
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:2419–2437
https://doi.org/10.1007/s00366-020-00950-y

ORIGINAL ARTICLE

An immersed boundary method on Cartesian adaptive grids
for the simulation of compressible flows around arbitrary geometries

S. Péron1 · C. Benoit1 · T. Renaud1 · I. Mary1

Received: 13 June 2019 / Accepted: 10 January 2020 / Published online: 11 February 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
In this article, we present an immersed boundary method for the simulation of compressible flows of complex geometries
encountered in aerodynamics. The immersed boundary methods allow the mesh not to conform to obstacles, whose influ-
ence is taken into account by modifying the governing equations locally (either by a source term within the equation or by
imposing the flow variables or fluxes locally, similarly to a boundary condition). A main feature of the approach which we
propose is that it relies on structured Cartesian grids in combination with a dedicated HPC Cartesian solver, taking advantage
of their low memory and CPU time requirements but also the automation of the mesh generation and adaptation. Turbulent
flow simulations are performed by solving the Reynolds-averaged Navier–Stokes equations or by a Large-Eddy simulation
approach, in combination with a wall function at high Reynolds number, to mitigate the cell count resulting from the iso-
tropic nature of Cartesian cells. The objective of this paper is to demonstrate that this automatic workflow is fast and robust
and enables to get quantitative aerodynamics results on geometrically complex configurations. Results obtained are in good
agreement with classical body-fitted approaches but with a significant reduction of the time of the whole process, that is a
day for RANS simulations, including the mesh generation.

Keywords Immersed boundaries · Cartesian adaptive grids · Turbulent flows · Wall law

1 Introduction

The rise of computational fluid dynamics (CFD) in aero-
space sciences in the past decades is due to the growth of
the computational power in combination with the increase of
robustness and accuracy of CFD solvers. Today, Reynolds-
averaged Navier–Stokes simulations on body-fitted meshes
are commonly performed by the aeronautical industry in the
design phase. The geometrical complexity of the configura-
tions has increased too, taking into account for more details,
such as track fairings on an aircraft or rotor head compo-
nents for an helicopter. Consequently, the mesh generation,
which requires usually manual interaction and expertise, has
become a major bottleneck of the CFD workflow.

This means that efficient tools are required to perform
parametric studies and to evaluate quickly the impact
of a modification of a shape or some details onto the

performances of an aircraft. High-fidelity CFD tools are
generally not necessary at this stage; lifting-line tools can
be used to get trends quickly, but models are often limited
to certain flow assumptions. Low-fidelity CFD (e.g., Euler
solutions) could be appropriate but automatic mesh gen-
eration is the barrier to override. The immersed boundary
methods (IBM) can be seen as a good compromise between
the quality of the solution and how quickly it can be
obtained. This concept refers initially to the work of Peskin
[34, 35], which employed a novel approach many decades
ago to simulate biological flows onto Cartesian grids which
did not conform to the geometry. The obstacles lying in the
flow are taken into account by introducing a forcing term
into the momentum equations. Since then, many variants
of this approach have been developed, as quoted by Mittal
and Iaccarino [29]. A first approach consists in introducing
a continuous source term and is well suited for flows with
immersed elastic boundaries [34, 37]. In this context, the
source term represents the exchange of momentum between
the fluid and solid through a law based on the theory of
elasticity. However, in the limit of rigid boundaries, this
problem is stiff, leading to a lack of stability and accuracy.

 * S. Péron
 stephanie.peron@onera.fr

1 ONERA - Université Paris Saclay, Châtillon 92322, France

http://orcid.org/0000-0001-6998-3533
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-00950-y&domain=pdf

2420 Engineering with Computers (2021) 37:2419–2437

1 3

Several discrete forcing methods have been developed for
flow simulations around solid bodies, among which the
ghost-cell direct forcing approach, as developed by Mit-
tal et al. [28], Fadlun et al. [19], and Tseng et al. [45].
The IBM can be used on the whole geometry [32, 45] or
locally [30, 47] to capture the potential effects of geomet-
rical details. A similar approach consists in cutting cells
that intersect the geometry which has proven efficient and
robust for inviscid flow simulations and low Reynolds flows
around complex geometries (see [6, 15]).

The use of Cartesian grids with local grid refinement
in combination with embedded obstacles (either with
immersed boundary or cut-cell methods) seems to be well
suited for a high-level of automation and computational
efficiency [6, 8, 32]. Although the use of adaptive Carte-
sian grids around arbitrary immersed obstacles is concep-
tually attractive, the resolution of high Reynolds number
flows requires wall models [7, 10] to restrict the number
of points within the boundary layer.

This paper proposes an efficient, fast, and robust
immersed boundary method on adaptive structured Car-
tesian grids to perform CFD simulations of compressible
flows. The method relies on a second-order accurate finite-
Volume HPC solver dedicated to Cartesian grids, enabling
to deal with a wide range of flow regimes, from subsonic
to supersonic flows, for steady RANS or LES simulations.
Musker’s algebraic wall function [31] is applied within the
IBM approach on Cartesian grids to solve high-Reynolds
number flows. In addition, the immersed boundary approach
has been extended to enable several types of immersed
boundary conditions. For example, an outlet with imposed
pressure or an injection can be modeled locally, or a wall
slip immersed boundary condition (which can be used to
represent a ground or a wind tunnel) and a wall-modeled
condition (for the model in the wind tunnel for instance).

This paper is organized as follows: in Sect. 2, the Ghost
Cell Direct Forcing IBM approach used here is described.
The way which the different immersed boundary condi-
tions are reconstructed at each iteration is detailed. Section 3
describes how this approach is meaningful when applied on
Cartesian adaptive grids: an automatic workflow starting
from input surfaces describing immersed boundaries has been
developed, in combination with a HPC dedicated Cartesian
solver, providing results within a short delay. Section 4 pre-
sents two IBM simulations: the first simulation is an RANS
simulation of a tripod mounted in a wind tunnel, to illustrate
the ability of the approach to deal with different immersed
boundary conditions and with a geometrically complex con-
figurations, for which a reduced human effort was required.
The second simulation is an unsteady simulation of the flow
around a high-lift airfoil for which we focus on aerodynamics
results, compared to experimental data and results obtained
with body-fitted LES simulation aerodynamics.

2 Description of the immersed boundary
method

2.1 Governing equations

The Navier–Stokes equations for a compressible flow can be
expressed as follows:

where � denotes the fluid density, u the velocity vector,
p the pressure, �E the total energy per unit mass, � the
viscous stress tensor, and Q the heat flux vector. In our
approach, the system (1) is solved for interior cells using a
cell-centered finite-volume method based on a directional
five-cell stencil. W will denote the conservative variables
W = (�, �u, �v, �w, �E) in the following.

The RANS equations are solved with the Spalart–All-
maras turbulence model [43].

2.2 The immersed boundary method

The immersed boundary method described in this paper
relies on a ghost-cell direct forcing formulation, deriving
from the ideas of Fadlun et al. [19] and Tseng and Ferziger
[45]. The flow state values W are imposed at some cell cent-
ers located close to the obstacles to mimic a boundary condi-
tion taking into account for ghost cells within a body-fitted
approach.

