundary method for airfoils with a trailing-edge flap. 
AIAA J 51(1):30–41

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	An immersed boundary method on Cartesian adaptive grids for the simulation of compressible flows around arbitrary geometries
	Abstract
	1 Introduction
	2 Description of the immersed boundary method
	2.1 Governing equations
	2.2 The immersed boundary method
	2.3 Types of immersed boundary conditions
	2.3.1 Wall slip and no-slip IBCs
	2.3.2 Wall function for high-Reynolds flow simulations
	2.3.3 Inflow and outflow boundary conditions
	2.3.4 Use of several types of immersed boundary conditions for a given configuration

	2.4 Immersed boundary wall post-processing

	3 IBM on adaptive Cartesian grids
	3.1 Motivation
	3.2 Automatic IBM preprocessing for complex geometries
	3.2.1 Description of the workflow
	3.2.2 Location of image points
	3.2.3 Performances

	3.3 IBM simulations using a dedicated Cartesian CFD solver
	3.3.1 FastS HPC solver
	3.3.2 Numerical methods
	3.3.3 Update of IBM points during the CFD simulation


	4 Numerical results
	4.1 RANS simulation of the S1MA wind tunnel with a tripod
	4.2 Unsteady-flow simulation around a high-lift airfoil
	4.2.1 Description of the test-case
	4.2.2 Results


	5 Conclusions
	Acknowledgements 
	References




