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Abstract
Ground vibration is the most detrimental effect induced by blasting in surface mines. This study presents an improved bagged 
support vector regression (BSVR) combined with the firefly algorithm (FA) to predict ground vibration. In other words, the 
FA was used to modify the weights of the SVR model. To verify the validity of the BSVR–FA, the back-propagation neural 
network (BPNN) and radial basis function network (RBFN) were also applied. The BSVR–FA, BPNN and RBFN models 
were constructed using a comprehensive database collected from Shur River dam region, in Iran. The proposed models 
were then evaluated by means of several statistical indicators such as root mean square error (RMSE) and symmetric mean 
absolute percentage error. Comparing the results, the BSVR–FA model was found to be the most accurate to predict ground 
vibration in comparison to the BPNN and RBFN models. This study indicates the successful application of the BSVR–FA 
model as a suitable and effective tool for the prediction of ground vibration.
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1  Introduction

Blasting is considered as the most common method of hard 
rock fragmentation in mining as well as in civil construc-
tion works. Although the primary objective of blasting is to 
provide proper rock fragmentation and finally facilitating in 
loading operations, the other environmental side effects of 
blasting such as airblast, ground vibration, noise and flyrock 
are inevitable [1-7]. These phenomena are shown in Fig. 1.

Of all the mentioned effects, ground vibration has the 
most detrimental effect on the surroundings [8-12]. Hence, 
to reduce environmental effects, the prediction of ground 
vibration with a high level of accuracy is imperative. 

According to the literature [13-17], the peak particle veloc-
ity (PPV) is accepted as the most important descriptor to 
determine the blast-induced ground vibration.

A number of researchers have investigated the problem 
of blast-induced PPV and have provided different empiri-
cal models to predict PPV [18-22]. These empirical models 
are restricted to using maximum charge per delay (W) and 
distance between monitoring stations and blasting point (D) 
as the effective parameters on PPV. In the last few years, 
machine learning methods have been widely employed for 
solving various engineering problems [23-36]. These meth-
ods are being increasingly used to predict blast-induced PPV.

Monjezi et al. [37] used artificial neural network (ANN) 
to predict PPV. They compared the ANN performance with 
empirical models. Their results signified the superiority of 
ANN over empirical models in terms of performance meas-
ures. Hasanipanah et al. [10] employed classification and 
regression tree (CART) to predict PPV. In their study, multi-
ple regression (MR) and several empirical models were also 
developed. Based on the obtained results, the CART can be 
introduced as a more suitable model for PPV prediction than 
the MR and empirical models. Zhang et al. [38] predicted the 
PPV using extreme gradient boosting machine (XGBoost) 
combined with particle swarm optimization (PSO). They 
also used empirical models to check the performance of 
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their proposed model. The results indicated that the PSO-
XGBoost was an accurate model to predict PPV and its per-
formance was better than the empirical model. In another 
study, Bui et  al. [39] proposed a combination of fuzzy 
C-means clustering (FCM) and quantile regression neural 
network (QRNN) to predict PPV, and compared the results 
of FCM–QRNN model with ANN, random forest (RF) and 
empirical models. The results showed that the accuracy of 
the FCM–QRNN model was higher compared with ANN, 
RF and empirical models in predicting the PPV.

Jiang et al. [24] explored the use of a neuro-fuzzy infer-
ence system to approximate PPV, and compared it with the 
MR model. They showed the superiority of neuro-fuzzy 
inference system over MR model in terms of approxima-
tions accuracy. The suitability of hybridizing the k-means 
clustering algorithm (HKM) and ANN to predict PPV was 
investigated by Nguyen et al. [40]. For comparison aims, 
support vector regression (SVR), classical ANN, hybrid of 
SVR and HKM, and empirical models were also employed. 
According to their results, the HKM–ANN model presented 

a superior ability to predict PPV and its results were more 
accurate than the other models. Fang et al. [41] evaluated 
the application of a hybrid imperialist competitive algo-
rithm (ICA) and M5Rules to predict PPV. They concluded 
that the ICA–M5Rules method was viable and effective 
and provided better predictive performance as compared 
with other models. Recently, Ding et al. [7] hybridized the 
ICA with XGBoost to forecast PPV. They also applied the 
ANN, SVR and gradient boosting machine (GBM) to check 
ICA–XGBoost performance. Their computational result 
indicated that the ICA–XGBoost model produced better 
results than ANN, SVR and GBM methods.

