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Abstract
To impart desirable material properties, functionally graded (FG) porous silicon has been produced in which the porosity

changes gradually across the material volume. The prime objective of this work is to predict the influence of the surface

free energy on the nonlinear secondary resonance of FG porous silicon nanobeams under external hard excitations. On the

basis of the closed-cell Gaussian-random field scheme, the mechanical properties of the FG porous material are achieved

corresponding to the uniform and three different FG patterns of porosity dispersion. The Gurtin–Murdoch theory of

elasticity is implemented into the classical beam theory to construct a surface elastic beam model. Thereafter, with the aid

of the method of multiple time-scales together with the Galerkin technique, the size-dependent nonlinear differential

equations of motion are solved corresponding to various immovable boundary conditions and porosity dispersion patterns.

The frequency response and amplitude response associated with the both subharmonic and superharmonic hard excitations

are obtained including multiple vibration modes and interactions between them. It is found that for the subharmonic

excitation, the nanobeam is excited within a specific range of the excitation amplitude, and this range shifts to higher

excitation amplitude by incorporating the surface free energy effects. For the superharmonic excitation, by taking surface

stress effect into account, the excitation amplitude associated with the peak of the vibration amplitude enhances. Moreover,

in the subharmonic case, it is demonstrated that by increasing the porosity coefficient, the value of the excitation frequency

at the joint point of the two branches of the frequency-response curve reduces. In the superharmonic case, it is revealed that

an increment in the value of porosity coefficient leads to decrease the peak of the oscillation amplitude and the associated

excitation frequency.
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1 Introduction

As a novel functionally graded (FG) material, FG porous

material have acquired a significant attention in recent

years due to its improved characteristics such as flexibility

of tailoring a desired design and excellent capability for

energy dissipation and biomedical applications. Chen et al.

[1] explored the nonlinear free vibrations of sandwich

Timoshenko beams with FG porous core with different

porosity distributions. Wang and Wu [2] performed a free

vibration analysis for FG porous cylindrical shell subjected

to various types of immovable boundary conditions. Wu

et al. [3] used a computational scheme based on the finite

element method to predict the free and forced vibration

responses of FG porous beams. Karami et al. [4] investi-

gated the size-dependent guided wave propagation in

mounted FG porous nanoplates. Sahmani et al. [5–7]

developed a size-dependent beam model for nonlinear

mechanical behaviors of FG porous micro/nanobeams

reinforced with graphene platelets. Gao et al. [8] presented

an analytical solution on the basis of the method of mul-

tiple scales for the nonlinear primary resonance of FG

porous cylindrical shells. Safaei et al. [9–11] analyzed the
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thermoelastic response of carbon-nanotube-reinforced

sandwich plates. Qin et al. [12, 13] developed a unified

solution for traveling wave analysis and vibrations of FG

shallow shells under general boundary conditions.

Several unconventional continuum theories of elasticity

have been proposed and employed to take different size

dependencies into consideration [14–48]. Gurtin and

Murdoch [49, 50] developed a theoretical framework based

on the continuum mechanics including surface stress effect

which has an excellent capability to incorporate the surface

stress effect into the mechanical responses of nanostruc-

tures. Based on this type of continuum elasticity theory, the

surface is simulated as a mathematical layer of zero

thickness with different material properties derived from

the underlying bulk material. A variety of problems at

nanoscale have been analyzed on the basis of Gurtin–

Murdoch elasticity theory. Herein, some of the investiga-

tions carried out about the effect of surface energy on the

mechanical behaviors of nanostructures are cited.

Wang and Feng [51] investigated the free vibration

response of microscale beam including surface effects on

the basis of Euler–Bernoulli and Timoshenko beam theo-

ries, respectively. Lü et al. [52] presented a generalized

refined theory incorporating the influence of surface stress

for functionally graded films based on Gurtin–Murdoch

elasticity theory. Fu et al. [53] studied the influences of

surface energy on the free vibration and buckling behavior

of nanobeams in both linear and nonlinear regimes using

Galerkin technique. Ansari and Sahmani [54, 55] analyzed

the surface stress effect on the free vibrations of nanoplates

and bending of nanobeams. Gao et al. [56] considered the

surface stress effect in the buckling analysis of nanowires

on elastomeric substrates. Sahmani et al. [57] studied the

free vibration characteristics of postbuckled functionally

graded third-order shear deformable nanobeams using

surface elasticity theory. Asemi and Farajpour [58] pre-

sented a vibration analysis of circular graphene sheets

subjected to a thermo-mechanical loading condition based

on the surface elasticity theory. Sahmani et al. [59] used

Gurtin–Murdoch elasticity theory to develop a non-classi-

cal beam model to study the nonlinear forced vibrations of

nanobeams including surface effects. Ghorbanpour Arani

et al. [60] explored the surface stress effect on vibrations of

bioliquid-filled microtubules embedded in cytoplasm.

Sahmani et al. [61–63] examined the surface free energy

effect on the nonlinear buckling and postbuckling behavior

of cylindrical nanoshells under various loading conditions.

Lu et al. [64] developed surface elastic Kirchhoff and

Mindlin plate models for dynamic response of nanoplates.

Sun et al. [65] presented an analytical solution for buckling

of piezoelectric cylindrical nanoshells under combination

of compressive mechanical loads and external voltages

including surface stress effect. Attia and Abel Rahman [31]

investigated the free vibration response of FG viscoelastic

nanobeams based on the surface elasticity theory. Sarafraz

et al. [66] studied the nonlinear secondary resonance of a

silicon nanobeam on the basis of the surface elastic beam

model. Dong et al. [67] proposed a refined beam model to

describe the buckling characteristics of hallow metal

nanowires encapsulating carbon nanotubes. Sahmani et al.

[68] predicted the surface stress effect on the nonlinear

buckling and postbuckling of cylindrical nanoshells under

hydrostatic pressure. Lu et al. [69] introduced a unified

size-dependent plate model including surface stress effect

for buckling analysis of nanoplates. Yang et al. [70] ana-

lyzed a mode-III nanocrack at the interface between two

bonded dissimilar under antiplane shear loading. Sahmani

et al. [71] developed a surface elastic shell model for the

nonlinear primary resonance of FG porous nanoshells

including modal interactions.