These IB or target points are determined at the fringe
of solid points, lying inside obstacles. A hole-cutting algo-
rithm, previously used for overset grids [4, 27], is performed
to mark interior cells as solid points and exterior cells as
fluid points. As displayed in Fig. 1, the Cartesian domain is
separated into a solid region below the black curve defining
the obstacle and a fluid region above that black curve. As
our method relies on a second-order accurate finite-volume
solver with a five-point stencil, then the IB target cells are
defined by two layers of fringe points surrounding blanked
out points. These target cells can lie either inside the obsta-
cle or outside the obstacle. The solution W is reconstructed
at these IB target points using information in the fluid close
enough to the wall, at image points. Figure 2 displays the
case where target IB point A (green dot) is inside the obsta-
cle S. For a sake of simplicity, the image point B (in red
dot) can be represented as the symmetrical point of target
IB point A with respect to the solid boundary. For that pur-
pose, the distance to the obstacles and also the gradient of

(1)

⎧
⎪⎪⎨⎪⎪⎩

��

�t
+

�

�xj

�
�uj

�
= 0

��ui
�t

+
�

�xj

�
�uiuj

�
= −

�p

�xi
+

�

�xj

�
�ij
�

i = 1, 2, 3

��E

�t
+

�

�xj

�
(�E + p)uj

�
= −

�

�xj

�
Qj

�
+

�

�xj

�
�ijui

�
,

2421Engineering with Computers (2021) 37:2419–2437

1 3

the distance to get the normals �⃗n are required. As depicted
in Fig. 2, the image points do not usually match fluid points,
and thus, the solution W at point B is obtained by a second-
order interpolation using donor points D1 , D2 , D3 , D4 . Point
N is the resulting point on the obstacle for which the physical
boundary condition shall be recovered implicitly. This point
N is obtained by a projection following the normals �⃗n.

2.3 Types of immersed boundary conditions

The reconstruction at IB target points depends on the type
of the immersed boundary condition (IBC) defined locally
by the input surface.

2.3.1 Wall slip and no‑slip IBCs

As displayed in Fig. 2, the image point is not necessary the
mirror point of the IB target point with respect to the wall.
Thus, a linear reconstruction is applied to recover the bound-
ary conditions at the wall �⃗u = 0 for a no-slip boundary con-
dition and ���⃗un = 0 for a slip boundary condition.

In the case of a no-slip boundary condition where ‖ �⃗u‖ = 0
at the wall, a one-dimensional linear interpolation is applied
given �⃗u(B) as follows:

where ΔA,N and ΔB,N are the signed distance of IB target point
A and IB image point B to the wall point N, respectively.

In the case of a slip boundary condition, the velocity vec-
tor �⃗u can be decomposed in a normal and a tangential vector
as:

The normal velocity vector is obtained by a linear recon-
struction, similar to the one applied on �⃗u for the no-slip
boundary condition. The tangential velocity vector is then
obtained by �⃗ut(A) = �⃗u(B) − ‖ �⃗un(B)‖ �⃗n , where ‖ �⃗un(B)‖ is the
magnitude of the normal velocity at IB image point B and �⃗n
is the normal vector to the wall defined at point A.

Pressure and density gradients are assumed equal to zero
in the normal direction to the wall in the close vicinity to
the wall; hence: p(A) = p(B) and �(A) = �(B) . The pseudo-
viscosity �̃� of Spalart–Allmaras one-equation turbulence
model is recovered by the same linear interpolation, such
that �̃� is implicitly zero at the wall.

�⃗u(A) =
ΔA,N

ΔB,N

�⃗u(B),

�⃗u = �⃗ut + �⃗un.

Fig. 1 Five-point stencil involving IB target points for a viscous simulation: a with interior and b exterior IB target points

Fig. 2 2D sketch describing the present direct forcing IBM approach.
Solution W at IB target point A is built up using the corresponding
interpolated value of W at its image point B

2422 Engineering with Computers (2021) 37:2419–2437

1 3

2.3.2 Wall function for high‑Reynolds flow simulations

Our approach relies on an IBM approach on adaptive Car-
tesian grids, leading to prohibitive cell counts to resolve the
viscous stress in the boundary layer until the wall. Moreover,
this method is devoted to aeronautical configurations where
high Reynolds numbers are often considered. This issue is
a key-point addressed by many researchers in the field of
IBMs, using a wall function to represent the wall shear stress
in the case of viscous flow simulations at high Reynolds
numbers [7, 10, 12]. In our approach, Musker’s algebraic
wall function [31] is used to reconstruct the velocity at IB
target points, enabling to place first Cartesian cells near the
walls at y+ ≈ 100. Details on the wall function are provided
in Appendix A. Figure 3 displays the IB target point A and
its image point B, for which the variables WB are interpolated
from the computed cells. Instead of a linear reconstruction to
recover u = 0 at the wall, a wall function is applied between
the image point B and the wall. Similarly to the slip bound-
ary condition, the velocity vector is decomposed into a tan-
gential and a normal vector. The tangential velocity vector
at point A is obtained as follows:

where UP = ‖ �⃗ut(P)‖ denotes the magnitude of the tangential
velocity at any point P.

The velocity vector at point B is obtained by interpolation
from its neighbouring points. Knowing the modulus of the
tangential velocity at image point B, the friction velocity u�

�⃗ut(A) =
UA

UB

�⃗ut(B),

is obtained by a Newton–Raphson’s method on Musker’s
algebraic wall function. Then, y+ at point A is computed by

y+ =
ΔA,Nu�

�
 . The algebraic function (3) in Appendix A pro-

vides the modulus of the tangential velocity vector at point
A. The normal velocity at image point B is obtained by a
simple projection:

where �⃗n denotes the unit normal vector at the wall passing
through points A and B.

The tangential velocity at IB image point B can be
expressed by:

We could have imposed the flow to be locally parallel to
the wall, that means �⃗un = 0 , but this tends in practice to
delay the separation on massively separated flows. Thus, a
1D linear interpolation is performed to compute the normal
velocity:

The resulting three components of the velocity vector �⃗u at
point A are then obtained by summing the corresponding
normal and tangential vector components.

In the case of an RANS modeling using Spalart–Allmaras
model [43], the pseudo-viscosity �̃� must also be estimated at
IB target point A. Under the assumption of an equilibrium
boundary layer, �̃� can be defined as:

where fv1 is the damping function of Spalart–Allmaras
model, which is a nonlinear function of �̃� , and thus, �̃� is
also obtained by finding explicitly the root of the resulting
quartic equation (it appeared that the Newton’s method did
not always converge), as detailed in Appendix B.

2.3.3 Inflow and outflow boundary conditions

To perform numerous applications encountered in aeronaut-
ics, we have introduced other types of immersed boundary
conditions, such as an inflow or an outflow boundary condi-
tion; the outflow boundary condition consists in imposing a
static pressure field at the corresponding immersed bound-
ary; other values are extrapolated from the values at image
point B.

