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Abstract
Fractal–fractional differential and integral operators have been recognized recently as superior operators as they are able to 
depict physical problem with both memory effect and self-similar properties. Therefore, differential and integral equations 
constructed from these new operators are of great importance. In this paper, we extend the method of predictor–corrector 
to obtain numerical solution of non-linear differential and integral equations. Some examples are presented to illustrate the 
efficiency of the new method for solving these new equations.
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1 Introduction

Due to the capability of differential and integral operators to 
model different real world problems, researchers in the past 
years have devoted their attention in suggesting new differ-
ential and integral operators that could possibly be used in 
terms of modelling more complex real-world problems. In the 
last decades, quite a few have been suggested, fractional dif-
ferential and integral operators with power law kernel, which 
was the first for non-local operators, fractional differential 
and integral operators with exponential decay law, which 
was suggested by Caputo and Fabrizio, fractional differen-
tial and integral operators with the generalized Mittag-Leffler 

function, which was suggested by Atangana and Baleanu 
[1–7]. For each one of these operators, their associate vari-
able orders have been suggested as they were found suitable 
for modelling anomalous problems. While these differential 
and integral operators with their associated variable order 
have been in great results in the last decades, researchers have 
found many physical problems that could not be modelled by 
them. For instance, one can find in nature real-world prob-
lems exhibiting either power law and self-similar behavior, 
or exponential decay with self-similar behavior or even more 
complicate one, crossover and self-similar behavior [8–18]. 
None of the above-mentioned differential and integral oper-
ators can be used for these purposes. Until very recently, 
Atangana suggested new differential and integral operators 
where the differential operator is the convolution of the frac-
tal derivative with fractional kernel, including power law, 
exponential decay law, and the generalized Mittag-Leffler 
function. Due to the novelty and their capability of modelling 
complex real-world problems, new numerical scheme was 
needed to handle these new equations. New operators called 
as fractal–fractional differential and integral operators were 
introduced by Atangana in [19]. This new operators aim to 
attract more non-local natural problems that display at the 
same time fractal behaviors. In this paper, the corresponding 
predictor–corrector will be suggested.

Definition 1 [19] Suppose that f (t) be continuous and fractal 
differentiable on an open interval (a, b) with order � , then 
the fractal–fractional derivative of f (t) with order � in the 
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Riemann–Liouville sense having power law type kernel is 
given by

 where m − 1 < 𝛼, 𝛽 ≤ m ∈ ℕ and

Definition 2 [19] Suppose that f (t) be continuous on an open 
interval (a, b) , then the fractal–fractional integral of f (t) with 
order � having power law-type kernel is given by

Definition 3 [19] Suppose that f (t) be continuous and fractal 
differentiable on an open interval (a, b) with order � , then 
the fractal–fractional derivative of f (t) with order � in the 
Riemann–Liouville sense having Mittag-Leffler kernel is 
given by

 where 𝛼 > 0, 𝛽 ≤ m ∈ ℕ and AB(0) = AB(1) = 1.

Definition 4 [19] Suppose that f (t) be continuous on an open 
interval (a, b) , then the fractal–fractional integral of f (t) with 
order � having Mittag-Leffler type kernel is given by

Definition 5 [19] Suppose that f (t) be continuous and fractal 
differentiable on an open interval (a, b) with order � , then 
the fractal–fractional derivative of f (t) with order � in the 
Riemann–Liouville sense having exponentially decaying 
type kernel is given by

 where 𝛼 > 0, 𝛽 ≤ m ∈ ℕ and M(0) = M(1) = 1 [19].

Definition 6 [19] The fractional integral associate to the 
new fractional derivative with exponential decay kernel is 
defined as

FFPD
�,�

0,t
(f (t)) =

1

Γ(m − �)

d

dt� ∫
t

0

(t − s)m−�−1f (s)ds,

df (s)

dt�
= lim

t→s

f (t) − f (s)

t� − s�
.

FFPJ
�,�

0,t
(f (t)) =

�

Γ(�) ∫
t

0

(t − s)�−1s�−1f (s)ds.

FFM
0

D �

t
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1 − �

d

dt

∫
t

0

E�

[
−

�

1 − �
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]
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FFMJ
�,�

0,t
(f (t)) =

��

AB(�)Γ(�)

∫
t

0

��−1f (�)(t − �)
�−1d� +
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.

FFE
0
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t
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d
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[
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2  New method with Atangana–Baleanu 
fractal–fractional derivative

Let us consider the following Cauchy problem

where the derivative is Atangana–Baleanu fractal–frac-
tional derivative. Integrating above equation, we obtain the 
following

We have with the initial condition

At the point tn+1 = (n + 1)Δt , we have

For the approximation of the function f (�, y(�)) , we write 
the Newton polynomial which is given by

Here if we put this polynomial into above equation, we write 
as follows:

FFE
0

I �
t
(f (t)) =

(1 − �)�

M(�)
�t�−1f (t)

+
�

M(�) ∫
t

0

��−1f (�)d�.