The objective of the present study is to analyze the

nonlinear secondary resonance of FG porous silicon

nanobeams under hard excitation in the presence of surface

free energy effects. Consequently, the Gurtin–Murdoch

theory of elasticity is applied to the classical Euler–Ber-

noulli beam theory to construct a surface elastic beam

model. With the aid of the multiple time scales method

together with the Galerkin technique, the size-dependent

nonlinear differential equation of motion is solved incor-

porating multiple vibration modes and interactions between

them. The frequency response and amplitude response

associated with the both subharmonic and superharmonic

excitations are obtained corresponding to various beam

thicknesses, boundary conditions, porosity coefficients and

porosity dispersion patterns.

2 FG porous beam model based
on the surface elasticity

As it is displayed in Fig. 1, four different patterns for

porosity dispersion are taken into consideration including

the uniform porous material (Pattern A), and three FG

porous materials with patterns B, C, and D. As a result, the

Young’s modulus (E), shear modulus (G), and mass density

(q) of the porous nanobeams can be extracted for each

pattern as below

EðzÞ ¼ ~E 1� CpsðzÞ
� �

GðzÞ ¼ EðzÞ
2 1� mðzÞ½ �ð Þ

qðzÞ ¼ ~q 1� CmsðzÞ;½ �

ð1Þ

where
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sðzÞ ¼

s0 for pattern A

cos
pz
2h

þ p
4

� �
for pattern B

cos
pz
h

� �
for pattern C

1� cos
pz
h

� �
for pattern D

;

8
>>>>>><

>>>>>>:

ð2Þ

where ~E and ~q represent the maximum Young’s modulus

and maximum mass density of the FG porous silicon

nanobeam.

On the basis of the Gaussian-random field scheme [72],

all finite dimensional distributions are supposed to be

multivariate normal distributions for any number of coor-

dinates. Therefore, the mass density coefficient (Cm) can be

introduced as a function of the porosity coefficient (Cp) as

below:

Cm ¼ 1:121 1� 1� CpsðzÞ
� �1=2:3h i

=sðzÞ: ð3Þ

In addition, the Poisson’s ratio of the FG porous silicon

can be obtained for each type of porosity dispersion pattern

via the closed-cell Gaussian-random field scheme [58] as

follows:

mðzÞ ¼ 0:221 1� qðzÞ
~q

� 	

þ ~m 1þ 0:342 1� qðzÞ
~q

� 	2

�1:21 1� qðzÞ
~q

� 	" #

:

ð4Þ

The proper value of s0 should be defined in such a way

that the mass density of FG porous silicon becomes equal

for all four different porosity dispersion patterns. There-

fore, one will have

s0 ¼
1

Cp
1�

1
h

R h
2

�h
2

qðzÞ
~q dzþ 0:121

1:121

0

@

1

A

2:32

64

3

75: ð5Þ

In accordance with Fig. 1, an FG porous silicon nano-

beam of length L, width b and thickness h under harmonic

excitation is considered. It is assumed that the nanobeam

consists of a bulk part and additional thin outer surface

Fig. 1 Schematic representation of FG porous silicon nanobeam with surface layers under hard excitation
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layers. Within the framework of the classical Euler–Ber-

noulli beam theory, the displacement field including mid-

plane stretching effect can be expressed as

uxðx; tÞ ¼ uðx; tÞ � z
owðx; tÞ

ox
; uzðx; tÞ ¼ wðx; tÞ; ð6Þ

where w denotes the middle surface displacements along z-

axis, u represents the mid-plane stretching, and t stands for

time.

Following the von Karman kinematics of nonlinearity,

the strain–displacement relationship including the mid-

plane stretching can be written as

exx ¼
ou

ox
� z

o2w

ox2
þ 1

2

ow

ox

� 	2

: ð7Þ

Based upon the elastic constitutive law, the stress

component related to the bulk part of the FG porous silicon

nanobeam can be given as

rxx ¼ kðzÞ þ 2lðzÞ½ � 1

2

ow

ox

� 	2

þ ou

ox
� z

o2w

ox2

 !

ð8Þ

in which kðzÞ ¼ EðzÞmðzÞ= 1� m2ðzÞ½ �, lðzÞ ¼ EðzÞ= 2ð1þ½
mðzÞÞ� are Lame’s constants.

About the atomic features of nanostructures, there are

always interactions between the elastic surface and bulk

material. As a result, in-plane loads in various directions

are applied to nanostructures. These in-plane loads on the

free surface of a nanobeam make surface stresses. In

accordance with Gurtin–Murdoch theory of elasticity, the

surface stress components can be introduced in the fol-

lowing form [49, 50]

rsij ¼ ssdij þ ss þ ksð Þ�kkdij þ 2 ls � ssð Þ�ij þ ssusi;j
rsiz ¼ ssusz;i

; ði; j ¼ x; yÞ;

ð9Þ

where ks and ls denote the surface Lame’s constants and ss
represents the residual surface stress under unstrained

conditions. Consequently, the surface stress components

for an FG porous silicon nanobeam can be achieved in

terms of the displacement components as follows

rsxx ¼ ks þ 2lsð Þ 1

2

ow

ox

� 	2

þ ou

ox
� z

o2w

ox2

 !

þ ss �
ss
2

ow

ox

� 	2

rsxz ¼ ss
ow

ox

ð10Þ

In the classical continuum elasticity, it is assumed that

rzz ¼ 0; because this component of stress is so small

compared to other ones. Nevertheless, this assumption does

not satisfy the balance conditions on the free surface layer.

To tackle this problem, it is supposed that the stress

component rzz varies linearly through the thickness and

satisfies the equilibrium necessities on the free surface of

an FG porous silicon nanobeam. As a result, it yields

rzz ¼
orSþxz
ox � qþs

o2w
ot2

� �
þ orS�xz

ox � q�s
o2w
ot2

� �

2

þ
orSþxz
ox � qþs

o2w
ot2

� �
� orS�xz

ox � q�s
o2w
ot2

� �

h
z; ð11Þ

where qs is the surface mass density.