For the inflow boundary condition, the direction of the
mean flow �⃗d , the stagnation enthalpy and pressure are
defined. The velocity modulus and pressure are obtained by

�⃗un(B) = (�⃗u(B) ⋅ �⃗n) �⃗n,

�⃗ut(B) = (�⃗u(B) ⋅ t⃗)⃗t.

�⃗un(A) =
ΔA,N

ΔB,N

�⃗un(B).

�̃� =
1

fv1
𝜅 u𝜏y,

Fig. 3 Wall function for IBM: IB target point is A and corresponding
image point is B. In red dots, are IB target points around the obstacle;
in blue dots, their image points

2423Engineering with Computers (2021) 37:2419–2437

1 3

a resolution of non linear equations by a Newton’s method.
The density and temperature are then derived from all these
quantities.

2.3.4 Use of several types of immersed boundary
conditions for a given configuration

Several types of immersed boundary conditions can be
defined in a single computation, typically to perform a sim-
ulation around a model set in a wind tunnel. In that case, a
wall function is applied at the boundary of the model, a slip
boundary condition at wind tunnel walls, and an inflow and
an outflow boundary conditions at inlet and outlet, respec-
tively. The nature of the immersed boundary condition to
be applied is determined by the nature of the input surface
on which the IB target point A is projected. If the projection
point N lies on a surface tagged as an injection immersed
boundary, then the injection immersed boundary condition
is flagged for IB point A.

2.4 Immersed boundary wall post‑processing

Unlike body-fitted approaches, it is not possible to extract
the flow fields directly at wall boundaries. A reconstruction
must be performed to obtain some quantities such as skin
friction or loads and to visualize them on the obstacles. For
that purpose, the moving least squares (or MLS) method
is performed. It has been initially built up for the genera-
tion of surfaces [23] and has been derived to provide spatial
approximations for meshless methods [13]. In our approach,
the flow quantities (pressure, density, and friction velocity)
are extracted at IB wall points at a given iteration of the flow

solver. These variables are interpolated using a third-order
accurate MLS interpolation onto the vertices of a triangular
mesh describing the obstacles on which the skin quantities
are required. For each vertex VT of the tessellation, a point
cloud made by at least ten IB wall points surrounding the
vertex VT is used to project the solution on that vertex using
the MLS algorithm. Consequently, to introduce interpola-
tion errors due to strong disparities between the distribution
of IB wall points and the tessellation (e.g., an MLS stencil
ten times larger than the characteristics length of the target
triangle), the tessellation should be consistent with the Car-
tesian mesh discretization in the vicinity of the obstacles.
In a recent paper, Capizzano [11] proposed a method to
reconstruct the surface to alleviate that constraint and being
able to improve the estimation of wall quantities. A simple
example of the MLS reconstruction has been achieved for
the case of an IBM simulation around a 2D profile. In that
case, we can compare the solution at IB wall points directly
(represented by red dots in Fig. 4) and the solution obtained
after the MLS reconstruction onto the obstacle described by
the discretized curve representing the profile.

3 IBM on adaptive Cartesian grids

3.1 Motivation

Most immersed boundary methods available in the literature
rely on adaptive Cartesian grids: Cartesian embedded meth-
ods remove the bottleneck of the mesh generation, since the
adaptive Cartesian mesh generation can be easily automated
even for arbitrary complex geometries. To preserve the

Fig. 4 Comparison of the skin
pressure coefficient at IB wall
points (red dots) and recon-
structed by MLS method on
the original discretized profile
(green dots)

2424 Engineering with Computers (2021) 37:2419–2437

1 3

simplicity of a pure Cartesian approach, the Cartesian mesh
is defined down to the wall, relying on the IBM approach
to take into account for obstacles. Cartesian cells cannot
be refined down to the wall in general (except those cases
where the wall is aligned with an axis), so a wall function
is mandatory to compute high Reynolds number flows with
a reasonable cell count. The strength of the IBM approach
on adaptive Cartesian grids used in combination with a Car-
tesian CFD solver provides an automated and efficient tool
for the simulation of flows around complex geometries, pro-
vided that the IBM pre-processing is robust and fast.

3.2 Automatic IBM preprocessing for complex
geometries

3.2.1 Description of the workflow

The IBM preprocessing can be separated into the following
steps:

• The automatic Cartesian mesh generation from a discre-
tized CAD.

• The computation of information required for the IBC
reconstruction at each time step of the flow simulation.

First, a Cartesian mesh is generated automatically. This
mesh is made of a set of structured uniform grids. The dif-
ferent refinement levels are managed thanks to an octree
structure [33], enabling to prescribe the mesh resolution near
each boundary and within the fluid, to avoid coarsening in
the wake for instance. Ghost cells are explicitly built, such
that an overlapping exists between neighbouring grids, with
a minimum overlap. An example of a Cartesian mesh gener-
ated around a 2D profile is displayed in Fig. 5. To generate
that case, the input data are a 1D discretization of the profile
and the cell size required in its vicinity (equal to 0.1% of

the chord length here). The Cartesian mesh skeleton is a
quadtree mesh, as displayed in Fig. 5a. Each element of the
quadtree is then filled with a Cartesian grid of a constant
number of cells per direction (specified by the user), result-
ing in an adaptive Cartesian mesh displayed in Fig. 5b. As
shown on this figure, some grids that are entirely inside the
solid are removed, to reduce memory requirements. The
IBM preprocessing is then achieved, based on several geo-
metrical algorithms initially developed for overset grids [4].
Some of the steps are illustrated by the IBM preprocessing
of the previous NACA0012 configuration.

• Interior cells are marked using a blanking technique,
either using the X-ray technique introduced by Meakin
[27] or by a line-of-sight algorithm [4]. Figure 6 displays
the same Cartesian mesh, as displayed in Fig. 5b, but
where blanked points are not represented in the figure.

• the signed distance field is then computed;
• IB target points are marked at the fringe of blanked points

(green dots in Fig. 7a);

Fig. 5 Example of a mesh around an NACA0012 profile: a quadtree skeleton mesh in blue, profile in green; b resulting Cartesian mesh, made by
195,000 cells on 104 grids

Fig. 6 IBM preprocessing of an NACA0012 profile: blanking of cells
inside the obstacle

2425Engineering with Computers (2021) 37:2419–2437

1 3

• normal vectors at IB target points are computed as the
local gradient of the signed distance;

• IB target points are then projected onto the immersed
boundaries following the normal vectors, resulting in
boundary points (red dots in Fig. 7b);

• the location of image points is determined inside the fluid
region (blue dots in Fig. 7d);

• the interpolation data for image points are computed
(donor cell indices and weights);

3.2.2 Location of image points

The penultimate step, which consists in determining the
location of image points, needs a special care to ensure the
robustness of the method. First, the fluid variables are recon-
structed at iteration n at IB target points using information
at that iteration n at image points, and then, donor cell for
the interpolation of the flow variables at image point must
contain cells where the solution is already known at iteration
n. This means that the donor cell must not contain either IB

target points or blanked points. The image points must be
outside of a front bounded by the first computed cells at the
fringe of IB target points. Moreover, the image points must
be close to IB target points, especially for wall-modeled IBM
reconstruction, where the image points should be lying in
the inner layer of the boundary layer to be consistent with
Musker’s wall function. For simple convex geometries, such
as a cylinder or a 2D profile, the image points can be chosen
at a given distance from the wall boundaries. However, for
complex configurations, that distance cannot be prescribed
easily by an user (due to concavities mostly). As a conse-
quence, in our approach, the image points are obtained by a
projection following normals of the IB target points on the
front of first valid donor cells, which defines a watertight
surface mesh around the obstacles.