(1)
FFM
0

D
�,�
t y(t) = f (t, y(t)),

y(0) = y0,
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y(t) − y(0) =
1 − �
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��
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Here

Also we can write

and

We write the first iteration

where

(6)
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y
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3  New method with Caputo–Fabrizio 
fractal–fractional derivative

Let us consider the following Cauchy problem:

where the derivative is Atangana–Baleanu fractal–frac-
tional derivative. Integrating above equation, we obtain the 
following:

with the initial condition. At the point tn+1 = (n + 1)Δt , we 
have

At interval 
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]
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Here if we put this polynomial into above equation, we write 
such as
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Also we can write

where

We write the first iteration:
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4  New method with Caputo fractal–
fractional derivative

Let us consider the following Cauchy problem

where the derivative is Caputo fractal–fractional derivative. 
Integrating above equation, we obtain the following:

We have with the initial condition

at the point tn+1 = (n + 1)Δt and we can write as follows:

For the approximation of the function f (�, y(�)) , we write 
the Newton polynomial which is given by

Here if we put this polynomial into above equation, we write 
such as
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Here

and we write
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Thus we have the following:

5  Numerical illustrations and simulation

Example 1 We first consider the following problem:

where � = 0.7 � = 0.4. The exact solution of such equation is

The error of the proposed method is given as
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��
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t�+2

� + 2
.

‖‖‖yex − yprop
‖‖‖∞ = 0.00013498.

The error of the proposed method is calculated as

where � = 0.3, � = 0.45. The exact solution is

Finally, we handle the following problem:

where � = 0.65 � = 0.25. The exact solution is

The error of the proposed method is as follows:

The numerical simulations are depicted in Figs. 1, 2, 3.
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Fig. 1  Numerical solution of the considered problem with Caputo–
Fabrizio fractal–fractional derivative
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Example 2 We consider the following problem:

where � = 0.5, � = 0.7 . The exact solution is

FFE
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D
�,�
t y(t) = t exp (−t),

y(0) = 0,
where � = 0.5, � = 0.7 . The exact solution of such equation 
is as follows:

The error norm is given by

We solve

where � = 0.55, � = 0.7 . The exact solution is
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Fig. 2  Numerical solution of the considered problem with Caputo 
fractal–fractional derivative

Fig. 3  Numerical solution of the considered problem with Atangana–
Baleanu fractal–fractional derivative

The error norm is calculated as

We handle
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The error norm is calculated as

The numerical simulations are depicted in Figs. 4, 5, 6.

‖‖‖yex − yprop
‖‖‖∞ = 0.017102.

Example 3 We next consider the Coullet system:

with the initial conditions

FFE
0

D
�,�
t x(t) = y,

FFE
0

D
�,�
t y(t) = z,

FFE
0

D
�,�
t z(t) = 0.8x − 1.1y − 0.45z − x3

Fig. 4  Numerical solution of the considered problem with Caputo–
Fabrizio fractal–fractional derivative

Fig. 5  Numerical solution of the considered problem with Caputo 
fractal–fractional derivative

Fig. 6  Numerical solution of the considered problem with Atangana–
Baleanu fractal–fractional derivative

Fig. 7  Numerical solution of the Coullet system with Caputo–Fab-
rizio fractal–fractional derivative
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The numerical simulation is depicted in Fig.  7 for 
� = 0.96, � = 0.98.

Example 4 We next consider the Shimizu–Morioka system

with the initial conditions

x(0) = −1, y(0) = 0, z(0) = 1.

FFM
0

D
�,�
t x(t) = y,

FFM
0

D
�,�
t y(t) = (1 − z)x − 0.75y,

FFM
0

D
�,�
t z(t) = x2 − 0.45z

x(0) = −1, y(0) = 0.1, z(0) = 1.

The numerical simulation is depicted in Fig.  8 for 
� = 0.98, � = 0.75.

Example 5 We next consider the following chaotic problem:

with the initial conditions

The numerical simulation is depicted in Fig.  9 for 
� = 0.96, � = 0.8.

6  Conclusion

In the last past years, new differential and integral opera-
tors were introduced with the aim to capture more complex 
problems arising in many fields of science,technology, and 
engineering. Most have been applied with great success, 
nevertheless, none was able to depict at the same time prob-
lems displaying memory and self-similarities. Then, new 
differential and integral operators called fractal–fractional 
were introduced and are able to capture both scenarios. 
Due to the capabilities of these new operators to modeling 
complex real world problems, new numerical or adapted 
numerical schemes were needed. In this paper, we adapted 
the methodology used to derive the method of predictor–cor-
rector which is efficient in solving the associated differential 
and integral equations.
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