By inserting Eq. (10) in Eq. (11), one will have

rzz ¼
2z

h
ss
o2w

ox2
� qs

o2w

ot2

� 	
; ð12Þ

Thereafter, substitution rzz into the constitutive Eq. (8)

yields

rxx ¼ kðzÞ þ 2lðzÞ½ � 1

2

ow

ox

� 	2

þ ou

ox
� z

o2w

ox2

 !

þ 2mðzÞz
1� mðzÞð Þh ss

o2w

ox2
� qs

o2w

ot2

� 	
ð13Þ

Based upon the surface continuum theory of elasticity,

the total strain energy of an FG porous nanobeam in the

present of surface free energy effects can be expressed as

Ps ¼
1

2

Z

x

Z

S

rijeijdxdSþ
1

2

Z

Sþ

rsijeijdS
þ þ

Z

S�

rsijeijdS
�

0

@

1

A

¼ 1

2

Z

x

Nxx þ �Nxxð Þ 1

2

ow

ox

� 	2

þ ou

ox

 !

� Mxx þ �Mxxð Þ o
2w

ox2

( )

dx;

ð14Þ

in which

Nxx ¼ b

Z
h
2

�h
2

rxxdz ¼ A11

1

2

ow

ox

� 	2

þ ou

ox

 !

� B11

o2w

ox2

�Nxx ¼ �A11

1

2

ow

ox

� 	2

þ ou

ox

 !

� �B11

o2w

ox2
þ 2bss

� bss
ow

ox

� 	2

þC� ss
o2w

ox2
� qs

o2w

ot2

� 	

Mxx ¼ b

Z
h
2

�h
2

rxxzdz ¼ B11

1

2

ow

ox

� 	2

þ ou

ox

 !

� D11

o2w

ox2

�Mxx ¼ �B�
11

1

2

ow

ox

� 	2

þ ou

ox

 !

� �D�
11

o2w

ox2
þ G� ss

o2w

ox2
� qs

o2w

ot2

� 	

ð15Þ

and

1614 Engineering with Computers (2021) 37:1611–1634

123



A11 ¼ b

Z
h
2

�h
2

kðzÞ þ 2lðzÞf gdz; �A11 ¼ 2 ks þ 2lsð Þb

B11 ¼ b

Z
h
2

�h
2

kðzÞ þ 2lðzÞf gzdz; �B11 ¼ ks þ 2lsð Þbh

D11 ¼ b

Z
h
2

�h
2

kðzÞ þ 2lðzÞf gz2dz; �D11 ¼ ks þ 2lsð Þ bh2

2
þ h3

6

� 	

C� ¼ b

Z
h
2

�h
2

2mðzÞz
1� mðzÞð Þh


 �
dz; G� ¼ b

Z
h
2

�h
2

2mðzÞz2
1� mðzÞð Þh


 �
dz

ð16Þ

Moreover, the work PP done by the external harmonic

distributed load f can be expressed in the following form:

PP ¼
Z

x

fwdx: ð17Þ

In addition, the kinetic energy of the nanobeam

including surface free energy effects can be calculated as

PT ¼ 1

2

Z

x

Z

S

qðzÞ oux
ot

� 	2

þ ouz
ot

� 	2
( )

dxdS

þ 1

2

Z

Sþ

qs
oux
ot

� 	2

þ ouz
ot

� 	2
( )

dSþ

0

@

þ
Z

Sþ

qs
oux
ot

� 	2

þ ouz
ot

� 	2
( )

dS�

1

A

¼ 1

2

Z

x

I0
ou

ot

� 	2

þ ow

ot

� 	2
" #

� 2I1
ou

ot

o2w

oxot
þ I2

o2w

oxot

� 	2
( )

dx;

ð18Þ

where

zI�0 ¼ b

Z
h
2

�h
2

qðzÞdzþ 2qsðbþ hÞ;

I�1 ¼ b

Z
h
2

�h
2

qðzÞzdzþ qs bhþ h2

2

� 	

I�2 ¼ b

Z
h
2

�h
2

qðzÞz2dzþ qs 3bh
2 þ h3ð Þ
6

ð19Þ

Now, using the Hamilton principle as below

d
Zt2

t1

PT �Ps þPPð Þdt ¼ 0 ð20Þ

it yields

o

ox
Nxx þ �Nxxð Þ ¼ I�0

o2u

ot2
� I�1

o2w

oxot
: ð21aÞ

o

ox
Nxx þ �Nxxð Þ ow

ox

� 
þ o2

ox2
Mxx þ �Mxx½ �

¼ f þ I�0
o2w

ot2
� I�2

o4w

ox2ot2
: ð21bÞ

For the FG porous silicon material, it is assumed that

A�
11 ¼ A11 þ �A11; B�

11 ¼ B11 þ �B11; D�
11 ¼ D11 þ �D11:

ð22Þ

Therefore, one will have

ou

ox
¼ Nxx þ �Nxx

A�
11

þ bss
A�
11

� 1

2

� 	
ow

ox

� 	2

� 2bss
A�
11

þ B�
11

A�
11

o2w

ox2

� C�

A�
11

ss
o2w

ox2
� qs

o2w

ot2

� 	
:

ð23Þ

By integrating Eq. (23) and taking immovable end

supports into account, it yields

Nxx þ �Nxx ¼ 2bss þ
A�
11

2L
� bss

L

� 	ZL

0

ow

ox

� 	2

dx� B�
11

o2w

ox2

þ C� ss
o2w

ox2
� qs

o2w

ot2

� 	
:

ð24Þ

Substitution Eq. (24) into Eq. (21b) leads to the size-

dependent nonlinear governing differential equation of

motion for an FG porous nanobeam incorporating surface

free energy effects as follows

� D�
11

o4w

ox4
þ G� ss

o2w

ox2
� qs

o2w

ot2

� 	

þ A�
11

2L
� bss

L

� 	ZL

0

ow

ox

� 	2

dxþ 2bss � B�
11

o2w

ox2
:

2

4

þC� ss
o2w

ox2
� qs

o2w

ot2

� 	
o2w

ox2
¼ f þ I�0

o2w

ot2
� I�2

o4w

ox2ot2
:

ð25Þ

3 Multiple time-scales solving process

To continue the solving process in a more general form, the

following dimensionless parameters are introduced:
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W ¼ w

h
; X ¼ x

L
; n ¼ h

L
; t ¼ t

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0 þ 2l0

q

s

;

F ¼ fL2

k0 þ 2l0ð Þbh2

Î0; Î2
� �

¼ I�0
q0bh

;
I�2

q0bh3


 �
; ŝ ¼ ss

k0 þ 2l0ð Þh ; q̂ ¼ qs
q0h

a�11; b
�
11; d

�
11

� �
¼ A�

11

k0 þ 2l0ð Þbh ;
B�
11

k0 þ 2l0ð Þbh2 ;
D�

11

k0 þ 2l0ð Þbh3


 �
;

c�; g�f g ¼ C�

bh
;
G�

bh2


 �

ð26Þ

where k0; l0, and q0 are, respectively, the elastic Lame

constants and mass density for the silicon without porosity.