3.2.3 Performances

The IBM preprocessing can be used in a parallel environ-
ment and takes advantage of the Cartesian topology of grids.

Fig. 7 Closeup view near the leading edge of an NACA0012 profile:
a IB target points are represented by red dots and the profile by the
grey curve; b green dots correspond to the IB wall points, resulting
from the projection of IB target points following normals onto the

profile; c front of first computed cells in blue; dblue dots are the IB
image points obtained by projection of target points following nor-
mals onto the front

2426 Engineering with Computers (2021) 37:2419–2437

1 3

First, donor cell search relies on this topology: the image
point of coordinates (x, y, z) can be immediately located
within a Cartesian cell, knowing the coordinates (x0, y0, z0)
of the starting point of the Cartesian grid, the spacing
(hx, hy, hz) , and the number of points (ni, nj, nk) in the three
directions. Let us denote the IB receptor grid a Cartesian
grid containing IB target cells. The grid containing the IB
image points is denoted IB donor grid. In some cases, the
IB donor grid is not necessarily the same as the IB receptor
grid (since some IB image points might not fall on their IB
receptor grid) and they may not be on the same processor
too. Thus, the data to be sent to the receptor processor (con-
taining coordinates of IBM image points) from the processor
containing the candidate IB donor grid are only the coordi-
nates of the first Cartesian mesh point (x0, y0, z0) , the spac-
ing (hx, hy, hz) , and the three mesh dimensions (ni, nj, nk)
describing the candidate donor grids.

In addition, tests to determine whether a grid is a candi-
date IB donor grid for an IB receptor grid are simple and
fast, since the tests are intersections of bounding boxes,
which are also simplified for Cartesian grids.

Let us denote NP the number of MPI processes and NT
the number of OpenMP threads. The octree skeleton mesh
is initially built on all the NP processors starting from the
triangular meshes describing the immersed boundaries and
the cell spacing required in their vicinity. The mesh is then
split into NP parts. Only the ith sub-part of the octree is kept
on processor of rank i. Since the octree mesh is the skeleton
of block-structured Cartesian grids, less memory is required
to generate that mesh: to generate a 1 billion point Carte-
sian mesh with 20 cells per direction in each elementary
Cartesian grid, the octree mesh does not exceed 125,000
elements. This has the advantage to balance the octree with
a minimum effort.

The subset of the octree mesh on a given processor rank
i is used to generate local Cartesian grids: in our approach,
introduced in [33], the HEXA mesh elements are subdi-
vided into vmin cells, each element resulting in an elementary
structured Cartesian grid. Elementary grids are then merged
using Rigby’s algorithm [39], adapted for Cartesian grids.
The cell count on all the processors is roughly the same,
ensuring a good balancing between the different processors.

Since surface meshes describing the obstacles are loaded
on all the processors, then the blanking and distance field
computation can be achieved independently; the identifica-
tion of target points are also local to the processors. The
front of first computed cells is built on Cartesian grids
defined locally, and hence, a gathering of the front is per-
formed on all the processors, such that the IB image points
can be projected on the front safely.

Interpolation data for the IB image points are computed
locally on the receptor processor, as described above.

An evaluation of the performances of the IBM preproc-
essing has been performed. The chosen geometry is a sim-
plified landing gear [25], where the diameter of the wheels
is dimensioned to D = 1. The triangular mesh defining the
landing gear surface is made by 141,696 triangles. Perfor-
mances are evaluated on Intel Xeon Broadwell partition of
the Sator cluster of ONERA (E5-2680v4, 2.4 GHz, 35 MB
cache), with 28 cores of 4 GB per node.

A strong scaling evaluation for the IBM preprocessing
is achieved on a mesh made of 717 million points, where
the number of cores varies from 28 to 896 and the problem
requires at least 117 GB for the 28-core test. Figure 8a rep-
resents the elapsed time versus the number of cores for that
case. The orange curve describes the elapsed time for the
whole IBM preprocessing (including the generation of the
717 million point mesh).

Fig. 8 Performance study of the IBM preprocessing for a landing gear configuration

2427Engineering with Computers (2021) 37:2419–2437

1 3

As the number of cores is doubled, the elapsed time is
reduced by 12% from 28 to 56 cores, 23% from 56 to 112,
44% from 112 to 224 cores, 27% from 224 to 448 cores, and,
finally, 8% from 448 to 896 cores. The 112-core case (which
is the most likely value to perform then the CFD computa-
tion) requires 16 min to generate the mesh and to perform
the IBM preprocessing.

On this plot are also represented the required elapsed
times to compute the distance for the slowest and fastest pro-
cessors (blue and green lines, respectively), showing strong
discrepancies between them. The same observation can be
done for the weak-scaling study (Fig. 8b). However, this
plot highlights the fact that the elapsed time for the full pre-
processing is roughly 20 min whatever the size of the whole
problem provided 5 million points are defined per core.

It can be noticed that for this test case, the wall-distance
computation represents a significant part of the elapsed time
of the whole IBM preprocessing (from 90% for the smallest
problem to 43% for the biggest problem). The current algo-
rithm consists of an orthogonal projection onto the tessella-
tion defining the immersed boundaries. The search for the
candidate triangle is preconditioned by a k–d tree [5] and a
boxtree [3], but these preconditioning trees are defined on
each processor for the whole tessellation. Consequently, the
distance field computation relies strongly on the cell count
on the surface meshes despite the number of Cartesian grid
points is constant on a processor as the number of processors
increases. In addition, the slowest processors for the distance
computation are those containing Cartesian grids that are the
furthest from the immersed boundary, due to the fact that
the number of candidate triangles for the projection is much
higher for further points. As the processors that are the slow-
est regarding the distance are not involved in computing the
location of IB points and interpolation data for image points,
the orange curve is not the sum of the red and green curves.

Future work will consist in partitioning the surfaces onto
the processors and, thus, the corresponding preconditioning
trees. Another idea is to solve an Eikonal equation, using, for
instance, the Fast Iterative Method [22] or the Fast Marching
Method [42].

IBM preprocessing is achieved by an assembly of Cas-
siopee functions available in several modules (see reference
[4] for a general description of Cassiopee or the website [1]).