SVR is a well-known artificial intelligence approach 
which has been widely used for the applications on most of 
the nonlinear problems in various fields such as mining and 
civil engineering fields [4, 6]. A view of the SVR structure 
is shown in Fig. 2. Note that, in the present study, the W and 
D parameters are the input parameters, and PPV is the out-
put. On the other hand, the use of evolutionary algorithms 
such as cuckoo search, PSO, genetic algorithm, artificial bee 

Fig. 1   Phenomena of blasting 
operation

Fig. 2   SVR structure [88]
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colony and firefly algorithm (FA) in the fields of optimiza-
tion has been expanding [8, 11, 12, 16]. Among those, FA 
is the one which has been most widely studied and used to 
solve various engineering problems, so far. Day by day the 
number of researchersinterested in FA has increased rapidly. 
FA proves to be more promising, robust, and efficient in 
finding both local and global optimum compared to other 
existing evolutionary algorithms [42-44]. A view of the FA 
flowchart is also shown in Fig. 3.

An accurate prediction of PPV can be very practical, 
especially for drilling engineers to design an optimum 

blast pattern and to prevent the detrimental effects of 
blasting. The present study proposes a novel artificial 
intelligence approach to predict PPV with a high level of 
accuracy. The proposed approach is based on an improved 
bagged SVR (BSVR) combined with FA. In other words, 
the FA was used to modify the weights of the SVR model. 
For comparison aims, back-propagation neural network 
(BPNN) and radial basis function network (RBFN) models 
were also applied.

2 � Database source

The used datasets in this study were gathered from Shur 
River dam region in Iran. For this work, 87 blasting events 
were monitored and the values of requirement parameters 
were carefully measured. In this regard, the values of W 
and D, as the most effective parameters on PPV [45, 46], 
were measured for all monitored blasts. To measure the D 
parameter, the GPS (global positioning system) was used. 
Also, the value of W was measured through controlling 
the blast-hole charge. For recording the values of PPV, 
MR2002-CE SYSCOM seismograph was also installed 
in different locations of sites. More details regarding the 
used datasets in this study are given in Table 1. Addi-
tionally, the frequency histograms of the input (W and 
D) and output (PPV) parameters are shown in Fig. 4. 
According to this Fig, in case of the W parameter, 15, 
16, 44 and 12 data were varied in the range of 0–500 kg, 
500–700 kg, 700–1000 kg and 1000–1500 kg, respectively. 
Regarding the D parameter, 22, 25, 18 and 22 data were 
varied in the range of 0–400 m, 400–550 m, 550–700 m 
and 700–1000 m, respectively. Also, for the PPV param-
eter, 20, 27, 22 and 18 data were varied in the range of 
0–5  mm/s, 5–6.5  mm/s, 6.5–8  mm/s and 8–10  mm/s, 
respectively. In modeling of BSVR–FA, BPNN and RBFN, 
the datasets were divided into two phases, namely train-
ing and testing phases. In this regard, 80% and 20% of 
whole data were assigned as training and testing datasets, 
respectively. In other words, 70 and 17 datasets were used 
to construct and test the models, respectively.

Fig. 3   FA flowchart

Table 1   Statistical parameters of the datasets used in this study

Statistical parameters Parameters

W (kg) D (m) PPV (mm/s)

Mean 787.93 552.91 6.43
Standard error 27.74 17.36 0.17
Standard deviation 258.75 161.94 1.59
Minimum 195 302 3.59
Maximum 1430 953 9.87
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3 � Methodology