As a result, the dimensionless size-dependent nonlinear

governing differential equation of motion takes the fol-

lowing form:

� d�11n
2 o

4W

oX4
þ g� ^̂sn2

o2W

oX2
� q̂

o2W

ot2

� 	

þ
a�11 � 2ŝ
� �

n2

2

Z1

0

oW

oX

� 	2

dX þ 2ŝ� b�11n
2 o

2W

oX2
:

2

4

þc� ^̂sn2
o2W

oX2
� q̂

o2W

ot2

� 	
o2W

oX2
¼ F þ Î0

o2W

ot2
� Î2

o4W

oX2ot2
:

ð27Þ

Subsequently, with the aid of the Galerkin method, the

solution of the problem can be written in discretized form.

To this end, it is assumed that WðX; tÞ can be expressed as

combination of the three first modes as follows:

WðX; tÞ ¼
X3

n¼1

unðXÞqnðtÞ: ð28Þ

The analytical expressions for unðXÞ corresponding to

different types of boundary conditions are considered based

on the linear vibration modes as follows:

• For simply supported-simply supported boundary

conditions:

unðXÞ ¼ sin enXð Þ; en ¼ np: ð29Þ

• For clamped–clamped boundary conditions:

unðXÞ ¼ cos enXð Þ � cos h enXð Þ

þ cos enð Þ � cos h enð Þ
sin enð Þ � sin h enð Þ

� 	
sin h enXð Þ � sin enXð Þð Þ

e1; e2; e3 ¼ 4:7300; 7:8532; 10:9956:

ð30Þ

• For simply supported-clamped boundary conditions:

unðXÞ ¼ cos enXð Þ � cos h enXð Þ

þ cos enð Þ � cos h enð Þ
sin enð Þ � sin h enð Þ

� 	
sin h enXð Þ � sin enXð Þð Þ

e1; e2; e3 ¼ 3:9266; 7:0686; 10:2102:

ð31Þ

• For clamped-free boundary conditions:

unðXÞ ¼ cos enXð Þ � cos h enXð Þ

þ cos enð Þ � cos h enð Þ
sin enð Þ � sin h enð Þ

� 	
sin h enXð Þ � sin enXð Þð Þ

e1; e2; e3 ¼ 1:8751; 4:6941; 7:8547

ð32Þ

In the case of hard excitation, the order of the external

distributed load is higher than that of the damping and

nonlinear terms. Consequently, by inserting Eq. (28) in the

governing differential Eq. (27), one will have

€q1 þ x2
1q1 þ a1q

3
1 þ a2q

3
2 þ a3q

3
3 þ a4q2q

2
1 þ a5q3q

2
1

þ a6q1q
2
2 þ a7q3q

2
2 þ a8q1q

2
3 þ a9q2q

2
3

þ a10q1q2q3 ¼ 2F cosðXTÞ
ð33aÞ

€q2 þ x2
2q2 þ b1q

3
1 þ b2q

3
2 þ b3q

3
3 þ b4q2q

2
1

þ b5q3q
2
1 þ b6q1q

2
2 þ b7q3q

2
2 þ b8q1q

2
3 þ b9q2q

2
3

þ b10q1q2q3 ¼ 0

ð33bÞ

€q3 þ x2
3q3 þ c1q

3
1 þ c2q

3
2 þ c3q

3
3 þ c4q2q

2
1 þ c5q3q

2
1

þ c6q1q
2
2 þ c7q3q

2
2 þ c8q1q

2
3 þ c9q2q

2
3

þ c10q1q2q3 ¼ 0:

ð33cÞ

To continue the solution methodology, it is assumed that

the external distributed load is a dissipative one, so the

damping parameter can be defined as

# ¼ Gx2
1

xL
; ð34Þ

in which xL stands for the linear frequency of the system,

and G is a constant.

Furthermore, it is assumed that t̂ ¼ x̂1t, and

�qi ¼ �qi; i ¼ 1; 2; 3, where x̂1 represents the first fre-

quency of the FG porous nanobeam in the absence of the

surface stress effect. Therefore, scaling Eq. (33) and con-

sideration of the hard excitation yield
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€�q1 þ
2�2#

x̂1

� 	
_�q1 þ

x2
1

x̂2
1

� 	
�q1

þ �2

x̂2
1

� 	
a1 �q

3
1 þ a2 �q

3
2 þ a3 �q

3
3 þ a4 �q2 �q

2
1 þ a5 �q3 �q

2
1:

�

þa6 �q1 �q
2
2 þ a7 �q3 �q

2
2 þ a8 �q1 �q

2
3 þ a9 �q2 �q

2
3 þ a10 �q1 �q2 �q3

�

¼ 2�2F

x̂2
1

cos
Xt̂
x̂1

� 	

ð35aÞ

€�q2 þ
2�2#

x̂1

� 	
_�q2 þ

x2
2

x̂2
1

� 	
�q2

þ �2

x̂2
1

� 	
a1 �q

3
1 þ a2 �q

3
2 þ a3 �q

3
3 þ a4 �q2 �q

2
1 þ a5 �q3 �q

2
1

�

þa6 �q1 �q
2
2 þ a7 �q3 �q

2
2 þ a8 �q1 �q

2
3 þ a9 �q2 �q

2
3 þ a10 �q1 �q2 �q3

�
¼ 0

ð35bÞ

€�q3 þ
2�2#

x̂1

� 	
_�q3 þ

x2
3

x̂2
1

� 	
�q3

þ �2

x̂2
1

� 	
a1 �q

3
1 þ a2 �q

3
2 þ a3 �q

3
3 þ a4 �q2 �q

2
1 þ a5 �q3 �q

2
1

�

þa6 �q1 �q
2
2 þ a7 �q3 �q

2
2 þ a8 �q1 �q

2
3 þ a9 �q2 �q

2
3 þ a10 �q1 �q2 �q3

�
¼ 0:

ð35cÞ

Thereafter, the following multiple time-scales summa-

tions are taken into account for �qiði ¼ 1; 2; 3Þ:
�q1 t̂; �ð Þ ¼ Q10 T0; T1; T2ð Þ þ �Q11 T0; T1; T2ð Þ

þ �2Q12 T0; T1; T2ð Þ ð36aÞ

�q2 t̂; �ð Þ ¼ Q20 T0; T1; T2ð Þ þ �Q21 T0; T1; T2ð Þ
þ �2Q22 T0; T1; T2ð Þ ð36bÞ

�q3 t̂; �ð Þ ¼ Q30 T0; T1; T2ð Þ þ �Q31 T0; T1; T2ð Þ
þ �2Q32 T0; T1; T2ð Þ; ð36cÞ

where T0 ¼ t̂, T1 ¼ �t̂, and T2 ¼ �2 t̂. After substitution

Eq. (36) into Eq. (35), it is seen that the solution of the

problem is not dependent on T1. Therefore, one will have

O �0
� �

:

D2
0Q10 þ

x2
1

x̂2
1

� 	
Q10 ¼

2F

x̂2
1

cos
Xt̂
x̂1

� 	

D2
0Q20 þ

x2
2

x̂2
1

� 	
Q20 ¼ 0

D2
0Q30 þ

x2
3

x̂2
1

� 	
Q30 ¼ 0

8
>>>>>>><

>>>>>>>:

ð37Þ

in which D j
i ¼ d

j

dT j
i

denote the time derivatives.

Now, the following parameters are introduced:

~F ¼ F

x̂2
1

; ~X ¼ X
x̂1

;
~ai; ~bi; ~ci
~x1; ~x2; ~x3


 �
¼

ai
x̂2

1

;
bi
x̂2

1

;
ci
x̂2

1
x1

x̂1

;
x2

x̂1

;
x3

x̂1

8
><

>:

9
>=

>;

i ¼ 1; 2; . . .; 10

ð39Þ

On the basis of the Eq. (37), it can be written

Q10 ¼ A T1; T2ð Þei ~x1T0 þ Dei
~XT0 þ CC

Q20 ¼ B T1; T2ð Þei ~x2T0 þ CC

Q30 ¼ C T1; T2ð Þei ~x3T0 þ CC

ð40Þ

in which CC denotes the complex conjugate part of the

expression, and

D ¼
~F

~x2
1 � ~X2

: ð41Þ

Thereby, after inserting Eq. (40) in Eq. (38), and per-

forming some mathematical calculations, the secular terms

associated with each type of the external excitation are

extracted.

3.1 Superharmonic excitation

In accordance with the superharmonic excitation, one can

write

O �2
� �

:

D2
0Q12 þ

x2
1

x̂2
1

� 	
Q12 ¼ �2D0D2Q10 �

2#

x̂1

� 	
D0Q10 �

a1
x̂2

1

� 	
Q3

10 � � � � � a1
x̂2

1

� 	
Q10Q20Q30

D2
0Q22 þ

x2
2

x̂2
1

� 	
Q22 ¼ �2D0D2Q20 �

2#

x̂1

� 	
D0Q20 �

a1
x̂2

1

� 	
Q3

10 � � � � � a1
x̂2

1

� 	
Q10Q20Q30

D2
0Q32 þ

x2
3

x̂2
1

� 	
Q32 ¼ �2D0D2Q30 �

2#

x̂1

� 	
D0Q30 �

a1
x̂2

1

� 	
Q3

10 � � � � � a1
x̂2

1

� 	
Q10Q20Q30

8
>>>>>>><

>>>>>>>:

ð38Þ
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3 ~X ¼ ~x1 þ �C; ð42Þ

where C is the detuning parameter. By setting the secular

as well as small divisor terms equal to zero, one will have

� 2i ~x1

oA
oT2

ei ~x1T0 � 2i# ~x1Aei ~x1T0 � 3~a1A2 �Aei ~x1T0

� 6~a1AD2ei ~x1T0 � ~a1D
3e3i ~x1T0 � 2~a6AB �Bei ~x1T0

� 2~a8AC�Cei ~x1T0 ¼ 0

ð43aÞ

� 2i ~x2

oB
oT2

ei ~x2T0 � 2i# ~x2Bei ~x2T0 � 3~b2B2 �Bei ~x2T0

� 2~b4BD2ei ~x2T0 � 2~b4A �ABei ~x2T0 � 2~b9BC�Cei ~x2T0 ¼ 0

ð43bÞ

� 2i ~x3

oC
oT2

ei ~x3T0 � 2i# ~x3Cei ~x3T0 � 3~c3C2 �Cei ~x3T0

� 2~c5CD2ei ~x3T0

� 2~c5A �ACei ~x3T0 � 2~c7CB �Bei ~x3T0 ¼ 0

ð43cÞ

Now, A T1; T2ð Þ;BðT1; T2Þ and CðT1; T2Þ are considered

in polar function form as below:

A T1; T2ð Þ ¼ 1

2
a T1; T2ð Þei1 T1;T2ð Þ

B T1; T2ð Þ ¼ 1

2
b T1; T2ð Þeig T1;T2ð Þ

C T1; T2ð Þ ¼ 1

2
c T1; T2ð Þeiw T1;T2ð Þ

ð44Þ

Inserting Eq. (44) in Eq. (43) leads to the following

equations corresponding to each of the real and imaginary

parts:

Fig. 2 Variation of the

oscillation amplitude with time

for an FG porous silicon

nanobeam under superharmonic

excitation corresponding to

different mode numbers

(h ¼ 2 nm; h=L ¼ 20, pattern

A)
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da

dT2
¼ �#a� ~a1D

3

~x1

sin CT2 � 1ð Þ

a
d1
dT2

¼ 3~a1
8 ~x1

a3 þ 3~a1D
2

~x1

aþ ~a1D
3

~x1

cos CT2 � 1ð Þ

8
>><

>>:

ð45aÞ
db

dT2
¼ �#b

b
dg
dT2

¼ 3~b2
8 ~x2

b3 þ
~b4D

2

~x2

bþ
~b4a

2

4 ~x2

bþ
~b9c

2

4 ~x2

b

8
>><

>>:
ð45bÞ

dc

dT2
¼ �#c

c
dw
dT2

¼ 3~c3
8 ~x3

c3 þ ~c5D
2

~x3

cþ ~c5a
2

4 ~x3

cþ ~c7b
2

4 ~x3

c

8
>><

>>:
: ð45cÞ

The oscillation amplitudes of a silicon nanobeam under

superharmonic excitation are shown in Fig. 2 correspond-

ing to the first three vibration modes. As it can be observed,

the vibration amplitude of the first mode is so higher than

those of the second and third modes. As a result, the values

of b and c are so small in comparison with the value of a,

so it is possible to neglect them. Therefore, Eq. (45)

reduces in the following form:

da

dT2
¼ �#a� ~a1D

3

~x1

sin CT2 � 1ð Þ

a
d1
dT2

¼ 3~a1
8 ~x1

a3 þ 3~a1D
2

~x1

aþ ~a1D
3

~x1

cos CT2 � 1ð Þ

8
>><

>>:
:

ð46Þ

Fig. 3 Variation of the

oscillation amplitude with time

for an FG porous silicon

nanobeam under subharmonic

excitation corresponding to

different mode numbers

(h ¼ 2 nm; h=L ¼ 20, pattern

A)

Table 1 Material properties of

the silicon material [73, 74]
E ðGPaÞ 210

m 0.24

ls ðN/mÞ - 2.774

ks ðN/mÞ - 4.488

ss ðN/mÞ 0.6048
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The purpose is now to obtain the steady-state solution,

so the derivative terms on the left side of Eq. (46) are set to

zero. As a result, it gives

#2 þ C� 3~a1D
2

~x1

� 3~a1a2

8 ~x1

� 	2
" #

a2 ¼ ~a21D
6

~x2
1

:
ð47Þ

Therefore, the size-dependent frequency response for an

FG porous silicon nanobeam under superharmonic excita-

tion can be expressed as

C ¼ 3~a1D
2

~x1

þ 3~a1a2

8 ~x1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~a21D

6

a2 ~x2
1

� #2

s

: ð48Þ

On the other hand, Eq. (47) can be rewritten as

Table 2 Comparison between

the dimensionless natural

frequencies of silicon

nanobeams with different

thicknesses in the presence of

the surface stress effect

Thickness (nm) SS boundary conditions CC boundary conditions

Present study Ref. [75] Present study Ref. [75]

1 0.1828 0.1830 0.2519 0.2524

2 0.1554 0.1557 0.2320 0.2323

5 0.1251 0.1255 0.2114 0.2117

50 0.0935 0.0937 0.1924 0.1928

Fig. 4 Frequency response of FG porous silicon nanobeams with different thicknesses under subharmonic excitation based on the classical and

surface elastic beam models (Cp ¼ 0:4, pattern A, ~F ¼ 0:4)
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#2 þ C2 þ 9~a21D
4

~x2
1

þ 9~a21a
4

64 ~x2
1

� 6~a1D
2C

~x1

� 3~a1a2C
4 ~x1

þ 9~a21a
2D2

4 ~x2
1

� 	
a2

¼ ~a21D
6

~x2
1

:

ð49Þ

Thereby, it yields

S1D
6 þ S2D

4 þ S3D
2 þ S4 ¼ 0; ð50Þ

in which

S1 ¼
~a21
~x2
1

; S2 ¼ � 9~a21a
2

~x2
1

; S3 ¼
6~a1Ca2

~x1

� 9~a21a
4

4 ~x2
1

S4 ¼ � #2 þ C2 þ 9~a21a
4

64 ~x2
1

� 3~a1a2C
4 ~x1

� 	
a2:

ð51Þ

The solution of Eq. (50) results in the size-dependent

amplitude response of an FG porous silicon nanobeam

under superharmonic excitation in the presence of surface

stress effect.

3.2 Subharmonic excitation

In accordance with the subharmonic excitation, one can

write

~X ¼ 3 ~x1 þ �C: ð52Þ

Afterwards, by eliminating the secular and small divisor

terms, the following sets of equations can be obtained:

Fig. 5 Frequency response of FG porous silicon nanobeams with different thicknesses under superharmonic excitation based on the classical and

surface elastic beam models (Cp ¼ 0:4, pattern A, ~F ¼ 0:4)
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� 2i ~x1

oA
oT2

ei ~x1T0 � 2i# ~x1Aei ~x1T0 � 3~a1A2 �Aei ~x1T0

� 6~a1AD2ei ~x1T0 � 3~a1A2Dei
~X�2 ~x1ð ÞT0

� 2~a6AB �Bei ~x1T0 � 2~a8AC�Cei ~x1T0 ¼ 0

ð53aÞ

� 2i ~x2

oB
oT2

ei ~x2T0 � 2i# ~x2Bei ~x2T0 � 3~b2B2 �Bei ~x2T0

� 2~b4BD2ei ~x2T0 � 2~b4A �ABei ~x2T0 � 2~b9BC�Cei ~x2T0 ¼ 0

ð53bÞ

� 2i ~x3

oC
oT2

ei ~x3T0 � 2i# ~x3Cei ~x3T0 � 3~c3C2 �Cei ~x3T0

� 2~c5CD2ei ~x3T0 � 2~c5A �ACei ~x3T0 � 2~c7CB �Bei ~x3T0 ¼ 0:

ð53cÞ

For A T1; T2ð Þ;B T1; T2ð Þ and C T1; T2ð Þ, a polar function

is assumed similar to Eq. (47), so one will have

da

dT2
¼ �#a� 3~a1a2D

4 ~x1

sin CT2 � 31ð Þ

a
d1
dT2

¼ 3~a1
8 ~x1

a3 þ 3~a1D
2

~x1

aþ 3~a1a2D
4 ~x1

cos CT2 � 31ð Þ

8
>><

>>:

ð54aÞ
db

dT2
¼ �#b

b
dg
dT2

¼ 3~b2
8 ~x2

b3 þ
~b4D

2

~x2

bþ
~b4a

2

4 ~x2

bþ
~b9c

2

4 ~x2

b

8
>><

>>:
ð54bÞ

dc

dT2
¼ �#c

c
dw
dT2

¼ 3~c3
8 ~x3

c3 þ ~c5D
2

~x3

cþ ~c5a
2

4 ~x3

cþ ~c7b
2

4 ~x3

c

8
>><

>>:
: ð54cÞ

The oscillation amplitudes of an FG porous silicon

nanobeam subjected to subharmonic excitation are illus-

trated in Fig. 3 corresponding to the first three vibration

Fig. 6 Amplitude response of FG porous silicon nanobeams with different thicknesses under subharmonic excitation based on the classical and

surface elastic beam models (Cp ¼ 0:4, pattern A, C ¼ 5)
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modes. It is obvious that the oscillation amplitude of the

first mode is so higher than those of the second and third

modes. As a result, the values of b and c are so small in

comparison with the value of a, so it is possible to neglect

them. Therefore, Eq. (54) reduces to the following form

da

dT2
¼ �#a� 3~a1a2D

4 ~x1

sin CT2 � 31ð Þ

a
d1
dT2

¼ 3~a1
8 ~x1

a3 þ 3~a1D
2

~x1

aþ 3~a1a2D
4 ~x1

cos CT2 � 31ð Þ

8
>><

>>:
:

ð55Þ

The purpose is now to obtain the steady-state solution,

so the derivative terms on the left side of Eq. (55) are set to

zero. As a result, it gives

9#2 þ C� 9~a1D
2

~x1

� 9~a1a2

8 ~x1

� 	2

¼ 81~a21a
2D2

16 ~x2
1

: ð56Þ

Consequently, the frequency response for an FG porous

silicon nanobeam under subharmonic excitation and in the

presence of surface free energy effect can be written as

C ¼ 9~a1D
2

~x1

þ 9~a1a2

8 ~x1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81~a21a

2D2

16 ~x2
1

� 9#2

s

: ð57Þ

On the other hand, Eq. (56) can be rewritten as

9#2 þ C2 þ 81~a21D
4

~x2
1

þ 81~a21a
4

64 ~x2
1

� 18~a1D
2C

~x1

� 9~a1a2C
4 ~x1

þ 81~a21a
2D2

4 ~x2
1

� 	

¼ 81~a21a
2D2

16 ~x2
1

:

ð58Þ

Therefore, it yields

p1D
4 þ p2D

2 þ p3 ¼ 0 ð59Þ

Fig. 7 Amplitude response of FG porous silicon nanobeams with different thicknesses under superharmonic excitation based on the classical and

surface elastic beam models (Cp ¼ 0:4, pattern A, C ¼ 5)
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where

p1 ¼
81~a21
~x2
1

; p2 ¼
243~a21a

2

16 ~x2
1

� 18~a1C
~x1

p3 ¼ 9#2 þ C2 þ 81~a21a
4

64 ~x2
1

� 9~a1a2C
4 ~x1:

ð60Þ

The solution of Eq. (59) is the size-dependent amplitude

response for an FG porous silicon nanobeam subjected to

subharmonic excitation.

4 Results and discussion

Herein, selected numerical results for the nonlinear sec-

ondary resonance of FG porous silicon nanobeams under

harmonic excitation is analyzed in the presence of free

surface energy effects and corresponding to simply sup-

ported-simply supported (SS–SS), clamped-simply sup-

ported (C-SS) and clamped–clamped (C–C) boundary

conditions. The mechanical properties and surface elastic

constants of silicon material are given in Table 1. It is

assumed that L=h ¼ 20; b ¼ h; and # ¼ 0:2. In addition,

this point should be noted that the present analysis is based

on this assumption that the values of frequencies corre-

sponding to different vibration modes are not within the

range that leads to internal resonance.

To check the validity as well as accuracy of the current

investigation, the natural frequency of silicon nanobeams

with different thicknesses and boundary conditions in the

presence of the surface stress are obtained and compared to

those reported by Ansari et al. [75] using generalized dif-

ferential quadrature methodology. A very good agreement

Fig. 8 Surface elastic frequency response of FG porous silicon nanobeams under subharmonic excitation corresponding to various porosity

dispersion patterns (h ¼ 5 nm;Cp ¼ 0:6; ~F ¼ 0:4)
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is found which confirms the validity of the present solving

process (Table 2).

In Figs. 4 and 5, the frequency response of porous sili-

con nanobeams with different thicknesses and uniform

porosity dispersion (pattern A) is displayed corresponding

to the subharmonic and superharmonic excitations,

respectively. It is revealed that due to the higher surface to

volume ratio for a nanobeam with lower thickness,

reduction in the value of beam thickness causes to enhance

the difference between the classical and non-classical fre-

quency responses. In the case of superharmonic excitation,

it is seen that the surface stress effect leads to decrease the

both height of jump phenomenon and the associated non-

linearity effect to the hardening direction. As a result, the

excitation frequency associated with the both bifurcation

points increases by taking the surface stress effect into

account. These anticipations are more significant for the

SS–SS boundary conditions. Regarding the subharmonic

excitation, it is seen that the surface stress effect leads to

increase the value of the excitation frequency at the joint

point of the two branches of the frequency response curve.

However, by moving from SS–SS boundary conditions to

C–C ones, the significance of this effect diminishes.

Figures 6 and 7 depict the amplitude-response of porous

silicon nanobeams with different thicknesses and uniform

porosity dispersion (pattern A) corresponding to the

superharmonic and subharmonic excitations, respectively.