3.3 IBM simulations using a dedicated Cartesian
CFD solver

3.3.1 FastS HPC solver

The ONERA HPC FastS solver [2] is used to solve the
compressible Navier–Stokes equations using a finite-vol-
ume method. It contains a structured multiblock solver
that can solve RANS, LES, DNS, and steady and unsteady

simulations. It is especially efficient to deal with unsteady
simulations (see [16]), since it enables to update 10 mil-
lion cells per second per core on a single Intel Broadwell
core. This means that 300 million cells can be updated per
second on a 28-core node. FastS contains a solver dedicated
to Cartesian grids, on which we rely on to perform IBM
simulations. Despite the relatively high cell count obtained
by the block-structured Cartesian mesh generation in com-
parison with a classical body fitted unstructured approach, a
dedicated Cartesian solver requires much less memory and
CPU time than a structured curvilinear solver and also an
unstructured solver. Here, the Cartesian solver is 2.5 more
efficient in terms of CPU time and memory than the struc-
tured curvilinear solver using the same numerical methods.

FastS solver relies on an hybrid MPI/OpenMP frame-
work, where the memory is distributed (by distributing CFD
grids) on the processors at high level, i.e., between nodes,
whereas multithreading is managed via OpenMP within a
given node. For our purpose, where Cartesian grids are uni-
form and containing a few cells in comparison with grids
resolving boundary layers accurately, the N Cartesian grids
are distributed between the NT cores using OpenMP.

3.3.2 Numerical methods

For RANS computations, two spatial schemes are con-
sidered, depending on the flow regime: the Roe-MUSCL
scheme [40] or an AUSM scheme [26], which is based on
a modification of the AUSM+(P) scheme (see Edwards
and Liou [18]), which is second-order accurate. Jacobian
approximations are those proposed by Jameson and Yoon
[21] and Coakley [14], whereas the linear system is solved
by the LU-SGS method [21]. For LES computations, an
hybrid centered/upwind scheme [26] is retained to manage
a good compromise between robustness and accurate simula-
tion of the turbulent small eddies [24], whereas the temporal
integration is achieved by a three-step Runge–Kutta explicit
scheme, or by a second-order implicit Gear scheme with
local Newton sub-iterations [17].

The steady and unsteady RANS equations are solved
using Spalart–Allmaras one-equation turbulence model [43].
For large Eddy simulations (LES), the filtered equations are
obtained using the formalism developed by Vreman [46].
No subgrid-scale model is used, so it is an implicit LES
simulation (ILES).

3.3.3 Update of IBM points during the CFD simulation

The IBM target points must be updated at each sub-step of
the time integration. FastS solver updates first fluid cells on
each Cartesian grid at time sub-step n, and then, IB target
cells are updated, and finally, transfers between neighbour-
ing grids are performed to update the ghost cells. For RANS

2428 Engineering with Computers (2021) 37:2419–2437

1 3

and LES IBM simulations, Musker’s wall model is applied
at IB target cells only.

MPI transfers between nodes are achieved in a single step:
a global transfer to update all the target points and the ghost
cells. This is possible, because the IBM pre-processing pre-
vents from IB image points to be interpolated by ghost cells
(which are explicitly defined in the Cartesian mesh).

In practice, only fluid points are computed by FastS CFD
solver, transfers between abutting grids and IBM updates are
performed by a library of Connector module of Cassiopee
package [4]. Both FastS and Cassiopee modules handle the
same CGNS/Python tree in memory [36, 41]; in other words,
arrays defining the CFD simulation (metrics, flow fields) are
shared in memory without copy. This is made possible by
the fact that ghost cells are explicitly built during the mesh
generation, justifying the use of an overset Cartesian mesh,
with minimum overlapping.

4 Numerical results

A wide range of validations and applications can be found
in [38], showing the range of possibilities, from Euler to
LES simulations, from subsonic to hypersonic flows on two-
dimensional academic configurations and onto geometrically
complex configurations. Here, we focus on two applications:
the first one is a tripod mount into ONERA S1MA wind-
tunnel, to assess the capability of our IBM approach to per-
form RANS simulations on a complex configuration within
a day. The other test case that has been chosen is an unsteady
simulation of a less complex geometry, but where the flow
features are complex, to enhance the HPC capabilities of the
whole workflow and especially of the flow solver. Despite
several imperfections of the present IBM approach on Car-
tesian grids to capture accurately the physics, especially the
acoustics, these first results are promising.

4.1 RANS simulation of the S1MA wind tunnel
with a tripod

The test case considered here is a simulation of the ONERA
S1MA wind tunnel with a geometrically complex mounted
system. This configuration has already been studied numeri-
cally and compared with experimental data using a struc-
tured body-fitted approach by Hantrais-Gervois et al. [20],
to assess the capability of RANS simulations to model the
flow physics of an empty wind tunnel with a closed test
section. Here, our objective is to demonstrate the capability
of the IBM approach on Cartesian adaptive grids to obtain
accurate results at low computational cost. In addition, this
test case is geometrically complex and makes use of different
immersed boundary conditions (injection, outlet pressure
condition, and wall-modeled immersed boundary).

The generated mesh is coarse and is made of 35 mil-
lion Cartesian cells, as displayed in Fig. 9. A steady RANS
simulation using Spalart–Allmaras turbulence model is per-
formed. Musker’s wall function is applied at IB target points
to reconstruct the velocity and wall stress. An injection and
imposed pressure immersed boundary conditions are applied
at inlet and outlet borders. For that purpose, the triangulated
surface defining the wind tunnel is closed; Cartesian grids
that lie outside of this closed surface are blanked out.

The target Mach number is 0.8; the outlet pressure is
modified to reach a Mach number of 0.79. A comparison
between the solution obtained with the IBM on Cartesian
grids and the structured body-fitted simulation with elsA
software [9] is achieved described in detail in [20]. Mach
number contours compare well on two axial sections (at
y=0 and z=0, Fig. 10), the slight differences being due
to the fact that the actual Mach number is slightly differ-
ent. Figure 11 displays the pressure evolution along the
axis of the wind tunnel and on the tripod, showing a good
agreement between the IBM simulation and the reference

Fig. 9 S1MA wind tunnel with a tripod

2429Engineering with Computers (2021) 37:2419–2437

1 3

Fig. 10 Comparison of Mach number contours (Cartesian IBM solution versus structured body-fitted solution

Fig. 11 Comparison of the pressure along the axial direction on the wind tunnel; dashed lines denote the lower side of the tripod or of the wind
tunnel. Courtesy of Aurélia Cartieri, ONERA/DS for elsA results

2430 Engineering with Computers (2021) 37:2419–2437

1 3

body-fitted simulation. However, some discrepancies can
be observed at the junction between the upper side of the
tripod and the top of the wind tunnel (Fig. 11b): they are
probably due to the fact that the IBM Cartesian mesh is
too coarse in that region. Consequently, as the boundary
forms a 45◦ angle with the Cartesian axis, the fact that the
mesh is not well resolved in that region leads to a stair-
step reconstruction at tripod wall boundaries. Figure 12
displays a comparison of the isentropic Mach number on
the wind tunnel walls between experimental results and
IBM results. The oscillations observed in experiments,
which are due to the waviness of the walls, as explained

by Hantrais-Gervois et al. [20], are well captured by the
IBM simulation.