The bagging algorithm and SVR methods were used to 
develop the hybrid model BSVR, whereas the FA was used 
for improving the performance of SVR. Bagging depends 
on the ideas of bootstrapping and aggregating, and was 
introduced by Breiman [47, 48]. The bagging algorithm 
has been applied extensively in engineering, economy, 
and ecology, but is uncommon in the field of PPV pre-
diction. Bagging is one of the vital ensemble algorithms, 
wherein the randomly sampled approach is used in the 
training set for n times with substitution [49]. In the bag-
ging model, all training sets are produced with the original 
training set size. In the proposed model, the training set 
(TS) consists of n observations TS = {(x1, y1), (x2, y2), …, 

(xn, yn)}. Hence, the bth bootstrap instance of the train-
ing set TS is denoted by the replacement of n elements 
of TSb (b = 1, 2, …, n). The bagging estimator is denoted 
as � = (x, Z) which predicts Y with the relative mean and 
given as follows:

Let P be the probability input x makes with the class yi. 
Also, the probability predictor that is correct for the pro-
duced state at x is:

Hence, the total probability of correct prediction is indi-
cated as:

where the probability distribution of x is determined by 
Pxd(x).

In this step, bagging SVR can be exploited to develop the 
accuracy of the ground vibration prediction. In SVR, the 
relation between the input variable xi and predicted variable 
yi is distinguished by f(x) as follows:

where �(x) maps the input variables into a multi-dimensional 
space as a kernel function, b demonstrates bias, and �n 
defines the weight of the nth data for input variables [49]. w 
and b are specified as coefficients for minimizing the convex 
problem function like the phrase below:

where

in which C implicates a positive constant with the respon-
sibility of the trade-off between an estimation error and 
the weight vector, the loss function is determined by 
G�

(
yn, f

(
xn
))

 which is called ε-insensitive, and ε is the 
radius of tube size [48].

All essential computations in the input variable are per-
formed by the kernel function without any calculation of 
the explicit �(x) . In the current study based on the best 
performance in the literature, the kernel function is defined 

(1)Q
(
yi|x

)
= P

[
�(x, Z) = yi

]
T = (x, y).

(2)Pcorrect =
∑
yi

Q
(
yi|x

)
P
(
yi|x

)
.

(3)P = ∫
[∑

yi

Q
(
yi|x

)
P
(
yi|x

)]
Pxd(x),

(4)f (x) =

N∑
n=1

�n�n(x) + b,

(5)P(f (x)) =
C

N
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n=1

G�

(
yn, f

(
xn
))

+
b||w||
2

,
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(
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(
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,

Fig. 4   Frequency histograms of the W, D and PPV parameters
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by K
(
xi, xj

)
= �

(
xi
)
�
(
xj
)
 , where the Gaussian function is 

applied as follows [49]:

where � implicates the kernel function parameter. The 
parameters of ε, C, and � must be chosen in advance. In 
Algorithm 1, the total step of bagging the SVR predictor is 
indicated.

.
For improving the performance of BSVR, the importance 

of parameters in BSVR are justified by the firefly algorithm 
(FA). The FA, introduced by Yang [50], is fundamen-
tally based on the light intensity variation, which defines 
the fitness function solution. The light intensity variation 

(7)K
�
xi, xj

�
= exp

⎛
⎜⎜⎜⎝
−

���
���xi − xj

���
���
2

2�2

⎞
⎟⎟⎟⎠
,

fluctuates with any alteration in the interval (r) amongst two 
fireflies, which is expressed as follows [51]:

where I(r) signifies the light intensity for r and I0 holds out 
the light intensity original at r = 0. The coefficient of light 
absorption is determined by � . Hence, the attractiveness of 
a firefly is specified as follows [51]:

where the attractiveness is represented by � , and �0 . defines 
the attractiveness with zero distance. The movement of flies 
from ‘i’ to ‘j’ is represented by the following equation [51]:

In most of the majority, the value of the absorption coef-
ficient is in the interval of 0.1 and 10. In many cases, the 
value of 1 is chosen for �0 and a ∈ [0, 1] [52]. In Fig. 5, 
the flowchart illustrates the modeling of BSVR–FA to the 
prediction of PPV. Extensive details about the FA can be 
found in [53-55].