It is found that for the subharmonic excitation, within a

specific range of the excitation amplitude, the nanobeam is

excited, and this range shifts to higher excitation amplitude

with higher area by incorporating the surface free energy

effects, especially for SS–SS boundary conditions. In

addition, for the superharmonic excitation, by taking the

surface stress effect into account, the excitation amplitude

Fig. 9 Surface elastic frequency response of FG porous silicon nanobeams under superharmonic excitation corresponding to various porosity

dispersion patterns (h ¼ 5 nm;Cp ¼ 0:6; ~F ¼ 0:4)
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associated with the peak of vibration amplitude enhances.

Also, the surface stress effect causes the bifurcation points

occur at higher excitation amplitude.

The influence of the porosity dispersion pattern on the

frequency response of FG porous silicon nanobeams with

different end supports including surface stress effects is

shown in Figs. 8 and 9 corresponding to the subharmonic

and superharmonic excitations, respectively. In the sub-

harmonic case, it is revealed that the value of the excitation

frequency at the joint point of the two branches of the

frequency-response curve for patterns D and C is maximum

and minimum, respectively. However, this difference

between various patterns of the porosity dispersion

becomes negligible by changing the boundary conditions

from SS–SS ones to C–C ones. In the superharmonic case,

it is observed that the peak of the oscillation amplitude and

the associated excitation frequency are maximum and

minimum, respectively, for pattern D and pattern C of the

porosity dispersion. This prediction is the same for all types

of end supports.

Figures 10 and 11 demonstrate the influence of the

porosity dispersion pattern on the amplitude response of

FG porous silicon nanobeams with different end supports

including surface stress effects is corresponding to the

subharmonic and superharmonic excitations, respectively.

In the subharmonic case, it is found that by changing the

porosity dispersion pattern from pattern A to pattern D,

from pattern D to pattern B, and from pattern B to pattern

C, the specific range of the excitation amplitude corre-

sponding to which the FG porous nanobeams is excited,

shifts to a higher value. In the superharmonic case, it is

seen that the excitation amplitude associated with the peak

of the oscillation amplitude is maximum and minimum for

FG porous nanobeams with patterns C and A, respectively.

Fig. 10 Surface elastic amplitude response of FG porous silicon nanobeams under subharmonic excitation corresponding to various porosity

dispersion patterns (h ¼ 5 nm;Cp ¼ 0:6;C ¼ 5)
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In Figs. 12 and 13, the influence of porosity coefficient

on the frequency response of porous silicon nanobeams

with uniform porosity dispersion (pattern A) and various

end supports incorporating surface stress effects is shown

corresponding to the subharmonic and superharmonic

excitations, respectively. In the subharmonic case, it can be

observed that by increasing the porosity coefficient, the

value of the excitation frequency at the joint point of the

two branches of the frequency-response curve reduces.

This anticipation becomes more prominent by changing the

boundary conditions from C–C ones to SS–SS ones. In the

superharmonic case, it is indicated that an increment in the

value of porosity coefficient leads to decrease the peak of

the oscillation amplitude and the associated excitation

frequency.

The influence of porosity coefficient on the amplitude

response of porous silicon nanobeams with uniform

porosity dispersion (pattern A) and various end supports

incorporating surface stress effects is illustrated in Figs. 14

and 15 corresponding to the subharmonic and superhar-

monic excitations, respectively. In the subharmonic case, it

is revealed that by increasing the value of porosity coeffi-

cient, the specific range of the excitation amplitude corre-

sponding to which the porous silicon nanobeam is excited,

shifts to higher value. In the superharmonic case, the

increase in the value of porosity coefficient results in an

increment in the excitation amplitude associated with the

peak of the oscillation amplitude. These observations are

similar for all types of boundary conditions.

Fig. 11 Surface elastic amplitude-response of FG porous silicon nanobeams under superharmonic excitation corresponding to various porosity

dispersion patterns (h ¼ 5 nm;Cp ¼ 0:6;C ¼ 5)
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5 Concluding remarks

The prime aim of the current study was to investigate the

nonlinear secondary resonance of hard excited FG porous

silicon nanobeams in the presence of the surface free

energy effects. Consequently, the Gurtin–Murdoch theory

of elasticity was applied to the classical beam theory to

construct a non-classical beam model having the capability

to take surface stress effects into consideration. With the

aid of the multiple time-scales method together with the

Galerkin technique, the frequency response and amplitude

response of the FG porous silicon nanobeams were

obtained based upon the developed surface elastic beam

model.

It was shown that due to the higher surface to volume

ratio for a nanobeam with lower thickness, reduction in the

value of beam thickness causes to enhance the difference

between the classical and non-classical predictions for the

nonlinear secondary resonance response. In the case of

superharmonic excitation, it was revealed that the surface

stress effect leads to decrease the both height of jump

phenomenon and the associated nonlinearity effect to the

hardening direction. As a result, the excitation frequency

associated with the both bifurcation points increases by

taking the surface stress effect into account. Regarding the

subharmonic excitation, it was observed that the surface

stress effect leads to increase the value of the excitation

Fig. 12 Surface elastic frequency response of FG porous silicon nanobeams under subharmonic excitation corresponding to various porosity

coefficients (h ¼ 5 nm, pattern A, ~F ¼ 0:4)
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frequency at the joint point of the two branches of the

frequency-response curve.

In the subharmonic case, it was indicated that by

changing the porosity dispersion pattern from pattern A to

pattern D, from pattern D to pattern B, and from pattern B

to pattern C, the specific range of the excitation amplitude

corresponding to which the FG porous nanobeams is

excited, shifts to a higher value. In the superharmonic case,

Fig. 13 Surface elastic frequency response of FG porous silicon nanobeams under superharmonic excitation corresponding to various porosity

coefficients (h ¼ 5 nm, pattern A, ~F ¼ 0:4)
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Fig. 14 Surface elastic amplitude response of FG porous silicon nanobeams under subharmonic excitation corresponding to various porosity

coefficients (h ¼ 5 nm, pattern A, C ¼ 5)
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Fig. 15 Surface elastic amplitude-response of FG porous silicon nanobeams under superharmonic excitation corresponding to various porosity

coefficients (h ¼ 5 nm, pattern A, C ¼ 5)
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it was demonstrated that the excitation amplitude associ-

ated with the peak of the oscillation amplitude is maximum

and minimum for FG porous nanobeams with porosity

dispersion patterns C and A, respectively.
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