4.2 Unsteady‑flow simulation around a high‑lift
airfoil

The test case is an extruded three-element high-lift airfoil
with deployed slat and flap. This kind of configuration is of
major interest for acoustics, since high-lift devices deployed
on aircraft to increase lift at low speed are responsible for a
significant part for the airframe noise during the approach
phase. An experimental campaign has been conducted in

Fig. 12 Symbols denote the experimental results and solid lines the IBM results. Wind tunnel walls in colored lines and tunnel centerline in
black. Courtesy of Aurélia Cartieri, ONERA/DS

2431Engineering with Computers (2021) 37:2419–2437

1 3

the framework of the joint ONERA/DLR LEISA2 project;
experimental data are also provided within the AIAA BANC
workshops to validate the numerical methods applied for
aerodynamics and acoustics analyses. A reference study is
the LES simulation of Terracol and Manoha [44] on a 2.6
billion body-fitted mesh. Six million hours of CPU were
required on 4096 processors to perform this simulation. This
simulation has also been performed by LBM solvers using
an IBM approach on Cartesian grids.

The aim of the simulation presented here is to focus only
on the aerodynamics phenomena and not on the acoustics,
since the way which the information is transferred from a
grid of a level l to a grid of a different level (twice as coarse)
leads to small perturbations that are a major issue for a far-
field acoustics analysis.

4.2.1 Description of the test‑case

The reduced geometry configuration is used here (F16). The
retracted wing chord length is 300 mm. The slat and flap are
deployed, respectively, of 27.834◦ and 35, 011◦ . The flow
conditions are M∞ = 0.178 , � = 6.15◦ and a Reynolds num-
ber of Re = 1.23 million, based on the chord. The wing span
is chosen the same as the reference CFD study, that is 0.25 c.

An IBM simulation with FastS solver is performed on a
set of Cartesian grids using Musker’s wall function applied
at IB target points. The mesh is composed by 660 million
points, with an adapted spatial resolution in the vicinity of
the flap and the slat and in their cavity and wake regions,
with a smallest cell size equal to 1.5 10−4 c . The external
border of the computational domain is located at 50 c. The
mesh is represented on different views displayed in Fig. 13.

The LES simulation has been initialized by an RANS
simulation to get rid of transient phenomena. The spatial
scheme is the modified AUSM scheme [26], to manage a
good compromise between robustness and accurate simula-
tion of the turbulent small eddies [24], whereas the temporal
integration is an explicit three-step Runge–Kutta scheme,
with a global time step Δt = 0.16 μ s. The simulation has
been performed on 224 Intel Broadwell cores of ONERA
SATOR cluster, for a CPU cost of 0.4 μ s per point per itera-
tion per core. The flow quantities have been averaged on a
period of 80 ms.

4.2.2 Results

Figure 14 displays the density gradient resulting from
the LES simulation using the wall-modeled IBM. The

Fig. 13 Views of the IBM Cartesian mesh around the three-element airfoil

2432 Engineering with Computers (2021) 37:2419–2437

1 3

comparison with the reference simulation of Terracol and
Manoha shows that the IBM approach enables to capture the
main features of this flow: recirculation bubble in slat and
flap cavities, turbulent boundary layers, wakes. This is also
assessed by the comparison of the averaged velocity between
the reference LES and the IBM simulation and experimental
data, as displayed in Fig. 15. The location of recirculation
bubble in cavities is well captured. Besides, the simulated
flows in the vicinity of the suction side of the flap differ from
the experiments, where a strong separation occurs unlike the
LES simulations. Other wind tunnel tests did not revealed
that separation and Terracol [44] demonstrated that this dif-
ference was due to the influence of the wind tunnel walls.

Two rakes of probes are defined in the fluid, as displayed
in Fig. 16. At these locations, the velocity and velocity fluc-
tuation profiles are compared against the experiment and
the reference LES body-fitted simulation, as displayed in
Fig. 17, showing a good agreement between both simula-
tions and also with the experimental results.

5 Conclusions

In this article, we have presented an immersed bound-
ary method (IBM) for compressible flow simulations to
evaluate the aerodynamics of complex geometries. Our

approach consists of modifying the flow variables at some
IB target points in the vicinity of the obstacles. To take
a full advantage of this approach, where the mesh does
not need to conform to the obstacles, we use adaptive
structured Cartesian grids, in combination with a dedi-
cated HPC Cartesian solver, taking advantage of their low
memory and CPU time requirements and the automation
of the mesh generation and adaptation. This enables us
to generate a 1.5 billion node mesh and perform the IBM
preprocessing within 18 min on 12 × 28 cores, requiring a
maximum of 360 GB of memory.

The workflow that is built up has demonstrated to be fast,
robust, and automated, starting from a discretization of the
obstacles only. Consequently, CFD simulations around com-
plex geometries can be performed within a day.

Several types of immersed boundaries have been devel-
oped, such that inviscid or viscous wall boundaries can be
reconstructed, but also injection and outlet boundaries can
be defined as immersed boundaries, provided that the cor-
responding triangulated surface is defined as input. Turbu-
lent flow simulations are performed with Reynolds-average
Navier–Stokes equations using Spalart–Allmaras model or
with large-eddy simulation approach, in combination with
an algebraic wall function to solve high Reynolds number
flows, to mitigate the cell count resulting from the isotropic
nature of Cartesian cells.

Fig. 14 Instant views of the flow represented by the density gradient: comparison between the wall-resolved LES (a) and the IBM simulations
(b–d)

2433Engineering with Computers (2021) 37:2419–2437

1 3

The first application shown (the tripod mounted in
ONERA-S1MA wind tunnel) demonstrates the robustness
and automation of the approach developed here to perform
an RANS simulation of a complex configuration, involv-
ing several types of immersed boundaries. Results compare
well with a structured body-fitted approach achieved with
elsA solver [9]; this demonstrates that the method is a good

candidate to calibrate quickly wind tunnel configurations,
with no meshing effort.

The second application is an unsteady simulation of the
flow around a high-lift airfoil. Only aerodynamics results
are evaluated here and compared with experiments and a
reference LES simulation on a structured body-fitted mesh
by Terracol [44]. Acoustics analysis is not performed here,

Fig. 15 Views of the averaged flow: isocontours of the velocity amplitude and streamlines; comparison between experiments (left-hand side), the
reference wall-resolved LES simulation (center), and the IBM LES simulation (right-hand side)

2434 Engineering with Computers (2021) 37:2419–2437

1 3

since no specific treatment is achieved yet when crossing
an interface from a fine grid to a coarser grid (twice as
coarse here), leading to reflections of unsupported struc-
tures back into the finer grid. This is one subject on which
we will focus on in the next years.

Future work will also concern the improvement of the
wall modeling using wall functions, since the wall function
that we consider here can be applied on attached flows.

Another topic is to extend the method to bodies in rela-
tive motion, aiming at simulating flows around configura-
tions with rotors.

Acknowledgements We thank Aurélia Cartieri from the Wind Tunnel
Division at ONERA for providing us the mounted tripod configuration
and her elsA results for comparisons. We are grateful to Nicolas Alferez
for his involvement in improving the performances of FastS solver and
also Marc Terracol for our fruitful exchanges concerning wall models
and the LEISA2 configuration.