4 � Back‑propagation neural network (BPNN)

The simple BPNN has three layers that includes an input 
layer, a hidden layer, and an output layer [56]. Its back-prop-
agation functioning performs the training and testing steps. 
The topology of the suggested BPNN has been exhibited 
in Fig. 6.

The input data in every layer are adjusted by interconnec-
tion weight between the layers (wji), which demonstrates the 

(8)I(r) = I0e
−�×r2 ,

(9)� = �0e
−�×r2 ,

(10)xi = xi + �0e
−�×r2

ij

(
xj − xi

)
+ a�i.

Fig. 5   Flowchart of BSVR–FA
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relation of the ith node of the current layer to the jth node 
of the next layer [56]. The key role of the hidden layer is to 
process the input layer information. The sum of total activa-
tion is assessed by a sigmoid transfer function. All steps of 
the BPNN algorithm is represented in Algorithm 2.

5 � Radial basis function network (RBFN)

Fundamentally, the RBFN is compounded by the number 
of simple and extremely interconnected neurons, which can 
be organized into many layers [57]. The main idea of RBFN 
is presented on the basis of the comparison between radial 
basis function (RBF) and multi-layer perceptron (MLP). For 
a network with fewer hidden layers, the RBF has much faster 

convergence than MLP. Also, the RBF network is gener-
ally prior to MLP when low-dimensional problem needs to 
be solved. For better understanding, the RBFN flowchart 
is shown in Fig. 7. The below steps generally explain the 
RBFN algorithm:

1.	 The number of hidden neurons are specified by “K”.
2.	 Based on the center of K-means clustering, the position 

of RBF is tuned.
3.	 Calculate σ using the maximum distance among two hid-

den neurons.
4.	 Calculate actions for RBF node closer in the Euclidian 

space
5.	 Train the output nodes.

The activation function in the RBFN model is a Gaussian 
function. Extensive details about the RBFN can be found 
in [57].

Fig. 6   Structure of BPNN

Fig. 7   Architecture of a RBFN
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6 � Development of the models

Based on reviewing the literature [58, 59], the principal 
parameters of FA are the factors of �0 , a , � , number of 
iteration (It) and the number of population (Npop). Using 
the trial and error method, the values of 1, 1 and 1000 
were selected for the �0,a and It parameters, respectively. 
Regarding the best performance of BSVM-FA, the value 
of Npop is chosen 150 in the event that the values of 10, 
20, 30, 40, 50, 100, 150, and 200 were examined in the 
BSVR–FA model. Besides, the various values of � in 
the interval of 0.25–3 were assessed and, based on the 
best performance, the value of 2 is obtained for the � in 
BSVR–FA modeling. Regarding the outcome values in 
BSVR–FA modeling, the optimized value of C = 257.3, 
� = 1.21 , and ε = 0.69 are obtained for BSVR.

Regarding repetition of the BPNN model, the the best 
performance with the lowest RMSE and the highest coef-
ficient of determination (R2) was for the 2 × 4 × 1 structure, 
which was two neurons in the input layer, four neurons in 
one hidden layer and one neuron in the output layer. Based 
on the best outcome in the RBFN model, the number of 
kernel is chosen as three, and the number of K-means 
iteration is selected as ten.

7 � Analysis of the results

In this study, the BSVR–FA, BPNN and RBFN models are 
employed to predict PPV. This section compares the per-
formance of the proposed models in predicting the PPV. 
To evaluate the accuracy of models, several well-known 
statistical indicators, namely R2, root mean square error 
(RMSE), mean absolute error (MAE), symmetric mean 
absolute percentage error (SMAPE), Leegate and McCabe 
index (LM), and variance account for (VAF) are used as 
follows [28, 60-86]:

where PPVa and PPVp are, respectively, the actual and pre-
dicted PPV values, n is the number of data, PPVa is the 
mean of actual PPVs, and var is the variance. The most ideal 
values for R2, RMSE, MAE, LM, SMAPE and VAF are 1, 
0, 0, 1, 0 and 100%, respectively. Table 2 gives the statisti-
cal indicator values obtained from BSVR–FA, BPNN and 
RBFN models for both training and testing phases. From 
this table, the highest R2, VAF and LM values for both train-
ing and testing phases, and the lowest RMSE, MAE and 
SMAPE values, were obtained from the BSVR–FA model. 
For observing the accuracy of the BSVR–FA, BPNN and 
RBFN models in predicting the PPV, Figs. 8, 9 and 10 
are also plotted using only testing datasets. Additionally, 
to demonstrate the model’s reliability and effectiveness, a 
mathematics-based graphical diagram, namely Taylor dia-
gram, is prepared, as schemed in Fig. 11. From Figs. 8, 9, 
10 and 11, it can be found that the BSVR–FA model was the 
most accurate for the prediction of PPV in the study area. 
The BPNN and RBFN models were identified as the next 

(11)RMSE =

√√√√1

n

n∑
i=1

(
PPVa − PPVp

)2
,

(12)MAE =
1

n

n∑
i=1

|||PPVa − PPVp
|||,

(13)SMAPE =
1

n

n∑
i=1

|||PPVa − PPVp
|||

PPVa + PPVp

× 100,

(14)LM = 1 −

⎡
⎢⎢⎣

∑n

i=1

���PPVa − PPVp
���∑n

i=1

���PPVa − PPVa
���

⎤
⎥⎥⎦
,

(15)VAF =

[
1 −

var
(
PPVa − PPVp

)

var
(
PPVa

)
]
× 100,

Table 2   Statistical indicators 
obtained from predictive models

Statistical indicators Predictive models

BSVR–FA BPNN RBFN

Train Test Train Test Train Test

R2 0.998 0.996 0.898 0.896 0.842 0.828
RMSE 0.065 0.108 0.595 0.636 0.645 0.918
MAE 0.041 0.086 0.502 0.583 0.553 0.815
SMAPE 0.321 0.665 3.888 4.825 4.516 7.143
VAF (%) 99.83 99.61 86.71 89.10 83.38 70.69
LM 0.969 0.939 0.623 0.575 0.584 0.406
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categories, respectively. In this study, a sensitivity analysis 
is also performed to demonstrate the relative influence of the 
input parameters (W and D) on the output parameter (PPV) 
using Yang and Zang [87] method:

where yik is the input parameter, yok is the output parameter, 
and n is the number of data. The most influential parameter 
has the highest rij value. Using Eq. 10, the values of rij for 
the D and W parameters were obtained as 0.872 and 0.982, 
respectively. This clearly indicates that the W is the most 
influential parameter on the PPV in the study area.

(16)rij =

∑n

k=1

�
yik × yok

�
�∑n

k=1
y2
ik

∑n

k=1
y2
ok

,

8 � Conclusion

Precise prediction of blast-induced PPV is an imperative 
work in the surface mines as well as tunneling projects. 
This paper aims to propose a BSVR–FA model to pre-
dict PPV. To check the validity of the BSVR–FA model, 
two well-known and classical intelligent models, namely 
BPNN and RBFN models were also employed. To con-
struct the models, a comprehensive database gathered 
from Shur River dam region, in Iran, was used. After mod-
eling, several statistical indicators, i.e., R2, RMSE, MAE, 
VAF, LM and SMAPE were used to compare the models’ 
performances. Based on the results of this study, we draw 
some conclusions:

Fig. 8   Actual vs. predicted 
PPVs by RBFN

Fig. 9   Actual vs. predicted 
PPVs by BPNN
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1.	 The BSVR–FA model yielded an excellent accuracy 
to predict PPV. A high R2 value of 0.996 was obtained 
for the BSVR–FA predictions. Further, the BPNN and 

RBFN results showed R2 value of 0.896 and 0.828, 
respectively.

Fig. 10   Actual vs. predicted 
PPVs by BSVR–FA

Fig. 11   Showing Taylor dia-
gram related to the predictive 
models based on testing datasets
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2.	 It was found that the FA is a useful tool to train the 
BSVR model.

3.	 The use of BSVR–FA model can be practical in design-
ing an optimum blast pattern and reducing the blast-
induced PPV.

4.	 The BSVR–FA can be also introduced as an accurate 
model to predict other problems induced by blasting 
such as airblast and flyrock.
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