Wall functions

Figure 18 shows a typical mean velocity profile in wall
units u+ within the inner layer of a turbulent boundary
layer. This velocity profile can be split into three portions
within this inner layer:

• The viscous sub-layer, for y+ ≤ 5 , where dissipation
and viscous diffusion dominate. This yields the linear
behavior: u+=y+.

• the log-layer, for y+>30, where there is an equilibrium
between turbulence production and dissipation. This
region constitutes the junction between the inner and
upper layers.

• The buffer layer, for 5 < y+ ≤ 30 , joining the two previ-
ously defined layers.

The most common function to describe the evolution of
the velocity within an equilibrium turbulent boundary layer
(zero-pressure gradient) is the log law of the wall defined as:

where u+ =
u

u�
 and y+ =

�w y u�

�w

 , with � = 0.41 is the Vón

Kármán constant and � = 5.2 ; u� denotes the friction veloc-
ity; �w and �w denote the values of density and viscosity at
the wall, assumed equal to their values at corresponding
image points B.

However, the limitation of the log law is that it is not able
to model the inner and buffer layers of the boundary layer,
which is critical in our approach, since the dimensionless wall
distance y+ cannot be controlled at image points. Several alge-
braic wall functions have been developed to bridge the viscous
sub-layer and the log layer: we can cite the law derived by
Spalding, by finding a power-series for y+ = f (u+) or the one
proposed by Musker [31], which is very similar (as shown in
Fig. 18) but easier to use, since it explicitly provides an expres-
sion for the velocity for the point to be addressed. Similarly to
the log law, it is based on considerations of the boundary-layer
equations. By blending the log layer and the viscous sub-layer
asymptotic trends of the turbulent viscosity through an inter-
polation function, integration of the momentum balance yields
the following formula:

It must be noted that expressions (2) and (3) involve the
skin friction velocity u� , which is unknown. The first step of
the process is, therefore, to estimate its value using a New-
ton–Raphson iterative algorithm.

(2)u+ =
1

�
log(y+) + �,

(3)

u
+ = 5.424 arctan

[
2y+ − 8.15

16.7

]

+ log

[(
y
+ + 10.6

)9.6
(
y+2 − 8.15 y+ + 86

)2
]
− 3.52.

Fig. 16 Probe locations

2435Engineering with Computers (2021) 37:2419–2437

1 3

Determination of the pseudo‑viscosity
of Spalart–Allmaras at IB target point

In the Spalart–Allmaras model, the turbulent viscosity can
be expressed as follows:

where:

(4)𝜇t = 𝜌�̃�fv1,

Cv1 is a constant and 𝜒 =
𝜌�̃�

𝜇
. Hence:

The mixing length assumption can be expressed by:

(5)fv1 =
�3

�3 + C3
v1

;

(6)𝜈t = �̃�fv1.

Fig. 17 Comparison of velocity profiles and velocity fluctuations at probes 04-2 and 18-3. IBM simulation is compared against the reference
LES simulation, PIV, and LDV data

2436 Engineering with Computers (2021) 37:2419–2437

1 3

with the Van Driest damping term D, such that A+ being a
constant, chosen equal to 19:

The pseudo-viscosity �̃� must be reconstructed at IB target
point A. The friction velocity u� is known and has been com-
puted by the algebraic wall function, and y and D are known
and � is the Von Kármán constant, equal to 0.4. We have to
solve �̃� solution of:

that is:

To avoid ill-conditioned problems, the variable that is actu-
ally solved is �̃�

𝜈
 . This leads to solve:

with:

It is possible to solve this equation explicitly. The follow-
ing variable change y = x −

a

4
 is performed to remove the

monomial of degree 3, leading to an equation of the form
y4 + py2 + qy + r = 0 , which is solved by Ferrari’s method.
Note that if Eq. (11) was obtained from variable x = �̃� , q
would be very close to zero. Or if it is zero, the equation to
be solved would be of the form y4 + py2 + r = 0 , with dif-
ferent solution from the quartic equation above.

(7)�t = �u�yD,

(8)D = [1 − exp(−
y+

A+
)]2.

(9)�̃�fv1 = 𝜅u𝜏yD;

(10)�̃�4 − 𝜅u𝜏yD�̃�
3 − 𝜅u𝜏yD

𝜇3

𝜌3
C3
v1
= 0.

(11)x4 − ax3 − b = 0,

(12)x =
�̃�

𝜈
;a =

𝜅u𝜏yD

𝜈
;b =

𝜅u𝜏yD

𝜈
C3
v1
= aC3

v1
.

Ferrari’s method consists in finding a factorization of
two polynomials of degree 2. The main difficulty lies in the
fact that four solutions of this equation are possible, and
thus, the wrong candidates (especially the complex ones)
shall be removed smartly. The monomial of degree 4 is first
replaced by the polynomial (y2 + �2)2 − 2� y2 − �2 . This
leads to the resolution of a cubic on � , and then, the solution
�0 is replaced in the quartic on y. This results in a factoriza-
tion of two polynomials of degree 2. The roots are explicitly
obtained, and then, x is derived.

References

 1. http://elsa.onera .fr/Cassi opee/Userg uide.html. Accessed 5 Feb
2020

 2. https ://w3.onera .fr/FAST. Accessed 5 Feb 2020
 3. Barequet G, Chazelle B, Guibas LJ (1996) BOXTREE: a hierar-

chical representation for surfaces in 3D. Comput Graph Forum 15
 4. Benoit C, Péron S, Landier S (2015) Cassiopee: a CFD pre- and

post-processing tool. Aerosp Sci Technol 45:272–283
 5. Bentley JL (1975) Multidimensional binary search trees used for

associative searching. Commun ACM 18(9):509–517
 6. Berger MJ, Aftosmis MJ (2012) Progress towards a Cartesian

cut-cell method for viscous compressible flow. AIAA paper
2012-1301

 7. Berger MJ, Aftosmis MJ (2017) An ODE-based wall model for
turbulent flow simulations. AIAA J 2:1–15

 8. Brehm C, Barad MF, Kiris CC (2016) Open rotor computational
aeroacoustic analysis with an immersed boundary method. In:
54th AIAA aerospace sciences meeting, p 0815

 9. Cambier L, Heib S, Plot S (2013) The ONERA elsA CFD soft-
ware: input from research and feedback from industry. Mech Ind
14(03):159–174

 10. Capizzano F (2011) Turbulent wall model for immersed boundary
methods. AIAA J 49(11):2367–2381

 11. Capizzano F (2018) Automatic generation of locally refined Car-
tesian meshes: data management and algorithms. Int J Numer
Methods Eng 113(5):789–813

 12. Chen ZL, Hickel S, Devesa A, Berland J, Adams NA (2014) Wall
modeling for implicit large-eddy simulation and immersed-inter-
face methods. Theoret Comput Fluid Dyn 28(1):1–21

 13. Cheng Z-Q, Wang Y-Z, Li Bao, Xu Kai, Dang Gang, Jin S-Y
(2008) A survey of methods for moving least squares surfaces. In:
Proceedings of the fifth Eurographics/IEEE VGTC conference on
point-based graphics, p 9–23

 14. Coakley TJ (1985) Implicit upwind methods for the compressible
Navier–Stokes equations. AIAA J 23(3):374–380

 15. Coirier WJ, Powell KG (1996) Solution-adaptive Cartesian cell
approach for viscous and inviscid flows. AIAA J 34(5):938–945

 16. Dandois J, Mary I, Brion V (2018) Large-eddy simulation of lami-
nar transonic buffet. J Fluid Mech 850:156–178

 17. Daude F, Mary I, Comte P (2014) Self-adaptive Newton-based
iteration strategy for the les of turbulent multi-scale flows. Comput
Fluids 100:278–290

 18. Edwards JR, Liou M-S (1998) Low-diffusion flux-splitting meth-
ods for flows at all speeds. AIAA J 36(9):1610–1617

 19. Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J (2000)
Combined immersed-boundary finite-difference methods for
three-dimensional complex flow simulations. J Comput Phys
161(1):35–60

Fig. 18 Asymptotic behaviors of an equilibrium boundary layer

http://elsa.onera.fr/Cassiopee/Userguide.html
https://w3.onera.fr/FAST

2437Engineering with Computers (2021) 37:2419–2437

1 3

 20. Hantrais-Gervois J-L, Cartieri A, Mouton S, Piat J-F (2010)
Empty wind tunnel flow field computations. Int J Eng Syst Model
Simul 2(1–2):46–57

 21. Jameson A, Yoon S (1987) Lower-upper implicit schemes with
multiple grids for the euler equations. AIAA J 25(7):929–935

 22. Jeong W-K, Whitaker RT (2008) A fast iterative method for Eiko-
nal equations. SIAM J Sci Comput 30(5):2512–2534

 23. Lancaster P, Salkauskas K (1981) Surfaces generated by moving
least squares methods. Math Comput 37(155):141–158

 24. Laurent C, Mary I, Gleize V, Lerat A, Arnal D (2012) DNS data-
base of a transitional separation bubble on a flat plate and applica-
tion to RANS modeling validation. Comput Fluids 61:21–30

 25. Manoha E, Bulté J, Caruelle B (2008) LAGOON: an experimental
database for the validation of CFD/CAA methods for landing gear
noise prediction. In: 14th AIAA/CEAS aeroacoustics conference,
AIAA paper 2008-2816

 26. Mary I, Sagaut P (2002) Large Eddy simulation of flow around an
airfoil near stall. AIAA J 40(6):1139–1145

 27. Meakin RL (2001) Object X-rays for cutting holes in composite
overset structured grids. AIAA paper 2001-2537

 28. Mittal R, Dong H, Bozkurttas M, Najjar FM, Vargas A, von Loeb-
becke A (2008) A versatile sharp interface immersed boundary
method for incompressible flows with complex boundaries. J
Comput Phys 227(10):4825–4852

 29. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu
Rev Fluid Mech 37:239–261

 30. Mochel L, Weiss P-E, Deck S (2014) Zonal immersed boundary
conditions: application to a high-Reynolds-number afterbody flow.
AIAA J 52(12):2782–2794

 31. Musker AJ (1979) Explicit expression for the smooth wall velocity
distribution in a turbulent boundary layer. AIAA J 17(6):655–657

 32. Nakahashi K (2011) Immersed boundary method for compress-
ible Euler equations in the Building-Cube Method. AIAA paper
2011-3386

 33. Péron S, Benoit C (2013) Automatic off-body overset adaptive
Cartesian mesh method based on an octree approach. J Comput
Phys 232(1):153–173

 34. Peskin CS (1972) Flow patterns around heart valves: a numerical
method. J Comput Phys 10(2):252–271

 35. Peskin CS (2002) The immersed boundary method. Acta Numer
11:479–517

 36. Poinot M (2010) Five good reasons to use the hierarchical data
format. Comput Sci Eng 12(5):84–90

 37. Beyer RP, LeVeque RJ (1992) Analysis of a one-dimensional
model for the immersed boundary method. SIAM J Numer Anal
29(2):332–364

 38. Renaud T, Benoit C, Péron S, Mary I, Alferez N (2019) Valida-
tion of an immersed boundary method for compressible flows. In:
AIAA Scitech 2019 Forum, AIAA paper 2019–2179

 39. Rigby D L, Steinthorsson E, Coirier WJ (1997) Automatic block
merging methodology using the method of weakest descent.
AIAA paper 97-0197

 40. Roe PL (1981) Approximate Riemann solvers, parameter vectors,
and difference schemes. J Comput Phys 43(2):357–372

 41. Rumsey CL, Wedan B, Hauser T, Poinot M (2012) Recent updates
to the CFD general notation system (CGNS). In: 50th AIAA aero-
space sciences meeting, vol 10, p 6–2012

 42. Sethian JA (1999) Fast marching methods. SIAM Rev
41(2):199–235

 43. Spalart PR, Allmaras SR (1992) A one-equation turbulence model
for aerodynamic flows. AIAA J 94:20

 44. Terracol M, Manoha E (2014) Wall-resolved large eddy simula-
tion of a highlift airfoil: detailed flow analysis and noise genera-
tion study. In: 20th AIAA/CEAS aeroacoustics conference, AIAA
paper 2014-3050

 45. Tseng Y-H, Ferziger JH (2003) A ghost-cell immersed bound-
ary method for flow in complex geometry. J Comput Phys
192(2):593–623

 46. Vreman AW (1995) Direct and large-eddy simulation of the com-
pressible turbulent mixing layer. Universiteit Twente

 47. Zhu WJ, Behrens T, Shen WZ, Sørensen JN (2012) Hybrid
immersed boundary method for airfoils with a trailing-edge flap.
AIAA J 51(1):30–41

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	An immersed boundary method on Cartesian adaptive grids for the simulation of compressible flows around arbitrary geometries
	Abstract
	1 Introduction
	2 Description of the immersed boundary method
	2.1 Governing equations
	2.2 The immersed boundary method
	2.3 Types of immersed boundary conditions
	2.3.1 Wall slip and no-slip IBCs
	2.3.2 Wall function for high-Reynolds flow simulations
	2.3.3 Inflow and outflow boundary conditions
	2.3.4 Use of several types of immersed boundary conditions for a given configuration

	2.4 Immersed boundary wall post-processing

	3 IBM on adaptive Cartesian grids
	3.1 Motivation
	3.2 Automatic IBM preprocessing for complex geometries
	3.2.1 Description of the workflow
	3.2.2 Location of image points
	3.2.3 Performances

	3.3 IBM simulations using a dedicated Cartesian CFD solver
	3.3.1 FastS HPC solver
	3.3.2 Numerical methods
	3.3.3 Update of IBM points during the CFD simulation

	4 Numerical results
	4.1 RANS simulation of the S1MA wind tunnel with a tripod
	4.2 Unsteady-flow simulation around a high-lift airfoil
	4.2.1 Description of the test-case
	4.2.2 Results

	5 Conclusions
	Acknowledgements
	References

